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Introduction.

In this paper we consider the following problems.

Let (M, ¢,) and (N, ¥,) be differentiable dynamical systems (D.D.S.).
Assume that there exists a homomorphism, i.e. differentiable mapping
n: M—N such that m,=y,n for all . Under this assumption, what
relation can exist between the structures of (M, ¢,) and (N, y,)?

The following examples motivate our problems.

Example 1. Let (M, u, ¢,) be a classical dynamical system, i.e.
M a differentiable manifold, u a measure on M defined by a continuous
positive density, and ¢, M—>M a one-parameter group of measure-
preserving diffeomorphisms.

In [1], we showed the following:

Let (M, u, @,) be ergodic and M be compact. If there exist eigen-
values A, 4,,..., 4, of the (M, p, ¢,) which are rationally independent
and whose eigen-functions are Cr-differentiable (p=1), then M is the
total space of a locally trivial fibre space over an r-dimensional torus
Tr, whose fibres are Cr-submanifolds. The flow (¢,) is fibre-preserving
and the flow which is naturally induced on the base space Tr is a
quasi-periodic motion with frequencies 4, 4,,..., 4,.

In addition, if (¢,) has a pure point spectrum (discrete spectrum),
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then (M, u, ¢,) is Cr-isomorphic to a quasi-periodic motion as classical
dynamical systems.

The arguments of these results depend on the existence of a homo-
morphism 7© of (M, ¢,) to a quasi-periodic motion (T", 1,) with fre-
quencies 4, 4,,..., 4, (see below for the definition).

Example 2. Let (N,y,) be a D.D.S. and (F, {x,,},ev) be a family
of D.D.S.’s depending differentiably on the parameter y which varies
on the manifold N. We call the D.D.S. (M, ¢,) a skew product D.D.S.
of (N,y,) and (F, {xy.}yen), if M=NxF: direct product manifold of
N and F, and

d _d d
-dt—(p'(y’ z) ,=0_—dTl//'(y) ’=0><wa,:(2) =0’

in the case that T=R, and

(01()’, :)=('!I1(y)* Xy,l(z))’
in the case that T=Z, for (y, z)e NxF=M.

The natural projection = of M onto N is clearly a surjective homo-
morphism of (M, ¢,) to (N, ¥,).

It is natural to ask whether the converse is true or not: Let =
be a surjective homomorphism of the system (M, ¢,) to the system
(N, {y,). Under what additional conditions (M, ¢,) becomes the skew
product D.D.S. of (N, y,) and some (F, {x,.}yen)?

We consider this question in §1.

Example 3. Let the system (N, ,) has an invariant submanifold
McN; y(M)=M for all t, then the identity mapping m= of M to N
is an injective homomorphism of (M, ¢,) to (N, ¥,), where (¢,) is the
restriction of (y,) to M.

We consider the related problems in §2.

Here we enumerate necessary definitions.
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Definition 1. Let M be a differentiable connected manifold and
(0)er (Where T=R or T=Z) be a one-parameter group of diffeo-
morphisms of M. We call (M, ¢,) a differentiable dynamical system
(D.D.S.).

If there is no proper nonempty closed invariant subset of M for
the system (M, ¢,), we call the system (M, ¢,) a minimal system.

Let T"={(x!, x%,...,x"); x*e R (mod 1), i=1, 2,...,n} be a n-dimen-

sional torus, and
T, (XY, X o o't X"+ o), (mod 1).

The system (T", 7,) is minimal if and only if w!,..., ®" (w!,..., w", 1)
are rationally independent, when T=R (T=Z). In this case, we call
(T", 1) a quasi-periodic motion with frequencies !,..., o"

Definition 2. Let (M, ¢,) and (N, y,) be D.D.S.’s. A differentiable
mapping
m M—»N

is called a homomorphism of (M, @) to (N,V,), if it satisfies the
relation n-@, =y, 7 for all teT.

§1. Homomorphisms to minimal systems.

Let us begin with some remarks.

If (y,) is trivial, i.e. y,=identities for all ¢, then the homomorphism
n of (M, ¢,) to (N, {,) is a vector-valued first integral of the system
(M, ¢,). Conversely, if there exist n integrals =,(x),..., 7, (x) of (M,
®,), then

n: M— N ={y=(n,(x),..., m,(x))e R*; xe M}
X F— (1 (X),..., m(x))

is a homomorphism. Moreover, if the integrals =,(x),..., n,(x) are func-
tionally independent everywhere on M, then (M, ¢,) becomes a skew
product D.D.S. of (N, {id.}) and some (F, {y,.},en), Where {y}xF
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(yeN) are integral manifolds. In this case, we have also an imbedding
homomorphism ¢, for each ye N

ty: ((W}XF, ty)=(F, x,0— (M, ¢,).

Now, we consider the question stated in the example 2. We obtain
the following

Theorem 1. Let (M, ¢,) and (N, ,) be D.D.S.’s and n be a homo-
morphism of (M, ¢,) to (N, y,).

If M is compact and the system (N,y,) is minimal, then © is a
surjective mapping of maximal rank, and as a consequent of it, M
is the total space of a locally trivial fibre space over N, the system
(¢,) preserves the fibres, and the naturally induced system on the base
space is isomorphic to (N, ,).

Proof: a) m is surjective: For any xe M, we have

1(Cpy(x)) = Cn(n(x)),

where Cy(x) is the trajectory through x of (M, ¢,), i.e.

Culx)= U 0,(x),

Cy(n(x)) is defined analogously.
By n(M)>n(Cyp(x)), the compactness of M, and the minimality of
(N, ¥,), we have

A(M)=>7(Cr(x))=N.
Where 4 denotes the closure of A.

b) Let r(x)=rank of m at xe M. Clearly r(x) is constant on the
trajectory C,,(x):

r(p(x))=r(x) for all teT.

¢) r(x)=n on M (n=dimension of N):
Let K={xeM; r(x)<n}, critical points of n. If K¢, then there
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exists a point xo€ K. By b) and the closedness of K, we have
Cu(xo)=K.

As is M compact, we can easily show that

1(Cp(x0))= Cn(n(xo)) -
By the minimality of (N, ,), we have
Cy(n(x)) =N,
50
1(K)2 n(Chy(x0)) 2> N. (%)

But, by the well known Sard’s theorem, if = is sufficiently smooth (for
instance, if m is of C™-class (m=dimension of M)) measure of n(K)=0.
This is clearly contradict to (%), so K=¢.

This is to be proved. q.e.d.

§2. Homomorphic images of minimal systems.

Let us begin with some examples.

Example 4-0. Let M be O-dimensional space, i.e. M consists in
one point, then the existence of a homomorphism n of (M, {id.}) to
(N, ¢,) merely means the existence of a fixed point of (N, y,); (M) is
the fixed point.

Example 4-1. Let M be a circle, M=S!, and ¢, be a rotation of
it. Then, if n(M) is not of one-point (if n(M) is of one-point, w(M)
is a fixed point of (N, ¥,)), the homomorphism = is an imbedding and
n(M) is a periodic solution of (N, ¥,).

More generally we obtain the following

Theorem 2. Let n: T"—>N be a homomorphism of a quasi-periodic
motion (T™,t) to D.D.S. (N,V,), and r=rank of mn. Then n(T™),
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image of m is an r-dimensional invariant submanifold of N, which is
homeomorphic to an r-dimensional torus T, and the restricted system
of (N,y) to i(T"™)= N, ((T™), Y, | nxmy) is C°-isomorphic to some quasi-
periodic motion (T', ,), i.e. there exists a homeomorphism h of TT
to n(T™) such that

2, =yl crmyh for all t.
Proof: a) r(x)=rank of = at x
=r for Vxe T™:

This is clear, because, r(x) is constant along the trajectory, and the
set

K={xeTm"; r(x)<r}

is closed, and every trajectory of (T™, t,) is dense on T™.

b) VxeTm 3U(x); nbd. of x, and
3 local coordinates x!, x2,..., x" of U(x), and
3 local coordinates y!, y2,..., y" at n(x)€ N, such that

yhm=xt, i=1,2, r,
yin=0, j=r+1,r+2,...,n,
and
xi(x)=0 (i=1,2, ,m), yi(n(x)) =0 (=1, 2,...,n).

Therefore n(U(x)) is an r-dimensional submanifold of N:

This follows from a) and the implicit function theorem by standard
arguments.

¢) a(T™) is a (Y,)-invariant compact set: Trivial.

d) Let yen(T™) and x, x,en” {(y)cT™.
Then 3V(y), nbd. of y in N such that
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(U )) N V) =m(U(x))nV(y): As (1) is a translation and every
trajectory of (t,) is dense on T™, we can take f,, ty,..., ty,... (t,— 00,
n—o00) such that

{t.,(x); n=1,2,3,...} is dense in
Uix) < U(x;), nbd. of x; (i=1, 2).

From n(x,)=n(x;)=y, and ¢, (y)=yY, n(x)=n7,(x), i=1,2, n=
1,2,3,.., we obtain n(r, (x,)=n(t, (x,), n=1,2,3,.... As © is con-
tinuous, so w(U,(x,))=n(U,(x,)).

e) 7n(T™) is an r-dimensional compact submanifold of N: This
follows from a)~d).

f) (=(T™), Ylpcrmy) is minimal: Trivial.

g) With respect to the natural metric d’ on T™, the translation
(t,) is isometric. We define a metric d on =n(T™) compatible to the
original topology, then = is Lipschitz continuous because n is differ-
entiable and T™ is compact. From these, (n(T™), Yl,m) is equi-
continuous with respect to the time ¢, i.e.

Ve>0,36>0: d(yy, y2)<6, Y1, ¥y, € ©(T™)

implies d(y,y,, ¥,y,)<e for all t.
h) By the theorem 3 of [1], we obtain the assertion of the theo-
rem. q.e.d.

§3. Remarks and some discussions.

a) Note that quasi-periodic motions are minimal. It is sure that
in theorem 2, we can replace the quasi-periodic motion (T™, 7,) by a
minimal D.D.S. (M, ¢,):

Let = be a homomorphism of (M, ¢,) to (N, ,). If rank of ==
r, and (M, ¢,) is minimal, then n(M) is an r-dimensional invariant
submanifold of (N, y,) and the restricted system (n(M), Yeln(my) is mini-
mal, therefore by theorem 1, the mapping n: M—>n(M) is maximal
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rank, and M is a locally trivial fibre space over n(M):

(M’ (P,)——E—-)(TE(M), 'ptln(M))”"—’(Na l//t) .

(¢,) preserves the fibres of M, and ¢ is the natural imbedding.

b) In theorem I, can we we weaken the condition of the mini-
mality of (N, ¥,) by the one of the ergodicity?

Unfortunately we can easily construct the counter-examples. But,
if (N, y,) is uniquely ergodic and the unique ergodic measure has
positive density, then the mapping = is surjective. In this case it is
open whether the similar results can be obtained or not.

¢) In the case of flow, i.e. when T=R, we can weaken the as-
sumptions, that is:

Let X, Y be generators of the systems (M, ¢,), (N, ¥,) respectively,
i.e.

X(x) =000 | =0 €T (M),

Y() =) =0 €2 ().

n being a homomorphism of (M, ¢,) to (N, ,) is equivalent to the
condition

N*X = Y.

The arguments of the proceeding results can be weakened: It is
sufficient to assume that

(X (X)) =f(x) Y(n(x))

where f(x)#0, is a smooth function on M.
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