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§0. Introduction.

Mixed initial-boundary value problems for hyperbolic equation of
second order have been treated by many authors; O. A. Ladyzenskaya
[15], L. Hérmander [9], J. L. Lions [17], D. F. D. Duff [6], K. Yosida
[24], S. Mizohata [20], M. Ikawa [11], [12], [13], R. Sakamoto [22],
[23], R. Agemi [1] and others. However as is described below, an
important and critical problem, so-called Neumann problem for wave
equation with non-homogeneous boundary data, is not solved in frame-
work of L2-theory. Considering this problem we face on the following
question ‘Which class of first order boundary conditions should be posed
for obtaining existence and uniqueness theory of the solution in Z2-
space of mixed problem for hyperbolic equation of second order?

The purpose of this paper is to answer the above question, es-
tablishing the necessary and sufficient condition for obtaining existence
and uniqueness theory in Sobolev slace, even if arbitrary lower order
terms are added to the regularly hyperbolic operator of second order
and to the boundary operator of first order. This theory just corresponds
to ‘Coercive’ theory for elliptic boundary value problems. Our boundary
conditions will be described in the relaxed form of so-called ‘Uniformly
Lopatinskii condition’ treated at first by S. Agmon [3] and completed
by R. Sakamoto [23], (in case where hyperbolic system, by H. O. Kreiss

[14]) Now we point out some problems which remain open. Let R%=
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{(xr 1, "',J’n—l), x>0, y=(y1, ) yn—l)ERn—l}.
[1]. In R%?X(0. =), Neuman problem for wave equation is

-1
(Du:—D%u-l—(jgl Dy 4 Dpu=f(2 % y) in REX(0, o),

(0.1)/«: Dan | =g(¢, ») on R"1x(0, )
| =0
Dl | =u(x ), (=01 on Rl
1 9
Dt=77, etc.

If g=0, the solution # exists uniquely and holds

1 1
0.2) 2 1Dy <Ce 3 lugheg+ 1 76lods)
=0 §=0 0
where lulff= £ 105, julf, luli= [ [ 1, 9 dedyy....dyn-a.

But if g=£0, the following questions arise:
(Q1) ‘Whatever energy inequality should be held?’ and
(Q2) ‘Does the existence theory follow in the frame-work of Z2 ?’" and

‘How about adding arbitrary lower order terms?’.

[2].
{ Ou=f %, ¥)

n—-1

0.3) ¢ Bu | =(Dat+ T 62, y)Dy;—e(t, y)Diju | =g, y)

=0 j=1 =0
[ D{ut=|0 =u1(xv }’), (]=O’ 1)

How about the questions (Q1), (Q2) concerning problem (0.3)?
Whatever condition must & and ¢ satisfy?

[3]. We mainly consider the mixed problem:
P(¢t, x, v, Dt, Dy, Dy)u=f(2, x, t), x>0, >0,

n—1
(P) Bux=|0=(Dx+ El bi(2, ) Dy, — (¢, y)D,g)nFlo =g(¢, ), x=0, £>0,

D{ut_lo =uy(x, ¥), (=0, 1), x>0, ¢=0.
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Here we assume that x=O0 is non-characteristic for 2.
n—1
0.4) P=—a(s x, y)D%-I—Q(E,‘.I a2, x, ¥)Dy;+an(t, x, ¥)Dz) D

n—1 n—1
+g Zlaiij‘Dyj+21§}1 angDy; D+ D2), ay=ay(t, x, ), etc.

, =

is regularly hyperbolic with respect to 7.

When has the mixed problem (P)={P, B} the strongly hyper-
bolicity in L2-sence defined below?
def. We say that the mixed problem {2, B} has the strongly hyperbo
licity if and only if not only {P, B} but also the mixed problem {P--
P’, B+ B’} has a unique solution in Z2-space (or Sovolev spaces) and
energy inequality holds in the Z2-sence, where 2’ and B’ are arbitraly
first order and zero order operators respectively.
[4]. If g==0, whatever energy inequality should correspond to Z2-
well-posedness? In case g=0, R. Agemi [1] gave energy inequality.
(Q in [1] is slightly different from our @ in page 474.)
[5]. Whether {P, B} has the same speed of propagation as Canchy
problem, or not? How do we construct the solution of the mixed
problem {P, B} in the general domain 22X (0. «)? Here 2 is the
exterior or interior of a smooth and compact hypersurface 02 in R".

This paper answers affirmatively all above questions. Since Diri-
chlet problem is well-known, considering our results we can regard
that the mixed problem for second order hyperbolic equations with real
boundary coefficients is solved so completely as coercive boundary value
problem for elliptic operators. In §1, we state the result of our paper.
In §4, Sharp form of Girding’s inequality is essentially used on the
boundary plane. That is proved by Hérmander and in vector-valued
case by Lax-Nirenberg. For the estimate of boundary integral, loca-
liczations shown in §3 of the mixed problem (2) is indispensable. As
in R. Sakamoto [23], the estimate of boundary norm is obtained from
the energy inequality for the dual problem {P*, B’} in §7. All our

arguments, especially, one for obtaining necessary condition in §5
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depend on the lemmas given in §2. In §8, we discuss on the finiteness
of propagation speed and go forward to the theorem on the mixed
problem in general cylindrical domain £X (0, o). Strongly hyper-
bolicity helps us to make the theory in general domain.

The author wishes to express his sincere gratitude to Professor
S. Mizohata for leading him to hyperbolic mixed problems and en-
couraging him continuously.
§1. Statement of results

In this section we state our results in Theorem 1~6 and their
corollaries, which answer to the questions in §0.

We need to introduce some notations and to consider slightly the
energy inequalities.

Assume that all the coefficients of 2 and B are real and sufficiently
smooth and constant outside of compact set X in R?x Rl. From the

hyperbolicity of P given in (0.4) the root = of characteristic equation
Pl x,y, 1, & 1)=0

is real and distinct for (¢, x, y)ERIX R%, £4)2=1.

This means, denoting a=al(¢, x, y), etc.,

1.1 a+a}>0, a0,

n—1

n—1 n—1 ‘
(1.2) d('))z(a—l-a%,){(i}_jl ata laijvm,}—an T arl

n—1 _ n—1
Fa'S anm2>0, for (x, y, ) REX RY, |m=(jz vg)vzaéo,
j=1 =1
It is natural that we assume

(1.3) a>0

that means ‘the number of boundary conditions is one’. In fact, in
the theory of mixed problem for hyperbolic equation with constant
coefficients the number of boundary condition is given by the number

of the roots with positive imaginary part of

P(r, £, =0, 17=0—17y, o, 7 real, y>O0.
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In our case since two root of P(r, £ 0)=0 is

f=(—ant Vit )r

the number of boundary conditions must be 14-sgn a,, if 2<0.
(H1) We assume (1.3) and (1.2).

Now let us introduce the necessary and sufficient condition for
that {P, B} becomes strongly hyperbolic in Z2-sence. First, condsider

the case where the initial data are zero.
[Pu=f(t, x, ¥) x>0, £>0

(Py) Bumio=g(t, ) =0, £>0
l =0 (=0, 1) #=0, x>0

Diu
t

If all the coefficients are constant and f=0, by Fourier-Laplace

transformation we have
(1.4) P(r, Dz, Ma(r, x, N=0, a(r, x, N=F(e"u(t, x, ))
(1.5)  B(r, Dg, My(r, x, 1) | =4(r, 7).
The solution of (1.4) converging to zero when x tends to oo, is
given by ¢(r, n)eté+( N2 where £,(r, ) is a root of P(r, £, 7)=0, with

positive imaginary part when y>0. Substitute it into (1.5) then we

see that ¢(r, 7) must satisfy

1.5) B(r, £E(r, M), Melr, MN=g(r, 1).

For y>0, B(r, £4(r, 1), )5=0 follows. So-called ‘Uniformly Lopatinskii
condition’ is

A7) |B(r, é(r, M), MI>c>0 for ME+IrE=1, 7>>0.

But (1.7) is not satisfied in case of Neumann problem [1] in §O0.
B(r, Ex(7, ), MN=E4(r, M=(72—R)%, (r=0—147, 7>0) satisfies

(1.8) [€x(r, Di>e(o, MTE, o, M)>0
for {(, o, 7), M24I72=1, 7>>0}.
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Our condition for {P, B} is

L
(H2> |L(J’, ¢ T, 77>|=]B(yy t T, E+(y’ 4 T, 7’)’ 77)'>€(J’» ¢, o, 77)742’
(3, t, ©)>0 for (y, )E R 1X RL, M2+ |r2=1, >0,

where £.(v, ¢, 7, n) is a root with positive imaginary part of P(z, 0, y,
T, 5’ 77>=O

The following two cases are possible if (A?) is not satisfied.
(Case 1) There exists (yo, %o, 00, M0, Y0), 0§+ME+y§=1, y0>0.
L(yo, to, do—2Tg, Mo)=0.
(Case II) Or, there exists (¥, %0, n0, 00) (6§+Mol2=1), such that
c(yo, to, o0, MT>L(»0, to, co—127, M), =c(¥o, 2o, oo, T0)>0.

We state our theorems after considering some relations among
various types of energy inequalities. First let us integrate (0.2) with

1#;=0, (=0, 1) from O to #, applying Schwarz inequality, then we have
¢t 1 2 ¢
T0a()II2 22 2Bt 2
O T 1Dy ds<ige S ds.

Muliply e2r¢t (y>B>0) and integrate from 0 to oo, then

| ef 52 s 1 —a(r—B)s
(1.9) Tr'uli Hg/o (T—ﬁ+2(7—ﬁ)2+2(7—/3)3)e 2-B)3) £ (5)l13ds.

where

1L10) Il . = Zle Tt DIDE D2 y2 dxdydt.
(L10) el 7, + t+j+k§|a|=m/0 ¢ HD2 Dk’ dvdy

Taking accout of

{s(T—B)He~ =P ;1

We can see that there exist positive constant yp, and such that

1 ..
(].. ].1) T|u|%, 7 +g C?If |(z), 772, 4+ for 7‘>T0'

Now we change a point of view and consider the following boundary
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value problem closely connected to (Po) as is shown later.

P(t) X, Y, Db Dz; D?/)u=f<t) X, J’) x>0) _O°<t<oo

Py {
(Fo) B, y,Dy, Dy, Dy)u | =g(2, v), 2=0, —oo<¢<o0.
=0

For description of energy inequality for (7g), let us introduce
Hilbert spaces Hp,, (REXI), IHm,, (R?1xI) defined by the com-
pletion of C§ (R%xI) and Cy (R®xI) with the following norms
respectively, I=(a, 4), y>0.

2 —
(1. 12) Iulj{m,r (.R: x[)=|l¢l'%n, 74

b oo
=i+f+k§~l;"al=m /a dt»/o dx/Rn_Je_TtTiDgD’éDgu(t, x, y)Pdy

1.13) <7J>2,_q[m’r(kn-—1 % ])E<7/>2

m,y,J

b
=i+1+§l=m/a df/R”_l[g—TtTiDngy@, y)lzdy'

We denote in short |ulm, 1, (=0, o) =%lm, 7, 1%lm, 7, ©, )= 2tlm, 7, +

l2elm,y (o0, 0) =26 my,—-
Denote

— L
Ar=9(|77|2+02+7'2)29‘(y’”
— L
/ly, r=9(|77|2+72) zg(y) )
Fy, pult, z, y)= /R” e 2T W)y (¢t x, y)dydt.

In our theory Ayy plays the most important rvole, relating to the
localigation of u in §4.

Theorem 1. There exist positive constants vk and Cx (£=0,1,...)
such that for every ue Hyio, , (REXRY)

1 -1
(1.14) Theld g, +7 1§0<Ayf,pgu>%+k_,,,

1 2 ]‘ - -ili 2
<Cg 7|Pulk’r+7\/ly,78u>k,r for 7>74.
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Corollary If the solution u of (Po) belongs to Ha,, v, then
2 ! 3 2
1.15) Tleelf, ;, ++rf§] <A Diu>t .,

L e 7 2
O H{ B gt <Ahre>8 1]

Theorem 2. For f& My (REXRY), AL g€ Iy (R-1XRY), (y>
Yi), there exists a unique solution us Hivg,, (REXRY) of (Py). If
supp |1, supp [g] C [T, ) then supp [u] C [T, ).

t t t

Corollary If fe94,, (REXRY), A2 & EH1, (R*™IXRY), (y>v1),
and f(0, x, 9)=g(0, ¥)=0, then there exists a solution uc Hs,, (R} X

RY) of

Pu=f(t, x,)
(1.16) B%z|=0 =g(¢,y)

Diu| =0 (7=0,1)

and satisfy the energy inequality
¢t 1 .
(1.17) /, z (Dl ()IB_; ds
¢ t L
<cel 2 [LIf s+ [ <(A5,58)(5)>hds
o e, (B>To),
where L g($)3 2=/Ig(s, N2 dy, ¢: constant.

(1.17) follows from Theorem 1 and corollary by putting yz%

for small £. Conversely, in the same way as (1.11), we have from (1.17)

A18) Tl g S| Brnt <Abag>hon]  T>T0.
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Next denote

(1.19) [u(x)]fn,si+j+k§m_m | [l Dk Dy(Dhxe, %, y)Pdxdy
7=0.1

then we have our main energy inequality for (7).

Theorem 3. There exist cy and yr (£=0,1,2,...) such that for u
in Hork,y (REX(0, 1), (0<t<Lo0), and for y>yx, we have

1 _1
(1.20) Tlul1+k,7,0,) +7j§0</1y,2r0g0”>%+k—1,r, (0, 2)
1 1 1
+uDNE 1k, gck{‘fm”’lzc,r,(o.t)+7<A2,r3”>?c,r.<o,t)

O -

Corollaries of Theorem 3.

1) There exist B and c¢p such that we have, for 0<{¢< oo,

1 X o 1 _%
(1.20)’ EOII(D,’;u)(t)llLLk_j+j§)<(l‘/1y,1+1)‘ Diu>3k_1.0,0.)
' 1
éfke’g"t{l‘lpuﬁc,(),(o,c)+<(t/1y,1+1)2 Bu>% 00,1

1
+z DO g} £=0,1,2, ...

2) If the solution (¢, x,¥) of (P) belongs to EYH2(RE) N £} (H?
_1
(R™)V and A,5D%4u(0, v, £) belong to Ha—j(R™1x(0, #0)) (=0, 1),

then the following compatibility condition must be satisfied
1
(C1) Bi( £, m, uz)EEoBl,j(O,y, Dz, Dy)ui(0, y)=£(0, v),

1
where B(y,t, Dg, Dy, D)= 3 B1,j(y, x, Dy, Dy)D{'
j=0

1) f(t)E@;c(H) means that f(#) is £ times continuously differentiable in # with values in
Hy ('é=07 1: 2» "')~



444 Sadao Miyatake

L
2

3) Conversely if feH-j(REX(0, ), A,,8EH1,(R"1xX(0, «))
and ;€ H2I(RY), (=0, 1) satisfy (1), then the solution of (P) exists
and satisfies (1.20) and (1.23) with A=1.

4) Moreover assume f&Hy,, (REX(0, «)), AirgEﬂk.r (R"1x(0,
), uyE H*¥1-I(R"), (=0, 1) and that f, ¢ and #; (=0, 1) satisfy
the following compatibility conditions (Ck) of order 4. Then the
solution (¢, x,y) of (P) belongs to EYHWE(RY)) EWH¥(RY)) and
satisfied (1.20) and (1.23).

m
(Cr)  Bmlf, m, “2)=EO{Bm.f(O»J’, Dz, Dy)us}(0, »)=(D71£)(0, »),
(m=1, ..., &),
where By,; is defined by

D’tnhlB(t, Yy, Dt, .Dx, .Dy>u= Z Bm’j(t,y, Dz, Dy).D‘gu
0<j<m

and ug4; is successively defined by

%2+i(x:y)=a(0» X, y)_l{(DngO: x, y)'—Qia)r x, Y, D;, D?L;y “70)}
(z=0,1,2,...), where

Qi=Qut, v, y: DEDY(Dfw), k<i+1k+j+1al<i+2)
=D Pu—a(t, x,y) D7 u.

Remark 1 Even if arbitrary lower order terms be added to 2 and 5,
Therorem 1, 2 and 3, and their corollaries are also true by making Cy

and vy (=0, 1, 2, ...) larger if necessary.
Theorem 4 Assume (Hi). If we have

1 1 4
(1.14)’ r|ul“;’,,,+gc{7|Pu|§,,,++7</1y,,3u>3,,,+}, >70

for the solution of (Po) belonnging to Ha y +, then P, B must satisfy the
condition (Hs). 1t is true if we replace (1.14) by (1.18).

Theorem 5 Under (H1) and (Hz) the solution of (P) has a finite
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speed of propagation and the speed is same to that of the solution of
Cauchy problem. In other word the cone which describe the dependence

domain is the same one as in case of Cauchy problem.

Theorem 6 We can extend Therorem 1~5 to the mixed problem in
general cylindrical domain 2 X (0, o),

Dedailed statement of Theorem 6 is shown in §8. It plays a
important role that the condition (A3) is an intrinsic one. Strongly
hyperbolicity and finiteness of propagation speed make it possible that
all the results in quarter-space: R} X (0, o) generate the corresponding

ones in general cylindrical domain £ X (0, o).

Remark 2 We can replace :g_:ll b3Dy; by singular integral operator
with sufficiently smooth real symbol 4(¢, ¥, ) with homogeneous of order
1 with respect to n. If (Hb) replacedj‘é};éﬂj by 6&(¢, ¥, n) be satisfied,

then Theorem 1~Theorem 4 hold.

Remark 3 As for mixed problem P, B one-often says that P, B is

L2-will-posed if for some constant Cp

1
(1.24) Tul}, y  <Cog\Pull,rpy T>T0

holds in case where g=0 and #;=0 (j=0, 1) (c.f. R. Agemi-T. Shirota
[2]). It seems natural that we say that {P, B} is L2-well-posed if

, 1 1 1
(1.24) Tlu|1,7,+£C0{‘7'|Pu|g,r,+‘|‘7<A;.r3“>(2),r,+}
Theorem 4 means that assumption () is necessary for {£, B} to be
L2-well-posed.

§2. Analysis on (H3)

In this section we state on some lemmas concerning the condition
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(Hs) which will be used in the proofs of Theorems 1, 3, 4, 5. The
proofs of lemmas given later in this section, depend on geometrical

consideration of the intersections of an elilptic surface and hyperplanes.
At first let us calculate exactly the root with positive imaginary

part ¢+ of the characteristic equation at the boundary;
2.1) P(t,0,y, 0—il, £, M=0, (M=(T, ...,Tn-1), o, real, 1>0).

Denote simply a(¢, 0, y)=a, etc.,.

n—1
2.2 P={¢+(anm+ Elam’)f)}z—l?, where
n-1 n-1 n-1
(2.3) D=(an-r—|—j;1anj77;)2—|—(a72—2 S alit— X ayTily)

=D1—21Ds, D1=ReD.

n—1

n—1
2.4) Dz=(a+a%)0-|—an > angly— 20 @il

Remark that we can see the following relation
2.5) Dr=(a+a%)1Di—aY(a+a3%)td(M)—(a+a3)r2

In case of wave equation (2.4) means D1=0%n2-y2. Now the root
&+ of (2.1) is given by

n-l 1DI+D+ 1DI— D+
(2.6) fr=—(anr+ 2 anﬁ)-l-sgn(—Dz)l/l_Ql;'_Dl _|_z"/ W_lz__’ﬁ

i=V—1, sgn x={ 1, x>0
—1, x<0.

We only remark that the roots of a+:6 (a, b, real) is

j;{sgn(b)‘/?_g—-a —I-z'l/—r?}, r=la—+16|.

n—1
From (2.4) and (2.6), L(x, ¢, T, 7]):|§++jzlbj‘f)j—€7'l=0 is equivalent to
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. DI—D1 _
ey PP =
@D DID;
| ) —sen@y PEPL —atat)y oD+t

where p=c-+an

n-1 n-1 n—1
a(’?):(a—mn)j;lanﬂj—}—(c—l-an)ig]lamr—(a—}-a%,)j;lbﬂj.
First we state the following lemma whose proof is given later.

Lemma 2.1. Under the condition (Hs) it follows
(2.8) p=>0.

Taking care of the homogenuity of L with respect to (7, o, 7), and

the fact that 7=0 follows from L=0, we characterize the set

S={(», t,7,0), L(y, 7,0, 0=0, 7, 0) o},
So=A{®, o), M2+a2=1}.

Lemma 2.2. Assume the condition (Hs). then for (v, yo, oo, n0)ES

we have:
2.9 D1=0,i.e. D3—a1d (Mo)=0
(2.10) pDs+a(Mo)=0

at the point (¢, x, y, 7, n)=(%0, 0, Y0, 00, Mo).

Denote

V={(y, t, 7, 0), D§—adM=0, (1, o) To}
W=A{(y, ", 0), pD2+a(M=0 (7, 0)=To},

then Lemma 2.2 means S=VNW. From Lemma 2.2 we have

Corollary There exists positive constant § such that
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Scvc{y,4m0): (0o, M>8).

Remark that for the problem [1] in §0, W=R"-1 X Rl X 3o therefore
S=V.

The variety V consist of the following two parts.

V=r,.JV_, ViNV_=¢, where
Vi={(y,4,0,0): De=+a *d)?, (1,0)ETo}.

Now let us denote pt=:|:a%a(n)d(n)_% then we have

Lemma 2.3. Under the condition (Hy), in neighbourkood U of Vi
in R"LX RYX X0, the following inequalities follows respectively.

2.11) pP=>ps,

Moreover we have under the condition (Hy)

Lemma 2.4 For every (y,t, n)E R 1 X R1X [R?"1—0], we obtain

(2.12)» p2d(M>aa(M)?2, p=>0.
Conversely we have

Lemma 2.6 [f (H3) does not hold there exists (yo, to, mo) such that

(2.13) p—|p£l<—8<0 at (¥, %o, Mo), 1M0l5%0,

and there exists oy such that one of the followings holds.

(Case I) L(yo, to, co—7y0, 70)=0, for some yo>0.
(Case I7) cy>L(yo, to, 60—12y, no), for v>0, where ¢>0.

Remark that the condition (H3) means that L(w, ¢, o, 7)=0 only

2) Starting from this inequality R. Agemi [1] obtained only energy inequaly for the
problem (2) with boundary data g=0.
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at the point (y, #, o, ) such that P(¢, 0, y, o, §, 7)=0 has double real
root with respect to &, i.e. (y, 7, o/, n)EeV,

_1 -1
o' =(o2 4R Yo, 1'=(o2H )7,

Proof of Lemma 1. Let us prove that (Hy) does not hold if p=c+a,
<0 at some point (9, p). We fix (¥, %) in this proof, (r, n) satisfying
Lz, 7)=0, i.e.
2.7 sgn(— Dz)‘/ 1Di+Dy +iyf 1PI=Da _ (4 4)r
2 2
n-1 n-1
H{ X angl— X2 6575},

=1 =1
satisfies the following (2.14), the esquare of (2.7)’, too.

n-1 n—1 n—1
(2.14) (ant+ Elanﬂj)z-!—(afz—-ZEl aﬂ?if—i jz_laqﬂﬂj)

n—1 n—1
= {(£+dn)f+(j§1 anglj— Eléf(’h)}z.

If a}+a=(c+an)?, then at (r,7)=(1,0), (H3) does not hold.
Consider the case where a%-+a5(c+an)? and for some 79540, (2.14)
have non-real roots. Take the root with negative imaginary part r_=
oo—7yo. Then at (no, co—7yo) (2.7)" is satisfied. In case where the
equa tion (2.14) has real roots for all %, we return to (2.7). From
(2.7) (i) and y=0 we have

(2.15) Dr=(a+a3) H{D§—a1d(M)} =|D|I>0.
Therefore at (o, n) satisfying (2.7), Ds(o, 7)5~40. Deviding (2.7)
(ii) by Da=sgn(D2)VD3 , we have
(2.16) —NT=a () =(a+a3)"* {p+sgn(Do)a(n)}
where 5'=n/|Da|.

If 1=4"14(n") then we can see, after slight geometrical consideration
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=

C

—~
Ql
S~—

(Fig. 1)
In case where P=D%+ D}—D%
B=Dy+b6Dy—cD;, ¢c>0. (1) and (2)
are co esponding to (H2).

(see Fig. 1), that there exists s such that 1>[s[>0, and
—V1—2a 14 (") =(a+a3) *{p-+sgn(Da)sa(?).
Let us take (o1, nl) satisfying

s’ =11 Dy(al, M), sgn(Da(al, T))=sgn(Ds(a, 7)),
(o1, Me .

Then at (o, %, o1, 1) (2.7) (ii) holds and D§—a"1d(#)>0. This
contradict (Hz). q.e.d.

Proof of Lemma 2.2. For (y, to, 00, no)ES, P(to, 0, yo, £, 10)=0 has
real double root. Therefore from (2.2), (2.3) and (2.5)

D§—a1d (M9)=0.
From (2.7) (ii) we have

pD2+a(N9)=0. q.ed.

Proof of Lemma 2.3 and 2.4. First let us prove the followings

(2.17) ﬁ—%’%go in place where D§=a=1d (7).
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If p+a(no)/D2<<0 and D§=a~1ld(n) at (¥, ¢, oo, o), then we obtain
a(no)/De=a(no/D2)=0a(ny)>0 from p>0. Taking account of a~1d(ng)
=1 and d(0)=a(0)=0, and applying ‘Zwischensatz’ we find 0>>8>1
such that

(2.18) —V1—a1d(8) =(a+ad)1{p+a(87)}
1—a~14(874)>0.

Denote 8ng=n" and define o' by
2 n—1 , n-1 ,
1=(4+an)0,+(j§anf7]j"— 1§diﬂi)=02(y, ¢ a, 7]').
Let us normalize (¢, v"). (o, n)=(r0’, m’)E X0, »>0. Here
n-1 n—1
(2.19) r=(a+a%)a+(j§1 anﬂj—igl aily)=2Ds(y, ¢, o, M).

Hence n'=0n,=n/D2 we obtain (2.7) (ii) from (2.18). Since D§—a1x
d(n)>0, this contradict (H2) and we obtain (2.17).

Now let us prove

(2.20) p—pr=pLaa(M)dm) >0
for (v, 4, MER™1x R x (R*-1—{0}).

From (2.17), we have (2.10) in place where Dg——-j—_a_%a’(n)%. For

arbitrary (y, ¢, 7) we can find o1 and o_ satisfying
n—-1 n—1 1 1
Dz(yy t) 77) O'i)= (a+a%>0i+anj§dnj7)j“ Eldﬂ?t= :!:a 20’(7))2

respectively. Considering (2.17) at (y, ¢, 5, 01) we obtain (2.20). This
complete the proof of Lemma 2.3 and 2.4. q.e.d.
Proof of Lemma 2.5. 1If there exists (¢, y) such that ¢+a,>0, then
Lemma 2.5 follows from the proof of Lemma 2.1. If p=c+a,>0,
for every (¢, ¥), only Case II is possible. Because, since the right-
hand side of (2.7) (i) is non positive, |D| must be qequal to D; and this
means y=0. Besides D§#0 at (yo, %, 00, n0)ER®IX RIX X satisfy-
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ing L(yo, %, oo, 70)=0, follows from
0<L|D|= D1=(a+a%){ Di—a=1d(Mp)}.

Moreover the assumption of this lemma means D3—a~1d(ng)>0.
Therefore from (2.16) we have

1>a71d(My) and p+sgn(D2)a(5)>0.

Taking p(C>1) such that 1=a"1d(pmg)

O§P<_Sg“(02)a(’7')<—sgn(Dz)a@’?'):sgn(Dz)(_~/Z %)
— —sgn(Do)V @ a(M)d(h) " =Ipsl.

This complete the proof of Lemma 2.6.
§3. Localization of (P;) and Green’s formula.

In this section we consider how to localize the problem (Pg) and
show how to reduce Green’s formula to formal algebraic calculus.
This method is used by R. Sakamoto in [22].

1. From

3.1 e Tt D¥y=(Dy—iTkeTtu, i=V—1, 7>0,
P, x,y, D, Dy, Dy)u=f is reformed as follows:

3.2) P(t, %,y, Dy—iT, Dy, Dy)e Ttu=e"Ttf,

Here P is regarded as homogeneous of order 2 with respect to (Dy,
Dy, Dy, ). At first we take a partition of unity on R1x R} x R"-1
X L =R"x ¥ 3(, x,5,7,0,7), where

= ={",0,1), MP+o%+12=1, 7>0}.
We consider the following C* functions:
ST )
3.3) ao(®)+ar(x)=1 on RL, supp. ao(x)c[?, oo]

supp a1(x)C [0, 8], ai(x)=1 on[O, %]
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Ny .
(34«) Elal'j(t’ y)—|—a1,o(x, y)E]. in Rlx Rn-1

supp a1,0CR*—K NR™, supp a1;Cn.b.d. of K NR"

Ny
3.5) kz_}laz,k(ﬂ, o, N~4a20M, 0, 7=1 on 3, az0(, o, ")=ao(T)

az 10, o, N=ax(Maz i (1—7211, A—12)%0),

where
Ne
Zo2k(7, D=1 on To={(7, o), MP+o>=1}.

Let us denote simply

N=(N1+1)N2

3.6) Bo,1+Po,2+ El B2, x,v,M,0,7)=1 on REX 3,

Ny
where Bo,1=a0(%), Bo,2=a1(x)(j§)a1.1)a2,0-

Now we extend the definition domains of ag, §, (=0, 1, ..., V) to
(R*1x Rt x RY)—{0} keeping homogenuity of order 0 with respect
to (9,0,9). Then we have

2 N
3.7 Elﬁo,j-i-i%ﬁizl on R?XR™7, o) for every 7>0.

Corresponding this partition of unity, (Pg) is localized as B being one
of Boj and B; (=1, ..., N),

{ P(t! x, Y, Dt: Dx» D!I)enlg(D)e—nuzfﬁ,

P/
(Zo) B(t,y, Dt, Dg, Dy)e"*B(D)e~7t u =g, where
z=0

3.8) B(D)w=//e2"‘(1”7+t”)/3(x,y, %, 0,0, NFy w2, x, ¥))ddo.

(B.9) fp=er'B(D)e 1t f+[P, e'B(D)e~T¢|u, where [P, Q1=PQ— QP
gﬂ=e"B(D)e‘”ngo +[B, er'B(D)e Tt u ;0
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Here we denote B(D, 7)=e""f(D)e 1. For uec Hm, (R

(3.10) IB(D, 1ethn,y < Clatlm g, [P, B(D, Nl 1, < Cluel, ;.

Since B(D, 1 Dyu |0=DzB(D, Nwu | , we have
z= z=0

@.11) <[B, B(D, N>y 1, <Cd

If we can apply Theorem 1 to (Pg)ioe, we, have

1 _ 1 o
(312) TR, Tl TR <Ay DLBD, D>y < S 1,

1
+ <A;:Tg>?c—l,r+r Iul?‘ﬂ’}’ for T>Tk,

1
2

because <4y,1B, BD, T)]u>%_1,T£C1<u>i_%’7g6‘2lul?c,r follows.

Conversely if (3.12) holds for every Bo,;, (/=1.2) and B;, (:=1,2, ...,
N), we obtain Theorem 1, taking sum of (3.12)'s for all B; and Bo,;
and making yr and Cy larger if necessaary.

2. At first let 2 and Q be second and first order partial differential

operators with constant coefficient. Consider
(3.13) G(P, Q; u, v)=(Pu, Qu)o,,—(Qu, Pu),,, where

(, v)o,,=(e T, e Tu) 2 (zy,p). P& 7, 0,7)and Q¢ 7;0,7), being cha-
racteristic polynomials of e~¥72 and ¢ 7'Q respectively, we associate

(3.13) to

(3' 14‘) G(Py Q):P(f, 77) g, T)Q(Cv 7)’ g, T)_Q(g) 7)) o, T>P(C) 777 g, T)‘
Now we regard that & {,7,0 and 7 are real number and denote
(3.15) PN, o, T)=Po(€, 0, 0,1)—iTP1({, 7, 0,7)

(Po, P1, real)

Q(Cy 77) ag, T)ZQO(C) 7): g, r)_ZTQl(g» 77’ g, T),
(Qo, Q1, real).

Then G(2, Q) is written in the following form:
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(3 16) G<Pr Q>=(E_ C)Giv@(f’ C) 77’ o, T)
—2TGPOE, ¢, M, 0,7), where

GLO= g (PO — PO}

+_§’_i€{pl(f)Ql@)-pl@)Ql(f)}

3.17) Gf’0=é{(Pl(f)QO(C)_PO(OQI(§>)+(P1(C)Q°(§)
—Po(§)QY(D))}, where Po(§)=Po(€, M, 0,T) etc.

After actual integration by parts, corresponding to G292 and G%9, we
have bi-linear forms Gz(Dgu, Dyv, Dy, Dy, y; u,v), Ge(Dzu, Dyv, Dy,
Dy, y; u,v) such that

(3.18) QP Q; u,v)=i / / Go( D, Dav, Dy, Dy, T; uv)dvdt
—2i7 [ [ [GUDau, Dav, Dy, Dy, 1; wv)dydtdx.

We can obtain similar formula in case where P has variable
coefficients and @ is a differential operator in x and ¢, whose coefficents

are pseudo-differential operators with respect y, as follows,

Q=00Dat 01, Quu= [ WT96(Q))(x, 3, 1,7, 0, (o, %, Td"do.

(Q4): homogeneous of order ¢ with respect to (3, g, y).

Then we have formulas corresponding (3.16) and (3.17) and obtain

(3.19) QP,Q: u, v)=i / / Ge(¥, t, Dau, Dy, Dz, T; w, v)dvdt

—27 [ [ [GUDau, Do, Dy, Di, T: , v)dydtdz+R(u, v)

=GP, Q; u, v>—2iTG(P, Q; u, v)+ R(u, v),
where R, )I<Clah v,y

Remark that for B=fp,1 we obtain (3.12) after calculating G(2P,
~aa—f(D); u, %) as in the case of Cauchy problem (c.f. [7]). And for
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B=pBo,2 we have (3.12) by the same way as in cawe of elliptic boundary
value problem since L0 in Xs={(9, 0, y), y=>8>0}.

For B=B; (=1, ..., V) such that L=0 for (2,0, 5, 3, o, y) € supp
Bi, the most complicated arguement is required. We consider this in
the next section. On the other hand for B; such that supp B; does
not contain any point of S, the estimate (3.12) has been obtained in

R. Sakamoto [22]. Actually we may take Q as a first order operator
with characteristic Q=c%§+(§—§+(f: 7)), when £ is a simple root of

P(2,0,y,7,€1)=0 on supp B;. If P=0 have double roots on supp

Bi, then replace é—¢&(r,n) by é— f+—2i-§_(r, m). ¢ and & must be

taken sufficiently small.

§4. The estimate in the neighbourhood of S.

In this section we prove (3.12), for (P§)ise with B whose support
contains the point of S. From these we obtain Theorem 1. As is
mentioned in previous section, it is most important how to select first
order operator (. Let us remember that the set S is characterized
in Lemma 2.2 and it’s cotrollary, Later the result of Lemma 2.3 is used
in connection with, so-called, sharp Girding’s inequality. Speaking
in conclusion, we choose the symbol of Q (that we denote the same
letter Q) as

@) 0=0rtOr={y Lt Do Do)+ Gr—anry 5.

where
(42)  Da—y(Dota tdm—gata) 1pu(pDataln)

n—1 ~

= 1 0P
(4‘- 3) ¢=¢+ano+ X ni7s, then §=‘2_¥+dn74.

Dy and a(n) are defined peviously in §2. Here we have assumed that

the support B contains the point of V4 and is so small that it does not
1 L

contain any point of ¥_. In another case, we replace 2 *4d(n)* and

_1 1
p+ by —a *d(n)® and p- respectively. The first term @ is very close
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oP . .
to 57— that keeps the interior norm positive. The boundary integrals of

G(P, %aa—f, Bu, Bu) are canceled out by that of G(P, (Q———;aa—f)

)

B, ﬁu) except cpositive semi-definite terms. The interior integrals

of the latter become sufficiently small than that of G(P, %%ﬁi, Bu, Bu)

by making the support of B small.
The following part of this section is devoted to actual calculus

mentioned above, is several steps stated as lemmas.

We have from (2.2) and (2.3)

(4.4) %%—f=ané—02+z‘ar=Ql—wz—ﬁz).

Remark that from (4.2), De=Dson ViNw. We denote simply by 8,
one of B; such that it’s support contains a point of V. NW CS. Mo-
reover we denote pseudo-differential operator eB(D) e Tt=B(D, v)

simply by B.

1. Tirst of all let us consider Q(P, %%_f’

B, ,Bu) and we obtain

Lemma 4.1 There exist positive constants ¢, C and yo suck that for
y>vo and ueE Y, we have

(4.5) z'Q’(P, %aa—f; Bue. ﬁu)z ¥ |Bul} ,

—[<Nan Dafyu>2+<anD1Byu, Byu>
—2Re<D~xBru, Dofu>]
—C{<Bg>(2,,r+7’<u>(2,,r}, where B,=¢T8(D,T),

and {vY2={ v, v)= / / lv2 dydt. Dzx, Dy and Ds are differential ope-

rator with symbol €, Dy and D defined in (4.3), (2.5) and (2.4).
In the same way as Lemma 4.1 proved below, we obtain

Lemma 4.2 There exist positive constants ¢, C and yo such that for
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y>vyo and ue Hz,, we have.

(4.5) iG(P, Qu; Bu, Bu)y=c|Bul} ,—[<anDafu>>?

+<anD1Byu, /37%>—2R6<Dxﬁru, D~2Bru>]
—C LB, +1<ud5

where Ds is the first order psudo-differential operator with symbol Dz.

Proof of Lemffla 4.1 The characteristic polynomial of P(¢. x. y, Dy—1y,
Dy, D) is

(4.6) P=(&2— Dy—a%1?)—2;1(anf— Dy).

Following notation (3.14) we have from (4.4) and (4.6).

@.7) (;(P, %%—f) = {(&2— Dy— a3 — 2T (anf— D2)} {(anl— Dy)

—iTa}y —{(ané— Do)+ iTa} {({2— D1—ai 1)+ 28T (anl— Dy)}

wry  Re6(P oy ) =06 P 5o e LoD
=(E—0){an(El+D1)—(ED2+1D3)
+an(an—2a)72}
@7 ]mG(P, 5 Q’;):—zim, (P, %%—f)(g, L0, 0,1

=—iT {4(ané— Da)(anl— Ds)+a(€&2— Dy
—a212)+ (22— D1—anl®)a}.

Here we remark that the following inequality is known (c.f [7])

@8 6Py F)E e 0 n2ClepHIRtED. €0

Corresponding to (4.7)"" the notation (3.19) gives

(4.9) 25;(1”, %%, Bu, Bu)=4|l(an[?g;—1)2)/37ul|2

+2Re(aByu, (Dy—D1—ajT2)B0).
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Considering (4.7)"" and integrating by parts, we obtain

(4.10) gt(P, %aa*f, B, ﬁu)—2]m<a/9ru, DyBu>

> |Bul} ,— C1Bul3,.

The second term in the left-hand side of (4.10) is estimated as

@A) ey, Dafpu e Bi B+ TR
+<upl, r}’ where

¢>0, and we can take ¢ artbitrary small as making the support of

B sufficiently small. In fact from the relation:

(4.12) E=B(y,t &, o)+ (a+ad)H{pDa+a(M}, at x=0

we have

(4.13) Dofyu | =[Dz, BJu | +ByDan | =[Dy, Blu | +B,Bu |
=0 =0 =0 =0 z=0

+B,(a-+ad) HpDa+a(Dy)hu | .
Since pDgz-+a(n) is small from Lemma 2.2, we have

(4.14) <By(a+a3)HpData(Dy)yu>2<LelBuyl , +C<udg 4,
1C>0.

(4.15) <[Da, Blu>2 K CAXBudf s +<u)8.y)

By virtue of (4.13), (4.14) and (4.15), we can prove (4.11). On the

other hand we have

(4.16) T(ﬁu)%,rgb‘(ﬁz&);rgCSIBul%,T,
where 8 is a positive number given in (3.5), which we take sufficiently
smaller than ¢>0. From these it follows

@10y (P35 b )= S8tk + 0]
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From (4.7)" and (3.19) and using (4.16) again for third term of (4.7)’
we obtain (4.5)

q.e.d.

Proof of Lemma 4.2 is carried out in the same way, only remarking
that

(i) Dz—Ds is so small that (4.8) follows even if we replace %%—f
by Q1.
(i) Re G(P, Q=(—DGC(P, Q)
=(¢—{an(€ {4 D) —(EDa+ Ded)+an(an+2a)y2}.

2. Next we consider j(P,é—aa—?; Bu, ,Bu) and J(P, Q2; Bu, Bu).

Lemma 4.3 For any >0, if we take the support of B in R¥1x 3
sufficiently small, we have

4.17) z'g(P, %%? Bu, Bu)2—ef|ﬁul%—[<ﬁxﬁru>2+

1 1
<D, Bi>)—C LB B+ < BeR
+ LB+ ClBu

¢; constant independent of ¢ and T, ¥>0.

Lemma 4.4 For any e>0, if we take the support of B in R¥HIX YT
sufficiently small, we have for y>ryy,

(4.18)  iJ(P, Qo; Pu, fu)>—-eT|Bulf—[<(—p+(Dy)
—dn)Dwﬁr%, Dz,Br%>+<(—P+(Dy)—dn)DIBr”, Br”>]

—C B <R,

Proof of Lemma 4.3. Since %%—?(z‘, x,y, o—1iy, & n)=E—iany,

we have
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@19) (P, 5 %)= (E— D1 ahr?) 20t (an — Do)} (G iant)

— {&—ian }{(L— D1—a}r®)+2i7(anl— Do)}

@19y Re6(P g 5 ) —e—v6i{r, 5 %)

=(E— D18+ D1+-3a572}

.o 1aP\ . 1P
(4.19)" ilm G(P, *2—8—5)——227’ Gt(P, 58—5)

= —iT{2(anf— D2){+28(ant — D2)— (82— D1— a3 1?)ay
—an((P—D1—a37?).

Now for

(4.20) Jt(P. %%{;, B, Bu):Re(Q(anx—Dz),Bru, DaByu)

+ Re(D%— Dy —agrDPByu, anf),
we can prove the following estimate in the same way as in lemma

gt(P, %%Ig, B, Bu)‘gﬂﬁuh,r-l- C%(lﬁflo,ylﬁulo,r

1 \
+lael1,71Baelo, y + < BeDF.r +T<BuYE.1)-

(4.21)

The estimate of the second term follows from.

(4.22) (D% —D1—a3r®)Bu=e T PBu~+2:1(anDy— Ds3)B,u.
and

l(r(dnbx— DZ)‘BTH, Bru>|£€|ﬁu|%, 7

The estimate of the first term of (4.20) follows essentially from

(4.23)  (Dapyot, Dafy)|<e?|Buld.r+C (1BSf13.71Betlo,p4-1oely, 1 Belo, )
and I(D2Byu, Dxﬁr“)lﬁelﬁul%r+%(Dxﬁr“, Dopys).

(4.23) is decomposed to

(4.24) (DB, Dofyin)y=Re(D% By, Byt)+ Im< Dafyu, B>
+ R(Byu, Byre),

461

4.3.
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where |R(Bytt, By C e, |Bul,
(D%pyu, Byu) is estimated in the sam eway as (4.22), if we
remark that

(4.25) |(D1Byu, Bru)|<e¥lBuld.y

follows from Lemma 2.2. The estimate of /m< DaB, u, B; u> can be
carried out in the same way as (4.11). Therefore remarking <fu> L7
< C|Buly,, we obtain (4.21). Finaly remark y|Bulo,,<(¢?|Buls,, then we
have Lemma 4.3 from (4.21) and (3.19) in §3, q.e.d.

Proof of Lemma 4.4 is the same as that of Lemma 4.3.

Combining Lemma 4.2 and Lemma 4.4, we obtain

¢ 1
@.26) iJ(P, 0 Bu, fuy> 5T Buk—B— C{ 18/ B
1
+<Be>hrtriels)
(4. 27) =—2Re< Dofyu, Dofyu>—<p(Dy)Dafrt, D>
— < PH(Dy)DiBya, B>,
Now we can show the following (4.28) proved later:

@28 1B I <P, BucSIer Buih € (1t B )

where

4.29)  H<Byu, Bu>
= Re<(a+a}) (po—p)Defyu, (Dot a d* (Dy)Bru>.

Now remark that on the support of B8 it holds
(4.30) (o—p+)D2(Da+V a d*(1)>0

— L L
because of p—p4+>0 and that D; is close to Vad?® (n) and 4% (9)x0.
Using (4.29) and skarp Garding's inequality we have

(4.31) H<Byu, Bru>2—C<Bru>z= —C<ﬁu>2%,r, where
<o>i= [ [ +0D 0, o)Pdoan.
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From the corollary of Lemma 2.2 we have
(4.32) (ME+1r2BLC(MRE4-12)8.
Therefore it follows
¥

433) <R, C<AL B>, <AyBu>,<CIBul

From (4.26), (4.28) (4.31) and (4.32) we have

Lemma 4.5 There exist positive constants C, ¢ and yo such that for
y>vyo and for ue 9z,

1
(4.34) iJ(P, Q; Bu, ﬁ@E}%ﬂﬁul%,—C(T]ﬁﬂ%‘T
1 L
<Ay, Be>0 ).

Remark to Lemma 4.5. Changing point of view in the process of

the proof of Lemma 4.5, we have

(4.35) iJ(P, G; Pu, Bu)<2cTIBult; +C(%lﬁf Bt <A*Be>3y
|+ I By, B>, for TT,

(4.35) is used in the proof of Theorem 4 given in §5.

Taking account of

+CZTE|BZ¢,%,T,

choosing ¢ sufficiently small, we can see from (4.34) and (4.36) that
there exist constant €3 and y; such that we obtain (3.12) which is our

purpose in this section. end of remark.

Proof of (4.28). First remark that

(4.37) Dapru | =[Dg,Bylu | +ByBu |
2=0 z=0 z=0
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+By(ataf)HpDa+ a(Dy)—cTz'}uxLO
~Brg | +[B,Bu | +(atai)HpD:

+a(Dy)—cyi} Brux|=0.

Let F(D) be first order pseudo-differential operator, then we have

(4.38) |<F(d)Byu, bzﬁru> —<F(D)Byu, (a+a3)H{pD:
o Dy)— Y BBy 1B 1.

1
+<Bud g, () g, YO Bl + 7 <BeY L
Flul}} for, 737630,

Now we calculate the symbol in (4.27) replacing & by
(4.37) h=(a+ad)y HpDs+a(N)—cli}=ho—ital, in=(a+af) e
(4.27) I=—(hDo+ Doh)—p+(h 2+ D1)

=—2hyDa— p+(A§+ D1)— p+A312="1o— p+/312.
From p+=—Va ad *we have

4.40)  ho=(a+a})No—p+)Dat(a+ad) " p+Data)
—(a-+a8)W(p— p) Dat(a+a3)1po(Da—a " d(1)?).

Since D1=(a+ad) Y (D3—a1d(M))—(a+a%)r? and

- 1 o1
Dy=5(Ds+Va d*) + 5h+ho

it holds

_ 1
@A) o= —2hol 5 (Detat dh) by e o+ 40+ D)

— — ho(Data ¥ dP)peD1=—(a+a%)H(p—p+) D
o (Do—a F dD {Data T dT +(atad)1p(D
& )t py(atad)r?

— — ()N p—pODeData &) +(ataR)psr.
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From (4.37) and (4.40) we can obtain (4.28).
q.e.d.
Summing up (3.12)’s for B; such that supp B; contain a point of S,

we can prove Theorem 1 with £=1, For £>2 considering
PNy =Nk f4 (PA¥— A% P)u
*
BAu=Nkg4(BAE— Ak BYu. Ak=F (o2 M2+72)° T,

and using (P A% — A% P)ulo,, < C (ltel+1, 7+ flr-1,7)
< (BAF—A* B>, < C(<u>kp+<g>k-1,7)

we obtain Theorem 1.

§5. Proof of Theore 4. Now assume that (/) is not satisfied at
(¢, ¥, m, 0)=(%0, Y0, Mo, 00). Without loss of generality we can assume
v0=0, (mo, 00)E X0, #0>0 (from Lemma 2.6).

G.D p—10+<L—38<0,

in a neighbourhood of Xy and that Case I or II described in Lemma
2.6 holds. Let B(x, y, ¢, m, o, ¥) be a C* function defined in §3 with
its support in neighbourhood of (2, 0, y0, 0o, 70, 0). By the inequality
Girdings type we have from (5.1)

6.2 DBl < I, B> +o<pu>t
By virtue of (4.34), (4.35) and (5.2). we have for y>
(5.3) <BUSLr<CATBr+ 3 BB+ <AL 8>3, ).
If (1.14) holds, (5.3) and the localization of (1.14Y yields
G4 Bt <Ol W+ <A Bt ], for v

Now we can regard fo=0 after parallel transition. We can find a

sequence of function {vg}g=1,2,..., with its support in small neighbour-
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hood of origin such that (5.4) does not hold for every vy, with any

constant C.

Let £4(8) be a root with positive inaginary part of
P(0, 0,0, o0—128, &, M9)=0.
Take
(5.5) us, (%, ¥, £)=e%etEOF | ((w (M, 0)), 0<8<do,
where w,(7, o) is a non-negative C* function such that
supp we(?, 0)C U={(, 0); M—7024lo—o0l2<e%}

//ws(ﬂ, 0)2dod=1, w., o)=e""2w(M—"7o)[e, (6—00)/e).

Here (7, o) belongs to 9.

1
(5.6) |ul§,5=///e‘z"tluaelzdydtdxzm.

Now let us put
(5.7 wum,5,:(%, ¥, £)=us (mx, my, mt)ym"

’ n c
=em6teimmé+(6)gy’t(we(;’ =),
Then we have Ium,g,slﬁ,mﬁzm”‘llu,;,elo,a Let

(5.8) B=a1(x)az(y, #)as(?, o)aa(V),

where a;&Cg such that ag(1)=1 for 7<28, a3(7,0)=1 on U,, and
agas is homogeneous with respect to (o, 1, ), ajaz=1 in some neigh-
bourhood of origin.

If we denote Bu=-eltF, BFy e "u, we have

3
1) <Bum, 3, s>(2),m521<um,5,s>g,m5, for m> 3mo(3, €)
(5.9) ,

1
2) <Bum,s, e>(2),m52_4‘<”m, 5,e>%,m5 ) m_>3Im1(8, ¢),
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Since this proof will be given in the same way as that of Lemma 5.1
below, we omit it here.

Now let us decompose P and B;

P(¢, x,y, Dty Dy, Dy)=P(0, 0,0, Dy, Dg, Dy)
+{(Pt, x,y, Dt, Dz, Dy)—P(0, D))}
=Po+(P—Po)
B(y, t, Dy, Dy, Dt)=B(0,0, Dy, Dy, Dy)
+{(B(, t, Dy, Dy, Dy)—B(0, 0, Ds, Dy, Dy))}
= Bo+(B— Byo).

(5.10)

Now we state following lemmas whose proof will be given later.

Lemma 5.1. For any e>0 there exists mo=mo(8, ) such that

(5.11) (P — PoYsm,s,elg, sm < e2lem, 5,8, 5m for m>my
(6.11) <(B—Boyum,s,:>8 sm<E<thm,5,6 >%5m  for m>muo.

Lemma 5.2. There exists positive constant C such that

(5.12) |\Potm, 5, P Celm,s,el3, om

Now consider Case I and Case II.
(Case 1) [Bo(€+(8), Mo, co—i8)|<const. &
(Case II) Bo(€+(80), Mo, 00—280)=0, for §o>0.

Lemma 5.3. There exists positive constant C such that in Case [
(5.13n < Botm,b,:>8,5m< C(e2488) wem,5,: >3 om
and in Case I]

(5 13)2 <Boum,6;,,E>(2),Jomgcez<um,60,e>%,6om-

From (5.4), (5.9) and above lemmas we have
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(Case I)

Gl <tims,e > A, o (8t o
+8mltem,s,5I% om}, for m>mo(3, ¢),
(Case II)
(610 <tim o> oy Al a0l o2 St .
+30m|um,ao,e|i5om}, for m<omo(e).
On the other hand we have
615 <wmacShom= /[ rto—ismP w2 arde
= [ [ 4P+ 02482} w1, o) 2m™+2d
>Cm™2, (C>0),
(5.16) 1) lwm,o,el3 om<Cod~1m 3,

2)  lum,s,elt om <18 Imm L, C, C22>0,

because of |uml3 3m<C {1 D% umll sm~+14%4m 3 5} and
n 2
D sm,s, 8 om= [ ][ Imf+(8)l4e—2m“m5+(5)‘w(%, %). dxddo

— ypnt3 / / / e~2mE A 2\gy(1, 0)2dxdNdo
E+(5)14

- 2[m§+(5)_m"+3£const. §—15,n+3.

Therefore we obtain (5.16) 1) and in the same way (5.16) 2)

(Case II) Choose e=%, m(&)>mo(8o, £71), m(£) Sp>y1 and
Wk=Um(k),50, k"

and tend £ to oo, then we can see from (5.15) and (5.16) that (5.14)2 does

not hold for any constant C.
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(Case I) Choose s=%, 8=—i~» and m(k)>mo(k1, £72), m(k)k1
>y1, and put wr=1tmk), k-, k-
Then (5.14); does not hold for every £ even if we choose any constant
C. This arguement is true if we replace wy by vg=a(x, y, )z, where
alx, y, ey, 0,0, 0)=1.

This means that (1.14) does not hold. As for (1.18) the arguement

proceeds in the same way.

Proof of Lemma 5.1. For given ¢>0 denote s 5, simply by um. Let

us consider for example

(5.17) (a2, %, y)—a(0, 0, 0) Dyumly, sm
= / / / la(z, x, ¥)—a(0, 0, 0)[2|(Ds—i8m)2e=™u(mt, mx, my)m™2dtdxdy

s

On the other hand

¢ 2
a<?n7 ;2 %)_a(‘)» 0, 0)’ I(De—128)2e~0u(2, x, y)Pdtdxdy.

(5.18) \ DYl = m™+3 / / / (Dy— i8)2e~0tu(t, x, y)|dtdxdy.

Compare (5.17) with (5.18), then we can see (5.11);, because the coeffi-
a(i, z l)—a(o, 0, 0)\ tend
m’m’m

to zero uniformly on a compact set K(¢, x, ¥).

cient are uniformly bounded and that

We obtain (5.11)g in the same way. q.e.d.

Proof of Lemma 5.2. From (5.7) and Po(oo—128, £+(8), 19)=0 we have
(5.19) \Pormlg, sm=IPo(o—i8m, Dz)Fe=¥Mtyyl5
=/f/ ‘Po(o—z'Sm, méA(S), 7)gim5+(5)xw(:7, %)‘zdxa"}a’a
= / / / |Po(c— 128, £4(8), Meté+ D (D, o) mtmm 1dxd N do

= [[[H{Poa—18, £(®), 1)~ Po(oo—38, £4(8), To)}

X ei$+(6)xw(7y’ G)lzmn+3dxdﬂda,
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Considering
(5.20) |[Po(c—18, £4+(8), 1)— Po(ao—18, £+(8), Mo)l<Ce,

as ¢ tends to zero, we obtain

Potmll, < Cel? [ [ [1688:@2(n, 0)emm+3dxd1do < Cetml o

This completes the proof of Lemma 5.2.

Proof of Lemma 5.3 The proof of (5.13)2 is the same as that of
Lemma 5.2. except replacing the integral domain R%?*l by R™.

The proof of (5.13); in Case I is given by virtue of

(5.21) < Boum>3 sm=

/ / [{Bo(c—18, £4(8), 1) — Bo(oo, £+(0), N0)} (M, o)2m™ 2dNdo

(5.22) [Bo(oo—128, £+(8), M)— Bo(oo, £+(0), M0)2<C (24 62).

§6. existence theorem with zero initial data
1. Combining Dirichlet considion with our boundary condition we
have Dirichlet set {8, 1}. (i.e, arbitrary first order polinomial is written
in the linear combination of B and 1.).

Let P* be the formal adjoint of homogeneous operator 2 and
P} be the principal part of P*, then.

Then there exist a Dirichlet set {B’, C'} such that

6. 1) (Pu, v)—(u, P*v)=<Bu, C'v>+<Cu, B'v>

for ue 9, ,(RY1) and ve Ha,—(RIHY).
After actual calculation we can see C'=1.

Lemma 6.1. [f {P, B} satisfies (H3), {};6‘, B'} also does so, where P}

=P6‘(_tv x, ¥, _Dt: Da:, DZI/)» EZB,(_tyyy _Dty DZ) Dg/)
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Proof. Let B; be the principal part of B’, and E_’f_(z‘, %, ¥y, m, 0—1ty) be
a root with positive imaginary part of }53‘(_1, x, ¥, 0—il, & M=0, r>0.

6.2) EX(t, x, y, o—iT, M) = EX(—2, x, ¥, —o+iT, 1)
=¢((—¢, x,y, —o—il, ).

Now freeze the coefficients at any point (¢, 0, ¥9) and let us denote

§+:£+<l‘0y O) Yo, T, 72)) g—zf—(tO’ Oy Yo, 7, 7})~
Then we have not only (6.1) but also

61)  (Da—E)(Da—E)e T, erte)—(e~Ttu, (Dy—Ex)(De—E)eTv)
:<B0<t0) Yo, -Dt_l.ry Dx: Dy)g—rtu, eTty>
+<e—7t%! Bf; (to’ X0, Dt_lhrv Div Dy)ertl’>-

Now we take

e Tl = e84+ oY AT DIF (1), 0)], eltv={cté-(tovuo—iTNTF Y7, 0)]
where $(1, o) D, o).

Then from (6.1)" we have

’

6.2) Bo(to, yo, o—127, £+, M)+ By(to, yo, o447, £, M)=0.

From (6.2) we obtain

(6- 3) Ié(l)<_t0: Yo, O_iry g-t(—t()) Yo, O’“iT, 7]), n)l

=|By(t, yo, —o+iT, £-(t0, yo, —o—:T, M), V)|
ZIBO(tO) yOy —O'—ir, f+<t0) JVO, _0'_'2'7’; 77)’ v>|'

This complete the proof of Lemma 6.1.

From Theorem 1 follows
6.4) Tl ,+7% <A,iDlu>? , <SP
(. ) |%|1,7’+ §0< »,7 $%>1—f»7'£r {I %’0:7
-l—</lf,,,l§”u>%,,}, for ueHs,,, 1>70.
By putting o(¢, x, v)=u(—¢, x, y) for %E«ﬂ{z,_r‘, we have

(6.5)  (P*0)t, %, )=(P*u)(—1, x, ), (B'o)¢ %, y)(B'u)—t, x, v),
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and
(6.6) lole, =10k~ p, <D,y ={Dk,~ps
and from (6.4)
6.7) r|v|‘f,_,+rI§IO<A;,?D£v>%-1,—r£%{IP*vI%,—r
+ <A, B> )
Now we define A'=A'(r, Dy, Dy) by
AT, Dy Dy)v—eTF (1241402 F(erto).
Then from (6.7) in the same way as in §4 we have
6.8) r|/1'sv|%,_,+r;,:30</1;§pg >0y

C . 1 ;o
STAASP <Ay ABUSE )

Let us introduce Hilbert space ks, defined by the completion of

Cy(RY¥) with the following norm.
L ’,
(6.9) |v|§s’_r=/l'8P*v[%,_T+</l;,,r/l""Bv>(2,,__r.

Then we have

18,12 1 —'2L i 2 a
(6.10) NA'of 478 <A Dbty <ok

1
Proposition 6.1 Let f be in Hyr(RYY) and Ay, g in Hir(R™),
then there exists a unique solution u of (Py) belonging to Hp+1,r(RYH)

for y>ye. (:=0,1,2, ...

Proof. Denote h—(k+1),~, simply by A There exists w in A such
that
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(6.11) (w, Vh=(f, v)—<g,Cv>

by virtue of Riesz’s Theorem and

I(f, o)l=(AF f, A7%)<C| fli, vl
<g, Co>I<ICAL Ak g A3 A o> IO AL g >0, 1ok -
Now put
= A= QH+E) 278 A7) =(1H) Py,

Then we have Pu=/f in distribution sence. By usual interpolation
theorem used in case where elliptic boundary value problem, we can
prove that « is in Ky, (R%*Y), For £>2, Pu=f holds in L2-sence.

From (6.9) and (6.11) we have

=, P*o) <AL A~0H0) By, A A'-040) B>,

On the other hand
(6.13) (Pu, v)—(u, P*v)=<Bu, Cv>+<Cu, B>
holds by definition, therefore we have
<Bu, Cov>=<g, Cv>

for all vE Hs,—,(Ch) such that Bv=0.
Hence Bu=g. Taking v in D(REX(—oo0, )), we can see u=

L 1 , 1 1
'—(14k) A2 21t A2 A'—(1+k Tt A" 2 A QAR yy— o7t A% A — 7
A=A 21t A, A=A Bay, T Ay,r/l Aty =ertA, A" ~A+0) By

belongs to L2(R"), i.e. A;ju belongs to Hi+k,,(R™) on the boundary.

Using energy inequality we can see #& Hy+1,7.
If the supports of f and g be in R%?X(0, o), then considering
evergy inequality and

6.14) 1 flog<I floy, <AL,g>0,<<AE g0,
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for 7>7'. we have rmﬁ,gc% for 7>7,.

This means supp [#]C[0, o ). It follows that the solution is
¢

uniquely determined independently of vy, such that y>yo (¢, f[23]).
This complete the proof of Theorem 2.

§7. Energy inequlity with intial data and existence theorem.
In this section we prove Theorem 3 and it’s corollaries. For that
purpose we need not use the partition of unity in §3, but apply the

results of Theorem 1 and 2. In same way as in §4 we consider

(7.1 (P, O)=(Pu, Qu)o,r,1—(Qu, Pu)o,r,s

where Q is a first order differential operator defined grobally and is

equal to @ given in §4 on the set S.

~ 10P 1
a2 0=y 5 gta) oD ta(D)]

+{(p—dn)‘é“%_?}: O1+02.

First by actual caculation of (7.1) we can show

Lemma 7.1 Thlere exist positive constants yo and C such that for y>
yo and w in Ha,,,1,

1
T3 Tl (O Ol 1Pl (O < Br>h

1< Bty Ay, >0, 21< Bu, Dtu>o,,,,|2}.

Proof. Corresponding to (7.1), let us consider

7.4 GP, Q=P &, M0, &, N—Plr, §, O, €, 7).

In what follows we use the following notations, replacing ¢ by 7,

in the previous notations:
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. n-1 - n—1
E=§+an7+ P anj’ly, C=§+an7‘|‘ > anilj
(1.5) = =

D=D(r, )=D1(z, W). DgzDz—l-%(a—kd?;,)_lp(pl)z—l-a(’))).

Then it follows

I P(r, £, N=E—D=E£—(a+a})(D3—a1d (D)),
- P
1 %—aa_:izans_‘DZ, %%f—=$

(7.6)
Now we can prove
) G(P, 0)
= (E—D[p{LE+(a+a3) 1 D2Dr—aYa+a3) (M)} — (& D+ Dal)]
(14 e+ ad) 2 DaDa-tad () + o+ a0
— a1+ o+ a8 162 @D Da) (ot a) Tpiarm)
+ a(’?)é)] +p{antl+an(a+a3) " W(DeDa—a~1d (7))
—@Da+ Do)+ (at-aRXDaa()+a(m)D2}]
=({—Ga+(T—7)Cy,
by using (7.6) and the following relations;
(7.8) 1) E-{=(¢—D+an(r—7)
ity Do—Ds=(a+ad)(r—7),
Dg——Z:)gz(a—l—a%)[l—l—%(a—l—a%,)pz}(r—?)
i) &D—Dl=(¢—{(a+a}) Y DeD2—a"1d()}
+(r—2){an(a+a3) W DsD2—a"1d(M))
—(ED2+D5l)
iv) Dbz—DzD ={1—I—%(a%—a%,)_lpz}(‘r—‘?){DzDz—!—d'Id(U)
+ 5 (a+a3) 1 pr—E)(Daa(l)+a() D).

Next we prove the following enequality as guadratic form:
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(7.9 Gi>C{EL+DoDo+dM), C>0.

Denote simply

[ h=(atah)’, X=#E, =1, Y—a 'd(n)}, =Dy

7.10
( ) L et 1=, ark1=s and o'=4"1Vla.

Then from Lemma 2.1 and Lemma 2.4 we have
(7.11) ) —1<s<1

2) A>0
3) A—a'2=4"2(p2—ad (1)~1a(7)=>0,

(7.12) ,Gt=(1 +As+’\72)XX— —%:Aa'(X V47X
— ()\—i— s+%sA2)(XZ+Z)‘o +(1—As+)‘—22) vy
+~§—M’(YZ+Z?)+(1+M+§)ZZ
=& 1 2) (1+As+—)‘22—), — i —(A+s+%s>\2)‘

2
——é‘)\sa', (I—As—l—/\T), %Aa'

N~ Bl

\—()\—I—s+%~s/\2), —é—)\a', (1—}—)\:4—%)
=(XY2)A(XY2Z).

We can prove that symmetric matrix A is positive definite from the

followings:

@13 D (st >0
D) =t st —(rs o)
~(rrs o) 1+t )
—a—s( G +1)>0
3 =10+ ) 1-xs+)
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—(,\+s+%M2)2(1—,\s+§)—(1+)\s

_'_%)( szi.l ))\Za’2+2()\+s+ 25}\2) /\4& 9

~(1x+g a5
)‘“ —s)(l ,\s+2)

=(1—s2)(1—A:+7)[T(A2—a'2)+1}
> 51520,

This means (7.9), Hence we have

7.9y Gi=>C{EL+r74+me}, (C>0).

Next we show

(7.14) G2 C{BB+(BZ+ZB)+(BY+VB)}, C>O0.
From (4.12) and the definition of Dy ((7.5)), we have

f X=B+0M\Z+a'Y)

(7.15) _ N _
[ Dy=Z+5(\Z+a'Y), where B=4#B.

(1.16)  AGo=NXX+ZZ2— YV V)—(X Do+ D: %)
= [A[Bﬁ'—k%é()«Z‘-i—a' ) —|—%()\Z+a' YV)B+BZ+ZB
=[NZZ—=YV)—AZ+a' V) Z—Z\Z+o' V=91 + .
Here since we have
Jo=—AZZ— Y}‘f—a' YZ—a'ZY

_—,\‘z+ . yi S (R2—a'2)| Y0 (from (7.11), 3)),

(7.14) follows. From (7.9)" and (7.14) we obtain (7.3) by integration
of (7.1) by parts,

q.e.d.
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If we can prove that there exists positive constant C such that

@A <A EDwSE,,
1 1 _ 3
gC(TlPulg,r,1+7<Ay,r Bu>§,+ [”(O)]ir)

then from (7.3) and (7.17) we obtain (1.20).
To prove (7.17), we must consider dual problem {P*, B'}.
Concerning the following problem
o [ PYv=0
<P0> { ’ _ o PR—1 4
B'ugo=¢(t,y), ¢(t, )ECT(R*" X RL),

we have

Lemma 7.2 There exists the solution v of (Pg§) in Hm,—y suck that
Jor y>3yp

1 1
(7.18) Mol 7 1§0<Ay;;0; TS IR 17 (1)) L

C_
g’?'<Any¢>%,—r,+ ‘

Proof. Since (P*, B') satisfies (Hz), we have the following estimate

for the solution of
P*u=0

B'u=o¢, o, ¥)= { o(—t,y) >0
0 , t<0

) |

L
2

1 _1
(@19) Tl T E <Ay D>y < <Ay b

and similarly to (7.3) we have

(7.20) Tt} 7+ [0, < C(KBu>G A< B'u, Ay, yu>>0,7,-|
+I1<B'u, Dpe>0,;,-.

We obtain from (7.19) and (7.20)
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1
(7.21) Ty —+71 2 <Ay D> 0 +[#(0))3.
C_ 4
£7<Ay,r¢>%, "

Here we have used

(< Bty D03, 1< g <A B>+ <Ayha>t
Let us put o(¢, x, y)=u(—¢, x, y). Then (7.19) follows from
s, 7,—=l0l1,—y,+ and {u1,;,-=<vD>1,—1,+-
We must prepare another lemma concerning Green’s formula.
Concerning the identity (6.1), we have following lemma.
Lemma 7.3 We have

(7.22) (Pu, Dgv)+— (D, P*v)y=<Bu, D>+ <D, B'u>,
+R(u, v)+ 1w, v]4+r<u, v> for u Hs,, vedls,,

where |R(u, D)< Clult,y,+l0h,—,+, <oty v>I<Clhy, g, 4120, +
7 {2, v)I<C [2(0)], ,[2(0)]1,—-

Here (u, v)1=(u, v)0,0+-

Proof. 1t suffices to notice the followint facts. Corresponding to (6.1),

(7.23) Po(1, &, M)— P(7, §, N=E—0)(Bo(, &, 0+ By(r, L, 7))
+(r—7)Ge(é, L, 7, T, 7).
holds. Then we have.
(7.24) Po?—r—P_(’,*z(Po—P—,f)z"—l—('r—f)?"f
=(E—{)(Bo(r, € ME+7By(7, L, M)
+(T_f){_(§_€)B(/)(T) C: 77)+P—(’;+Gt(§; L T, fr 77)?}

Put the second term (r—%)G, then we can see that G is a bi-linear
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form. From (7.24) we have (7.22). q.e.d.

Now we can prove (7.17) in the following way;

L 1 1 1
L 1 2 A2 2 A2
(7.25) ' <A, D>0,,+=  sup <T_~111/.rDLt%, T*Ay.0>+
eED(RY) T <Ay rp>0,—1,+
Dqu,
sup _<% é 90>+ -
eEDRE) T * Ay 10>0,-1,+

From Lemma 7.3 we have for the solution v of (2g)’

(7.26)  |<Dwu, B'v><C{Iflo,r,+lvh,—r,+

_1 1
+ <Ay 7 Dew>0,—,+< Ay 1 80,1, +F 1, 1011, 5, +
+[2(0)]1,,[2(0)]1,~ 7}

Take v as the solution of (P§), then from Lemma 7.2 we have

1.2 <Dty gL CF* T (0l g e+ <Ay Dev>0,-1,2)
+[U(O)]1,—r}£CF%T—%<A$.r ¢©>>0,—7,+» Where

1
(1.28)  F=( Bt <A g>%, )+ HOL,

Therefor we have

-t g
1<A, %, D>, < CF.
Considering Theorem 2 we have (7.17) if f and g satisfy supp [f], supp
t t

[g][0, #]. This completes the proof of Theorem 3. with 24=0. For

£>1, we can prove in the same way.

Proof of corollary of Theorem 3. (existence theorem for the mixed
problem (P))

The existence of the solution of {P} is obtained from Theorem 3
and Theorem 1 by the aid of Cauchy problem. Let the coefficients
of P be defined in R”x RY. Consider Cauchy problem for regularly

hyperbolic equation;



Mixed problem for hyperbolic equation of second order 481

©m {5

Dfut=|0 =j,m, (7=0, 1),

where fin(2, x, y) and u;,m are in CG(R®*X RL) and in C§(RT) respec-
tively such that the followings hold

(729) ].) IIuj,m—u;IIHkH_!(Rﬁ) and Ifm_fl‘gfk’r (R_’f_)( Rbi-)

converges to zero as . tends to oo,
2) There exist gn(?, ¥) satisfying <A3_ Lgm—&)>k,7,+—0
and By fm, #1,m, #2,m)=(Dgm)(0, ) (=1,2, ..., £+1),
The solution %, of (C)m belongs to Hk+2,;. Then we consider
Pv=0
(Po)m | Bo | —gm— Bum=gn, Af;2€ Hs, ,(R*1x (0, 0o))

z=0

Div | =0, (;=0,1).
t=0

Let us extend gn by

gm= { &m t>0
0 <0
then we can see from (7.29), 2) that Aj.r‘ém belongs to Hi+1,,(R™).

Therefore we can apply Theorem 2 to the solution v, of (Po)m, then

Wm=um-+ovm, satisfies

) P‘wmzfm
(P)m Bwy, | =£m
=0

D{wmt_lo =%j’m, (]=0, ].).

Using the energy inequality of Theorem 3, we can show the the limit
u of wny satifies (P) and belongs to EYHIHE(RT)) N EYHE(RD)).

§8. Finiteness of propagation speed and problems in general
domain
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1. Consider Holmgren transformation:

x'=x, y;=y; (j=1, ..., n—1)
8.1) ’ 1 1
¢ =t+7{<x—x°)2+j§1(yj—y‘})2}-

Let P(¢, «',y', D,, Dy, Dy) and B(¢,y', D}, Dy, Dy) be the tran-
sforms of P and B by (8.1) respectively, Condition (/1) in kept by (8.1)
in neighbourbhood of (xp, y0). Let us prove

Lemma 8.1 {P, B} satisfies (Hs) in place where (FHh) is satified.

Proof. 1t suffices to conside P and B the operator with constant coe
fficient by freezing the coefficient at any point.
Since (8.1) makes

8.1) Dy=D;, Dy=Dp+(x—x0Dj, Dysz;/j—I—(yj—y?)D/t,
then we have

62 | (7', €, 1) =P, € +@—a07, 1 +(y—507')

B(', &, 1)=B(x", £ +(x—207", 7' +(y—y)7").

Let &,(7", ") be a root of P(7', ¢, n')=0 with positive imaginary part
when -/m 7'=y'>0. Then from (8.2) we have.

(8.3) E (v, 1)=E4(", ' +(y—y )7 ) — (x—x0)7’

(8.4) B B (7,0, 1) =B, (7', 1)+ (x— 207", 7'+ (y—3O)1)
=B, &+, V' +(y—y0), V' +(y—yO)7).

From (8.4) we can see that Case II in Lemma 2.6 never appears. And

this is also true if we replace (8.1) by

¥'=zx, ¥;=y;, (=1, ..., n=1)
(8.1)s {

£l Oy, 0<s<].

Now we prove that B(7', &(r', 7"), 7’20 for -Im 7'=y">0



Mixed problem for hyperbolic equation of second order — 483

In'l2+l7’'|2=1. For this purpose we use the following lemma whose

proof is same as that of Lemma 2.6.

Lemma 1) If case I in Lemma 2.6 appear, then p must be negative.
2) Case I] happens if and only if there exists v, such that

—V1—a 1) =(a+a%)Yp+a(1")<O.

By geometrical consideration we can see that ‘‘there
exists a positive constant 8 such that if —8<p<0 then
Case II must appear.”’

If B(oo—iTo, E+(oco—12T0, Mo), N0)=0 for 79>0 then

n—1 n—1
(8.5) ps=p+s( Eléf(y;—y‘}) -I-Elam(yf—y‘;’))EerM-

From above lemma, (1), p1<{0, therefore 2Z>0. Hence we can find
50(0<So<{1) such that ps,=p-+s0#=0. If we take ¢ sufficiently small,
then transformation of {2, B} by (8.1)s,+e: {Ps,+e» Bs,+e} must satisfy

Case II. This contradict the above assertion. q.e.d.

Consider grobal transformation:

(8.6) { x'=x, y}:yj .
t' =(t—t0)+ Apax(x— 20241y —3012+ 0)*, where

Amax= max A](fr 77) O<0<l‘0)\max.
j=1,2,€2+|77|’=1

Lemma 8.1 holds for (8.6) instead of (8.1). Therefore we can apply
F. John’s sweeping out method to the mixed problem, considering
Theorem 3, and obtain Theorem 5.

2. Now we consider the mixed problem in general cylindrical domain

2% (0, o0) which is corresponding to that considered before in R% X
(0, o0):
P2, x, Dy, Dy)yu=f(2, x) 2x%(0, o)
(P)g B(t, s, Dy, D)u=g(¢, s) 32 x (0, o0)
Diu |0=u(t, x), (7/=0, D).
t=
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P is a regularly hyperbolic operator of second order with respect to
¢, and B is a first order operator with real coefficients. In order to
describe the condition (/1) and (A3), it need to prepare some considera-
tion about local transformation.

First consider a transformation.

8.7 ry=p(x), G=1,...,n), (xj=¢y(x")

which maps some neighbourhood U in R" of xg on 9 £ in one to one
way onto a neighhbourhood of origin such that, J(x0)=0. 32N U is
transformed to x,=0, and QN U to W N{x'=(x]...xy), x,>0}. Here
we take @n(x) as the distance from {2 to x» measured along inner
normal direction (c.f. [18], p.289). From (8.1) we have

P n
(8-8) ‘a;i—= R

The differential operator P(¢, x, D, Dx) is transformed to
P(t, x', Dy, Dy)=P(t, §(x"), Dt, T(x")Dy), where

7= 32 ) =( 52 ).
i, j=1, .., n,

The principal part of 2 is determined from Py as its characteristic

polybomial being
8.9) Po(z, x', Dr, &€ )=Po(2, p(x"), 7, T(x"E").
Corresponding to (8.8), we denote

(8.8) E=T¢  ie Hén ..., En)=TUE, ..., En).

Now let us notice the following relations whose proof in omitted:
Lemma 8.2

9pj dpn _ _ B
El 3x1 axi 0 on ag’ (] 1, N ] ]_)
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Denote the natural frame on @ by (ey, ..., s), and put
(8. 10) (el, veey en) T=(/11, ceey Un—1, V)'
Here v means inner normal direction and y; (;=1, ..., #-1) tan-

gential direction on 982, It is more natural that we denote the original

characteristic polynomial by

(8.11) P, x, 7, ef) where ef=(eq, ..., en)!(é1, ..., n).
Then the principal part Py of P is given from (8.9) by

Pyt x, 7, eTENV=Po(t, x, 7, (1, ---, pn-1, v):€")
=Po(t, Y(x'), 7, Mu+-Eqv), T1=(1, ..., € )-

The condition (/1) and (H?) is described as

(Hh) 1) PG x,7,1)>0 on oQ
2) B, x,1,0)=1
(H?) Let 2%(¢, x, 7, %) be a root with positive imaginary

part of P(2, x, 7, 7+20)=0, where 7 is real tangential vector on 99.
Then

1
|B(2, x, 7, 4272, x, 7, p)I>C (2, x, o, O)T?
(2, x, p, 0) >0, r=0—i7, |p24024712=1.
Let 4, be a positive root of Laplace-Vertrami’s operator on 92 Denote

1 1 :
A5,=,+7)*, (>0). Then we can state our theorem.

Theorem Assume (Hy). There exist positive constants yy and Ck,
and B, (#=1,2,...,) such that for uE K1,y (2X%(0, o)),

1 1
A ED3>2
7’|u|..‘1(le,r(.9><(O,t))“‘T;él< nr ”u>5[h_,,,(aax(o,t))

1
O 7,0 P P o)

1 %
+7<A”,rBu>25(k_,,r(anx(o.t))—l-u[u(O)]?c,r,g},
for r>7g, >0,
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if and only if (Ha) holds. Under the assumption (Hs), the existence
theorem follows in the same way as corollary of Theorem 3. And the

propagation speea is the same as that of Cauchy problem.

Proof. By the transformation of type (8.1), we reduce the problem to
that in R% X (0, ), In R X (0, o) the solution exists and it’s propaga-
tion speed is finite, therefore as in [19]. we can use the method of
partition of unity for initial data. Taking the summation of the solu-

tion for each part of initial data, we construct the solution in £X

(0, o).

KyoTro UNIVERSITY
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