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1. Introduction

The problem of which martingales can be transformed to Brownian
motion by a random time change has been, under various conditions
and methods considered by several authors ([1], [3], [4]).

In this paper we consider similar problems. In particular we drop
the condition of nowhere or near nowhere constancy of paths of the
random processes, which was used previously. Our method consists of
a direct utilization of theorem 5.3 in [2], and a decomposition theorem
for square integrable martingales, due to P.A. Meyer ([5], [6]). In
section 3 we state and prove two representation theorems. Representa-
tions here are linked to an adjoining Brownian motion. In section 4
such an adjunction will be removed. Our approach seems to be simple
and more transparent. We consider the one-dimensional case only.

2. Preliminaries

Let (Q, o, P) be a probability space. A random process X =(X,,
&,) is a family of random variables X,, &[0, + =), defined on Q, o,
is a family of an increasing sub-c-algebra of &/, and where X, is &,-
measurable. All c-algebras are assumed to be complete relative to P.
A random process (X,, &,) is called martingale (square integrable mar-
tingale) if E|X,|<+ co(EX2<+ ), t€[0, + o), E{X,|o/} =X, when-
ever t>s. A random process is continuous if the paths 71— X,(w) are
continuous for almost all we Q.

Let M,+=GC\0M,+E. If (X,, #,) is a continuous martingale, then
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so is (X,, #,;). In situations like this we may and do assume that:
ALy =5, te[0, + ) ie. the family of «,’s

is right continuous. A process (A4,, &,) is called an increasing process
if the paths ¢t— A4, are continuous and increasing.

Let (X,, «/,) be a continuous, square integrable martingale. Then
there is a unique increasing (natural) process <X>,, E<X>,<+ oo,
and such that X?— <X>, is a martingale. This result is only a special
case of a more general theorem due to P.A. Meyer ([5], [6]).

For convenience, we now state theorem 5.3 of [2].

Theorem 2.1 (Theorem 5.3 [2]).

Suppose (X,, &,) is a continuous square integrable martingale, and
there exists a nonnegative random process (P, &,) measurable in (t, w)
relative to B x L where B is the Borel sets of [0, + o), such that:

E{(X,,— X,)| s, } = E{S:disds]d,l}

whenever t,>t,. If the set {(t, w): ¢(t, 0)=0} has dtxdP measure
zero, there exists a Brownian motion (B,, </,), such that:

X,=X0+S' ®1/24B,
(4]

Even without this additional hypothesis on the vanishing of @, this repre-
sentation is valid, after a Brownian motion has been adjoined to (X,, &,)

process.

Before proceeding to the next section, as a matter of notation, I(A4)
will denote the indicator function of A; i.e. I(4A)=1 on A4,=0 off A.
The value of I(A) at a is denote by I(4)(a). Also we write aA b for
min(a, b). Random variables will be starred when viewed on the space
obtained by adjoining to (€, &, P) a space carrying a Brownian motion.
Several statements below should be interpreted as holding almost every-
where P,
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3. Representation theorems

Theorem 3.1
If (X,, &,) is a continuous square integrable martingale satisfying
X(0)=0, then X}f=B(<X>¥). B is a Brownian motion.

PROOF. X?— <X>, is a martingale by P.A. Meyer decomposition.
<X>, is continuous by continuity of X,. Let T(¢)=inf{s: <X > >t}
where by convention inf¢=+o. T(z) is a stopping time, and so is
T(t) Ar for each positive number r. Consequently, Y(2)=X(T(¢) Ar) is
a continuous square integrable martingale. Applying the decomposition
theorem on Y(¢) we obtain:

<Y>t=<X>T(t)Ar
But <X >rya=tA <X>,, so that

d<Y¥Y>,

T =I({s: s<<x>})@)

This I({s: s<<X>,})(z), relative to Y(z) process, satisfies the condi-
tions required on &, in theorem 2.1. Hence

Y*(t)=S:)I*({s: s<<X>,})Y2(r)dB,

=B(tA<X>})

where B is a Brownian motion. Or X*(T*(t) Ar)=B(tA <X>¥).
From which follows that X*(t Ar)=B(<X>¥A <X>¥). Letting r— oo,
X*(t)=B(<X>¥)

Theorem 3.2

If (X,, o,) is a continuous, unbounded martingale satisfying X(0)=0,
then X¥=B(AY¥). B is a Brownian motion, and A¥ is an increasing
process.

Remark. A theorem similar to this was proved in [3], under further
condition that X, is nowhere constant,
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Proor. For an integer N, let Ty=inf{s: |X,|> N} then Ty is finite,
and Yy(¢)=X(t A Ty) satisfies the hypothesis of theorem 3.1. Hence

Y¥()=B(<Yy>7¥).

Since <Yy>,=<Yy >, on [0, Ty] whenever N'>N, lim <Yy>, =4,
N-—
exists and is increasing process. Clearly X*(¢)=B(A4}¥) ®

4. Remarks.

To simplify and clarify our notation let us denote I({s:s< <X>,})(¢)
by I,(z). Using (2 pp. 449)

B,(1)= S;I:“””Z(T)dY;"(f) + S;(l — I}~ 12(0)IF 112 (2))d B* (1)

where Y,(t)=X(T(t) Ar), I;'/2(t)=0 whenever I}/?(¢)=0, and B is an
independent Brownian motion adjoined to Y,(¢) process is a Brownian
motion. This B is fixed throughout.

Defining r,,=inf{s: <X >, is constant on [s, +o0)}, it is easy to
see that lim B,(¢)=B(¢)
r—o
X*(T*(1)), t<<X>,

= X*(r;“°)+B*(z)—B*(<X>,®), 12<X>,

Being limit of Brownian motions, B itself is a Brownian motion. The
full Brownian motion in theorem 3.1 can be take to be this B. X(7(z)),
1<<X>, viewed on (Q, &, P) is a Brownian motion stopped at
<X>, ., i.e. X(T(¢)) and B(¢),t<<X>, have the same distribution.
Letting By(¢)=X(T(2)), t<<X>,_,

X(t)=B,(<X>,), t=>0

is a representation of X on (2, &, P) in terms of B, a stopped Brow-
nian motion at <X'>, .

The above considerations, applied to theorem 3.2, will result, in
view of sample paths unboudeness, X(¢)=B(4,) where B is a full
Brownian motion on (€, &, P).
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