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§1. Introduction

Let p be a prime and A, be the Steenrod algebra mod p. Let
G be a compact, connected Lie group.

We define a set {G:p} by

{G: p} = {X; compactly generated, associative H-space such that
H*(X;Z,)=H*(G; Z,) as algebra over A,}.

Remark that in the above definition we do not require existence of
a map f: G—X inducing the isomorphism of cohomology mod p.

According to Dold-Lashof [6] or Milgram [10] an associative
H-space X has a classifying space BX which is constructed by
making use of the multiplication on X,

When H, (G; Z) is p-torsion free, the Borel’s theorem states that
the ring structure of H*(BX; Z,) and the Hopf algebra structure of
H*(X;Z,) are isomorphic to those of G for all Xe {G: p}.

However this does not hold in general. Actually, as Baum-
Browder have shown in [2], there exist compact Lie groups which
are homeomorphic and which have different diagonal maps in cohomo-
logy. Meanwhile, Theorem 9.3 of [2] says that if both X and Y
are compact, simple Lie groups and if X is homotopy equivalent to
Y, then X is isomorphic to Y as Lie groups. Thus it is natural to
ask if the following is true:

Statement: Lct G be a compact, connected, simple Lic group
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such that Hy,(G; Z) has p-torsion. For any X, Ye {G: p},
(1) HX;Z,)=H(Y;Z,) as Hopf algebra,
(2) H*(BX;Z,)=H*(BY;Z,).

Let F, be the compact, 1-connected, simple, exceptional Lie group
of rank 4. Let PU(8)=SU(3)/I's the quotient of SU(3) by the
center 5. As is well known, the integral homology groups of both
groups have 3-torsion.

In this paper we show that for G=F, and PU(3) the above
statement is true. In fact (1) is easily checked to be true for these
cases. This will be observed in §2. In §3 we calculated Cotor
4(Zy, Z;) with A=H*(X;Z,) for Xe {F,:3} and {PU(3):3}. The
section 4 will be used to show the Eilenberg-Moore spectral sequence

with Z,-coefficient collapses for X. Our main results are

Theorem A. For any Xe& {F,:3}, we have as modulec:

H*(BX; Z)=Z, [yn Vs, Yo, Y20, Vo1, Vosy Veo, Yao, Yas] /K.

For R see Theorem 4.7 of §4.

Theorem B. For any Ye {PU(3):3}, we have as algebra:
H*(BY ; Z:) =Zs[ s, ¥3, 1, ¥s, ¥12] /R,

where R is an ideal generated by y,vs, y3', Y291, 7' Ye¥s+ Vs¥e.

§ 2. Non-primitivity.
Let Xe {F,:3}. By definition and by [3] we have
2.1 H*(X; Z)) =Zi[x] / (x") @4 (23, T7, Ty, Z1s)
with degx;=t,

where x;=P'xs, x5=Ppx; and x,=P'xy.
Let ¢ be the diagonal map in H*(X; Z;) induced from the multi-
plication of X and let ¢ be the reduced one.

Proposition 2.2. In (2. 1),
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é(x) for i=3,7,8,

§(x) =x@z;s for j=11,15.

Proof. Clearly x;, x; and x; are primitive. Suppose x,; primitive.
Then z;; would also be primitive by naturality. Hence H* (X Z;)
would be primitively generated. This contradicts to Theorem 1 of
[4] (cf. the footnote in p. 319). Therefore x,; is not primitive. The
only possible form is:

‘g(xu) =xs®x3-
Applying &' we obtain

5(3:15) = $s®l‘7 . q.e.d.

Let Ye{PU(3):3}. Then by definition and by [3] we have
(2.3) H*(Y;Z) =Z[r,]/(x)RA(x,, x5) with deg x;=1,
where x,=fx;,.

Similarly one obtains

Proposition 2.4. Iz (2.3)

¢(x) =0 for i=1,2; ¢_(~rs) =1,K;.

§ 3. The twisted tensor product.

In this section all algebras are graded [11]. We recall a con-
struction of the twisted tensor product due to Brown (see [5], [7]
or [15]).

Let A be an augmented coalgebra over a commutative field K
with an augmentation 5: K—A and the diagonal map ¢. So we may
consider A=KQJ(A), where J(A)=Cokery. Let L be a K-sub-
module of J(A) and ¢: L—»A be the inclusion and 6: A—L a map
such that foc=1,.

Let s: L—»>sL be a suspension. Define §: A—sL by §=s00 and
t:sL—A by t=¢os™'. Construct the tensor algebra 7T (sL) and denote
by by ¢ the product in T'(sL). Let I be the ideal of T (sL) generat-
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L '} 0 L
3 cHa/
sL

ed by Im(¢o(0®0)o¢)o(Kerf). Put X=T(sL)/I. Then the map
6: A—>sL induces a map A—X which is again denoted by §.
We define a map

d= —¢o (®O) ogot: sSL>T (sL)

and extend it naturally over T (sL). Since degp=¢o (dR1+1Xd)
holds, we deduce d(I) CI. So d induces a map X—X, which is again
denoted by d: X—X. Then it is easy to see dvd=0. This shows
that X is a differential algebra over K.

Since the relation
dol + o (0R0) op=0

holds, we now can construct the twisted tensor product W=A®X
with respect to §. That is, W=AX®X is an A-comodule with the
differential operator

d=1Qd+ (1Q¢) 0®1) ° ($&@1).

We now apply this to calculate Cotor #(Z;, Z;), where A=H*(X;
Zy) for Xe {F,:3) or {PU(3):3}.
Let X {F;;3}. Then by (2.1) and Proposition 2.2

3.1 H* (X Zy) = Z:[x6] / (25") @A (23, 21, 01, T1s)

where ¢ (x;) =0 for i=3,7,8 and ¢(x,) =2:Qx,;_s for j=11,15.

Put A=H*(X; Z;). Take L to be a Z;-submodule of A generated
by {xs, x7, s, Ts', Tu, Tisp and 0 to be the projection A—L. We name
the corresponding elements under the suspension s as sL= {a,, as, a,

Cu, bys, by} respectively. Then
X=12 {ay, as, as, by, bs, et /1,
which is a quotient of 7'(sL) by the ideal I generated by

3.2) [a, as], Las, @], [as, en], [, bi], [au, Di]
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[as, @, [as, cir], Las, b12], [as, O1s)

Las, b12] + s, [a@s, b1s] + crras,

(12, bie], [ew, Brel, [en, bal,
where [x,y]=xy— (—1)*yx with *=degx-degy.

We define weight in W=A®X as follows:
3.3) A: 3 x; x5 TS Ty Tys
X: ai as a ¢y by by

weight: 0 0 1 2 2 2

The weight of a monomial is a sum of the weight of each element.
Define filtration F,= {x|weight x<r}.
The differential operator d on A is given by

3.4) dxi=a;,, for i=3,7,8
dxs’ = cy — Tsty
dx;=b;.+xsa;_; for j=11,15,
Put EZW=3,F,;/F;_,. Then
EW=A(xy, 27, 11, T15) Q@ Zs[ s, as, b1z, b1s] QC (Q (15)),

where C(Q (z;)) is the cobar construction of Z;[xs]/(xs"). It follows
from (3.4) that E,W is acyclic and hence W is acyclic. Thus W

is an injective resolution ol Z, over H*(X;Z,;). Therefore by de-
finition

H(X;d)=Kerd/Im d=Cotor *(Z,, Zy).
Remark that the differential operator d on X is given by
(3.5) da;=0 for i=4,8,9;
dep=ay’;
db;= —asa;_y for j=12,16.

Then it is easy to see that the following set is a system of genera-
tors of Cotor *(Z;, Zs) :
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(3- 6) {y4, Vs, Yo, Y20, V21, V25, Y26, Y6, ZWB} s
where y;={a;} for i=4,8,9, yu={asbn—abw}, yu={[as,cul}t, yu=
{asb: —Cpa}, Y= {abys —Cpas}, Y= {bfz} and yu= {b?s} .

Remark 3.7. y; for i=20,21,25,26 are represented by Massey

products {ay, as, asy, {as, @y, ary, <as, as, asy and {as, a,, asy respectively

([9D).
By a routine calculation we obtain

Theorem 3.8. For any Xe {F,3} we have as module
Cotor #'29 (Zy, Zy) = Zs[ 4, ¥s, Y9, Yoo, Y21, Ves, Yoo, Vs, Yas] /R,
where R is an ideal generated by
YiYo, VsV, Vo' VaVai> VsVas, VaVas+ VeV,
VeV, Veodes, Yo, Vs YoV — VeVas + Vee,
Voo — Vi'Vis -+ Vs"Vis, VesYa+ Yo, YasVs+ Vasdo,

V26Y20 — YaVes.

Let Ye {PU(3):3}. Then by (2.3) and Proposition 2.4
(3.9) H*(Y; Zy) =Z:[x,] / (2,") @4 (21, 22)

where ¢(x) =¢(x,) =0 and @(z;) =x,®zx;. For simplicity we put
A=H*(Y;Z,). Take a Zysubspace L= {x,, x,, x,’, x;} and name the
corresponding elements in sL as sL= {a,, as, ¢, b,} respectively. Then

X=2Z;{a,, as, cs, b} /I, where I is generated by

(3. 10) [az, [ls] , [ag, C5] N [(lg, b4] , [C(,, b4] and [as, b4] + CsQy .

Similarly as before we can prove that W= A®X is acyclic. So
by definition

H(X;d)=Cotor *(Z, Z;) with A=H*(Y;Z;)
where the differential 4 on X is explicitly given as follows:

(3. 11) dag = dag = 0, db4 = —aydy and dC5 = 032.
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Easy calculation yields *

Theorem 3.12. For any Ye {PU(3):3} we have as module,
COtOr H'¥: 23 (Zs, Zs) ;Zs [3’2, Vs, Y7, Vs, ylZ] /R )

where R is an ideal generated by

(3.13) Yols, Yo7, yag, y72, Vo2¥s + Vsyr

Remark 3.14. In the above theorem the generators are:
vi={a;} for i=2,3, y;={ashi—aycs}, vs= {[as, cs]} and y,= {b.

§4. The Eilenberg-Moore spectral sequence

In this section we use the Eilenbery-Moore spectral sequence
with Zg-coefficient {E,(X), d,} for an associative H-space X such that
E,(X) =Cotor &40 (7, 7)) and E.(X)=GrH*(BX:Z,). (For con-
struction and properties see [12] and [13]).

Let Xe {F,:4}. Put A=H*(X;Z,).

Lemma 4.1. There are no clements in Cotor *(Zy, Zy) of degrec
87 or 49.

Proof. (1) DBecause of relations in Theorem 3.8 the element
of degree 37 is of the form:

Vof (¥20, ¥20) + V219 (Vs Y26) + Vsl (Y4, ¥26)

with polynomials f, ¢ and h. Here f cannot have degree 28. The
possible form of ¢ of degree 16 is a scalar multiple of yg®. Similarly
h=ay® with ¢€Z,. However by relations in Theorem 3.8 we have:
Va¥s = — V¥ ¥s =0 and vy, = —y5yv.’=0. So there are no elements
of degree 37.

(2) The element of degree 49 is of the form:

Vo f (V585 V20, V25) + V21T Vs, V26) + Vash (Y4, V26) -

Here f is a scalar multiple of y%. §=0 because of dimensional

reason and h is a scalar multiple of y Since yy¥%= —yuyiyp="0
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and since Y,y = — ey, =0, there are no elements of degree 49.
q.e.d.

Now we will show that the Eilenberg-Moore spectral sequence
with Zg-coefficient collapses for X, where the E,term is given by
Theorem 3. 8. '

For dimensional reason, x; and hence z; and zs of H(X; Z;) are
universally transgressive in the universal spectral sequence for X
with Zg-coefficient. Then it is easy to see that the elements y,, vs and
y, of the E,term survive in the E.-term and represent the trans-
gressive image of x;, x; and x; respectively. Thus we obtain an

isomorphism as glgebras:

(4.2) H*(BX; Zy) =Zy[y1, s, 51/ (9495, ¥s¥5, ¥5°)  for x<20.
Lemma 4.3. In H*(BX;Z,) S, is not decomposable.

Proof. In the universal spectral sequence of X the element
ve&zy® is not coboundary and d;;(v,&®zxs?) =LFP*v,&X1 by the Kudo
transgression theorem [8]. Then by the Adem relation 3P*y, =BP*Bys
=RP'BPs, which is non-trivial. If P*y® is decomposable, say Py
=f (4, ¥5), then BPxs=y,h(vy, vs) =0. This is a contradiction.

g.e.d.

Lemma 4.4. The clements y; for 1=20,21,25,26 arc per-

manent cycles.

Proof. The generators in E,(X) of degree 21, 25, 26 are unique,
respectively, On the other hand there are non-trivial elements 3Py,
PRPy,, BP'LPYys in H* (BX; Z;) of degree 21, 25, 26 respectively.
So a1, Va5, ¥2s are permanent cycles and represent these elements re-
spectively. Similarly for y,, which survives to $Pdy,. g.e.d.

Lemma 4.5. The clements yy and yg are permanent cycles.

Proof. This follows from Lemma 4.1, since d,ys and d,ys are
in degree 37 and 49 respectively. q.e.d.
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Thus we have shown

Theorem 4.6. For any Xe {F,: 3}, the Eilenberg-Moore spec-
tral sequence with Zscoefficient collapses.

As an immediate corollary

Theorem 4.7. For any X {F,:3} we have as module
H*(BX; Zy) =Zy[y4, ¥s, Y5, Y20, Y21, Ves, Yo, V3o, Yas] /R,

where R is an ideal generated by yiys, Ys¥o, Yo', YiVai» Ys¥2sy Yades+ Vs)ei
Ve, Ve, Vi YVis, YoV —YiVes T VsVa, Y — Vi Vit VsV, VasVst YaYs,
VasVs + VasVo, VasVoo — YerVes. Furthermore, up to non-zero multiple,
yszg)lya, Vo= [3¥s, 3120:@33’8, Vo1 = B2, y25=@1y21 and Yy = 2.

Remark 4.8. This theorem gives the module structure of
H(BF,;Z;). The algebra structure of H*(BF,;Z;) was already ob-
tained in [16], in which Toda used the fibering [][—BSpin(9) —BF,
and made elaborate calculations of invariant forms under the Weyl
group of F,.

Now we turn to the case {PU(3):3}.
Take Ye {PU3):3}. Put A=H*(Y;Z;). Then it is easy to
obtain an isomorphism as algebras:

4-9) H*(BY 5 Z3) = Zy[ys, y3]/ (y2ys, 357 Sfor *<T7.

We show

Theorem 4.10. For any Y {PU(3):3} the Eilenberg-Moore
spectral sequence with Zycoefficient collapses.

Proof. (1) The elements y,, y; of Cotor *(Z;, Z;) are permanent
cycles by (4.9).

(2) In the universal spectral sequence for ¥ we use the Kudo
theorem [8] and obtain a non-trivial element gP'y,e H*(BY;Z,).
Hence H'(BY'; Z;)#0. There is only one element y, in Cotor *(Z,,
Z,) of degree 7. So y; is a permanent cycle and represent 'y,
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(3) By easy observation one can see that there are no elements
in Cotor *(Z;, Z;) of degree 9 or 13. So y; and y,, of Cotor 4(Z,, Z,)
are permanent cycles, since d,ys and d,v,, are of degree 9 and 13
respectively. q.e.d.

Remark that y,y;=0 is a relation as algebra. By applying &
we have y,y,=%"(y,y;) =0. Further applying 8 on y,5;=0 we obtain
Vv +v:vs=0. Since vy =9,=0 are relations as algebra, we there-
fore have proved:

Theorem 4.11. For any Y {PU(3):3}, we have as algebra
H* (BY; Z3) ;Z3[y29 Y3, V7, Vs, yl?] /R >

where R is an ideal generated by v,vs, ¥s55 ¥oV1, V7' VeV + Vayr. Fur-
ther, ys=_By:, v:=L"ys, ys=pyr.

Remark 4.12. In particular, this theorem gives the algebra
structure of H*(BPU(3) ; Zy).
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