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Introduction.

In the present paper, we shall discuss a comparison problem for
solutions of stochastic differential equations.'

On this subject, A. V. Skorohod (1) showed that, under certain
assumptions, the sample function of diffusion process is a monotonic
function of the transient (or drift) coefficient. Also he applied this
fact to the uniqueness problem for solutions of stochastic differential
equations.

For the above uniqueness problem, H. Tanaka (2) treated it in
another simple and beautiful way and got the same result as Skorohod,
and recently T. Yamada and S. Watanabe (3,4), refining Tanaka’s
method, improved their results.

In §1 of this paper, we will treat a comparison problem in a new
method and will improve Skorohod’s comparison theorem for solutions
of stochastic differential equations. Using this, we can obtain some
new results on the pathwise uniqueness.

In §2, we will apply our results in §1 to the local behaviour of
solutions of stochastic differential equations and will obtaine some tests
of upper and lower functions for sample function of a class of diffusion

processes.
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In §3. our results in §1 on the comparison of solutions of stochastic
differential equations will be applied to obtain some comparison theorems
for a class of an initial value problem and a boundary value problem.
Analytical treatment of these problems seems much more difficult.

The author wishes to express his hearty thanks to Professors
Shinzo Watanabe and Nobuyuki lkeda for their valuable discussions
with the author.

§0. Preliminaries.
Let oz, x) and 6(¢, x) be defined on [0, o)X R1, Borel measurable
in (¢, x).

We consider the following Ito’s stochastic differential equation:
0.1) dxi=o0(t, xt)d Bt 6(¢, x¢)dt.

A precise formulation is as follows; by a probability space (2, &F,
P) with an increasing family of Borel fields {<;}, which is denoted as
(R, &F, P; F;), we mean a standard probability space (R, F, P) with
a system {Fi}ie0,0) Of sub Borel fields of &F such that F;CFy if

if s<t.

Definition 1.1

By a solution of the equation (0,1), we mean a family of stochastic
processes ¥=(x;, B;) defined on a probability space with an increasing
family of Borel fields (2, F, P; &F;) such that
(i)  with probability one, x; and B; are continuous in # and Be=0,
(ii)  they are adapted to &y, i.e. for each #, x; and B; are F-measurable,
(ili) B is SFy-martingale, such that

E((Bi—BspP|Fs)=t—s  t=5=>0,
(iv) X=(xy, By) satisfies, with probability one,

¢ [’
xt—x():/o o(s,xs)st—I-—/; b(s, xs)ds

where the integral by 4B; is understood in the sense of stochastic integral.
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Definition 1.2
We shall say that the pathwise uniqueness holds for (0.1) if, for

any two solutions ¥=(x¢, B;) and ¥'=(x}, B}), defined on a same prob-

ability space (2, <, P; Fy), xo=xy Bi=2B; imply x;=x;.

§1. A comparison theorem for solutions of stochastic diffe-
rential equations.

First, we will improve Skorohod’s comparison theorem for diffusion

processes.

Theorem 1.1

Consider the following two stochastic differential equations;
1.1 dxP=o0(t, xP)dBs+by(t, xP)d2, i=1,2

where, o(t, x) and bi(t, x) are continuous in (¢, x) for (¢, x) €[0, )

X RY suck that

(1) there exists a positive increasing function po(u), we&[0, o) such
that

lo(t, x)—o(t, y)| < p(lx—y)) Yz, yER!

and

1.2) /0 02 du=oo,
(i) b1t x)<ba(t, ) V(¢ x)E[0, o)X RL.

Under these conditions, if ¥V=(x{L, B{L) and X@=(x{, BY)
are solutions of (1.1), respectively, such that x{P=x@, BP=BP=5,,

then, xP < x® holds for every tE[0, ) with probability one.

Proof.
Let r=inf {s; bo(s, xP)—bi1(s, x)<0}.
Noting that &;(¢, x) 7=1,2, are continuous in (, x), x{, 7/=1,2, are

continuous is t with probability one and 41(0, x§P)<<45(0, x§?), we see
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easily P(r>0)=1.
Hereafter, we shall denote #=¢A7.

First, we note
(1.3) B[z —2P]=Z[ | o, ¥P)dBs— / ¥ o(s, #0)dBy]
tl
+E[ [ Toas, #)— (s, #§)]ds]
tl
=E£][ /0 [ba(s, &) — b1(s, )] ds]

We will now evaluate E[|x® —x|].
For this purpose, we will construct the following functions {iy(2)} :

let @p=1>a1>a>--->a,—0 be defined by

(123 @, Ay -y
/ul 0~2(w)du=1, /az 0~2()du=2, ... /a” 02w du=n,....

Then, there exists a twice differentiable function () on [0, o)

such that ,(0)=0,

0 0<ulan
Ym()=1 between 0 and 1 ap<u<ap-i
1 u>an-1
and
O Ogugan
» ()=1 between 0 and%p—z(u) an<u<an-
0 u>an-1

We extend (%) on (—oo, oo) symmetrically, i.e. gn(z)=yn(z|)
Clearly in(#) is a twice continuously differentiable function on (— oo, o0)
such that () 1 |#|, as n—oco.

Now, by Ito’s formula,
tl
(@ — 1) = [ (e P — 2P {o(s, 2)—o(s, x§)} dBs

[ P — A P) (s, #P) (s, #P) s
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g Wl (P — ) o(s, ) —o(s, 2525
=N+I+ 13, say.

Then, E[/;]=0.
Since, ba(s, x@)—b1(s, xP)>0 for 0<s<r and [¢y(w) <1 for

uE(—o0, o0), we haev

BRI EL [ {ba(s, 22)—bi(s.28)} ).

We have, for /3
1 oo (2) DN p2(] 42 (1
Bl <5 B[ [ 4" — ) 02 — 2 Pl)ds]

g_;_z- max [y (|u|)p2(|u|)]g%_t%—>o as n—»oco.

ApSUSTy_,

Also
Elfn(xP — 2] 1 E[1xP —2F|] as #—>oco.

Thus we have
L4y Bl — 2PN < EL [ {bals, 2P)—b(s, 28} d]

Combining (1.3) with (1.4), we get
(1.5) E[|x® —xP|=E[xZ —xP

Since, #® 7=1,2 are continuous in s with probability one, we
can see easily from (1.5),
xP<x@ with probability one, i.e. <2 for v¢€[0, 7)

From this fact, we can easily see P x® for every ¢&[0, o).

Q.E.D.

Remark 1.1

1 1 1\4
For examples, p(#)=u", p(u)=u2(log;)2,
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¥ 1\+ 1)z . .
p(u):uz(log;) (log(g,;) , ... etc.,, satisfy the condition (1.2). In
particular, the comparison theorem holds for (1.1), if o(¢, x) is Hélder

continuous of order l *

2

Remark 1.2
The condition (1.2) in the above Theorem is nearly best possible.

For example, consider the following two stochastic differential

equations;
(1.6) dxP=|x@P@dB;, xP=0 (0<a<%)
Q.7 AXP—|2PRd Byt c-dt, 2P=0 (£>O, O<a<%)

Then, there exists a solution x{P=0 vor (1.6), and for (1.7), there

exists a solution x§? for which x=0 is a regular point. This means

that comparison theorem does not hold for o(x)=|x|* (0<a<—%—).

The followings are several consequences of the above comparison

theorem.

Theorem 1.2
Let

0.1) dxi=o(t, x)d B+ b(t, x1)d

where, o(t, x) and b(¢, x) are continuous in (¢, x) for (¢, x) € [0, o) X RL

such that, there exists a positive increasing function p(u), u < [0, o)
lo(t, x)—a(t, MI< p(lx—y ) Vx, yERL

and

1.2) /0 o w)du=co.

(*) Skorohod (1) proved that the comparison theorem holds for (1.1), if o(¢, x) satisfies
|o(z, x)—o(t, ¥)| < K| 2-y |*, x yER! for some constants X >0 and a> % Cf. also,
Anderson (7).
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Then, there exist maximal and minimal solutions for (0.1). To
be precise, if the initial condition a(w) for (0.1) is given, there exist
solutions %y and x¢ of (0.1) with Zo=xo=a(w) such that, for any solution
xt of (0.1) with xo=a(w), 2<% holds for every t.

Proof.

Choose &, | 0 and consider following stochastic differential

equations,

(1.8)  dxr—o(t, xi)dBs-t(b(¢, x0) +-en)ds
(].9) a’xt=cr(z‘, xt)ng—l—(b(t, x;)—en)a’z‘

Let, 2™ and x{~™ be solutions of (1.8) and (1.9) respectively with
%M =x™=a(w), and let x; be any solution of (0.1) with xp=0a(w).
Then, by the Theorem 1.1, we have x™®>x>x{"™ and «{® |,

(™ 4) as w—>oo. Let lim x{®=2%; and lim x{ ™=z,

n—>o0 n—o0
We can easily prove that #; and x; are solutions of (0.1) and x;<{
2<% for every t&[0, o) Q.E.D.

Remark 1.3
Both #; and x; are diffusion processes, i.e. they have the strong

Markov property. This can be proved, e.g., as Proposition 2 of (3).

Corollary 1.1

Consider the stochastic differential equation (0.1) where the co-
efficients satisfy the same conditions as in Theorem 1.2. If the probabili-
ty laws of the maximal solution % and the minimal solution x; with

the same initial value coincide, then the pathwise uniqueness of solutions

holds for (0.1).

Proof.

Since x;<_Z%;, the coincidence of the probability laws clearly implies

the x¢=2%; and hence for any solution x;, x/=x==%;.
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Theorem 1.3

Consider the following two stochastic differential equations;,
(1. 1) dxy=o(t, xt)dBt—{—bi(l‘, xp)dt, i=1,2

where we assume that o(t, x) satisfies the same condition as in Theorem

1.1 and that the pathwise uniqueness of solutions holds for both equations.
Then, if

(1. 10) bl(t, x) < bz(t, x)

then the same conclusion of Thoerem 1.1 holds.

Proof.
Choose ¢y | 0 and consider the following stochastic differential

equations
(1.11) d#P=o(t, Z™)dBi+ (612, #™)—en)d?
(1.12) dx{®=o(t, x{®)d B1+(ba(t, 2§)+en)dt

under the initial condition x{®=x{"=a(w). By Theorem 1.1, we

(n)

have, for each 7, x{™<x{™ and we can see easily that x{® 4 ¥ and

T | 2P as n—>oco where xP are the unique solutions of (1.1), re-
spectively. Q.E.D.

Remark 1.4

As is remarked in (3), the pathwise uniqueness of (1.1) holds, in
particular, if o satisfies the above condition and é; satisfies the following
condition: there exists a positive concave function «(z), #&[0, o),
such that

bi(2, x)—bi(2, YI<k(x—y) Yx,yER

and

(1.13) /0 K du=co.
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Now, we shall give some new examples of pathwise uniqueness.

Example 1.1

Consider the following equation;
(1.14) dxi=o0(t, x1)d By+6(¢, x) dt

where, o and & are continuous in [0, o) X R1, such that, (i) there exists
a positive increasing function p(x), #&[0, o) such that, |o(z, x)—

o, y)I<p(lx—yl) Vr,yeR!
and

1.2) /0 +p—2(u)du= o

(ii) &(z, x) is non-increasing function of x& R1, for every fixed t&[0, o).
Then, the pathwise uniqueness holds for (1.14).

Proof.
By the theorem 1.2, there exist maximal and minimal solutions of
(1.14); % and x4, such that Zo=xo=x, x:<%;, for any fixed x.

Since &(¢, x) is non-increasing function of x, we have,

t ¢ t
0> E[xi— 7] =E| /0 o(s, xs)dBs+ /o b(s, xs)ds — /0 o(s, Z5)dBs
t t

— /0 b(s, Zs)ds)=E[ [0 b(s, xs)—b(s, Zs)ds] >0, Hence,
E[%—x;]=0 for any z&[0, o).
Thus, we have, Z;=ux; for any ¢ & [0, o). Q.E.D.
Example 1.2
Consider the following equation,

(1.15) doy={xt)  dBy+-b(xi)dt; x+=x0

where 4(x) is continuous and 4(x)>c¢ for some positive constant ¢>0.

Then, the pathwise uniqueness holds for (1.15).
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Proof.

First, we will show that, there exists some positive constant §>0
such that

(1.16) /()tE[xs‘5]ds<+oo for any solution x; of (1.15).
*) Let, >0; then by Ito’s formula, we get
t
E (x4 —1=aq /0 E[(xs+1)*1b(x5)] ds+
— t
"‘(“TD [ Bl n)ds.
By the property of &(x), 6(x)>>c>0, and hence if l-c<a<1
then, E[(x+-7)%)—1a [ ' E[(xs+1)71)ds
—a(l—a) [* E(xs+ )2 x,]ds
0
t
>a(c—14a) /0 E[(xs+7)21]ds.
Letting 7 | 0, we have
t
o> E[x%¢]>a(c—1+a) /0 E[x21)ds.

Let 8=1—a>0, then we get (1.16).
It follows from (1.16)

(1.17) E[f ’ 110y(x5)ds] =0,

for any solution of (1.15).

Now, it is known, in the theory of one-dimensional diffusion

processes that, a conservative diffusion process x; on [0, o) with the
2
local generator L=x—§i—2+b(x)%,

satisfying (1.17) is uniquely determined, and has the reflecting or im-

(*) This proof is due to Watanabe (5), Lemma 4,
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mediate entrance boundary at x=0.
On the otherhand, by the Remark 1.3 and (1.17), the maximal

and minimal solutions of (1.15) are diffusion processes with the local
22 d o :

generator L—xﬁ—f—b(x) s satisfying (1.17). Then the assertion

follows from the corollary of Theorem 1.2. Q.E.D.

§2. An application to the local behaviour of sample paths of
diffusion processes.
In this section, we will apply the results in §1 to obtain some tests
for upper and lower functions of diffusion processes.
In Theorem 2.1, we will consider tests of “limsup’ type, but a

similar result holds for tests of “liminf” type.

Definition 2.1 (Upper functions)

Let x¢, be an one-dimensional diffusion process, and P; be the
probability law of x¢ such that P[xo=x]=1. By an upper function of
x¢ at x, we mean a continuous increasing function $(#¥) defined on[0, o)
such that, $(0)=x and P[x:<3(¢), for all sufficient small £>0]=1.

By Ug, we denote the set of all upper functions at x.

Definition 2.2 (Lower functions)

By a lower function of x; at x, we mean a continuous increasing
function $(#) defined on [0, =) such that $(0)=x and
Prl2s=>y(¢), 1.0. 2] 0]=1, and by L,, we denote the set of all lower
functions at =x.

By Theorem 1.3, it follows;

Theorem 2.1

Consider the following two equations;
(2‘ 1) dxtza(xt)dBt—Fbi(xt)dt‘ Z=1, 2

where, o(x) and by(x) (i=1, 2) satisfy the same conditions as in Theorem
1.3 such that, b1(x)<bo(x).
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Then for, every xR,
LPcL® and UPcCUP

where LY and UP (i=1, 2) correspond, respectively, to the diffusions
¥ defined by the unique solutions of (2.1).
Recently, S. Watanabe obtained the following test for the diffusion

process, characterized as the solution of the degenerated stochastic

differential equation; dx;={x}} %dB,:—I-%a’t, 20=0 ¢>0 ¢

Theorem (Cf. (6))
(A) Let ¢(£)} oo when t |0,
Then, Polxs>tp(2), i.0. ¢} 0]=1 or 0

. dt
-2 (“-—:OO
according as /;) +go(t)c e—2¢ S or < oo,
(B) Let f(2) | 0 when t |0, Then, for c=>1
Po[xe<t(2), Z.0. ¢} 0]=1 or O,

according as

[ by Z oo or oo >0

1 dr_ - _
/0+W¢Yt)7 H=eoor < (e=1)

Now, combining the above theorem with the Theorem 1.3, we have

Theorem 2.2
Consider the solution of the following equation,

2.2) drr— Aty T dBo-b(x)dt, x0=0

where, b(x) is continuous and c¢=26(0)>0.
Then, we obtain the following.

(*) V1= {x'l’}'zL is the Bessel diffusion process of index a=2.

2
C.f. (6).
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(A) Let ()} oo, when t| 0.
(@) If there exists €0 such that,

dt
c—& ,—2¢(t) — o
/0+ PO e ¢ ’

then, Plxi>t ¢(t), i.0. t| 0]=1, kolds.
(7))  If there exists >0 such that,

dt
£iete o—200) £~ oo
/O+go( / ¢ <

then, Plxi>t-¢(t), i.o. t] 0]1=0 holds.
(B) Let f(2) | 0 when t |0, then for c>1,
() If there exists €0 suck that,

43
c+e—1 %%
[ ot =

then, Plxi<t-¢(t), i.0. t| 0)=1, holds.
(#2)  If there exists €0 such that,

S o1l <o

then, Plx;<t-¢(2), i.0. t| 0]=0 Aolds.

Corollary 2.1
Let xt be the solution of (2.2) where 6(0)>0. Then,

EHT”‘_‘—_=1, (a.s.) holds.
t—'OY(t. 10g(2)7)

Remark 2.1
The followings are known. (C.f. e.g. (7))

Consider the solution of
(2.3) dxi=0(x)d Bi+b(x)de. 20=0

where, o(x) and é(x) are continuous.
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(i) If 02(0)>0, then lihi—’”‘—11=02(0) (a.s.) holds.
=0 (21‘ log(z)T)2

(ii) If o(0)=0, and o(x) is Hélder continuous of order a>i,

then, 11m =4(0) holds.
t-~0

§3. Applications to an initial value problem and a boundary
value problem.

Theorem 3.1

Consider the following two initial value problems,

(i)(x)
a1 ) o) D gy 2

uP (x)=F(x) xeRl; i=1,2.

92 ut )(x) 8u, (x)

where o(x), bi(x) i=1,2 are continuous in xR such that

@) olx)=>a>0, VxR for some constant a
(i7)  b(x)<bo(x), xER!

Assume further, that initial function f(x)is bounded continuous
and nondecreasing.

Then, uP(x)<u@P(x) holds for x= RL.

Proof.
Let {x% B;} be the solution of the equation

AT = o(2P)d Byt by(2P)dt

3.2
-2 P =x i=1,2.

Then, it is well known that

3-3) uP ()= E[fxP )]

Now, if o(x) satisfies the condition of the Theorem 1.1, then we
have x{®*<x®?% by Theorem 1.3.
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Then, if f(x) is non-decreasing, #{P(x)<u{®(x).
The general case can be obtained easily by approximating ¢ by
smooth functions. Q.E.D.

Theorem 3.2
Consider the following two boundary balue problems;

L oy @PuO@) 4 g WY@ a0 =0, 20
2 (%) dx? ) dx

uD()=0, uW(d)=1; x€]c, d](— o0 cld <), =1, 2.

(3.4)

where o(x) and by(x) are continuous functions on |c,d] such that
(@) o(@)>0
(@) ou(x)<bo()

Then, uW(x)<u®(x) holds for x&|c, d].

Proof.
Let {x{"% B} be the solution of the equation

SO
ot x(()i):x 2.:-1, 2
ane let
(i).x_[inf {s; 0 Ve<s, c<a?® and x> *=d}
70 oo if, inf {¢}

Then, u®(x)=E[e*941)2]

Now, if o(x) satisfies the condition of the Theorem 1.1 then, we
have x{P>'*< x2"% by the Theorem 1.3, and we can see o@>*>c"?.

Then, 2M(x)<a®(x).

The general case can be obtained by approximating o(x) by smooth
functions. Q.E.D.
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