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§ 1. Introduction

In this paper we study an initial-value problem for the equation;

AD B oudn 9hKGu=f(xy), xR, yERY,

a2 . ()0 (3
= 0x’ Y7\ \oya

with data on x=0. In this article we treat our problem only within the
class of real analytic functions, more precisely we assume that the coeffi-
cients, initial data and solutions are all real analytic in the neighborhood
of the origin.

For the following initial data;
1.2) 5u(0, Y)=u(y), i=0,1,2,..., m—1,
it is well-known that under the assumption

1.3) am,0(0, 0)20,

the problem (1.1)-(1.2) has always a unique solution (Cauchy-Kow-
alevski’s theorem). But if we remove the condition (1.3), the problem
(1.1)-(1.2) has not always a solution. In [2], we had treated the
following initial-value problem;
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1.4) xam,o(x, y)ogu+ |;—1xam_1’ o, y)3§"‘13§'}u+am_1,o(x; )0 1o
ai, o, y)a?tagu:'f(x’ ),

i<m-2, la|+i<m
FERL, yERML, B lam-g,(0, 0.
al=2

1.5) 8L u(0, »)=u;(y), j=0,1,2, ..., m—2.

We proved in [2].

Theorem 1.1

In the case where am,0(0,»)=0, if am-1,000, )0, the problem
(1.4)-(1.5) kas not always a solution.

Theorem 1.2

In the case where am,0(0, 0)0, and moreover for all nonnegative
integers p, we have pam,0(0,0)+am-1,00,0) 0, zhen there exists
always a unigue solution for the problem (1.4)—(1.5).

Theorem 1.3
In the case where am,0(0,0)x0, and moreover if for some non-
negative integer po, we have poam,0(0,¥)+am-1,000,y)=0, then a
necessary and sufficient condition concerning the initial data for the
existence of the solution of the problem (1.4)-(1.5) is the following
compatibility condition:
(1.6) > (k) (y)(u’(y) + > b al La(¥) (s_ay”_S(JQ_

k+%=>1{.,+m—1 m)! 421 k+s=pgrm—2 m—+41)!

@) us(y)
+k+%=>§+m 1am_1 o(¥) (s—m+1)!

5 éﬁz(y)ay”s({’ — f@I(y),

i< 1%: (s—
¢+|a_2 k+8=p,+

where a;, g(x, J’)=,§0“§’3&(J’)xk, S(x, y)zkgof(k)(fka and #m-1, %m, ...,

Um+p,—2 are uniquely determined by the initial data {uo, 1, ..., #m-2}.
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In this paper we treat more general equations than (1.4). General-
izing the above compatibility condition, we obtain similar results to the
above theorems.

Let us introduce the following notion;

Definition 1.1
For the differential operator of the form x%a(x,y)d%dy (>0,
2(0, ¥)=0), we call the pair of integers (¢-p, |a|) its degree.

Definition 1.2

For the differential operator 4=xPa(x, y)0%d§ and A'=x?'a'(x, y)
%9y (p, ' >0, a0, )20, a'(0, y)=0), we say that the degree of 4 is
higher than that of A4’ if and only if g-p>>¢"-p’ or g-p=¢"-p", |a|>|d/|.
And two operators A and A4’ are of the same degree if ¢g-p=¢"-p’,

|a|=la’l.

For the coefficients of (1.1), when a:,(0, y)=0 £=0,1, ..., p-1,

and 0%244(0,¥)2c0, we can write ai(x, ¥)=2Papia(x,y) (apia(0,y)20).
We rewrite

(1.1) in the following form;

(].7) 2 xpapqa(x» y)aga§u=f(x: J’),
g+al<m
apqa(o» J/)$O, P=p<% a.).

Definition 1.3

We define that the degree of the differential operator 3 x?
p'Q!a

apgal*,y)0%05 is as the highest degree of the terms in the summation.

§2. Statements of Theorems

Let the degree of (1.7) be (', 7), we suppose 7' >0 then (1.7)
can be written in the following form;

—r—m’

m -~
(2.1) P €2 3%"'”[a|§r b1a(¥)3g)n= L xPapga(%, )% Gu+f (%, y),
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where 3 means the summation of the terms whose degree is lower than
(m', ), namely the summation of the terms where p, ¢, a satisfy g-p<m'
or g-p=m', la|<». Let usremark that the degree of the equation which
we treated in [2] is (#-1, 0).

At first we consider under the following assumption;
<H) IIZ bm—r—m, a(O)HFO in (2-].)-

This assumption (H) corresponds to the hypothesis @p,0(0, 0)20 in the
theorem 1.2 and 1.3.
For the simplicity we denote (2.1) by

m—r—m’
2.2) T @ Ly(y, 4)w=T(x, 3, 90 d)u-t,

where L (¥, 9y)= 2 bk, o()0§, £=0,1, ..., m4-r—m’,
l@=r ‘
and I'(x, ¥, 3z, 0y)= 31 xPapqa(%, ¥)3%05.

Let us consider the following initial data;

(2.3) (0, P=u(y), i=0,1,..,m —1.
Let
24 w(x, )= 2 wg(y)x7[j!

j>0

be the formal solution of the problem (2.2)-(2.3). Then we have

m—r—m/’ L , P 1 /o
2.5) ( = —ég—j)flz)uk+m'(y>=k—!3’:ﬁ (Popm) _ +2

£=0,1,2, ...,

where pp= % wi (N7, f= jZf;(y)xf/j! and 1/s!=0 when s<0.
=0 >0

From the assumption (H), there exists some integer 4; such that

for any £ (C>4;) we have the following relation;

26) = "5 40

a=r| j=o (£—j)! =0

Let %9 be the minimum number which has the above property.
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Now there exists #g+m/(¥) (>ko) which satisfies (2.5) (assuming
that wms, #m+1, ..., #g+m/—1 are already defined). In fact, let us consider
that (2.5) is a differential equation whose unknown function is z#g4m/(¥).
And we write (2.5) in the following form:

m—r—m’L (J/ P )
2.7) ( > L0 %)
= =]

=8(uo, w1, ..., Uk+m’'—1).

) uk+m’(}’) — q_Z_m, Apqa (0, J’)Tk—a_gp)—!uk+m’(y>

la|<r

In view of (2.6), (2.7) is Kowalevskian type for some direction. So
there exist #g+m’(y¥) which satisfies (2.5).

If the problem (2.2)-(2.3) has at least one solution, there exists
{#tk+m(¥); 0<A<ko} which satisfies (2.5). Now this is necessary for
the existence of the solution of the problem (2.2)-(2.3). We shall prove

that this also a sufficient condition. Namely,

Theorem 2.1
If there exists {upsm(¥); £=0,1, ..., ko-1} whickh satisfies (2.5),
the problem (2.2)-(2.3) has at least one solution in a neighborhood of the

origin.
Concerning the initial data (1.2), we have

Corollary

In the case where kom-m', a necessary and sufficient condition
Sfor the existence of the solution of the problem (2.2)-(1.2) is that the
initial data {u1(y), ua(y), ..., um—1(y)} satisfres (2.5).

In the case where ko >m-m', a necessary and sufficient condition
Sfor the existence of the solution of the problem (2.2)-(2.1) is that there
exists {tm, Um+l, ..., Um'+k—1(Y)} Such that a set {uo, uy, ..., Um/ +k,—1}

satisfies (2.5).

Remark 2.1
When =0 and 4y=0, the problem (2.2)-(2.3) has always a unique

solution.
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Remark 2.2

When >0, the solution is not unique.

Let us consider the following initial-value problem (2.8)-(2.9),
where (2.8) does not satisfy the assumption (H).

(2.8) M lu= 3 xPapg(x, y)05Gutf(x, ),
g+iaj<m, p<2
g-p<m-2

(2.9) tu(0, v)=u,y), =0,1, ..., m—2.

The degree of the differential operator (2.8) is (»-1. 0). And the degree
of the right-hand side of (2.8) is at most (#-2, 2). Let

(2.10) w(x, y)= ,EO ui(y)xk|k!

be the formal solution of the problem (2.8)-(2.9). Then we have the

similar relation to (2.5),

(2]‘1) %uk-l-m—l(y):F(%o, Uy ...y %k+m—2)+£l—:y
£=0,1,2, ....
So the formal solution (2.10) is uniquely defined. But generally this

formal solution does not always converge in a neighborhood of the

origin. Namely

Theorem 2.2
If for some integer s >2, we have

E al”l}; (0, y, ]., 0) ‘EO,
ony

wi<g

(2.12)

¥4 (0, 0,1, 0)
ARG ‘aeo,

=8
then there exists an initial data (2.9) such that the problem (2.8)-(2.9)
has no analytic solution in any neighborhood of the origin, where h(x,

&= X xlapglx, y)EM.
g-+al=m
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§3. Proof of Theorem 2.1

At first we consider the following fairly simple equation:

3.1)

(m—r—m’

5 xfaw'”az,) 2= 5 2P apga()385u+F (),

where 37 means the summation of the terms where 2, ¢, a satisfy

g+lal<lm, g—p<m', p<po or g+la<m, g—p=m', <7, a7,

p<po (where pg is some constant).

Let us consider the following Goursat data*);

8%2(0, ¥)=0, i=0,1, ..., m —1,
(3.2 {
oY u(x, P)y=0=0, 7=0,1,...,r—L

We shall show

Lemma
The Goursat problem (3.1)-(3.2) (when r=0, this is Cauchy problem)
has a unique solution w(x,y) in a neighborhood of the origin.

Proof
Let

3-3) u(x, )= % us(9)x[j!
j>m
be the formal solution of (3.1)-(3.2). Then we have

(3.4)

{m—r—m'

5" 118 ()

=3 apga(¥)ur+q—p(P)|(k—p)!+85 f(3), £>0,

where 1//1=0 when ;j<C0, and 8 is Kronecker’s 8. For to be brief, we
denote (3.4) by

*) when »=0, we consider that (3.2) is Cauchy data 6%14(0,)/):0, i=0,1,...,m"-1.
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(3.5) 3{/1 ukrm(y)= N ml_r_ - { iapqa()’)afukw—p(y)/ (A—p)!

+85 ()}

S
where N(k, s)= X 1/(4)!. The formal solution (3.3) is uniquely
=0

defined by (3.2) and (3.5). Now, we want to show the convergence
and the analyticity of (3.3).

Let M/(l—y—;)(l—-yz—kpf_W) be a common majorant of f(y)

and apgo(y) which appear in (3.5). Let us consider the following

equation;
M
N, m—r—m')(l—l’;—)(l———y ot Y ”)

P
XA{Z 8% Ursq-p()|(k—p) 48k},

3.6) %, Uk+m'(y) =

£=0,1,2, ...
and the following initial data (*»>>1);
3.7 3 Ukim(P)ly=0=0, 7=0,1,..,r—1
£=0,1,2, ...

Then {Uk+m(y); £=0,1,2,...} are determined successively as a
solution of the problem (3.6)-(3.7). It is easy to see that we have

3.8) Ursm/ (D) Sursm(y),  #=0,1,2, ...

Let us consider the following Taylar expansion.

3.9) Uptm(3)= 2 URn NN, £=0,1,2, ...
j>r

where y'=(y2, ¥3, ..., ¥n).
From (3.6) and (3.9) we obtain

ULy Uy B(y")
(3.10) Gl = oD T N mer—)

5 U ()
X{E G—p)1G—7)] +83}
F>r 4=0,12, ...



On the initial-value problems 587

' ar 0 \2: J \@»
where B<y>=M/(1—¥2-1L~—M) and ag=( )" (5]

Then we have

3.11) 9y, UP (I A U+ (m_é&:ﬁ 1;','_:5)’% +D! X C20+EmAk+p

ly'<a,

for any v and for any £ and j, if we choose the constant C, 4 sufficient

large and constant ¢ small. Concerning the proof of (3.11), refer to
[2] p. 366~.
From (3.11), we see easily that U (x, ) defined by

@12)  U@)=3 Un)stki=3 UL ) y{/k;!
>m’

j>r

has the estimates of the form
(3.13) 1843519y, U (x, )| <(g+a1+Iv)! C'atathl 4’

for |x|<8, |3I<8', |¥'|<a if we choose 8, 8’ small and (', 4" large. So
the formal solution defined by (3.3) which is majorated by U(x,»)
converges in a neighborhood of the origin. The proof of Lemma is thus

complete.

Proof of Theorem 2.1
Without loss of generality, we can assume that dy—r—m/, r,0...0(%).
(the coefficient of x™~"=™" oj 7~") is not zero at y=0.

In fact, from the assumption (H), there exists an & C" such that
<3.14‘) | |Z_rbm_r_m/, a(O)‘r’“: .

So there exists some 7 such that n;3¢0. Without loss of generality we

can assume 71°0. Let us consider the following change of variables;

51=<y, 1>=y1"~+yle+...4+ynn
3.15)

=1 Z=2» 3) YR



588 Yukiko Hasegawa

The coefficient of xm—r—m’ 8;182‘" is 2 bm—r-m,a(0)7* at y=2=0.
|a|=r

The above change of variables does not change the degree of (2.1).
Then there exists some integer £1(>>4¢) such that for any £ (/41)

we have

m=r=m"p; ,o...000)
1 br.r0.00) g
(3.16) jgo (f—j)! 0

Now, we rewrite (2.1) in the following form;

m’ -
(3.17) EO 21 Ay(3)8y u= 3 xPagpa(x, )3§5u+f (x, 9).

Differentiating (3.17) 4 times with respect to x, we have

—r—m/

3.18) P2y 1 37+ By ()3, u= T xPapqa(%, )04 05u+ f (x, 9),

where 3’ means the summation of the termes where p, ¢, a satisfy
g-p<m'+k1, p<po, g+lal<m+ky or gp=m'+ly, la<r, u<lr, p<<
2o, g+lal<m+Ar.

For the equation (3.18), let us consider the following Goursat data;

Lu(0, =uy) =0,1,..,m'+k—1
when 7=0.1, ..., m'—1, %;(y) is the same as (2.3),

when i=wm', ..., m'+/£1—1, ui(¥) is one which satisfies (2.5),
(3.19)
aylu<x7 y)‘y1=0=vi(x) J’I), Z.=O) ]-, ey 7‘—-]_

where vi(x, )= om'+k,-1(%, ¥)ly=0+2™"+Fuby(x, ")

»
and where gy(x, y)=k2 ur(y)x®|k!, i is arbitrary.
=0

We shall show that the problem (3.18)-(3.19) has a unique solution
in a neighborhood of the origin. Without loss of generality, we can

assume that the Goursat data (3.19) are all zero.
Let

(3.30) Wz, )= 5 w()ad]j!
jm'+k,
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be the formal solution of (3.18)-(3.19). Form (3.18) and (3.20), we have

the following similar relation to (3.4)
m—r—m/’ .
62 "5 BONE- g, wremerr =

On the other hand, from (3.16) we have

(3.22) m;gm/Bf(O)/(k—j)!éeO. £>0.

In view of the recurrence formulas between um/+k,, #m’'+k+1,..., We
choose a majorant C(y) such that

@23 1 L ()

m—r—m’

5 B —) B 1(E—)!
j=0 J=0

for all non-negative integers £ Such a function C(y) exists because
of (3.22).
Let us consider the following Goursat problem (3.24)-(3.25).

m—r—m’
3.24 Jom+E AT 17 — MC(y)
o p

X {%’ xP3L3s U+1},
where M/(l—i)(l—y-——«l—'_m_'_y"
4 4

@pga(*, ¥) which appear in (3.18).

) is a common majorant of f and

( &U©, »)=0, i=0,1,...,m'+k—1,
(3.25)
3%,1 U, 9)|y=0=0, 7=0,1,...,»—1.

Then the formal solution
(3.26) U, )= X Ui(y)xij!
Jem'+k,

of the problem (3.24)-(3.25) is a majorant of the formal solution of the
problem (3.18)-(3.19).
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On the other hand (3.24) is a special case of (3.1). In fact, (3.24)

can be written in the form

m-rom’ jam’+k+j qr x Mo jam/+k+5ar
(3.27) I Ayt U= B gy, U
MC(J’) </ q Na
0

Owing to the Lemma, we see that (3.26) represents a convergent series in
a neighborhood of the origin. This proves that the problem (3.18)-(3.19)
has a unique solution in a neighborhood of the origin. In view of the
particular Goursat data (3.19), the solution of the problem (3.18)-(3.19)
is also solution of the problem (2.2)-(2.3). Let us remark that when

»>0, the solution is not unique because of arbitrariness of ¢; in (3.19).

Remark
When »=0, (3.19) and (3.25) are initial data and the problem
(3.18)-(3.19) and (3.24)-(3.25) are initial-value problems.

§4 Proof of Theorem 2.2

From the assumption we can rewrite (2.8) in the following form.

0P V= 2x2am, o(x, y)ogu+x Zldm—l,a(ﬂ—’, Y)OF105u
lai<
ol Z am-2,o(% )32
4.1 +...+ X ldm—s+1,a<xy Y)OF 5105

|a|=8—
+ T am-i,a(x, y)OP 05 u
m>t>8
lal=1
+ T ai,a(x, 9)05ut-f(x, »,
i<m—2
i+Hal<m—1

( where IE lam—s,a(0, 0)5£0, s>2.
laj=8

Now we consider the formal solution of (4.1),

4.2) uxy)= B N
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We want to show that we can choose an initial data #,_g(y) such that
the formal solution (4.2) never converges in any neighborhood of the
origin.

Substituting (4.2) into (4.1),we have

(4.3) z uy(P)xIm (G —m+ 1)!=Zji am,o(%, Y)us(P)xI "2 (G—m)!
+MZ<:IZ am-1,a(%, ¥)95ui(9)xI"*2|(j—m+1)!

+{= Z am-2,a(%, )95us(y)xI—m+2H(j—m-2)!

la|=2

ok BB amosst, ol 9u (NI (Gt s— 1)1}

lal=8—-1 §
2 3 am-i,o(®, ¥)05us(y)xI ="t (j—m+i)!
Az
2 Z ai,o(%, Y)OGus(y)xI 4 (j—0) 1+ £ (%, ¥).
i+l<al<7r%—1

Then we have

(4.4) wur(y)=Lr1(y, 0y)ur—1+Lr2(y, ay)”k—2+---+l/k,s—1(y, Oy)ttk—s+1
+| 'Z_sam_s,a(o, y)aguk—s-{-l‘l'zk,sﬂ(y, Oy)ttk—s
4.+ Lim(y, Oy)tk—ms1
+zk,m(3’» ay){uk—m, Uk—m—1, ..., um—Z} +fk$ 'é>m_]‘

where L, (¥, 3y), Lk, «(y, dy) and Ly, «(y, 9y) are differential operator
of order <7

For the simplicity, by changing the notation we write (4.4) in the
following form:

4.5)  ux(y) =¢<kz-1bk’ i, a(y)aﬁuz-i-lalgsam—s, (0, ¥)9G2k—s41.

Concerning the suffix of bd,,a, taking account of order of differential

operator Ly,i, Lk, and Ly, we have
(4.6) si+(s—1Dlal<sk.
Using (4.5) successively we obtain
4.1 wm-2+16-1)(M)=( aésdm—s,a(o, 18y um—2(y)
+ Lr(y, Oy)um—2(3)+ Lsj(¥,09)(fo, f1, ..., fm—2+is-1)),



592 Yukiko Hasegawa

where [} and L are differential operator of order £ and s respectively.

Taking account of (4.5), (4.6) and (4.7) we have

(4.8) s(m—2)+(s—Des{(m—2)+;(s—1)}.
Then

(4.9) r<s.

On the other hand, by the assumption ¥ |am—s4(0, 0)|30, there
|a=ls

exists an n&C" such that

(410) ] lZ am—s, a(O, 0)7701= 1.
aj=8

Now we define

(4.11) um-2(y)= T p*? 052y, 1>°P
250

where p(0<p<{1) is a fixed constant, and the arguments 05(;/=0, 1,
2, ...) are defined recurrently in the following manner:
At first

(12) (X om0, (<, T>)= 8K (5) .
a=8

Note that the order of differential operator L is at most s7-1, we see
j-1

that .Lx(0, 3y)#m—2(0) depends only on the terms 3 ... in (4.11). So
2=0

we define 05 by (assuing that g, 05, 62s,...,0(j-1ys are already defined):

i-1
(4.13) 0s5=arg(Lx(0, dy) z_:opspewsp<y, >8Py
p_
+ L5500, 3)Sos ..., fm—247(5-1)) | y=0)

Thus we have

418 umtsso-nO)1>1( Z amoso(0, 03 (el <y, 7> =0
=p*(sH)!.
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On the other hand
(4.15) w(x, 0)= 3 up(0)x?/p!
p>m—2
Then

[ <0>I Y A L.
(4.16) hm/e x >,31’i‘ (o )\/ G— 1)/5}. =+

Thus (4.2) can not converge in any neighborhood of the origin, which
proves the Theorem.
At the end, the author wishes to thank Prof. Mizohata for his

valuable suggestions.
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