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§ 0. Introduction.

The purpose of this article is to introduce a family of varieties
(called weighted complete intersections in § 3) which are quite similar
to complete intersections. The idea is simply to embed a variety in
the Proj of a graded polynomial ring (denoted by Q(¢) in § 1) whose
generators are not necessarily of degree 1. The main point is to find
a good open set of Q(¢) (denoted by P(¢) and called a weak pro-
jective space in § 1) in which the above-mentioned variety should be
contained, noting that Q(¢) itself does not meet our requirements
(Theorem 1.7). Some geometric properties of weak projective spaces
are studied in § 2, which are similar to those of projective spaces
and used in the study of weighted complete intersections.

Weighted complete intersections have several properties similar
to those of complete intersections and, on the other hand, they have
the following characteristic property: A non-singular projective variety
is a weighted complete intersection if it contains a weighted complete
intersection of dimension =3 as an ample divisor (Corollary 3.8).
It should be noted that the family of complete intersections never has
such a property. In fact, this is our motive of introduction of weight-
ed complete intersections.

§ 4 includes some results on the deformation of weighted completed
intersections, among which Example 4.3 shows that some of the
weighted complete intersections can be obtained by deforming hyper-

surfaces.
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§1. The definition of weak projective spaces.

In this section, we are going to study some schemes as a
generalization of projective spaces.
As for the notation and conventions, we chiefly use those of [5]

and, as usual, the ring of integers is denoted by Z.

Definition 1.1. Let 7, ¢, ---,¢, be positive integers. We set
d=g.cd.{¢;|0<i<n} and m=lc.m.{¢;J0<<i<<a}. On the other hand,
for each prime p, we consider Z{{|0<:<n pte;}. We denote by

r(e, +++,€,), or simply by r(¢), the minimum of these numbers.
Q e, -+, ea), or simply Q(e), is the scheme Proj (Z[X,, -+, X.]),
where the gradation of Z[X,, -, X,] is defined as follows;

deg X;=¢; (0<:<n), and dega=0 (acZ).

For a positive integer &, S, is the closed subset of Q(¢), defined
by the ideal generated by {X;|kte;}.

For an integer a, Oy (a), or simply O, (@), is the coherent Oy )-
module corresponding to the homogeneous Z[X,, ---, X,]-module Z[X,,
-, X, ] (@) (for detail cf. [5]).

It must be noted that Oy(a) is not necessarily invertible as is
seen in Theorem 1.7. But at least we have:

Proposition 1.1. With the notation of Definition 1.1, Oy (1)
is locally free on Q(e¢) —USi, and the following threc conditions
1<k

are equivalent to cach other: 1) Op(1)#0, 2) d=1, 3) r(e)>0.

Remark 1.2. As is easily seen, we do not have to take ac-
count of so many integers k’s in the first part of Proposition 1.1, to
be precise: U S,= U S,.

1<k

k|lm
k:prime
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For the proof of Proposition 1.1, we need some lemmas.

Lemma 1.3. With the notation of Definition 1.1, Oy(m) is
an ample invertible sheaf, and for arbitrary integers a, b, the
natural Og-homomorphism Oy (a) Q0Oq(m)® -0y (a+bm) is an iso-
morphism.

The proof of this lemma is found in [5].

Lemma 1.4. With the notation of Definition 1.1, we have

ﬂ V+ (Z[XD, Tty Xn]am+1) = LJSk.
1<a 1<k
Remark 1.5. As in [5], for a subset M of a graded ring R,
V,(M)={PeProjRIPDM}, D, (M)={PeProjR|PDPM} and
R, = (the homogeneous part of degree a of R).

Proof of Lemma 1.4. Let T denote Z[X,, -+, X,]. Assume,
for a homogeneous prime P of T, P& [J«xSs. Then for every prime
number ¢ with ¢|m, there exists a homogeneous element I, of T with
F,&P and gtdegF, By the last property there exists a positive
integer a, for each ¢, such that q|2czq deg Fy=1+am, for some posi-

m.

g:prime
tive integer a, hence ][, F,**€ T 4,1 —P. Conversely, assume P&.S; for
a prime number % with k|m (cf. Remark 1.2). Then it follows that
POZ[X,, -, X, ]ams1 for every non-negative integer a, because no
monomial of Z[X, -,
such that Zle;. q.e.d.

X.lams1 can be expressed as a product of X;’s

Proof of Proposition 1.1. The second part is trivial. As for
the first part, let 7" denote Z[X,, -, X,]. Assume, for a homo-
geneous prime P of T, P$1UkSk' Then, by Lemma 1.4, there exist
a non-negative integer a and< a homogeneous element F of T with
F&Timy—P. Then Qy(am+1) is free at P, because P D, (F) and
we have an equality of ’I/’[\l/%]o-modules;

Y~

O (am +1) |D,(F)=T[l] =T[i] F.
F am+1 [
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Hence Oy (1) is free at P, by Lemma 1.3. g.e.d.

In view of Proposition 1.1, we are led to:

Definition 1.2. With the notation of Definition 1.1, P(e,, ---, €,),

or simply P(e), is the open subscheme of Q(e), Q(¢) —US:,. We
1<k

call the scheme P(¢) a weak projective space of size (e, - ,e,), or

simply of size (¢), and define Op(a) =0y (a)|p for every integer a.

It must be noted that P(e¢)s¢ il and only if d=1 namely
r(¢)>0. In P(¢), we have a result much simpler than Lemma 1. 3.

Lemma 1.6. With the notation of Definition 1.2, we have

a natural isomorphism Op(1)®*=0p(a), for cvery integer a.

Proof. It suffices to prove that the natural homomorphism
Op (@) ®O0p(b) >Op(a+b) is an isomorphism for arbitrary integers
a, b. This is induced by the natural 7-module homomorphism 7 ()
RT () »T (a+0b), where T denotes Z[X,, -, X,]. For every homo-
geneous prime P of T with PeP(c), there exist an integer i, a
positive integer a and an element F of T with 0<<;<<n, X;¢ P and

FeT,n,,—P. Therefore we have a commutative diagram;

Op(a) ®O0p(®) |p.rxv > Opla+b)
Il

1 1 1
T |55 ) ®reraT | 5] 7| 5]
7x,) BT |57, FX. ..,
[l

D.(FXy)

a

/’\_//

a /\/ a
7|7l Gz o el ) - Tl =)

where c¢;=am/e;. The last homomorphism « is obviously an iso-

morphism. g.e.d.

Now P(e¢) can be characterized as an open set of Q(¢) as

follows.
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Theorem 1.7. With the notation of Definition 1.2, P(e) is
the largest among open subscts U’s of Q(c¢) with the following two
properties,

(1) OpM)|y is an invertible sheaf on U,

(2) for cvery positive integer a, we have a natural isomor-

phism :

(@Q 1) | U)®a ~_>OQ (a) | U

Furthermore if r(¢)>1, P(c) is the largest among U’s having
the property (1).

Proof. Let U be an open set with the properties (1) and (2),
and x a closed point of U. By Lemma 1.3, the natural map H*(Q(¢),
Og (am+1)) Rk (x) —0g(am+1)®Ek(x) is surjective for a sufficiently
large @, where k(x) denotes the residue field of x. As will be seen
in Remark 2.2, there are isomorphisms Z[Xp, ---, X,]ams:>H'(Ofy (e),
Op(am+1)) (aeZ). Therefore, by the property (1), there are a
positive integer a and an element F of Z[X,, - X,]ems: with @Q,,F
=0y, .(am+1). Hence, by the property (2), O, F™ =0y, . (m (am+1)).
On the other hand, there is an element G of Z[ X, -+, X, ]» such that G &
P, where P denotes the homogeneous prime ideal corresponding to the
point z. Since Oy ,G*"*'=0, ,(m(am+1)) by the properties (1) and
(2), we have G*"*'/F" (0} ., consequently F™=G*"*'x (G*™*!/F™)
&P,V namely Fe Z[X,, -+, X, ] ams1 — P. Hence x&P(¢) by Lemma 1. 4.
In view of Proposition 1.1 and Lemma 1.6, this completes the proof
of the first part.

To prove the second part, let U be an open set with the pro-
perty (1). Then U—P(e) is a closed set of codimension 1 of U.
To prove this assertion, first note that the property (2) is equivalent
to

O D& =0y (m) |y (cf. Lemma 1. 3).

Therefore U—P(e¢) is the closed set defined by the section on U of

» It may be better to rewrite this part as follows. Put S=2Z[X,, ---, X,] and M= {H]
H: a homogeneous clement of S, He&P}. Then noting that G**'/FmeCf,.
=(M'S)(CM~'S and G is a unit in M!S, we see that F is a unit in M"S.
Hence F&P.
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the invertible sheaf (Op(m)|y) ® (Og(1)|y)®"™ corresponding to the
natural homomorphism (O (1)) ®"—=0Og(m)|y. This proves the above
assertion. Now by the definition of P(¢), the codimension of Q (¢) — P (¢)
in Q(e) is equal to r(¢). Hence, if r(¢)>1, U—P(e) =¢ namely
UCP(e). g.e.d.

It would be worth while to mention that we do not have to
restrict the base ring. In fact:

Remark 1.8. For a commutative ring K with 1, Q (¢) X Spec K,
S, X Spec K, P(e) xSpec K enjoy the same properties as asserted in
Proposition 1.1, Lemmas 1.3, 1.4, 1.6, and Theorem 1.7. These
are proved by the theory of base change.

§ 2. Some properties of weak projective spaces.

In this section we fix a field K, and in view of Remark 1.8, we
use the notation of Definitions 1.1 and 1.2 except that Q(e) X Spec K,
S, X Spec K, P(¢) xSpec K are used instead of Q(¢),S:, P(¢c) re-
spectively. Namely from now on, we define: Q(¢) =Proj(K[X,, -,
X.1), Se=V,({Xilkte;}) and P(e) =Q(c) —1L<Jk5k-

The purpose of this section is to prove some properties which
will be used later. First we prove that r(e) is a topological in-
variant of the variety P(e).

Proposition 2.1. (1) r(¢) =0 if and only if P(e)=¢.

(2) r(e)=1 if and only if P(e) is quasi-affine and non-ecmpty.

(3) If r(e)==1, then P(e) contains a complete subscheme X of
dimension r(e) —1, which is defined on Q(e) by (n—r(e)+1) ele-
ments Fy, -+, Fo_riy of K[ Xy, -+, Xolam Sfor some positive integer a.
On the other hand, P(e) can not contain any complete subschemes
of dimension =r(e).

Proof. (1) is already proposition 1.1. (2) and (3) follow im-
mediately from the following three facts:
(i) The codimension of S, in Q(e) is equal to r(c).
1<k
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(i) S, is the set-theoretically complete intersection Q (¢) defined
by the global sections X;™/*¢ (kte;) of the ample invertible sheaf O, (m)
(cf. Lemma 1.3).

(iii) There are natural isomorphisms K[X,, -+, X, ] an>H’(Q (e),
Op(am)) (acZ) (cf. Remark 2.2). g.e.d.

The following remark on cohomology are used in Proposition
2.1 and will be used later.

Remark 2.2. Let R be a commutative graded noetherian ring
with 1 and with non-negative degrees, and assume that R is generated
by homogeneous elements fy,---,fy of R, as an Ry algebra. Then,
by [6,§2], for an arbitrary graded module M we have an exact

sequence
0—>H'((f); M) >M—H"(X, M(%)) > H'((f) ; M) >0

and isomorphisms H*(X, M(x))SH™'((f):; M) (ieZ,i>1), where
X=Proj R (for detail, cf. [6, §2]). In particular if the ring R is
Cohen-Macaulay of dimension 7z+1 (z=>1), then H*((f); R) =0 (i Z,
i<<n+1), hence;

RSH(X,04(0)) ((e2),
H/ (X,0,0)) =0 (,jeZ, 0 j<n).

The followings are simple generalizations of some properties of

projective spaces to the case of weak projective spaces.

Proposition 2.3. (1) Set A(¢c)=SpecK[X,, -+, X,]— lgk
V({{Xilkte}). Then there is a natural morphism n: A(e) ->P(e),
and this is a Gq-bundle.

(2) OpQ) generates Pic P(e) in gencral, and Pic P(e)=Z if
r(e)>1.7%

@) If r(e)>1, we have Kp=0p(—3]7_v¢;), where Kp denotes
the canonical sheaf of P(e).”

» 1In case r(—eS=T, it holds that Pic P(e)L'Z/\gZ with
t=g.cd.{edg.c.d. {eo, ---, e, -, €} >1}.

®  This assertion holds even if r(¢) =1.
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Proof. (1) rm is given as follows: For every homogeneous element
F of K[X,, -, X,] with D, (F)CP(e), the morphism A (e)r—>P(e)r
is induced by the natural K-algebra homomorphism; K[X,, ---, X,, 1/F],
—->K[X,, -, X,.,1/F]. These morphisms are obviously patched to-
gether and we obtain 7. Next we consider an open set D, (FG) of
Q(e), for a positive integer a and two homogeneous elements I and
G of K[X,, -+, X,] with deg F=am and degG=am+1. Then, by
Lemmas 1.3, 1.4 and Remark 1.8, P(¢) is covered by such open
sets D(F'G)’s. The morphism 7|pre 1s induced by the natutural K-
algebra homomorphism K[X,, -+, X,, 1/F 1/G],—»K[X,, -, X,, 1/F,
1/G]. Now putting H=G/F, we have;

K[Xo’“.)Xﬂ7—1_’i]
F Gl

=K[Xo/H*, -, X,/H*", H*"/F, H'"*!/G],
K[% %, L, 1]
F' G

=K[X,/H*, -, X,/H*",---, H*™/F, H*"*' /G| [H, 1/H].

These mean that D(FG) =D, (FG) XG,. It is immediate to check
that these are patched together and we have a G,-bundle.

(2) Since Op(l) is an ample invertible sheaf and P(e) is
smooth by (1), it follows that Op (1) generates Pic P(¢), provided that
it is proved that for every subvariety D of codimension 1 of P(¢),
there is a homogeneous prime element F' of K[X,, -+, X,] such that
Supp D=V (F).

Now assume that D is a subvariety of codimension 1 of P(e),

ki

then 7~'(D) is a homogeneous subvarity of codimension 1 of A(e).
Since A(e) is an open set of the affine space 4"*', there exists a
homogeneous prime element F of K[X,, -+, X,] such that Supp 77" (D)
=V (). This means Supp D=V, (F).

If 7(e) >1, then Op(a) is not trivial for any positive integer a;
this follows from the fact that Op(1) ®O¢=0¢(1) is ample on C,
where C is a complete subscheme of dimension =1 given in Prop-
osition 2.1, (3).

(3) By (1) and (2), we can define an integer s=s(cy, ---, ¢,) with
Kpwy=0pw (—s), in the case r(¢) >1. If r(e, -+, ¢.o1) >1, we obtain
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(*) 3(609'“,en) _enzs(e%”"en—l)

by embedding P(ey, -+, e,_,) in P(ey, -+, e,) as the closed subscheme
defined by X, and applying the adjunction formula

KP(eo,m,e,,) (Xﬂ) ®0P(eo. e €n-y) =KP(en,m,e,,_,)o4)
If (e, -+, €,)>1, by (%), we have

S(eO) ”"en) = _2+5(1’ 17007 “"en),
s(1,1,e, -+, e0) —2 e;=5(1,1).
=0

As is well known, s(1,1) =2, hence s(ey, -*-, €2) =D Jj—0 €;.
This completes the proposition 2. 3.

Remark 2.4. More precisely than Proposition 2. 3, (3), we have
an exact sequence;

n
0-0p—>@0p(e;)) >Tp—0,
i=0
but, in this paper, Proposition 2.3, (3) is sufficient for our use.

§ 3. The definition and some properties of weighted complete
intersections.

The aim of this section is not only to introduce the notion of a
“weighted complete intersection”, but also to give some evidence that
the notion of a weighted complete intersection is a natural generaliza-
tion of the one of a complete intersection.

We use the notation of § 2.

Definition 3.1. With the notation of Definitions 1.1 and 1.2,
let ¢, ay, -+, a, be positive integers. We consider Proj(K[X, -, X.]/
&, -+, F,)), for arbitrary homogeneous elements F,, --- F, of the
graded ring K[X,, -, X,] (given in Definition 1.1) with deg F;=a,
(1<j<c), satisfying the following two conditions:

% We have used the equality 7
OP(eo; e €n) (1) ®OP(¢ov “en-g) =0P(€uv €n-1) (€Y}

which is non-trivial but is easy to prove.
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1) (Fy, -, F.) is a regular sequence of K[X, ---
2 V. F, -, Fo) ﬂ]ngk=¢~

Then an algebraic K-scheme X is called a weighted complete

X.].

b

intersection of P(¢) of type (ay,---,a.), if X is isomorphic to such
a K-scheme Proj(K[X,, -, X.]/ Iy, -+, F.)).

In this case, for an arbitrary integer a, we denote by Ox(a) the
invertible sheaf on X induced by Op (@).

Remark 3.1. By Proposition 2.1, (3), we have dim X=n—c<
r(e), namely ¢>n—r(e). Then if dim X>0 (resp. =0) it follows
necessarily that r(¢) >1 (resp. =1).

As for the degree of Ox(1) (see Definition 3. 1), it is calculated
by using the result of the appendix (Corollary A.2):

Proposition 3.2. If X is a weighted complete intersection of
type (a,, -+, a.) of P(e), then Ox(1) is an ample invertible sheaf
and we have an isomorphism Oyx(1)®*=>0x(a) for every integer a.
Furthermore (Ox(1)" %) =115 a;/11i=0e:”

Proof. The first part follows immediately from Lemmas 1.3 and
1.6. As for the second part, we have 7°(X,Ox(w)) =4, 4..H (e,
o+ eq.;u) for sufficiently large =, because Fy, ---,F. is a regular
X.] (the definition of H(e;u) is found in Defi-
nition A.1, and the proof of this assertion is similar to the one of
Theorem A.1, (2)). Since r(¢)>dim X=0 by Remark 3.1, the
coefficient of #"~¢/(n—c)! in dg,---do H (eo, ---, €ns 00) is [[521a;/[Ii=0c:
by Corollary A. 2. q.e.d.

sequence of K[X,, -

b

As for the cohomology groups of Ox(a) (e Z), we have the

following result.

Proposition 3.3. Let X be a weighted complete intersection of
dimension =1 of P(e) of type (a,,---,a.). Then we have:

b/ (Ox(—lr)"") is the intersection numbe_r_of (n—c) invertible;h;erl\izes Ox(1), -, 0x (D)
on X.



On a gencralization of complete intersections 629
(K[Xo, -, Xo]/(Fy, -+, Fo)) e H (X, 0x(0)) (a€Z),
H (X,04(a)) =0 (a,jeZ, 0 j<n—c=dim X),

. n
CDX=OX(IL‘.101 _g e:),
= i=

where wy denotes the dualyzing sheaf of X.

Proof. The first and the second equalities follow immediately
from Remark 2. 2.

As for the last one, first note that wy=Extip(Ox, Op(— 1 e;))
(see Proposition 2. 3, (3)). Since (F,,---F,) is a regular sequence of
K[X,, -, X,] by the definition of X, the Koszul complex ®5.,K; is
a resolution of Oy as an Op-module; K; is a complex of Op-modules
with

O, if =0,
K)o=(O0p(—a;) if b=1,
0 if b€Z and 0b650,1,
(d;):: Op(—a;) >0Op is a multiplication by F,

(for detail, see [6]). This proves that wx=0x 51 a;—> -0 e:).
q.e.d.

The following example is the simplest one which is non-trivial.

Example 3.4. Put p=char K. Assume that 7,a,¢, -, ¢, are
positive integers such that arbitrary two of p,a, e, -, e, are relatively
prime to each other. We define X=Proj(K[X,, -, X,]/(F)), with
deg Xi=e; (0<i<n), m=|]tve; and F=3"7, X;"/*t, Then X enjoys
the following four properties:

(1) X is a smooth projective variety of dimension 7 —1,

(2) If »=4 ie. dim X=3, then Pic X is isomorphic to Z and is
generated by O4(1).

(3) Ox(1) is an ample invertible sheaf of degree «, and Ky
=0x(am—3""e)).

(4) If e;>1 for every Z, then Ox(1) has no global sections.
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On the other hand, assume ¢;=---e,_,=1. Then O4(1) is generated
by global sections X, ---X,_;, which define a morphism of X to P,_,.
This morphism makes X an a-sheeted cyclic branched covering of

P,_, with branch locus a smooth hypersurface of degree am.

Proof. (3) is proved in Propositions 3.2 and 3. 3, and (4) follows
immediately from Proposition 3.3. (2) will be proved in Theorem
3.6. As for the smoothness of X, it suffices to prove that the variety
Spec (K[X,, -+, Xu]/F)) =V (X, -+, X,) is smooth (cf. Proposition
2.3, (1)). This is an immediate consequence of the Jacobian Criterion.

q.e.d.

It would be worth while to mention that the variety X given in
Example 3.4 is obtained as a quotient of a smooth hypersurface X
of P, by a finite group Z/mZ. To be precise, put Z/mZ=Spec K[T]/
(T™—1) and X=Proj (K[Y,, -, Y,]/(G));G=>,Y;", and K[Y,,
.-, Y,] is the graded ring defined by deg Y;=1 (0<<{{<<{#) and deg r
=0 (rek). Define a dual action ¢*: K[Y,, -, Y,]/(G)—
K[T]/(T™~D®K[Y, -, Y,1/(G) by a*Y,=T"“QY, (0<i<n).
This induces an action ¢: Z/mZ < X—>X. Then X is a quotient of X by
the group Z/mZ.

But, even in the case char K=0, not all of the smooth weighted
complete intersections are obtained as quotients of smooth complete

intersections by finite groups in such a way.

Example 3.5. Assume that char K+2. Then X=Proj (K[X,,
X, Y]/(F)) is a smooth curve over K, where deg X;=deg X;=1,
deg Y=2 and F=Y+2(X} + XY +2X?X? On the other hand,
X=Proj (K[X,, X;, X;]/(G)) has a singular point (0:1:0), where
deg X;=1 (:=0,1,2) and G=X;"+2(X*+ X)) X"+ 2X 2 X2

The following theorem gives some evidence of the naturality of

the notion “complete intersection”.

Theorem 3.6. Let X be a projective K-scheme with an ample
effective Cartier divisor Y. Assume Y is, as a K-scheme, a weight-
ed complete intersection of dimension =2 of type (ay,---,a.) of
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P(ey, -+, ¢,). Assume furthermore the following three conditions:
1) For cvery closed point x of X, depth Oy ,=2.
(2) There exists an invertible sheaf L on X such that LQOy=
Or(Q), where Op(1) is the invertible sheaf given in Definition 3. 3.
(B) There exists a positive integer a such that Ox(Y)R0Oy=
Or(a).
Then X is a weighted complete intersection of type (a,,---,a.)
of P(ey, -, ¢n,a), and L=0x(1).

Proof. We prove the theorem is several steps.

Step 1. Ox(Y)=L®" in particular L is ample. And we have
H'(X,L®)=0 and H"(X,L®")=0 (ieZ,jcZ, j>0).

Proof of Step 1. We obtain an injection Pic X< Pic Y, using

the assumption (1), dim Y>=2 and H (Y, 0,()) =0 (€ Z) (see Prop-

osition 3.3 in this paper and Corollary 3.6 in [8, Exposé XII]).

In particular we have O, (Y)=L®*. Hence we have an exact sequence

for every integer i,

0— L8 L& 50y () —0.
By the equalities H'(Y,0,())=0 ({€Z), we obtain surjections
H'(X, L®¢-*") > H' (X, L¥) (i,j€Z,j=0). On the other hand, by the
assumption (1) and Corollary 1.4 in [8, Exposé XII], H'(X, L®") =0

for sufficiently large j. Hence we obtain H'(X, L®) =0 for every
integer z. By a similar method, the last assertion can be proved.

Step 2. There exists an element @ of H°(X, L®*) such that we
have a naturally induced isomorphism of graded rings

@ H'(X, L#) /0 @ H'(X, L) = @ H' (Y, 0- (/)

i€z
where the graded ring structures are the naturally induced ones.
Proof of Step 2. By Step 1, we have an exact sequence

0> L2 L&y (1) -0

for every integer i. Therefore, again by Step 1, we have an exact

sequence for every integer i,
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(%) ; 0—-H"(X, L® ") 5> H (X, L8 - H' (Y, Oy (1)) —0.

By (%), and Step 1, we have H°(X,Oy) =K. In particular, we have
the following exact sequence

(P 0->K—->H"(X,L#) -H*(Y, Oy(a)) —0.
Let @ be the image of 1 by the map K—H"(X,L%%. Then (x);
becomes

0—H"(X, L&) S HY (X, L&) > H' (Y, Oy ()) —0.

This proves the assertion of Step 2.

Step 3. In view of Proposition 3.3, assume that we have a

graded K-algebra isomorphism
K[XU’ Ty« n]/(Fl, '”7F¢) _>j<—6|37H0(Y, 05’(i))

where deg X;=¢;, deg F;=a; (0<i<n, lfjﬁcj and dim Y=un—c. We
define K-algebra homomorphisms

a: K[}_(Uy ""Xn’ Z] —)K[X‘J; “'an]’

B: K[X_ﬂ’ “'72702]—_) @ HO(X7 L®i):

i€z
with deg X;=¢; (0<i<n), deg Z=a, aX;=X, (0<i<n), aZ=0, and

BZ =0, such that the following diagram is commutative:

K[X,, -, X, 2] 5 @ H (X, 1)
€7
a r | nat.

K[X, -, X] o @ H' (Y, 050)).

Then f is surjective. This follows immediately by applying Naka-

yama’s Lemma to

@ H'(X, L®) =Im 8+ 0 @ H'(Y, L&).
icZ

Step 4. There exist homogeneous elements Fj, ---, F, of Kerf
with deg F;=a; and oF,=F; (1<j<c), such that F,, -, F, generate

Ker 5.

Proof of Step 4. There is a commutative diagram
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0-K[Xy, -+, X, Z]) SK[ Xy, -+, X, Z] SK[X,, -+ X, ] >0

B B 8
0->@H' (X, L&) =2 @ H* (X, L%) - @ H'(Y, Oy (i)) -0
i€Z ieZ i€Z

where the rows are exact and the vertical arrows are surjective.
Hence we have an exact sequence

0—Ker BX—Z>Ker B Ker ¢ —0.

In view of this exact sequence, we can take elements F,,---, F, of
Ker 8 such that F;e (Ker f),, and aF;=F; (1<j<c¢). Then F,, -,
F, generate Ker 8; this can be proved by applying Nakayama’s Lemma
to K[X,, -, Xn, Z]1(F,, -, F) +Z Ker g=Ker 8. This proves Step
4,

Step 5. X is a weighted complete intersection of P(ey, -, e,, a)
Of type (al, ”'7aC)'

Proof of Step 5. Since L is an ample invertible sheaf on X,
there exists a positive integer & such that H°(X, L®™*") generates
@iezH (X, L8C™+DY) (cf. Theorem 3 in page 45 of [11]), where m=

l.e.m.{ey, -*+, en, a}. By considering the homogeneous part of degree
m(bm+1), we see that

(K[XD’ T Xn’ Z]m) bm+1c (K[Xﬂa Y Xﬂ’ Z] bm+1)m
+ (the ideal generated by F,---, F,).

Consequently V, (F, -, F)NV,. (K[Xy, -, Xn, Z]sms1) =¢. In view
of Lemma 1.4 and the assumption dim X=n+1—¢, this proves Step
5.

Step 6. L=0x(1).
This is obvious, because it is proved in Step 1 that the natural

map Pic X—PicY is an injection. This completes the proof of
Theorem 3. 6,

In some cases, the assumptions in Theorem 3.6 can be simplified.

In this simplification the following theorem plays an essential role.

Theorem 3.7. Let X be a weighted complete intersection of
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dimension 3. Then Pic X=Z, and Oy(1) generates Pic X,

Proof. Assume, with the notation of Definition 3.1, X=Proj
K[Xy, -+, X1/ (Fy, -+, F)). Let K[Y,,---Y,] be a graded polynomial
ring with deg Y;=1 (0<<i<<n). We define a graded K-algebra homo-
morphism @: K[X,, ---, X,]>K[Y,,---,Y,] by 0X,=Y and put
G;=0F; (1<j=<c¢). Then 0 induces a graded ring homomorphism

K[X(]’ ”'an]/(Fl, '”,FC)_)K[YU’ Y Yn]/(Gl, Y Gc)'

Thus we obtain a morphism of K-schemes ¢: X—>X with ¢*OQ4(1)
=0x(1) (define X=Prroj(K[Y,, -, Y,]1/(G,,---,G.))). On the other
hand, it is easy to see that K[Y,, ---, Y,]/(G,, -, G,) has the follow-
ing decomposition as a K[X,, -, X,]/(F,, -+, F.)-module

K[Y07 T Y‘"]/(Gl’ Y GC)
= C—D (K[Xﬂa.“aX‘n]/(Fly."aFc))Y()’Y“”'ann‘

v;, £t integers
Consequently we have a similar decomposition of ¢,Ox% as an Oz-module

M 0 Ox=@0x(—3] 0.

=0

Now (1) implies that ¢*:Pic X—>Pic X is an injection. In fact, if

L is an invertible sheaf on X with ¢*L=0y, we have
L®¢*@Tr:fﬂ* (p*L) :(P*O?

by the projection formula. Then (1) implies
PBL( —;:, v;) ’—VC‘B@A(_%} v;)

whereas such a decomposition is unique up to a permutation of the
direct summands, by the Krull-Schmidt theorem stated in [1].® Hence
we have L~0y(d) for some integer b. Here assume 55<0. Then
L or LY is ample on X, consequently Ox=¢*L=¢*L" is ample on
X (note that ¢ is a finite morphism). This is a contradiction, be-
cause X is a proper K-scheme of dimension >0. Hence L=,

®  Note that the theorem stated in [1] is also applicable to an algebraic K-scheme
X proper over K with H°(X, Ox) =K.
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namely ¢* is an injection. On the other hand, by Corollary 3.7 in
[8, Exposé XII], Pic X is isomorphic to Z and is generated by Oz (1).
This implies that ¢*: Pic X—Pic X is an isomorphism, because e*O0x (1)
=0x(1). q.e.d.

Hence as a special case of Theorem 3.6, we have:

Corollary 3.8. Let X be a locally factorial projective K-scheme
with an ample effective divisor Y. Assume Y is a weighted com-
plete intersection of type (a,, -+, a.) of P(e, +,¢n). If dim Y>3,
all of the assumptions (1), (2) and (8) stated in Theorem 8.6 are
satisfied. Hence X is a weighted complete intersection of type (ay,
e @) of Pley, -, ¢, ).

Proof. This is an immediate consequece of Theorem 3.7 in
this paper and Corollary 3.6 in [8, Exposé XII].

With the notation of Corollary 3.8, if we assume dim Y=2 in-
stead of dim Y>3, then X need not be a weighted complete inter-

section.

Example 3.9. Let Y’ be a smooth quadric surface in P, such
that Y’D a line / (such a line exists if K is algebraically closed).
We denote by 7: X—P; the blowing-up of P; along /, and by Y the
proper transform of Y’ with 7. Then the variety X and its sub-
variety Y enjoy the following three properties;

(1) X is a smooth projective variety,

(2) Y is isomorphic to a smooth quadric surface in P,

(3) Y is an ample divisor of X, whereas X is not a weighted
complete intersection.

Proof. Verification of (1), (2) and the first part of (3) is immedite.
As for the last assertion, it suffices to prove that Pic X=Z@PZ (cf.
Theorem 3.5). On the other hand, this is an immediate consequence
of the fact that X is a blowing-up of P; along [ (cf. [2]). q.e.d.

In view of the above example, the assumptions in the following
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proposition are reasonable (at least in the case char K=0).

Proposition 3.10. Let X be a locally factorial projective K-
scheme with an ample effective divisor Y. Assume dim Y=2 and
Y is a weighted complete intersection of type (ai, -+, a.) of P(e, -,
e,). If one of the following two conditions holds, then all of the
assumptions (1), (2) and (8) in Theorem 3.6 arc satisfied.

1) PicY=Z and wy=0p(b) with b prime to char K.

2) Ox(Y)RKRXO0y=0y(b’) with b’ prime to char K.

Hence if one of these two assumptions holds, then X is a

weighted complete intersection.

Proof. This proposition follows from the fact that the cokernel
of the natural map Pic X—PicY has no torsion prime to char X.
This is proved in [12]. q.e.d.

For example, by Propositions 3.8 and 3. 10, we have:

Corollary 3.11.” Let X be a smooth projective K-variety of
dimension n containing a closed K-subscheme Y=P,_, x as an ample
divisor. Assumec furthermore n=4, or n=3 and char K#3. Then
X=P, x and Y is contained in X as a hyperplanc.

§ 4. Related results.

In this section, we consider algebraic small deformations of

weighted complete intersections.

Proposition 4.1. Let n: X—S be a proper and flat morphism
with S=Spec A, where A is a local ring with residuc field K and
maximal ideal M. Assume the following two conditions:

(1) Xx=XQRuK is a wecighted complete intersection of dimen-
sion =2 such that Xx~=Proj (K[X,, -+, X, ]/ (Fy,---F.)), with the
notation of Definition 8. 1.

(2) There cxists an invertible sheaf [ on X such that LQOy,

" Professor H. Tango proved this result without any restriction except for =3 with
a geometric argument. The case n=2 is treated in [4].
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~0Ox,(1). Then there exist homogeneous elements G; with deg G;=a;
A<i<¢) of A[X,, -, X, P enjoying the following threc properties:
i) Gimod MA[X,, - X,].,=F: 1<i<o).
ii) X=Proj (A[X,, ---, X,1/(G,, -+, G.)) and the imbedding Xx
—X is induced by the natural graded A-algebra homorphism

A[XO’ ”',X"]/(Gh .”7G¢') _>K[X0: '”X"]/(Fl’ '“7FC)'
lil) c.L):O}r(e) xSl)c(A(l) | X

The proof is similar to those of Theorem 3.6 in this paper and
Lemma 1.5 in [9], therefore we omit it.

Similarly to Theorem 3.6, if dim Xx=>3, the assumption 2) in

Proposition 4.1 can be simplified a little.

Remark 4.2. Let 7: X—S be a proper and flat morphism with
S=Spec A, where A is a local ring with residue field K and maximal
ideal M. In addition to the assumption (1) of Proposition 4. 1, assume
H*(Xg,Ox,) =0. Turthermore assume that one of the following three
conditions holds:

(a) A is a complete local ring.

(b) 7 is smooth or dim Xx=>3, and 7 has section, i.e. there exists
a morphism ¢:S—X such that rod=ids.

(¢) m is smooth or dim Xx=>3, and g:c.’d.ih°(0xx(i)) =12

Then the assumption (2) of Proposition ;1611 is necessarily satisfied,

consequently the result of Proposition 4.1 holds.

Proof. Case 1. Assume that (a) holds. Then the existence of
L in Proposition 4.1, (2) is an immediate consequence of Corollary
2.2 in [8, Exposé XI] and Corollary 5.10 in [8, Exposé XII].

Case 2. Assume that 7 is smooth or dim Xx=>3. In this case,

the method of our proof is to give, under some additional assumptions,

®  With the notation of Definition 3.1, the gradation of A[X, -, X.] is defined by

deg r=0 (reA), deg Xi=e; (0<i<n).

It is easy, in some cases, to check this condition. Indeed if Xk is a complete in-

tersection of type (ai, -++, a.) of P, with 1<a,<---<a., then gecdd i B ( Xk, Oxg())
1

9)

=g.cdfn+1, ay, -, ac}.
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descent data of [ the invertible sheaf on X®4A which is given by
the result of Case 1 (A denotes the completion of A). Let us assume
that B is a commutative ring 21 and

A2, A—B
8

are ring homomorphisms such that ‘qo’p=‘Ro’p. Then we consider
g

the following commutative diagram of naturally induced morphisms:

D
X <& X; & X,

I A
k4 Ky Tp

Spec A< Spec AT Spec B
8

where X; (resp. Xp) denotes X@A/’i\ (resp. X@4B). With the nota-
tion of the above diagram, we put M =3*L® (@+L)® ", where [
is the invertible sheaf on Xj; obtained by the result of Case 1.

Then we claim: Jl=nzM is an invertible sheaf on Spec B, and
the natural map 7z*J]— M is an isomorphism.

Proof of the claim: Let A’ and B’ denote noetherian subrings
of A and B with the following three properties; A’ is a local A-
algebra dominated by A, we have the following commutative diagram
of naturally induced morphisms

Spec A «2— Spec A <— Spee B
8
; ol

Spec A <2 Spec A’ <_‘ﬁ’ Spec B’

and furthermore there exists an invertible sheaf " on X, =X&®,A’
such that F* " =1 with f=fQspecs Xa: Xi—>Xa. 1f we put M’
=R"* 'R (@ *L)®Y (the definitions of & and B’ are similar to

those of @ and (3), we have:
(*) M| %0y =0 yeays With Xy = XQak(x) (x&Spec B').

Proof of (x). First note that Proposition 4.1 is applicable to
the A’-scheme X,.. Consequently X, is a weighted complete inter-
section of type (a,-'-,a.) of P(ey,--,¢,). So if dim Xxg=2 and 7

is smooth, there exists a non-zero integer a such that
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(C_(/*_f,l Xk(t))®a: (E,*—E,l Xk(l))®a:KXk(z)

(a is non-zero by the assumption H*(Xg, Ox,) =H"(Xy, Kx,) =0).
This proves (x) because Pic X, is torsion free.'” If dim Xx>>3, both
a* L] e, and B'* L’| 5., are ample generators of Pic X,=Z (cf.
Theorem 3.7). This proves (x), hence the proof of (%) is completed.

Proof of the claim (continued). Now we have H'(X, (), Ox,) =0
(reSpec B’) from the proof of (%) (cf. Proposition 3.3). There-
fore by applying the results of [6, § 7], we see that 7z M’ is a
locally free sheaf and 7z« commutes with base change.!” Noting that
@ M) Qk (x) > H"( X2y, M | xeery)=k(x) for every point x of Spec B’,
we obtain the following two results;

(%) T M’ is an invertible sheaf,
(***) 7tm«_7}'l = g* (T[‘Bu(ﬂ/) .

Combining (%*) and (kx%), we have first part of the claim. The
combination of (%) and (**) implies that the natural homomorphism
e ¥ g M —> M’ is an isomorphism, then (#*%) implies the second
part of the claim. This completes the proof of the claim.

Case 2.1. Assume that (b) holds. Bp the equality

TN~ (y06,) N0, H = (Bo65)* LR {(@o0,) * Ly o
= (04°8) * LR { (0 aot) * L} &
=B*(04* L) @a* (05* L) &,

we have a natural isomorphism of B-modules;
g, Homy, (@* L, 7* L) »Homy (a* D, * D)

where @ denotes the invertible sheaf c:*L on Spec A.
To be precise, @g4,’s have the following properties:
(1) If a=P, 0,,Gds?) =idys.
(i) For three morphisms «, 8, 7: Spec B—>Spec A with poc=pof

19 First we have an injection Pic Xiiy & Pic Xi(ry, since Xk is projective. Next
by the assumptions H'(Xk(z), Oxx) =0 and that K ¥k is ample, Xi; is a rational
surface by the theorem of Castelnuovo-Zariski. This proves that Pic X, is tor-
sion free.

' This means that, for every morphism ¢: Spec C—Spec B, the natural map ¢*za+ M’
—=nre@* M’ is an isomorphism, where §=¢Xspoes' Xp’, o= Xspcca Spec C.
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=por, the following diagram commutes;

Hom XB(O?*.EA, 3*_1) x Hom XE(E*f, 7* ) —>Hom y, @ L, 7*0)

g, al 0,.,9l Gr.al

Hom 5 (@*D, 8* D) x Hom »(8*D, 1* D) —>Hom 5 (a* D, 1* D).

(iii) For a scheme SpecC and a morphism ¢: Spec C—Spec B,

we have

q*mﬁ,a = mﬂoq.aoq .
Due to these properties (i), (ii) and (iii), giving descent data of L with
respect to P is equivalent to giving those of 0‘3*.,? with respect to p.
Now since O‘,i*.f is isomorphic to A as an fi-module, it is immediate
by the theory of flat descent in [7, Exposé VIII] to check the ex-
istence of an invertible sheaf . on X such that ﬁ*,f:f.
Case 2.2. Assume that (c) holds. Take integers a’s (e Z)

almost all of which are zero, satisfying the following equality

daii-h'(Xx, @Xx(i)) =1.

icz
By the result of Case 2, we have a natural Oy isomorphism
B* L= (ns*N) RKRa* L.

~

Note that since HI(X(AA/EDM)’I@\X@/SUM)) =H"'"(Xx, Ox,(@)) =0, again
by the results of [6, § 7], we have the following results (1) and (2)
for every integer 7,

(1) 72.L% is a free A-module of rank A'(Xx, Ox, (),

(2) we have natural B-module isomorphisms,

a* (mp L mpa* L8 and  p* (w2 L) S upf* L

(we identify the terms on both sides by these isomorphisms).
For every integer i, we have an equality of B-modules;

B* (ﬂj*f‘x’i = nB*B*.EA‘gi = m®i®ﬂf3»’aﬁ*f®i
=T Ra* (sL%).
By taking the determinant of this equality, we have

B* (det w2 L&) = TEOR* (det i LE)



On a gencralization of complete interscctions 641

where 0(7) denotes i-h"(Xy, Oy, () G€Z). Since DX a;-b(@) =1,

we have an equality of B-modules
B*é: f]’l@a*é with &= X (det n',q‘f@‘) @
i€z

~ ~
Since & is an invertible sheaf on Spec 4, we have a natural iso-

morphism of B-modules;
¥o: Hom 4, (c_t*f, Ef)% Hom 5 (a*é\, ,B*é) .

It is easily checked that these ¥ ,’s enjoy the three properties similar
to those of @g,’s stated in Case 2.1, Hence the existence of [
stated in the assumption (2) of Proposition 4.1 is proved. q.e.d.

As a simple example of deformation of weighted complete inter-

sections, we have the following.

Example 4.3. Let A be a discrete valuation ring with uni-
formizant 7 and residue field K. Take positive integers a, b, n with
a>1b>1, and n>1. Take two homogeneous elements F, and F, of
Al[X,, -+, X,] with deg Fy=a, deg F;=ab."® Assume that Proj (K[X,,
-, X,1/(F,, F,)) is a smooth variety over K, where F; denotes the
image of F; by the natural map A[X,, -, X, ] >K[X,, ---, X,]. Then
X=Proj (A[X,, -+, X,,, Y]/ (Y —F,, Y°+F,))™ enjoys following prop-
erties:

(1) The natural map n: X—>Spec A is smooth and projective.

(2) If L denotes the quotient field of A, then X;=XX,L is a
smooth hypersurface of degree ab of P, defined over L.

(B) Xx=X®aK is not a hypersurface of degree ab of P, but a
weighted complete intersection of type (a,ad) of P(1,---,1 a).

n41
To understand the meaning of this example, we consider smooth

specializations of weighted complete intersections.

Definition 4.1. We consider a proper and smooth morphism
of schemes 7: X—>S with the following two properties:

12 Thé-éradzltion of A [Xo, +++, Xa] is Vd;f;nemgeg r:(irreiA) and deg7X7=71. kOSiSn).
' The gradation of A[Xo, -+, X, Y] is defined by that of A[X,, -+, X,] and deg Y =a.
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(1) S=Spec A, where A is a local domain with residue field K
and quotient field L.

(2) The L-scheme X,=X®sL is a weighted complete inter-
section of type (a,,---,a.) of P(e).

Then Xx=X®,K is, by definition, a smooth K-variety. Now a
smooth K-variety Y is called a smooth specialization of weighted com-
plete intersections of type (ay, ---,a.) of P(¢) if Y is isomorphic to
such Xjg.

Now assume char K=0 and K=K. Then it is proved that
smooth specializations of smooth hypersurfaces of degree <3 and
dimension =3 are smooth hypersurfaces of the same degree (cf. [3]
and [10]). Example 4.3 shows that, if d is a composite number,
the family of smooth hypersurfaces of degree d is not closed under
smooth specialization. On the other hand, it is proved that the family

of weighted complete intersections of type (2,4) of P(1,---,1,2)
n+2
with #2>3 (note that every smooth hypersurface of degree 4 of P,,,

is isomorphic to some member of this family) is closed under smooth
specialization (cf. [3]). The author knows no further results about

smooth hypersurfaces of degree =5 and dimension 3.

Appendix. On some Hilbert functions.

The purpose of this appendix is to study some Hilbert functions
and determine the leading coefficients of them which are used in § 3.
Throughout this appendix, K denotes a field.

Definition A.1l. Assume that » is a non-negative integer and
¢, -, ¢, are positive integers. Then as in Definition 1.1, m=l.c.m.
{¢]0<i<n} and r(e) = min 2{{|0<i<n, pte;}. Let K[X,, -, X,] be

p:prime

the graded ring defined by deg X;=¢; (0<i<<22) and degr=0 (r&K).
Then we define:

He,, -, en; 1) =lengthy K[X,, -, Xo]u (€ Z).

For an integer & and a function f: Z—Z, 4,f is the function of Z to
Z defined as follow:

U4y ) (@) =f(x) —f(x—=b) (x€2).
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The main result of this appendix is the assertion (2) of the follow-
ing theorem, which shows that r(e¢) tells us how far the function

H(e;u) is from being a polynomial.

Theorem A.1. (1) With the notation of Definition A. 1, take
an arbitrary integer i. For every integer u with u=i (modulo m),
we consider the function H(ey, -, e.;u). Then, for sufficiently large
u, H(ey, -+, ensu) is a polynomial in u of degree <n (degree n if
1=0). We denote this polynomial by H;(e,, -, ¢e.;u).
(2) With the notation of (1), we have
max deg (H;(eo, ~-ea;u) —H;(eo, -+, ensu)) =n—r(c),

0<i, j<m—1

where the degree of the polynomial 0 is defined to be —1.

Proof. (1) If n=0, it is immediate to check the assertion.
Therefore assume that 2>>0. Then applying Remark 2.2 to the Oy-
coherent sheaf Ony(x) (see, for the notation, Definition 1.1), we

obtain;
H(e:u) =h"(Q(),0p @) (ueZ).
Put u=mv+i (veZ), then Oy (u) =0y (@) @Oy (m)® and O, (m) is

an ample invertible sheaf on the projective variety Q(e) (see Lemma

1.3). Hence we have the following equality for sufficiently large v;
r(Qe), Og(mv+1)) =1(Q(e), Og (1) ®Oq (1) ®").

On the other hand, by [6], we know that y(Q(e), Oy @) QO (m)®")
is a polynomial in v of degree=dim Supp O, (7). This proves (1).
(2) For simplicity, we put #(¢c) =maxdeg (H;(c;u) —H,(e;u)).
It is immediate to check that ¢(e¢) =n—r(z'ej) under the condition “7(e)
=0 or #=0". First we prove the inequality #(¢)<n—r(e). By
Proposition 2.1, (3), there exist a positive integer a and elements
Fo, - F, ¢y of K[X,, -, X,]oen satisfying the following two con-
ditions;
(1) Fy, -+, Fary) is a regular sequence of K[X, - -, X,],
(i) X=Proj(K[X,, -+, X,]/Fy, -, Fr_ry)) is contained in P(e).
Then we have, by Proposition 3.3,



644 Shigefumi Mori
(iii) ~length x (K[ X, -+, Xa]/(Fo, -, Facro) Du
=h'(X,Qx(w)) (ue2),
and, by the property (i),
(iv) length ¢ (K[X,, -, X1/ (Fo, -, Facr) )
=439 H(e;u) welZ).
Since @ (1) is an ample invertible sheaf on X, we obtain the follow-
ing equality by (iii) and (iv):
)] 4570 H(e; u) =4(X,0x(w)) (weZ,u>0).
By assuming z#=:{ (modulo m) in the equality (v), we have an equality
of polynomials in u;
A" O H (e u) = (X, Ox ().
This equality shows that for arbitrary integers 7 and j,
4579 (Hi(esu) —Hj(eiu)) =0.

Hence we have deg (H;(e;u) —H;(c;u)) <n—r(c), from which the
inequality z(e) <n—r(e) follows.

Next we prove the reverse inequality #(e) =7 —r(e), by induction
on n. As is previously seen, we may assume 7>0 and 7r(e) >0.
Then there exists an integer b with 00 such that (¢, ---,¢.) —1
=7r(e, -+, &y, +, €,) (we may assume b=n by symmetry). On the

other hand, we have an equality of polynomials in z;
(vi) Hi(ey, -+, easu) —H; . (o, -, ensu—e,) =H; (e, ;1)
(note that we have the exact sequence
0K [ Xy, -+, Xy Juee S KXo, o, X, Jum> (K[ Xy, -, X,1/(X,))um0
K[X,, -l~2-, Xoilu

for every integer u with u=i (modulo m)). Now by the equality

(vi), we have
(vii) H;(eo, -+, Cn-1; w) —H; (e, -+, ens; u)
= {H;(eq, -, ens ) —H; (€, ", a3 )}

—{H;_., (e, ", ensu—en) —H;_, (€0, -, ea;t—en)}.
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Here the induction assumption implies the existence of a pair of
integers (Z,7) such that the term on the left side of (vii) is a poly-
nomial in # of degree n—1—7r(e,, -+, €a_y) =n—7(€y, -+, ¢,). Therefore,
for such (Z,7), one of the { }’s on the right side of (vii) is a poly-
nomial of degree #—7r(ey, ---,¢,). This establishes the required in-

equality, hence the proof of Theorem A.1 is complete.

Due to Theorem A.1, we can speak of the coefficients of »’, with
j>n—r(e), in H(e;u). Here we determine the coefficient of #" in
the case r(e)=>1.

Corollary A.2. If we define rational numbers c,, -+, ¢, depend-
ing on e, -+, e, and an integer i by
n un—
Hi(e;u)= 2 cy——r
=0 " (n—j)!

)

then c¢; is independent of the choice of i if j<r(¢). For instance,
we have cy=1/]|t0e; if r(e)=1.

Proof. The first part follows immediately from Theorem A.1.
In order to prove the second part, we denote the above-metioned ¢,
by c(ey, -+, ¢,), in the case 7(¢)=1. Then we have

(1) enc(c(', "',en) :C(CO, “‘7"’”—1) if 7‘(80, ”.’cn) 22

by the equality (iv) stated in the proof of Theorem A.1, (2). By
(1), we obtain

(2) C(l, 1,6’0,"',6’1,)ZC((«"),"',Gn) if 7.(00’.",(”")21’
@ (Il ede@, 1a, - e) =c(1,1).

On the other hand, it is well known that ¢(1,1) =1. Hence, by
(2) and (3), we have c(ey, -+, €,) =1/][ 10 €. q.e.d.
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