J. Math. Kyoto Univ. (JMKYAZ)
14-1 (1974) 73-92

Perturbation of drift-type for
Lévy processes

Hiroshi TANAKA, Masaaki TSUCHIYA
and Shinzo WATANABE

(Received 6, Feb. 1973)

§1. Introduction.

Given a temporally homogeneous Lévy process [(f) and a real
valued bounded Borel function a(x) on R!, we consider the following
stochastic equation:

(1.1) dx(ty=dI(t)+ a(x(1))dt.

The precise meaning of this equation will be given in §2. When
I(t) is a symmetric Cauchy process, Tsuchiya [1] proved that the
above equation has a unique solution for each initial value xeR!
if a(x) is small enough in the supremum norm. The purpose of this
paper is to give a sufficient condition in terms of the characteristic
function of I(1) in order that the equation (1.1) has a unique solution
for any bounded continuous function a(x). In [1] only the uniqueness
of the probability law of a solution process x(-) was considered, but
in fact as will be remarked in §2, this ‘“‘weak uniqueness’ is equivalent
to the apparently stronger ‘‘pathwise uniqueness”. When I(t) is a sym-
metric Cauchy process, our result (Theorem 3.1) implies, as a special
case, that the equation (1.1) has a unique solution for any bounded
continuous a(x). But, for general bounded Borel a(x) the problem is
still open. Also, Theorem 3.1 does not cover the case of symmetric
Lévy process with exponent a<1;in this case, however, some uniqueness
and non-uniqueness results will be obtained in connection with the
modulus of continuity of a(x) (Theorem 3.2). Fianlly in §4, some
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remarks will be given for the equation (1.1) in case when a(x) has
a jump-discontinuity.

§2. Solutions of stochastic equation (1.1).

A Lévy process we consider in this paper is a |-dimensional process
I(fy with stationary independent increments whose sample paths are
right continuous and have limits from the left; also it is assumed
that 1(0)=0. The function (&) denotes the logarithm of the charac-
teristic function of I(1); its canonical form is

2.1) ¢(€)=inz§——%—éz +Sio<ei§" —-1- lifl;z >n(du), EeRY,

© 2 )
where meR‘,ng,g —I%uTn(du)<oo. The notation (Q, #, P; &,)

stands for a probability space (2, &, P) endowed with an increasing
family of sub-g-fields &, of &%. We now indroduce the following
definitions.

Definition 1. By a solution of (I.1) we mean a stochastic process
x(t) defined over a suitable probability space (Q, &, P; &#,) satisfying
the following three conditions.

(i) There exists a Lévy process [(f) such that

E{eU0-1)| 5 } —exp((t—s)(@),  0Ss<t, EeR'.
(ii) x(f) and I(t) are &,measurable for each t=0.
(iii) x(t)=x(0)+l(t)+S;a(x(s))ds holds with probability 1.
The process I(t) is called the underlying Lévy process for the solution

x(1).

Definition 2. We say that the pathwise uniqueness holds for (1.1)
if any two solutions, defined over a common probability space (L,
ZF, P; #,) with a common initial value and with a common underlying
Lévy process, are equal with probability 1.

Definition 3. We say that the uniqueness in law holds for (1.1)
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if any two solutions with a common initial distribution induce the
same probability law on the space of all real valued right continuous
functions on [0, o) having limits from the left.

Exactly in the same way as in [2], we can prove thta the pathwise
uniqueness implies the uniqueness in law. Moreover, in the present
case the converse is also true as will be proved in the following prop-
osition, and so we shall omit ‘“pathwise” or ‘in law” thereafter.

Proposition 1.1. The uniqueness in law implies the pathwise
uniqueness.

Proof. Let x(t) and x,(t) be two solutions of (I.l1) defined over
a common probability space (Q, #, P; #, with a common initial
value and a common underlying Lévy process [(f). Then, by the fol-
lowing lemma x(tf)=min(x,(t), x,(t)) is also a solution of (l1.1), and
hence the uniqueness in law ensures that the probability distribution
of x(t) is equal to that of x,(f). This obviously implies that x,(f)<
x,(t) (a.s.) and hence x,(f)<x,(t) (a.s.) by symmetry, yielding the
result,

Lemma. If x,(t) and x,(t) are solutions of
2.2) (1) =x(0)+ (1) + S;a(x(s))ds,
then x(t)=min(x(t), x,(t)) is also a solution of (2.2).

Proof. For each w in a certain subset Q, of full measure, the
function x(t, ) of t=0 satisfies (2.2) (i=1,2). Fixing such an w
and then writing x4(), I(t) for x(t, w), I(t, w), we set y(t)=x,(t)—I()
(i=1,2), a(t, x)=a(l(t)+x). Then, that the x,(t) satisfies (2.2) is equiva-
lent to

y,.<o=x+g;a<s, yis)ds,  i=1,2.

We now set y(f)=min(y,(t), y,(1)), and claim that y(t) satisfies
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@.3) YO =x+ S:)a(s, (s))ds.

Since the open set I={t>0: y,(f)>y,(t)} can be expressed as the dis-
joint sum of open intervals (s, t,), we have for any C!-function ¢
with support contained in (0. o)

~Coaya== ¢ OO~ { ¢wawar
== { wo(x+{ats, yisnds)ai={ pr(x+{ ats, vands)a
=" 0f as yinasar +{ 90 ats, yi)dsar

{0l ats, ya(s)dsar

_ S:d’(t)a(” v, (8))dt + ;[gb(t) S;a(S, J’1(s))ds:|

"= $@ate, y, @)

k

ti
-Js

=z #0( ats, yatnds |+ pwaw, ya0nar
k 0 1

k

= §°°¢>(t)a(t, y(@O)dt+ Z[r/)(t) (y1(0) —x)]"‘— Z[qﬁ(t)(yz(z) —x)]"‘
0 k St k sk
= S:q&(t)a(t, y@)dt.

Thus y(t) satisfies (2.3), and this implies that x(¢) is a solution of (2.2).

In the rest of this section, we construct the maximum and mini-
mum solutions in case a(x) is continuous. Suppose that a(x) is bound-
ed and continuous, and choose a decreasing sequence {a,(x)} of uni-
formly bounded and Lipschitz continuous functions such that a,(x)
decreases to a(x) as n1 o. Then, as is well known, the equation

x(t, o)=x+1(t; )+ S;a,,(x(s, w))ds

has a unique solution x,(t, x, w) for each weQ® and xeR!, where
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I(f) is a Lévy process defined over a probability space (Q, #, P).
It is easy to verify that x,(f, x, w) decreases to some limit as n1 oo,
and that this limit X(t, x, w) is the biggest among solutions of (1.1)
with initial value x and with underlying Lévy process I(f); the X(t, x,
w) is called the maximum solution of (1.1) with underlying Lévy
process I(f). The minimum solution x(, x, w) can be constructed simi-
larly.

Sometimes it is convenient to consider the standard (path space)
representation of the underlying Lévy process I(f). Denote by W
the space of right continuous functions on [0, ) having limits from
the left and vanishing at t=0, by .#, the smallest o-field that makes
{w(s): 0<s<t} measurable, and put #=V.#,. For each t=0 let
0, denote the mapping from W into itself defined by (8,w)(s)=w(t+s)—
w(t). Let y be the mapping from Q into W defined by yw=w where
w()=I(t, ). Then, y is & /.#-measurable and induces a probability
measure 2 over (W, .#) with respect to which the coordinate process
w(f) is a Lévy process equivalent in law to the process I(f). Denote
by x*(t, x, w) the maximum solution of

() =x+ w(t)+ S;a(x(s))ds.

Then the followings are easily proved.
1°. For each fixed t=0, x*(t, x, w) is B(R!)x .#,-measurable.
2°. x*(t+s, x, w)=x*s, x*(, x, w). O,w),
3°. The maximum solution X(f, x, ) with underlying Lévy process
I(t) is expressed as X(t, x, w)=x*(t, x, yo).
4°. The family of random functions {X(f, x, w), x&R!'} defines a
temporally homogeneous Markov process on R!;this Markov process
is a Hunt process.

The minimum solutions have similar properties.

§3. Uniqueness and nonuniqueness.

First we consider the case of bounded continuous a(x) and give
a sufficient condition for the uniqueness of solutions of (1.1).
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Theorem 3.1. Suppose that a(x) is bounded and continuous,
and that the function (&) associated with a given Lévy process
satisfies

G.1) gzwl(é) =0< |4}l ) T i.oo

Then, there exists a unique solution of (1.1).

Proof. Since the ‘‘existence” part is obvious (the maximum and
minimum solutions exist), it is sufficient to prove the uniqueness. The
assumption (3.1) implies that

X

3.2) Ig]

< for all £ R! such that |&|>¢&,,

T
where &, and K are positive constants fixed throughout the proof.
Let p(x) be the probability density with characteristic function exp {ty
(—&), and set g,l(x)=8:e"'p,(x)dt,l>0. Then g,eL'(R')NL2(RY).
Moreover, if we set

4 ___]_ @ iix — 1 . 1
g(é)“ \/E S—aoe g}.(X)dx— \/"E )-—l)b(_é) 5

then by (3.2) we have

(3.3) E0OI Sy for >S5

Let x(f) be the maximum solution of (1.1) with initial value x and
with underlying Lévy process I(tf), and introduce the Green operator
K;:

Kaf)o) = e HE (R}t 1>0, feLARY).

We first condiser the following special case:

(.4 {The support of the Lévy measure n(-) of I(f) is contained
in some finite interval [—h, h].
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Lemma 3.1. If a(x)eC?, a(x), a’(x), a”"(x) are bounded and if

the supremum norm ||al|,< \/21: , then under the above assumption

(3.4), we have

¢o

K,f=G,(I-aDG,)"'f, feL?, K

where G, is the convolution operator: (G,f)x)=(f9,)(x), A>0 and

_d
D———dx .

Proof. The smoothness assumption on a(x) implies that (1.1)
with initial value x and with underlying Lévy process I(f) has a unique
solution which we denote by x(¢, x) to stress the initial position. Setting

2

W)=t x)=2XLX). ax(’ X) 2y =z(1, x)=6_’5g5_") and then writing the dif-
ferential equatlons for y(r) and z(f), we can see that |y(t)]<exp(c?)
and |z(t)| Zc, exp(3c,t) where ¢, =|la’||e, c;=1la"|l,. Therefore if f is
in C%, the space of C2Z-functions with compact supports, then

1K NS ]| e e e

L I e N M

Thus DK,f and D2K,f exist for A>3¢, and are bounded continuous,
and hence u=K,f satisfies

(3.5) (A—A—aDu=f, feC3, 1>3c,

where A is the infinitesimal generator of I(t) viewed as a Markov pro-
cess. We next claim that Due L?(R!). For this we use the assumption
(3.4). Take a finite open interval I of length>h such that supp(f)cl,
and then choose a finite open interval J such that JoI. Then

10ul < B{{em5 1 (x(0) feervae]

S lo(Ka 9)x),  Ao=A—c1>2¢;, g=)i-
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Since Du is a bounded function, we are sufficed to show that |Du(x)|
is bounded from above by a square integrable function outside J. For
x¢J, put T(x)=inf{t>0: x(t, x)I}. Then we have

(3.6) [DUC)| || f" ||oo - Ag ' E{e 20T},

In the case when x lies entirely in the right-side of J, we set T(x)=
inf{t>0: x+I(tyeI} where In=Il(t)—|lall,'t. Then by the assump-
tion (3.4) T(x)<T(x). On the other hand, if we set

0(x) = (G, h)(x) = E{:e““'h(i (1) +x)dt, } h=y,,

then
v(x) 2 cE{e*T®}, c=min(G,,h)(y)>0.
yel

Noting that the assumption (3.1) implies that veL2?(R') and using
(3.6) and  E{exp(—AT(x))}<E{exp(—=2T(x))}<c 'v(x), we obtain
SwlDu(x)|2<oo. By a similar argument, we have SO |Du (x)|2 < o0, and
0 -

thus Due L?(RY).
Once we have proved DueL2(R'), then by (3.5) we have

3.7 u=G,(f+aDu)

=G, 3. (aDG,)!f+G (aDG,)"aDu,  A>3c,.
k=0

By (3.3) and the assumption [lal,< \/I?n , we have for feL?(R?)

K
|aDG,125p1 12 2> (p=llalo 737 <1).

and hence by (3.7)

(3.8) K, f=G,(I—aDG,)"'f, A> max<3c1,~§—(°—>,fecg.

Since both sides of the above exist and are analytic (in 1) for A> i?
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and feL2?(R'), (3.8) holds for all A> i? , feL?(R'), completing the

proof of the lemma.

We now proceed to the proof of the uniqueness for (1.1) under
the assumption (3.4)

NE3

Case I. a is continuous and |la|,< - Choose a sequence

of functions {a,(x)} such that

(i) each a,(x) is a C2-function, aj(x), a’(x) are bounded, and

J2n

sup [la, o <=7

(ii) a,(x) decreases to a(x) as n1t co.

Denote by K,, the Green operator of the Markov process defined
by the family of unique solutions of dx(t)=dl+a,(x(t))dt, and by
K, the Green operator corresponding to the maximum solutions of (1.1).
Then (K,,f)x) coverges as n—o to (K,f)(x) for any bounded
continuous function f. But then by Lemma 3.1 for any continuous
function f in L2(R!') and each x

K;f(x)=1lm K, ,f(x)=lim G,(I—a,DG,)"" f(x)

=Gy(1-aDG,)" f(x), A>-52-

By similar arguments to the above, we see that the Green operator
corresponding to the minimum solutions of (1.1) has the form G,(I—
aDG,)"! on L2%(R!), and hence the maximum and minimum solutions
are identical, proving the uniqueness for (1.1).

Case II. a(x) is bounded continuous.

For each fixed X,=R!, we shooce £¢>0 so that |a(x)—a(xy)|<
J2n/K holds for |x—xo/<e, and set d(x)=a(x)—a(x,). Also take
a continuous function ay(x) such that it coincides with d(x) for |x—x,|
<e and |lagll,<+/ 27 /K. Then (1.1) is equivalent to
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dx(t) =dl + a(x(t))dt

where I(t)=I(t)+ a(x,)'t, and the maximum (minimum) solution X(t, x,)
(x(1, xo)) of the latter equation with initial value x, coincides with
the corresponding solution of dx(t)=dl+ay(x(t))dt for small values of
t. Since the real part of the function y(a) associated with 1(f) is equal
to 2y(x), the result of case I is applicable to dx(t)=dl+ay(x(1))dt
and hence the uniqueness for this equation holds. Thus we have
proved X(t, xo)=x(t, xo) for small values of t. Next we set

o(w) =0(xg, @) =inf {t>0; X(t, xo, ©)>x(t, xo, W)},
(W) =1(xo, w)=inf {t>0; x*(t, xo, W)>x,(t, Xo, W}),

where x* and x, are the maximum and minimum solutions of (1.1)
with underlying Lévy process {W, w(t), 2}. Then by 3° of §2 P[o(x,,
w)<t]=2P[t(xy, w)<t]. Therefore, for our present purpose we are
sufficed to show that 2[1(x,, w)<oo]=0. This is verified as follows.
By the meaning of 1(x,, w) and 2° of §2, 1(xq, w)<oo implies that

(x*(t(x0, W), X0, W), 9,(xo,w)W)=0, and hence
P1(xg, W) < oo =2[1(x*(1(xg, W), O (x0,wyW) =0, (X0, W) < o0]
=2[f(x*(1(x0, W)); T(x0, W)<o0],

where f(x)=2[1(x, w)=0]; but f(x)=0 as we have proved Dbefore,
and so 2[1(xy, w)<oo]=0.

Finally we have to remove the restriction (3.4). In general I(f)
is expressed as the sum [,(t)+1,(t) where [,(t) and [,(t) are two in-
dependent Lévy processes and the support of the Lévy measure of
1,(t) is compact (the assumption (3.4) is satisfied for [,(f)) and the
sample paths of [,(f) are step functions. Under this situation, it is
clear that the following two statements are equivalent:

(a) The uniqueness holds for dx(t)=dl+ a(x(t))dt.

(b) The uniqueness holds for dx(f)=dl, + a(x(t))dt.

Now the uniqueness for (1.1) follows from this remark.

Remark 1 (A4 sufficient condition for the uniqueness in case of
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bounded Borel measurable a(x)). If (3.1) is replaced by the stronger
condition: (ZY(&))"'=o(|¢|"') as |£|—> oo, then there exists a unique
solution of (1.1) for any bounded Borel measurable function a(x).
The proof is similar to that of Tsuchiya [1].

When [(f) is a symmetric stable process with exponemt a<1, the
condition (3.1) is not satisfied. In this case, results in the uniqueness
problem for the equation (1.1) depend upon the modulus of continuity
of a(x), as will be seen in the following theorem.

Theorem 3.2.

If the underling Lévy process I(t) is a symmetric stable process with
exponent a <1, we have the following results.
(i) If a(x) is a bounded non-decreasing function and satisfies

la(x)—a(y)| = K|x—y|#

for some positive constants K and B with 1—a<B<1, then the
uniqueness holds for the equation (1.1).

(i) If a(x) is bounded continuous and equal to signx|x|f in some
neighborhood of x=0 for some positive constant B<1—a, then
the uniqueness does not hold for the equation (1.1) under the
initial condition x(0)=0.

Before giving the proof, we prepare two lemmas.

Lemma 3.2. Let a(x) be bounded continuous and non-decreasing,
and Xx(t)(x(t)) be the maximum(minimum) solution of (1.1). Let y(1)
be a right continuous process satisfying

(3.9) yO=xO)+1)+ S;a(Y(S))dS, 0<t<h,

where h=h(w)>0. Then y(®)<x(t), 0<t<h., If “<” and x(0) in
(3.9) are replaced by ““=> and x(0) respectively, then the conclusion
is yO)<x(), 0<t<h.

Proof. For ¢>0, set a/x)=a(x)+e and let x,(tf) be a solution
t

of x(t)=)'c(0)+l(t)+Soae(x(s))ds. Then
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50—y ax)-abeNds,  0i=h.

Now suppose y(f)>x,(t) for some t[0, h], and let t, be the infimum
of t for which x,(t)<y(t). Then, obviously t,>0 and

to to

[ a0 - a2 [ tayis) - atyisN}ds z et
and hence x,/(t,)— y(to)=¢et,. But this contradicts the right continuity
of x,(t)—y(t). Therefore, x,(f)=y(t), 0=t<h, and making ¢]0 we

obtain the result.

Lemma 3.3. Suppose a(x) satisfies the condition (i) of Theorem
3.2 and vanishes at x=x, and let x(f) be any solution of (1.1)
with initial condition x(0)=x,. Then for any >0

1
(3.10) lim £ =" %|x(t) — xo| =0
t—=0

holds almost surely.

Proof. We may assume x,=0 and also a<%—l. By a theorem
of Hin¢in [3], we have

1
P{lim ¢ ="%I(1)| =0} =1
ti0
for each ¢>0, and hence there exists t,=t,(w)>0 such that |I()| ét%_a
for 0<t<t, almost surely. Therefore, for 0<t<t, |x(¢)] is dominated
by the maximum solution m(t) of
1, '
m(t)=te +KS |m(s)|Pds.
0
On the other hand, m(f) can be constructed as follows. Set

mo(t) =1, m,,(t)=t§l_£+KS;|m,,_1(s)l"ds (n=1).

Then, m,(t) decreases to m(t) as nt o for 0<t<t, where t, is some
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constant with O<ty<1. Since f>1—a, we see by induction that
l—s F B4t pgn-1
m,(t) <const. % “+const, ¢ HAtHETT 0 <t <y,

1
and hence m,(t)<const.z2 * for sufficently large n. Therefore we have

1_
|x(2)| £m,(t) <const.fx °, 0<t<tyAt,(w),

and this implies (3.10), since &¢>0 is arbitrary.

Proof of Theorem 3.2 (i) We may deal with the standard (path
space) representation of the underlying Lévy process I[(f) as in the end
of §2. Denote by G, (G,) the Green operator of the Markov process
defined by the maximum solutions x*(t, x, w), x&R! (minimum solu-
tions x,(t, x, w), x&R!) of (1.1). Then it is enough to prove (G,f)
(x)£(G,f)x) for any bounded continuous and non-decreasing function

f, since (G,f)x)=(G,f)x) is obvious. Fixing xeR!, we first consider
the case a(x)<0. We set

T,,(w)=inf{t>0: x*(t, x, w)<x__rlz—} ,

and claim that
3.11) P{T,(w)l0 as nooo}=1.
If a(x)<0, this is obvious ; if a(x)=0, we notice that

' L ‘ (L-e)p+1
| a(x¥(s, x, w))dsl <K\ |x*(s, x, w)—x|Pds <const. t'=
0 0

for all sufficiently small t>0 by Lemma 3.3. Since f>1-—&, we can

choose ¢>0 so small that <—;—~—8>ﬁ+1>:‘—. Then we have S‘a(x“)ds=
0

1
o(tz) as t| 0. This combined with a result of Hingin [3]:
1
2 {limt *|l(t)| =0} =1
10

implies (3.11). Now we take a function f with the properties indicated
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before, and write for A>0
T
(o]

G.12) (G =g{g "e=HMf(x(t, X, w))dt}

+é°{g°° e~ Mf(x¥(t, x, w)dt; T,,<oo}=1 +1,

n

Then

— e ATn
sl e =4 — 0 as n— o,

I, =é“{e‘”"gwe‘“f(x“(t, XH(T,, X, w), Op w)dt; T,< oo}.
0

On the other hand, by the non-decreasing property of a() we have
x*(t, y, w)y<x,(t, x, w) for t=0 providled y<x, and hence

x¥(t, x¥(T,,, x, w), O07,w) <x,(t, x, O, W),

because x*(T,, x, w)<x. Therefore
1, ég{e_”"gwen“f(xv(tw X, 0¢,w)dt; T, < °°} =&{e M Tn}(G,f)(x),
0

and hence by making n1 oo in (3.12) we obtain (G,f)(x)<(G,f)x).
Finally it remains to treat the case a(x)>0, but this is done by ex-
changing the role of the maximum and minimum solutions in the above
proof.

(ii) is proved by showing that the maximum solution X(t) and
minimum solution x(t) of (1.1) with initial value O are different. By
the assumption for a(x), there exists ¢>0 such that a(x)=signx|x|?
for |x|<e,. We introduce a bounded continuous and non-decreasing
function d@(x) such that d(x)=a(x) for |x|<g,, and denote by X(t)
(x(1)) the maximum (minimum) solution of (I.1) with initial value 0
when a(x) is replaced by d(x). Then, obviously X(f)=X(f) and x(f)=
x(1) for all sufficiently small ¢ with probability 1, and hence it is enough
to show that x(f)<X(f) for all sufficiently small t>0 with probability
1. For ¢>0 let Q_ be the set of w for which there exists h=h(w)>0
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such that [I(t, w)|<ct® for all te[0, h], where 5=_lﬁ<<%>. Then

Hingin' result tells us P{Q.}=1. We now choose ¢>0 and d>0 so
that 6~ 'df—c=d, and then h,>0 so that hid<e,; we define y(t, w)
for weQ, by

t°d for 0=Zt=<h(w)Ah,
yi, w)={
(h(w)Ah,)°d for t=h(w)Ah,.

Then, for weQ, and 0<t<h(w)Ah; we have

1(t, w)+S;a(y(s, w))ds=I(t, w)+d"S;sl‘"ds

s 8
=1, ) +ar Lz — 11, w)|+—a:3—-t"
= —Ct"+d—;—- t’=<-%ﬂ—c>t‘gtéd=y(t, w)

and hence X(t)= y(t)=1t°d for 0<t<h(w)Ah, by Lemma 3.2. Similarly,
x() < —1t%d for O0<t=h(w)A ;. Therefore, x(1)<X(t) for all sufficiently
small t>0 almost surely.

§4. Remarks to the case of discontinuous a(x).

In this section we consider the case in which a(x) has a jump-
discontinuity at x=x,; for simplicity we assume x,=0 and that there
exists a constant K such that

la(x)—a(y)|£K|x—y| for x, yeR! with x.y>0.

We set a(0)=0 and a,= lima(x). Given a right continuous function
x— 0%

I(t) with limits from the left and [(0)=0, we consider the equation
(4.12) X(H)=x+ () + S' a(x(s))ds+ S' 5(s)ds
0 0

under the additional condition
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(4.1b)  8(s)=0 if x(s)#0, and a_=dé(s)<a, or a,=d(s)=a_.

The uniqueness theorem for this equation has different aspect according
to a_<a, or a,<a-_.

Case I: a,<a_.
Proposition 4.1. For each x€R!, the uniqueness for (4.1) holds.

Proof. Let x,(t) and x,(rf) be two solutions of (4.1) with initial
value x, that is,

xl(t)=x+l(t)+g;a(xl(s))ds+S;él(s)ds
x,(H)=x+1(t)+ S;a(xz(s))ds + S;éz(s)ds.
Put y(t)=x,()—x,(t) and (1) =a(x(t))—a(x,(t)). Then y(t)=g;o(s)ds.

It is easy to show that y(t)>0 implies a(f)<Ky(t). Now suppose y(t)
>0 for some t>0 and set fo=inf{s<t: y(r)>0 for all re(s, ]}

Then y(t)=S' a(s)dngSt y(s)ds and this yields y(t)=0, a contra-
to to

diction. Therefore y(1)<0 and hence x,(f)<x,(f). Similarly we have
x, (D= x,(t) and so x(t)=x,(1).

Proposition 4.2. For each initial value x there exists a solution
x(t, x) of (4.1), and x(t, x) is continuous in x for each t=0.

Proof. Define a Lipshitz continuous function a,(x) by
a(x) for x<0 or x>—'11—

a(x)=
1

n{a<-1—>—a_}x+a_ for 0<x<—,
n n

and denote by x,(t)=x,(t, x) the unique solution of

XD =x+1(1)+ S’Oa,,(x(s))ds.
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Since the sequence of functions {a,(x)} is non-increasing for all suffici-

ently large n, x,(t, x)=x,,,(t, x) for all sufficiently large n, and hence

we can define x(1, x)=lim x,(f, x); it is right continuous in x (upper
n—o0

semi-continuous in this case) and satisfies

tim ' a,(x, (s = | a(x(o)ds,

where x is the indicator function of {0}c. If we set

) = @ Mo O,

then ¢(t)= lim ¢,(t) exists and
n—oco

() =x+1(H)+ S;a(i(s))ds + (D).

Since |p(t,)—o(t)|=|lall,lt;—1t,|, there exists a function &(s) such
that go(t)=S:)5(S)dS and |d(s)|<|lall,; moreover we can choose 0(s)
so that X(s)#0 implies d(s)=0 and a, <d(s)<a_ for all s=0. There-
fore, X(t) is a solution of (4.1). Approximating the function a(x) by
increasing sequence of Lipshitz continuous functions, we can construct
a solution x(tf) of (4.1) such that x(t, x) is left continuous in x for
each t=0. By Proposition 4.1, x(t)=x(t) and this proves Proposition
4.2.

We now replace I(t) by a sample path of a time homogneous
Lévy process. If we take the standard representation (W, I(t, w), #,
M,, P) of the Lévy process, then the unique solution x(t, x, w) of (4.1)
with [(1)=1(t, w) satisfies x(t+s, x, w)=x(s, x(¢, x, w), 8,w) and hence
we have the following theorem.

Theorem 4.1. When I[(t) is a time homogeneous Lévy process,
the family {x(t, x, w), x€R'} of the unique solutions of (4.1) defines
a Markov process whose semigroup maps C¥) into itself; (4.1) is

*) C, is the space of bounded continuous real valued functions on R!.
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written as follows:
4.2) () =x + () + S;a(x(s))ds + aOS; Kooy (x(8))ds,
where ao is a constant such that a,<a,<a_.

Proof. The only task we have to do is to show that x(f) satisfies
(4.2). Set

T |-

y,,=x<t+—’]1—, X, w)—x(t, X, u')-g a(x(s, x(t, x, w), O,w))ds
0

— l(—l—, 0,w>
n
1 0 i
Z,.=X<——n s X, W>—X-—Soa(x(s, X, w))ds—l(T , w)

a(x, w)=1im nz,.
new

By the equation (4.la) 5(t)=@ ny,=a(x(t, x, w), 0,w). On the other
hand, x(t, x, w) is .ﬂ,-measura'tt)lc:0 and hence a(x, w) is .#,,-measurable
for each x. Therefore by Blumenthal’'s 0-1 law a(x, w) is a constant
(a.s.)) for each x, and it is clear that the constant is zero for x=0.
We denote by a, the constant for x=0; obviously a,<ay,<a_. For
each x and t there exists a sequence {4,} of divisions of [0, t], say,
4,0 0=t,0<t,<-<txm=1t such that

K(m)—1

g' a(x(s, x, w), O,w)ds =lim
0 n—

. a(x(tu,j’ X, W)* otn,jw)(tn.j'*‘ 1 t",j)
o j=0

t L k(w1
SOX{O}(X(S, X, W))dS = }tl-'nolo J§O X{O}(x(tn,ja X, w))(tn,j+ 1= tn,j)

with probability 1. Since x(t,;, x, w) is independent of 0, w and

I(t, 0

h..,W) is a Lévy process equivalent in law to [(r), we have

g{a(x(tn,js X, W), ot,,,JW)=a0X(0)(x(tn,j5 X, W))} =1

and hence we have S;&(s)ds=aog;x{o}(x(s, x, w))ds, proving (4.2).
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Corollary. If I(t) is a symmetric Lévy process and a(x) is an
odd function, then the equation (1.1) has a unique solution.

Proof. 1If x(t) is the solution of (4.2) with initial value 0, then
y(t)=—x(t) and [=(t, w)=—I(t, w) satisfy

5O =1, w)+ " alr)ds = ao] 1(vs)ds

Since [=(t, w) is a Lévy process equivalent in law to [(t, w), we can

take a, so that —ago=a,, that is, a,=0.

Case 1I: a_<a,. By a method similar to the proof of Proposi-
tion 4.2 we can construct two solutions X(t, x) and x(t, x) of (4.1);
for each t=0, X(t, x)(x(t, x)) is a non-decreasing and right (left con-
tinuous function of x, and x(t, x)<X(t, x). The present case turns
out to the case I under time reversion, and this fact will now be
used to prove the following proposition.

Proposition 4.3. Let x(t) and y(t) be any solutions of (4.1) with
initial values x and 'y, reprectively. Then,

4.3) x()< y(t) whenever x<y;

moreover, X(t, x) and x(t, x) are the maximum and minimum solutions
of (4.1) respectively.

Proof. Suppose there exists t;>0 such that x(#;)=y(t,), and set
for 0<t<t,

2(0)=—x(to— 1), W) =1(to)—I(to—1),
a(x)=a(—x), 6()=6(to—1).
Then we have

2(0) = — x(to)+ 1)+ S;a(x(s))ds + g;é(s)ds,

which is the equation of Case I only apart from the left continuity
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of )(f); the situation is the same for y(f), and hence by the uniqueness
result of Proposition 4.1 we have £(f)=9() for 0=t<1t, with obvious
notation, contradicting X(ty)=—x> —y=(ty).

By virture of Proposition 4.3 (especially (4.3)) we obtain the follow-
ing theorem; the proof is much the same as that of (i) of Theorem
3.2 and so is omitted.

Theorem 4.2. Let a_<a, and take for I(t) in (4.1) sample paths
of a Lévy process. If the Lévy process satisfies

(4.4) g’{li_mﬂgtﬂ—=oo} =1

t=0

then Xx(t, x)=x(t, x) almost surely for each xeR'.

The corollary to Theorem 4.1 can also be adapted to Case II
under the condition (4.4).
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