A conjecture of Nagata on graded Cohen-Macaulay rings

By

Jacob Matijevic and Paul Roberts

(Communicated by Professor Nagata, May 7, 1973)

Let $R = \sum_{n \geq 0} R_n$ be a commutative Noetherian graded ring. Nagata conjectured in [3] that if the localization R_m is Cohen-Macaulay for every graded maximal ideal m of R, then R is itself Cohen-Macaulay. We note that if p is any graded prime ideal of R, then p is contained in a graded maximal ideal m, and R_p is a localization of R_m , so if R_m is Cohen-Macaulay, then R_p is as well. This remark enables us to state a slight generalization of the conjecture; that is, from now on we will allow graded rings to have elements of negative degree. We prove the following:

Theorem. If R is a graded ring and $R_{\mathfrak{p}}$ is Cohen-Macaulay for every graded prime ideal \mathfrak{p} of R, then R is Cohen-Macaulay.

Let $\mathfrak p$ be a non-graded prime ideal of R, and let $\mathfrak p^*$ be the ideal generated by homogeneous elements of $\mathfrak p$; thus $\mathfrak p^* = \{\sum r_i | r_i \in \mathfrak p, r_i \text{ homogeneous of degree } i\}$. Then $\mathfrak p^*$ is a graded prime ideal and is the largest graded ideal contained in $\mathfrak p$. Let S be the multiplicative set of homogeneous elements of R not in $\mathfrak p$. The localization R_S is a graded ring whose subring of elements of degree zero is local (the maximal ideal consists of those x/s where x and s are homogeneous of the same degree and x is in $\mathfrak p$), and the quotient $R_S/\mathfrak p^*R_S$ is the localization of $R/\mathfrak p^*$ at the multiplicative set of all non-zero homogeneous elements. Thus if k is the residue field of $(R_S)_0$, $R_S/\mathfrak p^*R_S$

is isomorphic to the graded ring $k[X, X^{-1}]$, where X has degree equal to the greatest common divisor of degrees of elements of S. We note that since $\mathfrak p$ is not graded, S contains elements of non-zero degree. It follows that $\mathfrak p R_S$ is generated by $\mathfrak p * R_S$ and one other element, and that there are no prime ideals properly between $\mathfrak p *$ and $\mathfrak p$.

Lemma 1. height $(\mathfrak{p}) = \text{height } (\mathfrak{p}^*) + 1$.

Proof. We prove this by induction on $n = \text{height } (\mathfrak{p})$, and since the case n = 1 is trivial, we can assume $n \ge 2$. Let \mathfrak{q} be a prime contained in \mathfrak{p} of height n - 1. If \mathfrak{q} is graded, then \mathfrak{q} must be \mathfrak{p}^* and we are done. Otherwise, $\mathfrak{q}^* \ne \mathfrak{q}$, and by induction \mathfrak{q}^* has height n - 2. Since \mathfrak{p}^* is between \mathfrak{q}^* and \mathfrak{p} , \mathfrak{p}^* could only fail to have height n - 1 if $\mathfrak{p}^* = \mathfrak{q}^*$. However, in that case \mathfrak{q} would be a prime ideal properly between \mathfrak{p}^* and \mathfrak{p} , and this is impossible.

We wish to prove that the localization $R_{\mathfrak{p}}$ is Cohen-Macaulay. The aim is now to find a regular sequence of homogeneous elements in \mathfrak{p}^* and reduce to the case where \mathfrak{p}^* is minimal. If x is a regular homogeneous element of \mathfrak{p}^* , then we can indeed replace R by R/xR and \mathfrak{p} by \mathfrak{p}/xR ; then $(\mathfrak{p}/xR)^*$ is just \mathfrak{p}^*/xR and, since it suffices to show that $R_{\mathfrak{p}}/xR_{\mathfrak{p}}$ is Cohen-Macaulay, we have reduced the height of \mathfrak{p}^* by one.

We will assume, as we can do with no problem, that R is equal to the localization R_s described above. If \mathfrak{p}^* consists of zero-divisors, then it annihilates some non-zero homogeneous element x of R; the annihilator of x is graded and must thus be precisely \mathfrak{p}^* . Thus x does not go to zero in $R_{\mathfrak{p}^*}$, so, since $R_{\mathfrak{p}^*}$ is Cohen-Macaulay, \mathfrak{p}^* must be minimal. Hence if height $\mathfrak{p}^*>0$, there are non-zero-divisors in \mathfrak{p}^* , and we use the following variation of a well-known fact to show that we can find one which is homogeneous.

Lemma 2. Let \mathfrak{a} be a graded ideal of R, and let $\mathfrak{p}_1,...,\mathfrak{p}_n$ be graded prime ideals which do not contain all elements of R

of positive degree. If the set of homogeneous elements of $\mathfrak a$ is contained in $\mathfrak p_1 \cup \cdots \cup \mathfrak p_n$, then $\mathfrak a$ is contained in some $\mathfrak p_i$.

Proof. Assume $\alpha \nsubseteq \mathfrak{p}_i$ for all *i*. We can assume that no inclusion exists among the \mathfrak{p}_i , and, by induction, that the homogeneous elements of \mathfrak{a} are not contained in the union $\bigcup_{i \neq j} \mathfrak{p}_i$ for any *j*. Thus, for each *j*, we can find a homogeneous element a_j in $\mathfrak{a} \cap \mathfrak{p}_j$ but in no other \mathfrak{p}_i . Let $y_j = \prod_{i \neq j} a_i$; then y_j is an element of \mathfrak{a} and of every \mathfrak{p}_i except \mathfrak{p}_j . We then multiply y_j by a homogeneous element of positive degree not in \mathfrak{p}_j to insure that y_j itself has positive degree, and we can then take powers of the y_j 's to produce a set of elements with the same properties as the y_j 's and all of the same degree. Adding them up then gives a homogeneous element of \mathfrak{a} which is not in $\mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_n$.

In our case, \mathfrak{a} is \mathfrak{p}^* and the \mathfrak{p}_i are the associated primes of $R=R_S$. Since each \mathfrak{p}_i is graded (cf. Bourbaki [1], section 3.1, Proposition 1), and since each \mathfrak{p}_i is contained in \mathfrak{p}^* , the conditions of the lemma are satisfied. Thus we can find a homogeneous non-zero-divisor and reduce the height of \mathfrak{p}^* . When \mathfrak{p}^* is minimal, \mathfrak{p} has height 1 by Lemma 1, and it is enough to show that \mathfrak{p} contains a non-zero-divisor. We take a non-zero element in $\mathfrak{p}/\mathfrak{p}^* \subseteq R/\mathfrak{p}^* \cong k[X, X^{-1}]$, and we can lift this back to an element of \mathfrak{p} whose term of highest degree is a unit. Such an element cannot be a zero-divisor, so the proof is complete. Hence $R_{\mathfrak{p}}$ is Cohen-Macaulay for every prime ideal \mathfrak{p} of R, and R is a Cohen-Macaulay ring.

Remarks. 1. There is another method of producing homogeneous non-zero-divisors which involves replacing R by the polynomial ring R[T], where T is an indeterminate of degree one. If $\sum a_n$ is a non-zero-divisor in \mathfrak{p}^* , where a_n is homogeneous of degree n, then $\sum a_n T^{k-n}$ is a homogeneous non-zero-divisor in $\mathfrak{p}^*R[T]$ for k large enough, and R and \mathfrak{p} can be replaced by R[T] and $\mathfrak{p}R[T]$.

2. When $R = R_S$ as above, it is actually possible to find a regular

sequence contained in R_0 . If m is the maximal ideal of R_0 , it is fairly easy to show that \mathfrak{p}^* is nilpotent modulo $\mathfrak{m}R$, and from the fact that $R_{\mathfrak{p}^*}$ is Cohen-Macaulay, one deduces that if \mathfrak{p}^* is not minimal, there is a non-zero-divisor in m. Furthermore, if \mathfrak{p}^* is minimal, then if R_0 containes a prime \mathfrak{p}_0 different from m, the nilradical of \mathfrak{p}_0R would be a prime ideal of R properly contained in \mathfrak{p}^* , so R_0 must be Artinian, and \mathfrak{p}^* must be nilpotent. These facts could be used to replace the lemmas above and give a somewhat different proof of the theorem.

3. It has been brought to our attention that a different proof of the original conjecture is to appear in Hochster and Ratliff ([2]). They also raise the possibility that a proof might already exist somewhere in the literature.

University of Chicago, Chicago, Illinois, USA. McGill University, Montréal, Québec, Canada.

References

- [1] N. Bourbaki, Algèbre Commutative, Chap. IV, Hermann, Paris (1961).
- [2] M. Hochster and L. J. Ratliff, Jun., Five theorems on Macaulay rings, Pacific J. Math., (to appear).
- [3] M. Nagata, Some questions on Cohen-Macaulay rings, Journal of Mtah., Kyoto University Vol. 13 (1973).