Cohomology of classifying spaces of certain associative *H*-spaces

Ву

Akira KONO, Mamoru MIMURA and Nobuo SHIMADA

(Received, Sept. 6, 1974)

§ 1. Introduction

Let p be a prime and \mathcal{A}_p be the Steenrod algebra mod p. Let G be a compact, connected Lie group.

We define a set $\{G: p\}$ by

 $\{G\colon p\}=\{X; \text{ compactly generated, associative H-space such that} \ H^*(X; \mathbf{Z}_p)\!\equiv\! H^*(G; \mathbf{Z}_p) \ \text{as algebra over \mathcal{A}_p}.$

Remark that in the above definition we do not require existence of a map $f: G \rightarrow X$ inducing the isomorphism of cohomology mod p.

According to Dold-Lashof [6] or Milgram [10] an associative H-space X has a classifying space BX which is constructed by making use of the multiplication on X.

When $H_*(G; \mathbf{Z})$ is *p*-torsion free, the Borel's theorem states that the ring structure of $H^*(BX; \mathbf{Z}_p)$ and the Hopf algebra structure of $H^*(X; \mathbf{Z}_p)$ are isomorphic to those of G for all $X \in \{G: p\}$.

However this does not hold in general. Actually, as Baum-Browder have shown in [2], there exist compact Lie groups which are homeomorphic and which have different diagonal maps in cohomology. Meanwhile, Theorem 9.3 of [2] says that if both X and Y are compact, simple Lie groups and if X is homotopy equivalent to Y, then X is isomorphic to Y as Lie groups. Thus it is natural to ask if the following is true:

Statement: Let G be a compact, connected, simple Lie group

such that $H_*(G; \mathbf{Z})$ has p-torsion. For any $X, Y \in \{G: p\}$,

- (1) $H(X; \mathbf{Z}_p) \cong H(Y; \mathbf{Z}_p)$ as Hopf algebra,
- (2) $H^*(BX; \mathbf{Z}_p) \cong H^*(BY; \mathbf{Z}_p)$.

608

Let F_4 be the compact, 1-connected, simple, exceptional Lie group of rank 4. Let $PU(3) = SU(3)/\Gamma_3$ the quotient of SU(3) by the center Γ_3 . As is well known, the integral homology groups of both groups have 3-torsion.

In this paper we show that for $G=F_4$ and PU(3) the above statement is true. In fact (1) is easily checked to be true for these cases. This will be observed in § 2. In § 3 we calculated Cotor ${}^4(Z_3, Z_3)$ with $A=H^*(X; Z_3)$ for $X \in \{F_4: 3\}$ and $\{PU(3): 3\}$. The section 4 will be used to show the Eilenberg-Moore spectral sequence with Z_3 -coefficient collapses for X. Our main results are

Theorem A. For any $X \in \{F_4:3\}$, we have as module:

$$H^*(BX; \mathbf{Z}_3) \cong \mathbf{Z}_3[y_4, y_8, y_9, y_{20}, y_{21}, y_{25}, y_{26}, y_{36}, y_{48}]/R.$$

For R see Theorem 4.7 of § 4.

Theorem B. For any $Y \in \{PU(3):3\}$, we have as algebra:

$$H^*(BY; \mathbb{Z}_3) \cong \mathbb{Z}_3[y_2, y_3, y_7, y_8, y_{12}]/R$$

where R is an ideal generated by y_2y_3 , y_3^2 , y_2y_7 , y_7^2 , $y_2y_8+y_3y_7$.

§ 2. Non-primitivity.

Let $X \in \{F_4: 3\}$. By definition and by [3] we have

(2.1)
$$H^*(X; \mathbf{Z}_3) \cong \mathbf{Z}_3[x_8]/(x_8^3) \otimes \Lambda(x_3, x_7, x_{11}, x_{15})$$

with $\deg x_i = i$,

where $x_7 = \mathcal{Q}^1 x_3$, $x_8 = \beta x_7$ and $x_{15} = \mathcal{Q}^1 x_{11}$.

Let ϕ be the diagonal map in $H^*(X; \mathbb{Z}_3)$ induced from the multiplication of X and let $\bar{\phi}$ be the reduced one.

Proposition 2.2. In (2.1),

$$\overline{\phi}(x_i)$$
 for $i=3,7,8,$

$$\overline{\phi}(x_j) = x_8 \otimes x_{j-8}$$
 for $j=11,15.$

Proof. Clearly x_3 , x_7 and x_8 are primitive. Suppose x_{11} primitive. Then x_{15} would also be primitive by naturality. Hence $H^*(X; \mathbb{Z}_3)$ would be primitively generated. This contradicts to Theorem 1 of [4] (cf. the footnote in p. 319). Therefore x_{11} is not primitive. The only possible form is:

$$\bar{\phi}(x_{11}) = x_8 \otimes x_3$$
.

Applying \mathcal{Q}^1 we obtain

$$\bar{\phi}(x_{15}) = x_8 \otimes x_7$$
. q.e.d.

Let $Y \in \{PU(3): 3\}$. Then by definition and by [3] we have

(2.3)
$$H^*(Y; Z_3) \cong \mathbb{Z}_3[x_2]/(x_2^2) \otimes \Lambda(x_1, x_3)$$
 with deg $x_i = i$, where $x_2 = \beta x_1$.

Similarly one obtains

Proposition 2.4. In (2.3)

$$\bar{\phi}(x_i) = 0$$
 for $i = 1, 2$; $\bar{\phi}(x_3) = x_2 \otimes x_1$.

§ 3. The twisted tensor product.

In this section all algebras are graded [11]. We recall a construction of the twisted tensor product due to Brown (see [5], [7] or [15]).

Let A be an augmented coalgebra over a commutative field K with an augmentation $\eta: K \to A$ and the diagonal map ϕ . So we may consider $A = K \otimes J(A)$, where $J(A) \cong \operatorname{Coker} \eta$. Let L be a K-submodule of J(A) and $\iota: L \to A$ be the inclusion and $\theta: A \to L$ a map such that $\theta \circ \iota = 1_L$.

Let $s: L \to sL$ be a suspension. Define $\bar{\theta}: A \to sL$ by $\bar{\theta} = s \circ \theta$ and $\bar{\iota}: sL \to A$ by $\bar{\iota} = \iota \circ s^{-1}$. Construct the tensor algebra T(sL) and denote by by ψ the product in T(sL). Let I be the ideal of T(sL) generat-

ed by $\operatorname{Im}(\phi \circ (\bar{\theta} \otimes \bar{\theta}) \circ \phi) \circ (\operatorname{Ker} \bar{\theta})$. Put $\overline{X} = T(sL)/I$. Then the map $\bar{\theta} : A \to sL$ induces a map $A \to \overline{X}$ which is again denoted by $\bar{\theta}$.

We define a map

$$d = -\psi \circ (\bar{\theta} \otimes \bar{\theta}) \circ \phi \circ \bar{\iota} : sL \to T(sL)$$

and extend it naturally over T(sL). Since $d \circ \phi = \psi \circ (d \otimes 1 + 1 \otimes d)$ holds, we deduce $d(I) \subset I$. So d induces a map $\overline{X} \to \overline{X}$, which is again denoted by $d : \overline{X} \to \overline{X}$. Then it is easy to see $d \circ d = 0$. This shows that \overline{X} is a differential algebra over K.

Since the relation

$$d \circ \bar{\theta} + \psi \circ (\bar{\theta} \otimes \bar{\theta}) \circ \phi = 0$$

holds, we now can construct the twisted tensor product $W = A \otimes \overline{X}$ with respect to $\overline{\theta}$. That is, $W = A \otimes \overline{X}$ is an A-comodule with the differential operator

$$\bar{d} = 1 \otimes d + (1 \otimes \psi) \circ \bar{\theta} \otimes 1) \circ (\phi \otimes 1)$$
.

We now apply this to calculate Cotor $^{A}(\mathbf{Z}_{3}, \mathbf{Z}_{3})$, where $A = H^{*}(X; \mathbf{Z}_{3})$ for $X \in \{F_{4}: 3\}$ or $\{PU(3): 3\}$.

Let $X \in \{F_4; 3\}$. Then by (2, 1) and Proposition 2.2

(3.1)
$$H^*(X; \mathbf{Z}_3) = \mathbf{Z}_3[x_8]/(x_8^3) \otimes \Lambda(x_3, x_7, x_{11}, x_{15}),$$

where $\bar{\phi}(x_i) = 0$ for i = 3, 7, 8 and $\bar{\phi}(x_j) = x_8 \bigotimes x_{j-8}$ for j = 11, 15.

Put $A = H^*(X; \mathbb{Z}_3)$. Take L to be a \mathbb{Z}_3 -submodule of A generated by $\{x_3, x_7, x_8, x_8^2, x_{11}, x_{15}\}$ and θ to be the projection $A \to L$. We name the corresponding elements under the suspension s as $sL = \{a_4, a_8, a_9, c_{17}, b_{12}, b_{16}\}$ respectively. Then

$$\overline{X} = Z_3 \{a_4, a_8, a_9, b_{12}, b_{16}, c_{17}\}/I$$

which is a quotient of T(sL) by the ideal I generated by

$$[a_4, a_8], [a_4, a_9], [a_4, c_{17}], [a_4, b_{12}], [a_4, b_{16}]$$

$$[a_8, a_9], [a_8, c_{17}], [a_8, b_{12}], [a_8, b_{16}]$$
 $[a_9, b_{12}] + c_{17}a_4, [a_9, b_{16}] + c_{17}a_8,$
 $[b_{12}, b_{16}], [c_{17}, b_{12}], [c_{17}, b_{16}],$
 $where \quad [x, y] = xy - (-1)*yx \quad with \quad *= \deg x \cdot \deg y.$

We define weight in $W = A \otimes \overline{X}$ as follows:

(3.3)
$$A: \quad x_3 \quad x_7 \quad x_8 \quad x_8^2 \quad x_{11} \quad x_{15}$$

$$\overline{X}: \quad a_4 \quad a_8 \quad a_9 \quad c_{17} \quad b_{12} \quad b_{16}$$

$$weight: \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 2$$

The weight of a monomial is a sum of the weight of each element. Define filtration $F_r = \{x | \text{weight } x \leq r\}$.

The differential operator \bar{d} on A is given by

(3.4)
$$\bar{d}x_i = a_{i+1} \quad for \quad i = 3, 7, 8$$
 $\bar{d}x_8^2 = c_{17} - x_8 a_9$ $\bar{d}x_j = b_{j+1} + x_8 a_{j-7} \quad for \quad j = 11, 15.$

Put
$$E_0W = \sum_i F_i/F_{i-1}$$
. Then

$$E_0W \cong \Lambda(x_3, x_7, x_{11}, x_{15}) \otimes Z_3[a_4, a_8, b_{12}, b_{16}] \otimes C(Q(x_8)),$$

where $C(Q(x_8))$ is the cobar construction of $\mathbb{Z}_3[x_8]/(x_8^3)$. It follows from (3.4) that E_0W is acyclic and hence W is acyclic. Thus W is an injective resolution of \mathbb{Z}_3 over $H^*(X;\mathbb{Z}_3)$. Therefore by definition

$$H(\overline{X};d) = \operatorname{Ker} d/\operatorname{Im} d = \operatorname{Cotor}^{A}(Z_{3}, Z_{3})$$

Remark that the differential operator d on \overline{X} is given by

(3.5)
$$da_{i} = 0 \quad for \quad i = 4, 8, 9;$$

$$dc_{17} = a_{9}^{2};$$

$$db_{j} = -a_{9}a_{j-8} \quad for \quad j = 12, 16.$$

Then it is easy to see that the following set is a system of generators of Cotor ${}^{A}(Z_3, Z_3)$:

612 Akira Kono, Mamoru Mimura and Nobuo Shimada

$$\{y_4, y_8, y_9, y_{20}, y_{21}, y_{25}, y_{26}, y_{36}, y_{48}\},\$$

where $y_i = \{a_i\}$ for i = 4, 8, 9, $y_{20} = \{a_8b_{12} - a_4b_{16}\}$, $y_{26} = \{[a_9, c_{17}]\}$, $y_{21} = \{a_9b_{12} - c_{17}a_4\}$, $y_{25} = \{a_9b_{16} - c_{17}a_8\}$, $y_{36} = \{b_{12}^3\}$ and $y_{48} = \{b_{16}^3\}$.

Remark 3.7. y_i for i = 20, 21, 25, 26 are represented by Massey products $\langle a_4, a_9, a_8 \rangle$, $\langle a_9, a_9, a_4 \rangle$, $\langle a_9, a_9, a_8 \rangle$ and $\langle a_9, a_9, a_9 \rangle$ respectively ([9]).

By a routine calculation we obtain

Theorem 3.8. For any $X \in \{F_4, 3\}$ we have as module

Cotor
$$^{H^*(X; Z_3)}(Z_3, Z_3) \cong Z_3[y_4, y_8, y_9, y_{20}, y_{21}, y_{25}, y_{26}, y_{36}, y_{48}]/R$$
,

where R is an ideal generated by

$$y_4y_9$$
, y_8y_9 , y_9^2 , y_4y_{21} , y_8y_{25} , $y_4y_{25} + y_8y_{21}$,
 $y_{20}y_{21}$, $y_{20}y_{25}$, y_{21}^2 , y_{25}^2 , $y_9y_{20} - y_4y_{25} + y_8y_{21}$,
 $y_{20}^3 - y_4^3y_{48} + y_8^3y_{36}$, $y_{26}y_4 + y_{21}y_9$, $y_{26}y_8 + y_{25}y_9$,
 $y_{26}y_{20} - y_{21}y_{25}$.

Let $Y \in \{PU(3):3\}$. Then by (2.3) and Proposition 2.4

(3.9)
$$H^*(Y; \mathbf{Z}_3) \cong \mathbf{Z}_3[x_2]/(x_2^3) \otimes \Lambda(x_1, x_2),$$

where $\bar{\phi}(x_1) = \bar{\phi}(x_2) = 0$ and $\bar{\phi}(x_3) = x_2 \otimes x_1$. For simplicity we put $A = H^*(Y; \mathbf{Z}_3)$. Take a \mathbf{Z}_3 -subspace $L = \{x_1, x_2, x_2^2, x_3\}$ and name the corresponding elements in sL as $sL = \{a_2, a_3, c_5, b_4\}$ respectively. Then $\overline{X} = \mathbf{Z}_3 \{a_2, a_3, c_5, b_4\} / I$, where I is generated by

$$(3.10)$$
 $[a_2, a_3], [a_2, c_5], [a_2, b_4], [c_5, b_4]$ and $[a_3, b_4] + c_5a_2$.

Similarly as before we can prove that $W = A \bigotimes \overline{X}$ is acyclic. So by definition

$$H(\overline{X};d) = \operatorname{Cotor}^{A}(\mathbf{Z}_{3},\mathbf{Z}_{3})$$
 with $A = H^{*}(Y;\mathbf{Z}_{3})$

where the differential d on \overline{X} is explicitly given as follows:

(3.11)
$$da_2 = da_3 = 0$$
, $db_4 = -a_2a_3$ and $dc_5 = a_3^2$.

Easy calculation yields

Theorem 3.12. For any $Y \in \{PU(3): 3\}$ we have as module,

Cotor
$$^{H^*(Y; \mathbf{Z}_3)}(\mathbf{Z}_3, \mathbf{Z}_3) \cong \mathbf{Z}_3[y_2, y_3, y_7, y_8, y_{12}]/R$$
,

where R is an ideal generated by

$$(3. 13) y_2 y_3, y_2 y_7, y_3^2, y_7^2, y_2 y_8 + y_3 y_7$$

Remark 3.14. In the above theorem the generators are: $y_i = \{a_i\}$ for i = 2, 3, $y_7 = \{a_3b_4 - a_2c_5\}$, $y_8 = \{[a_3, c_5]\}$ and $y_{12} = \{b_4^3\}$.

§ 4. The Eilenberg-Moore spectral sequence

In this section we use the Eilenbery-Moore spectral sequence with \mathbb{Z}_3 -coefficient $\{E_r(X), d_r\}$ for an associative H-space X such that $E_2(X) = \operatorname{Cotor}^{H^*(X; \mathbb{Z}_3)}(\mathbb{Z}_3, \mathbb{Z}_3)$ and $E_{\infty}(X) \cong \mathcal{G}rH^*(BX; \mathbb{Z}_3)$. (For construction and properties see [12] and [13]).

Let
$$X \in \{F_4: 4\}$$
. Put $A = H^*(X; \mathbb{Z}_3)$.

Lemma 4.1. There are no elements in Cotor ${}^{\Lambda}(\mathbf{Z}_3, \mathbf{Z}_3)$ of degree 37 or 49.

Proof. (1) Because of relations in Theorem 3.8 the element of degree 37 is of the form:

$$y_9 f(y_{20}, y_{26}) + y_{21} g(y_8, y_{26}) + y_{25} h(y_4, y_{26})$$

with polynomials f, g and h. Here f cannot have degree 28. The possible form of g of degree 16 is a scalar multiple of y_8^2 . Similarly $h = \alpha y_4^3$ with $\alpha \in \mathbb{Z}_3$. However by relations in Theorem 3.8 we have: $y_{2_1}y_8^2 = -y_{2_0}y_9y_8 = 0$ and $y_{2_5}y_4^3 = -y_{2_0}y_9y_4^2 = 0$. So there are no elements of degree 37.

(2) The element of degree 49 is of the form:

$$y_{9}\overline{f}(y_{36}, y_{20}, y_{26}) + y_{21}\overline{g}(y_{8}, y_{26}) + y_{25}\overline{h}(y_{4}, y_{26}).$$

Here \bar{f} is a scalar multiple of y_{20}^2 . $\bar{g} = 0$ because of dimensional reason and \bar{h} is a scalar multiple of y_4^6 . Since $y_9y_{20}^2 = -y_{25}y_4y_{20} = 0$

614 Akira Kono, Mamoru Mimura and Nobuo Shimada and since $y_{25}y_4^6 = -y_{20}y_9y_4^5 = 0$, there are no elements of degree 49.

q.e.d.

Now we will show that the Eilenberg-Moore spectral sequence with Z_3 -coefficient collapses for X, where the E_2 -term is given by Theorem 3.8.

For dimensional reason, x_3 and hence x_7 and x_8 of $H(X; \mathbf{Z}_3)$ are universally transgressive in the universal spectral sequence for X with \mathbf{Z}_3 -coefficient. Then it is easy to see that the elements y_4 , y_8 and y_9 of the E_2 -term survive in the E_{∞} -term and represent the transgressive image of x_3 , x_7 and x_8 respectively. Thus we obtain an isomorphism as glgebras:

(4.2)
$$H^*(BX; \mathbb{Z}_3) \cong \mathbb{Z}_3[y_4, y_8, y_9]/(y_4y_9, y_8y_9, y_9^2)$$
 for $*<20$.

Lemma 4.3. In $H^*(BX; \mathbb{Z}_3)$ \mathcal{L}^3y_8 is not decomposable.

Proof. In the universal spectral sequence of X the element $y_9 \otimes x_8^2$ is not coboundary and $d_{17}(y_9 \otimes x_8^2) = \beta \mathcal{P}^4 y_9 \otimes 1$ by the Kudo transgression theorem [8]. Then by the Adem relation $\beta \mathcal{P}^4 y_9 = \beta \mathcal{P}^4 \beta y_8 = \beta \mathcal{P}^1 \beta \mathcal{P}^3 y_8$, which is non-trivial. If $\mathcal{P}^3 y^8$ is decomposable, say $\mathcal{P}^3 y = f(y_4, y_8)$, then $\beta \mathcal{P}^3 x_8 = y_9 h(y_4, y_8) = 0$. This is a contradiction.

q.e.d.

Lemma 4.4. The elements y_i for i = 20, 21, 25, 26 are permanent cycles.

Proof. The generators in $E_2(X)$ of degree 21, 25, 26 are unique, respectively. On the other hand there are non-trivial elements $\beta \mathcal{L}^3 y_8$, $\mathcal{L}^1 \beta \mathcal{L}^3 y_8$, $\beta \mathcal{L}^1 \beta \mathcal{L}^3 y_8$ in $H^*(BX; \mathbf{Z}_3)$ of degree 21, 25, 26 respectively. So y_{21} , y_{25} , y_{26} are permanent cycles and represent these elements respectively. Similarly for y_{20} , which survives to $\mathcal{L}^3 y_8$. q.e.d.

Lemma 4.5. The elements y_{36} and y_{48} are permanent cycles.

Proof. This follows from Lemma 4.1, since $d_r y_{36}$ and $d_\tau y_{48}$ are in degree 37 and 49 respectively.

Thus we have shown

Theorem 4.6. For any $X \in \{F_4: 3\}$, the Eilenberg-Moore spectral sequence with \mathbb{Z}_3 -coefficient collapses.

As an immediate corollary

Theorem 4.7. For any $X \in \{F_4: 3\}$ we have as module

$$H^*(BX; \mathbf{Z}_3) \cong \mathbf{Z}_3[y_4, y_8, y_9, y_{20}, y_{21}, y_{25}, y_{26}, y_{36}, y_{48}]/R$$
,

where R is an ideal generated by y_4y_9 , y_8y_9 , y_9^2 , y_4y_{21} , y_8y_{25} , $y_4y_{25} + y_8y_{21}$, $y_{20}y_{21}$, $y_{20}y_{25}$, y_{21}^2 , y_{22}^2 , y_{22}^2 , y_{24}^2 , $y_{25}^2 + y_{8}y_{21}$, $y_{20}^3 - y_4^3y_{48} + y_8^3y_{36}$, $y_{26}y_4 + y_{21}y_9$, $y_{26}y_8 + y_{25}y_9$, $y_{26}y_{20} - y_{21}y_{25}$. Furthermore, up to non-zero multiple, $y_8 = \mathcal{P}^1y_4$, $y_9 = \beta y_8$, $y_{20} = \mathcal{P}^3y_8$, $y_{21} = \beta y_{20}$, $y_{25} = \mathcal{P}^1y_{21}$ and $y_{26} = \beta y_{25}$.

Remark 4.8. This theorem gives the module structure of $H(BF_4; \mathbb{Z}_3)$. The algebra structure of $H^*(BF_4; \mathbb{Z}_3)$ was already obtained in [16], in which Toda used the fibering $\Pi \to BSpin(9) \to BF_4$ and made elaborate calculations of invariant forms under the Weyl group of F_4 .

Now we turn to the case $\{PU(3):3\}$.

Take $Y \in \{PU(3):3\}$. Put $A = H^*(Y; \mathbb{Z}_3)$. Then it is easy to obtain an isomorphism as algebras:

$$(4.9) H^*(BY; \mathbf{Z}_3) \cong \mathbf{Z}_3[y_2, y_3]/(y_2y_3, y_3^2) for *<7.$$

We show

Theorem 4.10. For any $Y \in \{PU(3): 3\}$ the Eilenberg-Moore spectral sequence with \mathbb{Z}_3 -coefficient collapses.

Proof. (1) The elements y_2 , y_3 of Cotor $^{A}(Z_3, Z_3)$ are permanent cycles by (4.9).

(2) In the universal spectral sequence for Y we use the Kudo theorem [8] and obtain a non-trivial element $\beta \mathcal{L}^1 y_3 \in H^8(BY; \mathbb{Z}_3)$. Hence $H^7(BY; \mathbb{Z}_3) \neq 0$. There is only one element y_7 in Cotor $^A(\mathbb{Z}_3, \mathbb{Z}_3)$ of degree 7. So y_7 is a permanent cycle and represent $\mathcal{L}^1 y_3$.

(3) By easy observation one can see that there are no elements in $\operatorname{Cotor}^{A}(\mathbf{Z}_{3}, \mathbf{Z}_{3})$ of degree 9 or 13. So y_{8} and y_{12} of $\operatorname{Cotor}^{A}(\mathbf{Z}_{3}, \mathbf{Z}_{3})$ are permanent cycles, since $d_{\tau}y_{8}$ and $d_{\tau}y_{12}$ are of degree 9 and 13 respectively.

Remark that $y_2y_3=0$ is a relation as algebra. By applying \mathcal{Q}^1 we have $y_2y_7=\mathcal{Q}^1(y_2y_3)=0$. Further applying β on $y_2y_7=0$ we obtain $y_3y_7+y_2y_8=0$. Since $y_3^2=y_7^2=0$ are relations as algebra, we therefore have proved:

Theorem 4.11. For any $Y \in \{PU(3):3\}$, we have as algebra

$$H^*(BY; \mathbb{Z}_3) \cong \mathbb{Z}_3[y_2, y_3, y_7, y_8, y_{12}]/R$$

where R is an ideal generated by y_2y_3 , y_3^2 , y_2y_7 , y_7^2 , $y_2y_8 + y_3y_7$. Further, $y_3 = \beta y_2$, $y_7 = \mathcal{L}^{1}y_3$, $y_8 = \beta y_7$.

Remark 4.12. In particular, this theorem gives the algebra structure of $H^*(BPU(3); \mathbb{Z}_3)$.

DEPARTMENT OF MATHEMATICS,
KYOTO UNIVERSITY;
MATHEMATICAL INSTITUTE, YOSHIDA COLLEGE,
KYOTO UNIVERSITY;
RESEARCH INSTITUTE OF MATHEMATICAL SCIENCES,
KYOTO UNIVERSITY.

References

- S. Araki: On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups, Nagoya Math. J., 17 (1960), 225-260.
- [2] P. F. Baum-W. Browder: The cohomology of quotients of classical groups, Topology, 3 (1965), 305–336.
- [3] A. Borel: Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
- [4] W. Browder: Homology rings of groups, Amer. J. Math., 90 (1968), 318-333.
- [5] E. H. Brown, Jr.: Twisted tensor products, I, Ann. Math., 69 (1959), 223-246.
- [6] A. Dold-R. Lashof: Principal quasi-fiberings and fibre homotopy equivalence of bundles, Ill. J. Math., 3 (1959), 285-305.
- [7] A. Iwai-N. Shimada: A remark on resolutions for Hopf algebras, Publ. RIMS of Kyoto Univ., 1 (1966), 187-198.
- [8] T. Kudo: A transgression theorem, Mem. Fac. Sci. Kyusyu Univ., 9 (1956), 79-81.

- [9] W. S. Massey: Some higher order cohomology operations, Symp. Int. Top. Alg., Universidatt Nacional Autonoma de Mexico and UNESCO, (1958), 145– 154
- [10] J. R. Milgram: The bar construction and abelian H-space, Ill. J. Math., 11 (1967), 242-250.
- [11] J. Milnor-J. C. Moore: On the structure of Hopf algebras, Ann. Math., 81 (1965), 211-264.
- [12] M. Rothenberg-N. E. Steenrod: The cohomology of classifying spaces of H-spaces, (mimeographed notes).
- [13] M. Rothenberg-N. E. Steenrod: The cohomology of classifying spaces of H-spaces, Bull. AMS, 71 (1965), 872-875.
- [14] J-P. Serre: Homologie singulière des espaces fibrés, Ann. Math., 54 (1951), 425-505.
- [15] N. Shimada-A. Iwai: On the cohomology of some Hopf algebra, Nagoya Math. J., 30 (1971), 103-111.
- [16] H. Toda: Cohomology mod 3 of the classifying space BF₄ of the exceptional group F₄, J. Math. Kyoto Univ., 13 (1972), 97-115.