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Introduction.

In the present paper, we shall discuss a comparison problem for
solutions of stochastic differential equations.

On this subject, A. V. Skorohod (1) showed that, under certain
assumptions, the sample function o f diffusion process is a monotonic
function of the transient (or drift) coefficient. Also he applied this
fact to the uniqueness problem for solutions of stochastic differential
equations.

For the above uniqueness problem, H. Tanaka (2) treated it in
another simple and beautiful way and got the same result as Skorohod,
and recently T . Yamada and S. Watanabe (3, 4), refining Tanaka's
method, improved their results.

In §1 of this paper, we will treat a comparison problem in a new
method and will improve Skorohod's comparison theorem for solutions
of stochastic differential equations. Using this, we can obtain some
new results on the pathwise uniqueness.

In §2, we will apply our results in §1 to the local behaviour of
solutions of stochastic differential equations and will obtaine some tests
of upper and lower functions for sample function of a class of diffusion
processes.



498 T osh io Y am ada

In §3. our results in §1 on the comparison of solutions of stochastic
differential equations will be applied to obtain some comparison theorems

for a class of an initial value problem and a boundary value problem.

Analytical treatment o f these problems seems much more difficult.
The author wishes to express his hearty thanks to Professors

Shinzo Watanabe and N obuyuki Ikeda for their valuable discussions
with the author.

§ 0 .  Preliminaries.
Let a(t , x) and b(t , x) be defined on [0, 00) x RI-, Borel measurable

in (t, x ).

We consider the following Ito's stochastic differential equation :

(0.1) dxt=u (t,xt)dB t+b(t,xt)d t.

A  precise formulation is as follows ; by a probability space (Q,
P )  with an increasing family of Borel fields 19 4 ,  which is denoted as
(Q, E ,  P ;  g t ) ,  we mean a standard probability space (Q, 9  P )  with

a  system i 9 t I t e [ 0 , 0 0 )  o f  sub Borel fields of g  such that g s C g t  if

i f  s< t .

Definition 1.1

By a solution of the equation (0,1), we mean a family of stochastic
processes ?Z= (x t, B t) defined on a probability space with an increasing

family of Borel fields (Q, 9 , P ;  g t )  such that

(i) with probability one, x t and B t are continuous in t  and

(ii) they are adapted to gt, i.e. for each t, x t and Bt are 9g-measurable,

(iii) B t is Ft-martingale, such that

E ((B t— B s ) 2 19 8) = t— s t > s > 0

(iv) ?E= (x t, B t) satisfies, with probability one,

x t— xo=  fa (s,x s )dB s + f b (s, x,)ds

where the integral by dB s is understood in the sense of stochastic integral.
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Definition 1.2

We shall say that the pathwise uniqueness holds for (0.1) if, for

any two solutions = (x t , B )  and I '= (x 't , 13't ),  defined on a same prob-
ability space (Q, 9 , P ;  g t ) ,  x o = x 0 B t__-- B 't imply xt - x 't .

§ 1 .  A  comparison theorem for solutions of stochastic diffe-
rential equations.

First, we will improve Skorohod's comparison theorem for diffusion

processes.

Theorem 1.1

C on sid er th e f ollowing tw o  s to ch a s t ic  d iffe r en t ia l eq u a tio n s ;

(1.1) dx(ti) a (t  , x (
ti ) )dB td-bi(t , x ) d t ,  i= 1,2

w h e r e ,  a(t, x ) a n d  b i(t, x ) a r e  co n t in u ou s  in  (t, x) f o r  (t , x ) E  [0, co)

x R 1 s u ch  th a t
(i) th e r e  ex is ts  a  p o s i t i v e  in c r e a s in g  fu n c t io n  p (u ), uE  [0, co) su ch

that

I cr(t , x) — a (t , y)l < p(lx — yl) vx, yE

and

(1.2) f o+p-2(u)du= 00 ,

(ii) b i(t , x) < b 2(t , x) v (t , E  [0, 00) x

U n d er  th ese  con d it io n s ,  i f = (x ' ,  _ g m  a n d  X(2) = ( x ? )  B p )

a re so lu tion s o f (1.1), r e s p e c t iv e ly ,  s u ch  th a t  4 )= 4 2 )

th en , x (
tu  < 4 2 ) h o ld s  f o r  e v e r y  tE  [0, 00) w ith  p rob a b ility  on e .

Proof.
Let -{s; b2(s, x 2 ) — bi(s, 4 1 ))< 0)-.

Noting that i(t , x ) i , 2 , are continuous in ( t , x) , , i==1, 2 , are
continuous is t  with probability one and 11(0, 41 )) <62(0, 42 )) ,  we see
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easily P (T > 0 )=  I.
Hereafter, we shall denote

First, we note

t'
(1.3)E [ x ( t 2 , )  —  x (

tV]=-- E l f  a(s , 42 ) )d. B f  a ( s  ,  4 1 ) )d.B

+ f t, 2(s , x(
s
2 ) ) — bi.(s , 4 1 )* 1 81o

= E [ f[ b2(s , x ) —b i (s , 41 ) )]ds]

We will now evaluate E[1.4 )  —x (
tV 1] •

For this purpose, we will construct the following functions O n (u)} :

let ao=1> al> a2> • • • > an -4 )  be defined by

a „_,
p- 2 (u )d u = 1 ,  f  p - 2 (u )du= 2,... f  

a

 p -2 (u )d u = n ,....f
a,

a, a2

Then, there exists a twice differentiable function On (u ) on [0, oo)

such that 0 (0 )= 0 ,

{
0 0<u<an

; ,b,1(u )= -- between 0  and 1 an<u<an_i

1 u>an-i

0 0<u<an
between 0  and 

 2  
 p- 2 (u) a n<u<a n-1

0

We extend On (u ) on (— co, oc) symmetrically, i. e. On (u )=O n (1 u
Clearly titn (u) is a twice continuously differentiable function on (— oo ,  00)

such that Vin (u) f I u. 1, as 00 .

Now, by Ito's formula,

t '
tkli(X? ) — .4 1;) ) =  f  On' (X(

8
2 ) — "CM fg(S, .42 ) ) —g(S, x ' ) } dB8

0

f
t '

x (s2 x (81 ) ){62(s , x ) — bi(s , x(P)} ds

and

(u)=
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1 i t ' ( 2 ) (1)— (xs —x s ){a(s, xr)—a(s, x 9 ).(3 2ds

2 o
=11+12+13, say.

Then, E[h]=0.
Since, b2(s, x(

8
2 ) ) —bi(s, x ' ) > 0  f o r  0 < S < T  and

u ( - -  Do, 001, we haev

E[121<E[ fo t i  {b 2(s , x(
8

2 ) ) — b i(s ,x(
8

1 ) )1 d .

W e have, for 13,

I 01.(u)l< 1 for

Ev311<-
--- 

1 E r i t 'd,"(14 2 )_  nx p2(14 2)—x(»Dds]
Li 2  '  o  ' '

1 1 2< , t  • max [OW (1u1) p2 (1u1)]<--t • ----0 asz  an susa n , 2 n
n--). co .

Also

E[0.(x?2 —x(d)))1 f E[Ix (
t

) —x(
t;) 1]

 as n-0.0.0

Thus we have

t,
(1.4)E [ I x F  —  x (

t; ) 1] <  E[ f {b 2(s , x7)— bi(s , .41 ) ))- d

Combining (1.3) with (1.4), we get

(1.5)E [ I x r  — x (
tV1] =E [xF —  4 12]

Since, x (
si ) i=1, 2 are continuous in s  with probability one, we

can see easily from (1.5),
x(

t
12<x? ) with probability one, i.e. 4 1 ) < 4 2 ) fo r  vtE[0, T)

From this fact, we can easily see 4 1 ) < 4 2 ) for every tE[O, oc).
Q.E.D.

Remark 1.1
.1.

For examples, p(u)=u 2 ,

▪

 p

-

 (u )=- u2 
( )4_
log  u  ,
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i (1p(u)= u 2 log 
 u

particular, the

continuous of

Nlog-(2) 
 1  ) ,  . . .  etc., satisfy the condition (1.2). In

comparison theorem holds for (1. 1), if o-(t, x) is Holder
1 order . (*)
2  

Remark 1.2
The condition (1.2) in the above Theorem is nearly best possible.

For example, consider the following two stochastic differential

equations ;

dX(t1)== 41)Ict dB t, x v , 0  o <  <  2
1

dx(t2) = - 1 4 2 ) 1 a
 dB H-c.dt, x 0  (c> 0, 0< a<   2

1  )

there exists a solution x (
t
1-) 0 vor (1.6), and for (1.7), there

exists a solution 4 2) fo r which x = 0  is a regular point. This means

that comparison theorem does not hold fo r  o .(x )=L x  (0 < a < -
1

2 •

The followings are several consequences o f th e  above comparison
theorem.

Theorem 1.2
Let

(0. 1) dx t=a(t,x t)dB t+b(t,x t)d t

w here, o(t, x ) and b(t, x ) are continuous in (t, x ) for (t, x ) E [O , co ) X RI-
such  that, there  ex ists a positive increasing f unction p(u), uE[0,00)

a(t, x )--a(t, y)l < p(I x— y )  Vx, y R1

fo+ p - 2 (u )d u =

 

0 0 .

Skorohod (1) proved that the comparison theorem holds for (1. 1), i f  a(t, x) satisfies

10 (1 , x) - 6 , (t,Y)1 i", x yER 1 fo r  some constants K >0 and a > 1 .  C f. also,

Anderson (7).
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T hen , th e r e  ex is t  m ax im a l a n d  m in im a l so lu tion s f o r  (0.1). To
b e  p r e c i s e ,  i f  t h e  in i t ia l  co n d it io n  a(co) f o r  (0 .1 )  i s  g iv en , th e r e  ex is t
so lu tion s î t  and xt of (0 .1 ) w ith  ,t0=x0=a(a)) such that , f  or an y so lu tion
x t o f  (0 .1 ) w ith  xo= a(c0), xt<xt<,T - t  h o ld s  fo r  e v e r y  t.

Proof.
Choose e n0  an d  consider following stochastic differential

equations,

(1.8) dx t=  cr(t , x t)dB t+ (b(t, x t)d- e n )d t

(1 .9 ) dxt=0.(t, xt)dBt+(b(t, xt)—  e n )d t

Let, xin )  and x (t - n)  be solutions of (1.8) and (1.9) respectively with

x? ) = x 0 ) =a(co), and let x t be any solution of (0.1) with xo= a(w ).

Then, by the Theorem 1.1, we have x r ) > x t> x (t - n )  and  xr )  ,

(x(t-n) t )  as n—)-0 0 . Let lim .x(tn) -_ - .i- t  and lim x xt
n--30

We can easily prove that t and x t are solutions of (0.1) and x t<
x t < t  for every tE  [ 0 ,  0 0 ) Q.E.D.

Remark 1.3

Both and x t are diffusion processes, i.e. they have the strong

Markov property. This can be proved, e.g., as Proposition 2 of (3).

Corollary 1.1
C on sid er  t h e  s to ch a s t ic  d i f fe r en t ia l eq u a t io n  (0.1) w h e r e  t h e  co-

e fficien ts sa tis fy  the sam e cond ition s a s in  T heorem  1.2. If the probabili-
t y  la w s  o f th e m ax im a l so lu tion  a n d  t h e  m i n i m a l  so lu t io n  x t w ith
the sam e in itia l va lu e co in cid e, th en  the p a th w is e  un iqu en ess o f so lu tion s
h o ld s  fo r  (0.1).

Proof.
Since xt<.i. t , the coincidence of the probability laws clearly implies

the x t . -Xt and hence for any solution xt,
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Theorem 1.3

C onsid er the fo l low in g  tw o  s to ch a s t ic  d i ffe r en t ia l eq u a tio n s ;

(1. 1)c l x t = a ( t ,  x t ) d B t + b i ( t ,  x t ) d t ,  i = 1, 2

w h er e  w e  assume tha t a(t, x) sa tis fies  the sam e con d ition  as in Theorem
11 and that the pathwise uniqueness of solutions holds for both equations.
Then, if

(1. 10) bi(t, x) < b2(t, x)

th en  the sa m e con c lu s ion  o f  Thoerem 1.1 holds.

Proof.
Choose S n 1, 0 and consider the following stochastic differential

equations

(1.11)d 2  = a(t , .f (tn ) )d  B  t+  i(t  . i (
t
n ) ) — n)d t

(1.12) 4 n ) ---cf(t, ; (
tn) )dB 1±(b2 (t,; (

tn) )-1- en )dt

under the initial condition x-
o
( n) = x-

0
( n) a ( w ) .  By Theorem  1.1, we

have, for each n, (
tn) < P tn) and we can see easily that x- in) t x (

t
1 ) and

Ptn) J1 x i2 ) a s  n—>- 00 where x (
ti) are the unique solutions of (1.1), re-

spectively. Q .  E .  D .

Remark 1.4

As is remarked in (3), the pathwise uniqueness of (1.1) holds, in

particular, if a satisfies the above condition and bi satisfies the following

condition: there exists a positive concave function K (u ), uE [0, co),

such that

x)— bi(t, y)l< K(

fo + K  1
 (  )d2 ,1=

x—y()y  R1

and

(1.13) oc.
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Now, we shall give some new examples o f pathwise uniqueness.

Example 1.1
Consider the following equation;

(1. 14) dxt=o(t, x t)dB t±b (t, x )d t

where, g and b are continuous in [0, 00) x RI-, such that, (i) there exists
a positive increasing function p (u ), uE [O , 00 ) such that, a (t ,  x )—

g(t Y )I <  x  —
 vx , y  R 1

and

(1.2) l o+ p- 2 (u)du=-- 00

(ii) b(t, x) is non-increasing function of x  R i ,  for every fixed t [0, 00).

Then, the pathwise uniqueness holds for (1.14).

Proof.
By the theorem 1.2, there exist maximal and minimal solutions of

(1.14); 2 t  and x t, such that .-x0=-xo=x, xt<X"t, for any fixed x.

Since b(t, x) is non-increasing function o f x ,  we have,

0 > E [x t — ] - =  E l fo t u(s,x s )dB 8 +  o
t b(s, x8) ds — l o

t o-(s,.t-s)dBs

—  f0 b(s , • s )d s ]=  E [ f b(s, .x8) — b(s , s )ds] >  0, Hence,

E[. -xt— xt1=0 fo r any tE  [0 , 00 ).

Thus, we have, t x t  fo r  any t [0, c°). Q.E.D.

Example 1.2
Consider the following equation,

(1.15) dxt={4}2  dB t+b(xt)d t ; = xv0

where b (x ) is continuous and b (x )> c  for some positive constant c>0.

Then, the pathwise uniqueness holds for (1.15).
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Proof.

First, we will show that, there exists some positive constant 8>0
such that

(1.16)f o tE [ x s - - 6 1 d s < H - 0 0  for any solution xt o f (1.15).

(*) Let, n > 0 ; then by Ito's formula, we get

E[(xt - P ) )1 - 72a  = a f t E[(x8+ 77)a- 1 b(x8)]ds+

a (a - 1 )  f l E u x s -1-q) 2 xdds.2 Jo

By the property o f b(x), b(x)>c>0, and hence i f  1-c<a<1

then, Eftxt+ 77 )1 - 72a> a c i E [(x 8 + 72)a- 1 ]ds

— a(1— a)f: E I (x s  72) - 2  xdds

>a(c — 1+ a) f  E [ (x s + 77)a - 1 ] ds

Letting n 4, 0, we have

oo >E [x7 ] >  a (c-1+ a) ./  E [4 - 1 ]c/s.
0

Let 8=1— a>0, then we get (1.16).

It follows from (1.16)

(1.17) E [ fI  1 0) (x s )d s] = 0 ,

for any solution of (1.15).

N o w , it is known, in  th e  theory o f  one-dimensional diffusion

processes that, a  conservative diffusion process xt on [0, co) with the
d2 d  local generator L =x   

d x 2
+b(x) dx

satisfying (1.17) is uniquely determined, and has the reflecting or im-

(*) This proof is due to Watanabe (5), Lemma 4,
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mediate entrance boundary at x=0 .

On the otherhand, by the Remark 1.3 and (1.17), the maximal
and minimal solutions of (1.15) are diffusion processes with the local

d 2dgenerator L = x  
 d x

2
+ b ( x )

'  
satisfying (1 .1 7 ). Then the assertion

dx
follows from the corollary of Theorem 1.2. Q. E. D .

§2 . An application to the local behaviour of sample paths of
diffusion processes.
In this section, we will apply the results in §1 to obtain some tests

for upper and lower functions of diffusion processes.

In  Theorem 2.1, we will consider tests of "limsup" type, but a

similar result holds for tests of "liminf" type.

Definition 2.1 (Upper functions)

Let x t, be an one-dimensional diffusion process, and P x  b e  the

probability law of xt such that P [x0 = x ]= 1 . By an upper function of
x t at x, we mean a continuous increasing function /i(t) defined on[0, co)

such that, tif(0)= x  and P x [x t< tk (t), for all sufficient small t>0]=1.
B y U x , we denote the set of all upper functions at x.

Definition 2.2 (Lower functions)

By a lower function of x t at x , we mean a continuous increasing
function tli(t) defined on  [0, co) such that 0(0 )= x and
P x [x t tis(t), i. O. t 0]= 1 , and by L x ,  we denote the set of all lower
functions at x.

By Theorem 1.3, it follows;

Theorem 2.1
C onsid er the fo l low in g  tw o  eq u a tio n s ;

(2. 1) d x t= a (x t)d B t+ b i(x t)d t, i= 1 , 2

w here , a(x) and b i(x )(1=1 , 2) sa t is fy  the sam e conditions as in Theorem
1.3 su ch  th a t, bi(x) b2(x).
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T h en  fo r ,  e v e r y  xER 1-,

c L (1 ) a n d  U(
x

2 ) c  U P

w h er e  L P  an d  U P  (1=1, 2) co r r e sp on d , r e sp e c t iv e ly , to  the d iffu sion s
x l ) d e f in ed  b y  the unique solutions of  (2.1).

Recently, S. Watanabe obtained the following test for the diffusion
process, characterized as the solution of the degenerated stochastic

differential equation; dxt= {4} 2 dBt+ 2 dt, xo-=0 c>0 (*)

Theorem (Cf. (6))
(A) L e t w(t) f  0 0  w h en  t 4. 0,
T hen, Po[x t> tO ),  i .  o. t1, 0] = 1  o r  0

a cco rd in g  a s  f  ± w(t)c e - 2 W(1) =  o o  o r  < co

(B) L e t tk(t)1, 0  w h en  t 4. 0 ,  T hen, f or c> 1

Po1xt<t0( 1), i.o . t4 . 0]=1  o r  0,

a c co rd in g  as

fo+
d t

eli(t)c - 1  — c o  or (c> 1)

I l   dt
o+ I log tb (t ) I t or <e° (c=1)

Now, combining the above theorem with the Theorem 1.3, we have

Theorem 2.2
C onsid er the solution of  the fo llow in g  eq u a tio n ,

(2.2)d x t = { . 4 }  2 dB t +b(xt)dt, xo-=0

w h e r e ,  b(x) i s  co n t in u o u s  a n d  c=-2b(0)>0.
T hen, w e o b ta in  the fo l lo w in g .

(*) V = {4} 1
 is the Bessel diffusion process of index

C .f. (6).
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( A )  Let ço(t) f  0 0 ,  w h e n  t  0.
(i) I f  t h e r e  ex i s t s  e> 0  su ch  th a t ,

fo ,w
(t)c—e e-29'(t) 

 d t  
=00,

th en , P [x t> t•w (t), 1 .0 . t J ,  0 ]  =  1 ,  ho ld s.
(ii) I f  th e r e  ex is t s  s> 0  su ch  th a t ,

.104.9,(t)c-Fs e_2W(t) - < oo

th en , P [x t> t • ço(t), i.o . t 4 ,0 ] = 0  ho ld s.
( B )  Let tk(t) 4, 0  w hen  t J , 0 , th en  fo r  c > l ,
(i) I f  t h e r e  e x i s t s  e> 0  su ch  th a t ,

101- 
( 0 (1)c+e —1  di  =00

then , P [x t< t•y9 (t), 1 .0 . t J,  0] =1, ho ld s.
(ii) I f  th e r e  ex is t s  s> 0  su ch  th a t ,

f —s—ld:
cH_O ) c< c °

then , P [x t< t•so(t), 1 .0 . t J, 0] =0 ho ld s.

Corollary 2. 1
Let xt be the so lu tion  o f (2.2) w h e r e  b ( 0 ) > 0 . Then,

lirn
t--0

 x t =1, ( a s . )  h o ld s .
(t• log (2) --=-)

Remark 2.1
The followings are known. (C.f. e.g. (7))
Consider the solution of

(2.3)d x t = a ( x t ) d B t ± b ( x t ) d t  x 0 = 0

where, a (x ) and b (x ) are continuous.
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(i) I f  o-2 (0)>O, then hm(
(2t

)1— ("2(0) (a.s .)  holds.

1 (ii) I f  g(0)=0, and a(x )  is Holder continuous o f order a >
2 '

then, lim t = b(0) holds.
t–o t

§3 . Applications to  an initial value problem  and  a  boundary

value problem.

Theorem  3. 1

C on sid er  th e f o l l o w i n g  t w o  in it ia l v a lu e  p r o b lem s ;

(3. 1)
3 u ( x ) 1 a2u(i)(x) atta)(x)

at - - T a 2 ( x )  axt+ b i (x)  t
a x  

u ( x ) = f ( x )  x E R l ;  i = 1 ,  2.

w h e r e  a ( x ) ,  b i( x )  i=1 , 2 a r e  c o n t in u o u s  i n  x E R 1 s u c h  t h a t

(i) a ( x ) > a > 0 ,  v x E R 1 f o r  s o m e  con stan t a
(ii) b i(x )<b2(x ), x  E R3-

A ssu m e  fu r th e r ,  th a t  in itia l fu n c t i o n  f ( x )  i s  b o u n d ed  co n t in u o u s

an d  nondecreasing.

T hen , u (
tu ( x ) <u (

t
2 ) (x )  h o ld s  fo r  x . l ? 1-

Proof.

Let -(x (
t i ) .x , B t }  be the solution of the equation

(3.2)
f dx (ti ) ' x =o-(x (

ti ))dB t+b t(x (
ti ))d t

1.4 ) =x i=-1, 2.

Then, it is well known that

(3.3) u(ti)(x) =E [f (x (P's)]

Now, if cr(x) satisfies the condition of the Theorem 1.1, then we

have x(
ti) .x< 4 2 ) .x by Theorem 1.3.
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Then , if f ( x )  is non-decreasing, 4 - ) (x )<u (
t
2 ) (x).

T h e  general case can be obtained easily by approximating a  by

smooth functions. Q.E.D.

Theorem  3.2

C on sid er  th e  fo llow in g  tw o  b ou n da ry  balue p rob lem s;

d200( x )
bi(x) d u " ) ( x )  A u(i)(x ) =0, A>0

{ 2 a 2 ( x )  d x 2d x

u(i)(c)=0 , u(i)(d)=1; [c , d ]( —  <c <d  <0 0 ) , i=1 , 2.

w h e r e  a(x ) a n d  bi(x ) are co n tin u ou s  fu n ct io n s  on  k , d ]  su ch  th a t
(i) u(x )>0
(ii) bi(x)<b2(x)

Then, u(1 )(x )<u( 2 )(x )  h o ld s  fo r  x E  d].

Proof.

L e t  {x (
ti"  ,  B t }  be the solution of the equation

.fdx (
ti) =0-(x (

ti))dB t d-bi(x (
t
i ) )dt

i=1 , 2.

ane let

x  
{inf .0 < v t < s ,  c <x (

ti) .x  and x (P.x =d  }
a d 

T h en , u(i)(x)=E[e - 2 6 a(i) ,z1

N ow , if  a(x )  satisfies the condition of the Theorem 1.1 then, we

have 4 1-) < 4 X' ' by the Theorem 1.3, and we can see 02) ' > O f '  x). 
Then, u( 1 )(x )<u( 2 )(x).
The general case can be obtained by approximating a(x ) by smooth

functions. Q.E.D.
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