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§ 1. Introduction

In this paper we study an initial-value problem for the equation;

(1.1) E a(x, y )aix 4 u= f(x , y ) ,  x ER 1 ,  y E R n ,
2-1-1a1<nt

\an  
=  a a a

a \ a „
.x ax  -  Y a y l )  •  •  •  \aYn)

with data on x = 0 .  In this article we treat our problem only within the
class of real analytic functions, more precisely we assume that the coeffi-
cients, initial data and solutions are all real analytic in the neighborhood
of the origin.

For the following initial data;

(1.2) y ) = u i ( y ) ,  i=0 , 1, 2, ..., m - 1 ,

it is well-known that under the assumption

(1.3) am,o(0, 0)*0,

the problem (1.1)–(1.2) has always a unique solution (Cauchy-Kow-
alevski's theorem). But if we remove the condition (1.3), the problem
(1.1)–(1.2) has not always a solution. In  [2 ] , we had treated the
following initial-value problem ;
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(1.4) xam,o(x, Y)ju+ E xam-i, a(x,y)arl4u+am-Lo(x,y)arlu
la1=1

+ E ai, a(x , Y)aix 4u= .1  (x, Y),i<m-2, la1-1-$4m
X E  R 1 ,  y E  Rn-1 , E  a ,

2 , a (0, 0)1 0.
la1=2

(1.5) g u ( 0 ,  y )---=ui(y ), j=0,1, 2, ..., m-2.

We proved in [2].

Theorem 1.1

I n  M e  c a s e  w h e r e  am,o(0 Y )=--0 am-1,o(0 , y)\   0, Me prob lem
(1.4)-(1.5) h a s  n o t  a lw a y s  a  so lu tion .

Theorem 1.2

I n  th e  ca se  w h ere  am , 0(0, 0) 0, a n d  m o r e o v e r  fo r  a l l  nonnegative
in t e g e r s  p ,  w e  h a v e  pam,o(0,0)-Pani--Lo(0,0) 0 ,  th en  th e r e  ex is t s
a lw a y s  a  un iqu e so lu tion  for th e p rob lem  (1.4)-(1.5).

Theorem 1.3

I n  t h e  c a s e  w h e r e  am , 0(0 ,0 )* 0 , a n d  m o r e o v e r  i f  fo r  s o m e  n o n -
n e g a t i v e  in t e g e r  p o , w e  have Po am, 0(0, y)H-am-1,0(0, y )_0 , t h e n  a
n e c e s sa r y  a n d  su ff i c ien t  co n d it io n  c o n c e r n in g  th e  in it ia l d a ta  f o r  the
e x i s t e n c e  o f  t h e  s o lu t i o n  o f  t h e  p r o b lem  (1.4)-(1.5) i s  th e f o l l o w in g
com pa tib ility  con d ition :

(1.6) E am, o ■ )(, 
—

.,„ \ IE a(k) (y)  Y  8a a u ( y )  
po+m-1 ( k ) ( -Y \  vu  8 ( Li )  , ;+k+8= IttE1=1 k+8=p 0+m-2 a (S — M +1) !

k>i

± k + 8 = 2 ,E0.1-m – i
a m( k )-1,0(Y ) (s _U

 m
s ( Y+) 1)!

lc>1

▪ E k a a  u s ( )E ai 2x(Y) y —  f  ( 2' 0 (y ),i cm -2  1c+8=230-14 ii+lai<nz

where a  , fi (x , y) = N o dj
ky y ) x k  f  Y ) =  kE  (k ) (y)x k and um _i, um , ...,

Um+p0_2 are uniquely determined by the initial data Iuo, Ui, • • •, um-21.



On the initial-v alue problem s 581

In this paper we treat more general equations than (1.4). General-

izing the above compatibility condition, we obtain similar results to the

above theorems.

Let us introduce the following notion;

Definition 1.1
For the differential operator o f th e  form  xP a(x , y )ala(p>o,

a(0,y) 0), we call the pair of integers (q-p, lai) its degree.

Definition 1.2
For the differential operator A ----- xPa(x, y )agai; and A ' -= xP' a' (x, y)
(p ,p '> 0 , a(0,y)40, a'(0, y)t0), we say that the degree of A  is

higher than that of A ' if and only if q-p>q'-p ' or q -p = q '-p ', I a 1>lal.
And two operators A  and A ' are of the same degree i f  q-p=q'-p',

lal=la'1.

For the coefficients of (1.1), when allaia (0, y)=- 0 k---=0, 1, ...,
and 322aia (0,y)#0, we can write aia(x Y)=x PaPia(x, Y ) (apia(0 ,Y )# 0 )-
W e rewrite

(1.1) in the following form;

(1.7) E  xPapqa(x, Y)ag 4 u = .7 f (x,
4-Flal<In

apq a (0, y)-s7 0, p=p(q, a).

Definition 1.3
We define that the degree o f th e differential operator pFm a  xP

apq a (x,y)ag4 is as the highest degree of the terms in the summation.

§ 2. Statements of Theorems

Let the degree o f (1.7) be (m', r), we suppose m'>0 then (1.7)
can be written in the following form;

m—r-
(2.1) E  (x ia r + i E  bi a (y )3 )u =  E x P a p q a (x, y)ag ac;,u ( x ,  y),

5=0 lal=r
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where 2 means the summation of the terms whose degree is lower than

(m ', r), namely the summation of the terms where p , q, a satisfy q-p<m'
or q-p=m', laK r .  Let us remark that the degree of the equation which

we treated in [2] is (m-1, 0).
At first we consider under the following assumption;

(H) E a(0)1 0  in (2.1).

This assumption (H) corresponds to the hypothesis am,0(0, 0)*0 in the

theorem 1.2 and 1.3.
For the simplicity we denote (2.1) by

(2.2) E  (x ia r÷ /L i(y , ay ))u= r(x , y, az , ay )u±f,
51)

where L k  0 1) a0=  E  bk ,a (Y )4 , k=0, 1, ..., ,
fa r

and r(x , y, az , a = ÊxPapwx, y )ag4.
Let us consider the following initial data;

(2.3) 3izu(0, y )= u i ( y ) ,  i=0, 1, ..., m '-1 .

Let

(2.4) u(x, y)=  E ui(y)xlIj!
,P0

be the formal solution of the problem (2.2)-(2.3). Then we have

(2.5)
(m—r—ml a

.) r)uk+m , (y) a71 99k + m ,)

 

f k
z = o

+
 k !

,

 

where ion= E i t i (Y )x i  l i ! ,  f=  f i ( Y ) x l  I» and 1/s!=-0 when s<0.
1=0

From the assumption (H ), there exists some integer 4  such that

for any k (> 4 )  we have the following relation ;

b ( 0 )  (2.6) E l a  .5-0 (k — j ) !

Let ko be the minimum number which has the above property.

*0 .
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Now there exists u h -Pn e (Y )  (k >k o ) which satisfies (2.5) (assuming

that u m
, , um-a, • • •, uk+m , -1  are already defined). In fact, let us consider

that (2.5) is a differential equation whose unknown function is uk+m , (Y )•

And we write (2.5) in the following form:

(2.7) (m jEr: L
( ikCIIA  uk+m , (Y ) — am , a ipqa (0 ,y ) 

 a
—

cl'
p ) l uk +m '(Y )

=•V(uo, Ui, • • • , uk+m , -1)•

In view o f (2.6), (2.7) is Kowalevskian type for some direction. So

there exist u k + n e (Y )  which satisfies (2.5).
If the problem (2.2)-(2.3) has at least one solution, there exists

{ uk + m
, ( y ) ;  0 < k < k o l  which satisfies (2.5). Now this is necessary for

the existence of the solution of the problem (2.2)-(2.3). We shall prove

that this also a sufficient condition. Namely,

Theorem 2.1
I f  th e r e  ex is t s  luk+m , (Y ) ;  k = 0 , 1, • • k o -1 }  w h ich  s a t i s f i e s  (2.5),

the p rob lem  (2.2)-(2.3) ha s a t lea st on e so lu tion  in  a  n eigh b o rh ood  o f th e
o rig in .

Concerning the initial data (1.2), we have

Corollary
I n  th e  c a s e  w h e r e  k o <m - m ' ,  a  n e ce s sa ry  a n d  su ff i c ien t  cond ition

fo r  th e  ex is t e n c e  o f  th e  s o lu t io n  o f  th e  p r o b lem  (2.2)-(1.2) i s  th a t  the
in it ia l d a ta  { u i ( y ) ,u 2 ( y ) ,  . . . ,u m - i ( y ) }  sa t is fie s  (2.5).

I n  th e  c a s e  w h e r e  k o >m -m %  a  n e ce s sa ry  a n d  su ff i c ien t  cond ition
f o r  th e  ex is ten ce  o f th e  so lu tion  o f th e  p ro b lem  (2.2)-(2.1) is  th a t th er e
ex is ts  Ium Juind-1, • ••,um , -Fko--1(y )}  su ch  th a t  a  s e t  iu o ,u i, • •• ,u m /d -k o- i l

sa tis fie s  (2.5).

Remark 2.1
When r = 0  and k0=0, the problem (2.2)-(2.3) has always a unique

solution.
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Remark 2.2
When r>0, the solution is not unique.

Let u s consider the following initial-value problem (2.8)-(2.9),
where (2.8) does not satisfy the assumption (H).

f (2.8) E xPapaa (x , y )43; u+ f (x , y ) ,
q+Icri4m,ps2
q - p m -2

1 (2.9) 3ixu(0, y)=u,(y), . . . ,  m -2 .

The degree of the differential operator (2.8) is (m-1. 0). And the degree

of the right-hand side of (2.8) is at most (m-2, 2). Let

(2.10) U (X  y ) = -- 7,17, 0 k (Y )X k  k !

be the formal solution of the problem (2.8)-(2.9). Then we have the

similar relation to (2.5),

\ fk(2.11) 1
—
k  l

uk+m-i.(Y)=F(uo,u1., •••, U k +m -2) - 7- - p y

k=0, 1, 2, ....

So the formal solution (2.10) is uniquely defined. But generally this

formal solution does not always converge in a neighborhood of the

origin. Namely

Theorem 2.2
If  for som e integer s > 2 , w e have

alvih (0, y, 1,0)

aivih (o, 0, 1, o)
11.)1<8

(2.12)
*0,

11.4= 8

then there ex ists a n  in it ia l d a ta  (2.9) such  that the problem  (2.8)-(2.9)
has no analy tic so lu tion  in  any  neighborhood o f  th e  o r i g in ,  where h(x,

Y, 6, )7)=  E  xg apqa (x, y)
qd-lal=m



O n  th e  in it ia l-va lu e  p rob lem s 585

§ 3. Proof of Theorem 2.1

At first we consider the following fairly simple equation:

m-r-
(3.1)

( 
E  xiar+1 a; u =  xPapq a (y )4 4 u -l-f (y),

where E  means the summation of the terms where p , q , a satisfy

q+Ial<m, q— p<m' , p<po or q+lal<m , q— p=m 1 ,  I a K r ,

p<po (where p o is some constant).

Let us consider the following Goursat data*);

(3.2)
{

4u(0, y)=0, 1=0, 1, ..., m ' - 1 ,

a,i1(x, y)ly,=0==o, i=o, 1, ..., r- 1 .

We shall show

Lemma
The Goursat prob lem  (3.1)-(3.2) (w hen  r=0 , th is is C auchy problem )

h a s a  u n iq u e so lu tion  u(x , y ) in  a  n eigh b o rh ood  o f th e  o r ig in .

P r o o f

Let

(3.3) u(x,Y)--= Epm ,

be the formal solution of (3.1)-(3.2). Then we have

(3.4) E  1/(k—j)! 8'y' i tik+in'(Y)
5=0

= E  apqa(y)af;uk+q- p(Y)/(h —p )!+ 814 f ( Y), k > 0 ,

where 1 /j!= 0  when j < 0 ,  and st, is K ronecker's 8. For to be brief, we
denote (3.4) by

*) when r=0, we consider that (32) is Cauchy data 3lu(0,y1= 0, 1=0, 1, ..., m'-1.
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1(3.5)

8
where N (k , s)= 5E 0 11(k- j)! . The formal solution (3 .3 ) is uniquely

defined by (3.2) and (3.5). Now, we want to show the convergence

and the analyticity of (3.3).

Let M / ( 1 - -3;1; )(1— Y 2 +  p
.• ± Y n )  be a  common majorant o f f (y)

and a p q a ( y )  which appear in  (3.5). Let us consider the following

equation;

N (k , m—r — m'
11

) (1 - 3 )(1— Y 2 + • + 5 ) n )
P P

X E  u k + q _p(y)1(k-p)!±81 ,
k=0, 1, 2, ....

and the following initial data (r>1);

(3.7) thc+. , ( y ) ly ,0 =o ,  1 =0 ,  1, r - 1

k = 0, 1, 2, ....

Then  { Uk+ne(Y); k=0, 1, 2, ... } a r e  determined successively as a

solution of the problem (3.6)-(3.7). It is easy to see that we have

(3 .8) U k+ m ,(y)> uk± m/(y),k 0 ,  1, 2, ....

Let us consider the following Taylar expansion.

(3.9) Uk+m,(y)= E  M ., ( y ' ) y { / j ! , k=0, 1, 2, ...

where y'= (Y2, y3, • • • 7) .
From (3.6) and (3.9) we obtain

U(4)-m,(Y')  B(y')
(3.10) (j— r)! p ( j — r - 1 ) ! +  N(k,m—r—m')

ucki.11 1 , )  Cy) ski
t2-; (k—p)!(j—r)! -1-

j> r , , k=0, 1, 2, ...,

(3.6) a; uk+m , (y)—

iuk+w(Y) N ( k ,
m _ r _ m ,) { Ê a pqa(y)4uk+q— p(Y )1(k — P)

+ 816 f
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where B(y')=11f1(1— Y 2 +  . .±  n ) )  and 4 ;_ ( ,:y  

) a2...(aay . r.
Then we have

(3.11) u)( y , )i< A  (i+ (m—r—m' +1)k+M)!  X c.,
, , „

,id-(2in+2)k-H(kOnt-m,-r
ui

15/1<a,

for any /.) and for any k  and j ,  if we choose the constant C, A  sufficient
large and constant a small. Concerning the proof of (3.11), refer to

[2] p.

From (3.11), we see easily that U (x, y ) defined by

(3.12) U(x, y)=  E  U k(y)xk/k!=  E  UVAX 1C k !
j a r

has the estimates of the form

(3.13) I aga ;ii a,u(x, y)I <(q+ai+ I v I)! C q + a l+i v i A '

for jx1<8, ly'l< a  if we choose 8, 8' small and C ',  A ' la rge . So

the formal solution defined by (3.3) which is majorated by U(x ,y )
converges in a neighborhood of the origin. The proof of Lemma is thus

complete.

Proof o f  Theorem 2.1

Without loss o f generality, we can assume that bm _r _m , r, o.. .0(y).
(the coefficient of xm-r-rw 4 i ar-r) is not zero at y=0.

In fact, from the assumption (H), there exists an 71E Cn such that

(3.14) E b a(0)na =-1.
ral=r

So there exists some i  such that ni*O. Without loss of generality we
can assume 771. 0. L e t  u s  consider the following change of variables ;

(3.15)
 j z1=<Y) 72>  =Y1'21H- Y2712+

z i=y i, i=2, 3, ..., n
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The coefficient of  x m 'm '  a Z - r  isb m _ r_ m ,a ( 0 ) 2 a  a t  y =z=O.
al=r

The above change of variables does not change the degree of (2.1).

Then there exists some integer  k i ( > k o )  such that for any k (> k i)
we have

m—r— m 'b r ,0 . . .0 ( 0 )(3.16) 5, 
5=0 (k—j)!

Now, we rewrite (2.1) in the following form;

m—r—m'
(3.17)x 5 3 ' + 5 A j ( y ) 3  u =  Ê  x Paqp(x , y )3 u + J ( x ,  y).

5=0

Differentiating (3.17) k1 times with respect to x, we have

m -r-m '- -

(3.18)x 5 3 m ' + ^ J y ),X
5=0

where Ê ' means the summation of the ternies where p, q, a satisfy

q-p< m '+ k i, P < P o , q+Ial<m +ki o r q-p = m '+ k i ,  aj< r ,  a l< r , p<
Po, q + Ia I(m + k i.

For the equation (3.18), let us consider the following Goursat data;

u(O,y)=ut(y) i=O, 1, . . . ,  m '+ k i —1
when i==O. 1, . . . ,  m'— ]., u j ( y )  is the same as (2.3),

when i = m ',  . . . ,  m'-l-ki --1, u j(y ) is one which satisfies (2.5),
(3.19)

y ,u (x ,y) y 1 _ o— vj(x ,y '), i= O , 1, . . . ,  r- 1
where v j(x , y ')  =  1ç0m'+ki _l(x, y) y i = o+  x m '+k ib(x , y)
and where çop(x, y )= U ( y ) X k / k ! ,  çIi is arbitrary.

We shall show that the problem (3.18)-(319) has a unique solution
in a neighborhood of the origin. Without loss of generality, we can

assume that the Goursat data (3.19) are all zero.

Let

(3.30)u ( x , y ) = uj(y )x J/j!
5 m'+k,



for all non-negative integers k.
of (3.22).

Let us

Such a  function C(y ) exists because

consider the following Goursat problem (3.24)-(3.25).
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be the formal solution of (3.18)-(3.19). Form (3.18) and (3.20), we have

the following similar relation to (3.4)

Im—r—m'
(3.21) E  B j(y )1(k — j)!} g i Uk+W-Fk i = • • • •

5=0

On the other hand, from (3.16) we have

/ 7 2 - r - 7 7 / '

(3.22) E  B i(0 )/ (k— j)!0 , k>0.
5=0

In  view of the recurrence formulas between un1/4-k,,
choose a majorant C(y ) such that

Um'-1-1c1-1-1, • • • , we

(3.23) m—r—m'
 1

E  Bi(Y)/(k — j ) ! E 1/ (k —j)!
5 ) 5=0

m_ M C (y)(3.24)
Er-ne x j , ±ki+Ja yr  U — x ) (  y i . ±  •  •  •  

+
Y " )

5=0 1 - -  1

X -(Ê' xPaP 2̀', U+11,

where M/(1— x  )0_ —Y 1 + • • + Y n ) is  a  common majorant of a n d

p q a (x, y) which appear in (3.18).

aix  U(0, y)=0, 1 = 0 ,1 ,  ..., m'±k1-1,
(3.25)

aiy, U(x ,Y )ly ,=o= 0 , 1 = 0 , 1 , r - 1 .

Then the formal solution

(3.26) U(x, y)-= ,p E ici (.15 (y)x l lj!

of the problem (3.24)-(3.25) is a majorant of the formal solution of the
problem (3.18)-(3.19).
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On the other hand (3.24) is a special case of (3.1). In fact, (3.24)
can be written in the form

m—r—m, 1 -  m—r—m,

(3.27) E  x j
x

ane+kj-fri ar  u =  -E  x i  am'+k i -I-1 ar uy i  XY  ,
5=0 P  13

M C (y) -

{ E ' xP ,44 U+11.+
+ • .,:9 -  I -  Y n)

Owing to the Lemma, we see that (3.26) represents a convergent series in

a neighborhood of the origin. This proves that the problem (3.18)-(319)
has a unique solution in a neighborhood of the origin. In view of the

particular Goursat data (3.19), the solution of the problem (3.18)-(3.19)
is also solution of the problem (2.2)-(2.3). Let us remark that when

r>0, the solution is not unique because of arbitrariness of tiri in (3.19).

Remark
When r=0, (3.19) and (3.25) are initial data and the problem

(3.18)-(3.19) and (3.24)-(3.25) are initial-value problems.

§  4  Proof o f Theorem 2.2

From the assumption we can rewrite (2.8) in the following form.

  

= x2am, 0(x, y)37u-kx E  am _i, a (x, y)0171 - 1 4u
rai<1

d-x{ E am_2, a (x, y)ar - 2 4

+  •  •  .  +  E am-81-1,a(x, y ) a r s + la } u
la1=8-1

E  a m _i , a (x , y )a r ia c/r, u
m›bs
ral=i

E  ai, a (x, y)4inud-f (x,
i<m-2

E 0) 0, s > 2 .
lai=8

(4.1)

  

where

Now we consider the formal solution of (4.1),

(4.2) u(x, y ) =  E  ui (y)xi lj! .
pm-2
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We want to show that we can choose an initial data um _2(y) such that

the formal solution (4.2) never converges in any neighborhood of the

origin.

Substituting (4.2) into (4.1),we have

(4.3) E  u i(y )x l - m+1 /( j— m ± 1) ! E  a m ,o (x , y )u i(y )x i - m+2 /(j— m)!

▪ E  E „ (x , y ) u j ( y ) x i - m+2 /(j— m  1 )  !
lai<1 j

▪ {  E  E  am -2 ,a(x , y ) 4 u 3 ( y ) x i - m+2+11( j— m + 2 )!
la1=2

+ • ..-}-- E  E  am - s+ i,a(x , Y)4ui(y)x3-m+8 -1+1 ,/iç M + s - 1 ) !}
la1=8-1 j

▪ E  E Y )n u i(Y )x i-m + i/ C i— m + i)!r a › i ›8  j1.1=i
E  E  a j Y)ai;z1.1(Y)xi - i i( i — i ) !+ f(x , Y ).

i ‹ m - 2  ji+lal<m-1

Then we have

( 4 .4 )  uk(Y)=Lk,l(Y, a y ) u k _ 1 + L k ,2 3 ',  y)Uk-2± • ..+ L k 8-1(5 ) 1 a y)Uk-s+1

E am-s,a(0, y )4 u k -s+ i+ L k ,s+ I (Y , 8 y)uk -8
ial=s

+ • • • -1-Lic,m(Y, a y )uk-irt+ i

+ L k , m ( y ,  y) Uk-m , Uk-m-1, • • • , Um-21 f k, k > r n  —1

where Lk, f ( Y  ay), L k ,  i ( y ,  ay ) and I  k, i ( y ,  ay ) are differential operator

of order < i.

For the simplicity, by changing the notation we write (4.4) in the

following form:

(4.5) u k ( y )=  E  b k , f , a (Y )a P ti+  E  a M -8 , a (0 , Y )4 U k -8 ± 1 .
i<k -1 *=8

Concerning the suffix of bk,i,a, taking account of order of differential

operator L k , i ,  L k , i  and / 4 4 ,  w e  have

(4.6) si±(s-1)1a1<sk.

Using (4.5) successively we obtain

(4.7) um_2-1-5(8-4)(Y)=( E  am - 8,a(0, Y )aV U m -2(Y )
la1=8

8 y )um -2(Y ) - 1-  281(Y  ' 3 0 (1 0 , f l , f m -2 +j(s- 1)),
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w h ere  k  and .2 .8i are differential operator of order k and sj respectively.

Taking account of (4.5), (4.6) and (4.7) we have

(4.8) s(m-2)+ (s —1)k <s {(m-2)-1-j(s-1)}.

Then

(4.9) k<sj

On the other hand, by the assumption Iam _8,a (0, 0)1 0 ,  there
ia=18

exists an nE Cn such that

(4.10) E am _s ,a (0, 0)77" = 1.
Ia1=8

Now we define

(4.11) um _2 (y).= E p89 ei0 8p < y  7 2 > g p
p>0

where p(0<p<l) is a fixed constant, and the arguments 0 d(j=0

2, ...) are defined recurrently in the following manner:

A t first

(4.12) ( E arn_s , a (0, 0 )4 ) J ( p 8ie ie5i < y , 72> 85)= e 0 81(sj)!.
lar=8

Note that the order of differential operator _a is at most sj-1, we see
5-1

that ..a(o,a y )um-2(0) depends only on the terms E ... in (4.11). So
p=0

we define 085 by (assuing that 00 , Os , .,0 (5_1)8  are already defined):

5-1
(4.13) 081= arg(...rk(0, ay ) E P8 P  ei ° 8 P <Y , 12> 8 9 1y=o

P=0
± 20(0, a y)(fo, fm-2+5 (s-1 )) y=0)

Thus we have

(4.14) lum-2+5(s-1)(0 )1>1( E ant-s,a(° ,  0 ) 4 ) /(10 8 / 6 6 8 i <Y, 72> 81)1 y=01
ial=8

P8  j (Si) ! •
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On the other hand

(4.15) u(x, 0 )-=  E  u p (0)xP/p !
pm -2

Then

(4.16)

     

lim 10)1 
V

(p8)1«s-1 )k }
1  k }  +  0 . 9

Thus (4.2) can not converge in any neighborhood of the origin, which

proves the Theorem.

At the end, the author wishes to thank Prof. Mizohata for his

valuable suggestions.
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