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0. Introduction

In spite of their great interests in statistical mechanics, very
little are knowh about the ergodic properties of infinite systems of
particles except the system of hard rods moving in one-dimention
[2]. Recently Hardy et al. [1] have studied some interesting two-
dimensional system. As is simple its dynamics, it is possible to
obtain some ergodic properties, however, only for “linearized” time
evolution.

In this paper we propose some simple model systems which are
generalizations of the system of Hardy et al. in part, but the domain
where collisions do occur is bounded. These models can be seen, in
some sense, as the finite systems surround by ideal gasses. We
investigate some ergodic properties of these models. We show that
these systems are Bernoulli systems (Theorem 1 of section 1), there-
fore, they have mixing properties, and that the time correlation
functions are decreasing exponentially (Theorem 2 of section 1).

Unfortunately, our systems have no interactions between particles
except those of which are in some bounded domain. So the systems
are to be considered as ‘“perturbed ideal gasses’”. However it seems
to me that the dissipative character of the interactions together with
the statistical nature of the systems, that is, the infinite many of
degrees of {reedom of the systems will play some important role for
the ergodicity even for the unrestricted systems,
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In section 1, we describe the models in detail and state the main
results. In section 2, we prove them by reformutating them in dif-
ferent ways. The concepts raising in them may be interesting in
themselves.

Constant discussions with Mr. Y. Tsujii were useful for me. I
also thank to Professor H. Totoki to whom the proof of the Theorem

3 of section 2 is partialy due.

1. Descript.ons of the models and results

1.1 Let Z* be y-dimensional integral lattice. On each lattice
site there are at most 2y particles. The velocity of a particle is one
of the 2y wunit vectors (1,0,---,0), (0,1,---,0), ---, (0,0,---, —1).
The configurations where there are at least two particles with the
same velocity on the same lattice site are excluded.

More precisely, the phase space 2 of allowed configulations of

particles is
F={X; X: Zx P— {0, 1}}
where
P={v=(v,vs, -, v,) EZ"; |v|=|v)|+ |vs| + -+ |v,| =1}.

Then, naturally we have

X= {0,117
=1 X=1] %,
aczZ® veP
where
Xo={Xo: Xo=X|(gxp: {a} X P=P— {0, 1}},
and

%n: {Xn; Xn:X'Z"x(v): Zux {v};zv_) {Oa 1}}'

These spaces are compact with product topology.

1. 2 Now let us define the time evolution 7.

T is made up of the free motion T, and the collision C.

T, is merely a translation:
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T X(a,v)=X(a—v,v).

C is defined by the interaction ¢g=]] ¢.;
gz

o XaX ] XX,

veR(@\{a)
(CX)o=¢a(X., Xp; b€ R(@)\{a}), for VXX

where R(a) ={a+b:b€R,}, and the interaction range R, of ¢ is a
bounded set of Z”.
It is natural to assume that the interaction ¢ preserves the number

of particles on each site
2 X (v) =2, (CX)o(v),
wepr P

and for each a€Z” ¢,(-,X,; b R(a)\{a}) is a bijection of ¥, for
every fixed X,, b€ R(a)\{a).

As an example, let y=2.

Assume the interaction ¢ has zero range, that is, R,= {(0,0, -,
0)}, and preserves the number of particles and momentum on each

latties site; that is,
2 Xo(v) =2,(CX)e(v),
P P

and

Stowv= X w for VaeZ’, VXX
uX =1 v (CX) g @=1

then ¢, is trivial, that is, (CX),=X,, or the one considered in [1].

Now we define the time evolution map 7" by T =CT,. (We can
also define the 7" by 1'=T,CT,. We can handle this case similarly.)

As is mentioned in the introduction we consider only the case
where ¢, are trivial except these a’s which belong to some fixed
finite set V of Z*:

CX)=X, if agV.

1. 3 We denote by (X, 9, #) the measure spase X, where 9 is
the algebra generated by the cylinder sets of ¥, and g is a measure
on .

It is an interesting problem to define the equilibrium states g,
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that is 7-invariant states # on X [1].

In this paper we consider only the case where x has no correla-
tions between sites and velocities:

4=Tlecz@us, where uy,=p,(Vas2*) is a probability measure
on X, and g=[l.-pQu,, where g, is a probability measure on X,.
Then T-invariance of x# is equivelent to the g.-invariance of y,, that
is

Ha (Xa) =Ua ( (CX)a) for ¥XeX.

Now we give the definition which plays the essential role in our

paper.

Definition 1. An interaction ¢= [Jocz@. is said to be dissipative
if the system defined by the interaction has following property:

For any bounded subset K of Z*, let XX be such configulation
that

X(a,v)=0 unless aeK.
Then for some number 72>0 depending on X,
T"X(a,v)=0 for all e=K and veP.

The interaction given in the above example is dissipative. More
generally it is not hard to see that if the interaction ¢ has zero range
and preserves the number of particles and total momentum on each

lattice site then ¢ is dissipative.
1. 4 We are now in the place that we can state our results.

Theorem 1. Assume that the system (X, un,T) satisfies the
Sfollowing conditions:

(1) The interaction, p=1lecz @a which defiines the time evolu-
tion T=C-T, is dessipative.

(2) ¢, is trivial if a does not belong to some fixed bounded
set 'V of Z.

(3) The state y has no correlatsons between sites and velocities,
that is, p is of the form, p=1locs@Ue=Tlsep@lte, la= Lo

(Vas Z), wherepy, are g.invariant. Then the dynamical sys-
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tem (X, 1, T) is a Bernoulli system [6].

Theorem 2. Let (X, u,T) be asin Theorem 1. Then for any
cylinder sets A and B of ¥, we have

lu(T"ANB) — p(A) p(B) |<const. 7"

for all n=0, where const. and r depend only on the supports of A
and B, and 0<r<1.

2. Processes with interactions and the proofs of theorems.

2.1 Let us consicer the physical systems ;=% (M,, H;) (=1,
2, ... N) with Hamiltonians H; and phare spaces M, respectively.
Let {¢,} be the time evolutions of .¥; induced from H;. If they are
in equilibrium states, they are represented by invariant probability
measures /; on M, respectively.

If these systems .%; are coupled together and the mutual interac-
tions are negligible, then the coupled system '=%\X.%,X X%y
has the Hamiltonian H=H,+ H,+ --- + Hy and the phase space M =M,
X M,X - X My (product space of M, M,, ---, and My).

As mutual interactions are negligible, the obtained equilibrium
state of the coupled system % is represented by the direct propudt
measure 2 =#,QU&X)---Quy of the measures u, #s, -+, and gy on
M=MxM,x - x My [4].

Now let (M, u, {¢"}) be a dynamical system with discrete time.
We can represent it by a symbolic dynamics (2,0,7); £ is the set
of doubly infinite sequences w= (---, w_;, Wy, @y, -+-) of elements of S:

2= ﬂ Sp—>o0= {U)n},

nez
0, €S, =8S={as, a;, -, ds_1}.

T is the shift of 2:

(T(D),. = -gn—-l-

p i1s a T-invariant probability measure on Q.

Hence-forth we call the (@, p, T') s-shift. Then the representation
of the dynamical system (M, u, {¢"}) by the s-shift (2,0, T) means
the mapping 7 of M to £ such that the diagram
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2
M——>M
I 1
Q———>0

commutes and 7(x) =p (see [3], [5]).

Let (@, 0:;,T:) be ssshift representing the dynamical system (M;,
Ui, {¢."}) obtained from the system (M, H;). Then the product
system =9 XX - X ¥y is represented by the product s-shift
(2,0, T,), where s=s,55-+---sy and (2, p, T) =10 (&:, ps, T?), if the
Hamiltonian H of the coupled system .¥ is exactly the sum of H,,
H,, ---, and Hy, that is, there are no mutual interactions, If we take
mutual interactions into considerations, they are represented by a map
C of 9, and the time evolution of the coupled system & will be
represented by the composed map T'=C-T',. The fact that the mutual
interactions are ‘“negligible” is represented by the C-invariance of
0= 0:Q0:Q - Xpw.

In this context it is interesting that in some cases p is completely
determined by the map C([1], [4]).

We do not dwell on this problem.

2.2 In this way we arrive at the following notation. Let (X,
0,T,) be s-shift:

X=1IIS.. S.=8=1{0,1,2,.-- s—1}.

neZ

For any w={w,} €X
(7‘0(0)7! = a)n-—h

and p is a T-invariant probability measure on X. We denote by 7x

the projection of X onto

SK= [I Sn
nekK
for any subset K of Z:
k: X—Sg: g (0) =0x= {a)n} nek for Vo= {wn}HEZ‘

Now we give the following

Definition 2. A mapping C of (X, p) is called an interaction
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or a collision of (X, p,T,) if it satisfies the following conditions.

(1) C is an automorphism of (X, p), that is, invertible p-preserv-
ing measurable transformation of (X, p).

(2) For any finite subset K of Z, there exists a finite subset
K’ of Z such that for any two elements w, o’ of X, 7x (0) =7ng (0")
implies 7x(Cw) =7x(Cw’). In particular if C satisfies in addition the
following conditisn, the C is called a local collision on K.

(8) C is the identity onZ\K, that is

TEZ\K(C(D) =TL'Z\K((D) for all (DEX.

The obtained dynamical system (X, p,7") is called a process with
interactson C, where T is defined by T'=C-T,.

As mentioned above it is an interesting problm to investigate
the relation between interactions C and shift-invariant measures p.

We do not dwell on this problem here. We give another notion.

Definition 3. An interaction C of (X, p,7,) is called to be
dissipative, if it has following properties:

(1) CO6=0, where 0 denotes the “vacuum” element of X, that
is, 0,=0 for all n€ Z.

(2) Take any finite set K of Z, if w € X satisfies 7wz x (0) =72 x(0)
then there exists a number n2>>0 depending on o such that

7k (T"w) =7 (0).
Remark. Let C be a dissipative local collision on K= (0, £],

then there exists a number 7nx>0 independent of » such that for any
weX and n=>ng, if

T 01(0) =T(_n,n(0) then 7x(T"w)=rx(6)
Here we use the notation
(a,b]={neZ; a<<n<b}

for any a, b Z.

2.3 We will now on deal with only the dissipative local
collisions on K= (0,%4]. Then we get the following
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Theorem 3. Let (X, p,T) be a process with interaction C. If
C is a dissipative local collision on K= (0,k] and ¢ is a direct
product probabillity measupe on X such that

1>p0=p{w; w,= 0} >0.

then (X,p,T) is a Bernoulli system.

Theorem 4. Under the same assmptions as theorem 3, we have
lo(T"ANB) —p(A)p(B)|<const. "

for all n=0 and for any cylinder sets A and B of X. Here const.
and r are constant numbers depending on the supports of A and B,

and 0<r<1.

2.4 Proof of theorem 8:
Let ¢={C,,C,,---.C,_;} be a partition of X such that

Ci={veX: v,=1} for iS=1{0,1, .-+ s—1}.

As T "Ci={weX;0_,=1i} for all 220 and i€S, it is clear "that
g T™¢, ..., T™"¢, ... are mutually independent. Therefore § is a
Bernoulli-partion for 7', that is, {T"é; neZ} are also mutually in-
dependent.

We have to show that

\/ T"&=¢ (=partition into individual points).

Ne=— o

Let Ji= {we X; TC(—nK(iH),—nKi](w) = T (—ng(i+1),—ngi) (0)}
where 7 is the number defined in the above remark.
Let L=\ T "¢
n=>0

We note that J;(i=>0) are contained in B (&,), c-algebra of X genera-
ted by &. As p is a direct product probability measure with p,>>0,

so it is clear that
p(X\U Jo) =0.

Now let o and w’ of Ui ,J; be {r-equivalent, that is, belong to
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the same element of &. If weJ,(0<<I<j), then w’€J,, and by the

dissipativeness and the locality of the interaction C we have

(7vux([+1)w)i — (Tnx({-rl)w/)i
Hence
(T"K(!+1)a))t= (Tﬂk(l“)m'){

Therefore we get

for

for

(THEI+D+py), — (T ORGP0y,

This means

YRS A pCoZTok+ pCO
Hence

VT G=V Tit=¢

As j is arbitrary, so

<t

n

and

T",=¢ (mod 0),

V T =V Tt

Nz — o0 =0

2. 5 Now let us prove the theorem 4.
Let L be a subset of Z and

We use the following notation:
aLEIInEL Sn-

Vizk.

vi<k.

for

on

on

[ar]l={weX:m(0) =ay}.

Vi<k+p.

q.e.d.

First we assume that B is a cylinder set on (0,56] (b=£k), i.e.

B={we€ X: 74,(0) € B, s}

for some B, 57 S, 53-

Let

Ji= [ﬂ(—m(i+1),-mt] )] ]

where m=206—k+ ng.

for

=0

)
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We denote from now on that
T(-mE+1), -mi]= i

for the brevity.

Let
j=1
I=J,—UJ,
iz
and 2;,= {0 7,(0)5~=n,(0) for OV <j—1}.
Assume that A= [ax] fore some ax< Sk, and denote
Then
A= gz [a'x] N [H(-m/,n]((!))] N s 7. 1)
wELy
By the locality and the dissipativeness of C we can get
T ([ax] N [Fempn (@)1 N [7,(0 1)

= [70,03(0) 1V [@s @k, Tems,00(@))) 5,mes 5194 53)

Here ¢;(ax, T-mj,0(®)) is some element of S, m;4n+x7 depending on
ar €Sk and T ny0(®) €S _nj o whose explicit from is not necessary
to know.

Hence

T ([ag) O [Tengn (@) 1N [7500)])
=T7(0)N T"[((ﬁf (ax, Tems (0))) (b,m(j+1)+k]] . 2

where O= [7[(0’5](0)].
Taking the sum for » over £; we get

T’"(“’)“’(Aj) NB
=(T*"(OYNB)N ( éé Tp[(¢j (ax, ﬂ(-mj,o]((l))))(b,m(_i+1)+k3])~
o 7
Hence

p(T™I*D* (A ) NB) =p(T?(0) N B)

> o ([ (s (axk, ﬁ(—m;,oj(w)))(b,m(1+1)+k]])- 3

7 (empy o] (@) 0EL

On the hther hand, taking the sum over £; in (2) we have
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0(A4;) =p(0) x 2 (Lo (ax, Tms,0(@))) o, m(f+1)+K]]) ©))

T (-mg, 0] (0); 0EQy

Note also that
0(A)=p(A)opy). (%)
Combining these (3), (4) and (5) we get

p(T™V*D*2(A,) NB)

_ 0A)
(O)O(T O)NB) o).

Finary we can get

o(T"(A) NB)

=0 (1" (UA) NB) +p(T"(4\U 4,) N B)

Jn

="—) o) p(T"-m<f+'><0>nB>+o<T"<A\u A)NB).

0 (O
(4)

\/

for n=>m(qg+1).
Summing up over Sk, the left hand side becomes

2 (T"ANB) =p(T"(X)NB)=p(B),

A=[ax) axESk

and the right hand side becomes

1 2 n—m(f+1)
»(0) jZﬂo(L)o(T s oyNB)

+¥0(T"(A\Q:4;)HB)

Il

6y P U@ I 0)NB)

+o(T"(X\JJ) UB).

Hence

o(B) =~~~ Z o) (T"™9*2(0) N B)
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q
+o(T"(X\UJ) NB). @
Consequently from (6) and (7) we get

p(T"(A) NB) =p(A) {p(B) —p(T" (X\jQJoJ,-) NB)}

+ o(T"(A\jLz"Af) AB).

Hence we have for any cylinder set A on (0, %],

lo(T"(A)NB) —p(A)p(B)|

= 1p(T"(AN (X\UJ)) NB)
~0(A)p(T"[X\UJ) NB)|
<o(T*(X\UJ) UB)

Sp(X\fL:JOJ,), for n> (b—k+ng) (q+1).
Note that
p(X\UJ) = (A —pim.
From this we can easily get
lo(T"(A) N B) —p(A)p(B) |=const. 7"
for all 20, where = (1—p,") <1 and const.=7""*+"x,

Thus we have proved theorem for the cylinder set B on (0, ]
and the cylinder set A on K.

In general, let A and B be the cylinder sets on [—a,a], a=4.

Then, T**'(A) and T**'(B) are the cylinder sets on (0,2a-+1].
We can assume that 7°*'(A) is a thin cylinder set on (0,2a+1],

that is, we can set that
TN (A) = AN A,

where A;= [,i3] for some 7€ S,y and A,= [’ (k,20417] for some

7
(20411 S(k,:au]«



Perturbation of random processes 221
Then
’1'n+a+l (A) :']'n (AI) ('} ’11:1 (Az) .

Note that for »>2a+1—4k, T"(A,) is a cylinder set on (@,2a
+1), a=n+k>2a+1, and T"(4,) NT**'(B) is acylinder set on (0,
a]. Hence T"(A) NT**'(B) and T"(A,) are mutually independent.

Therefore

o(T"(A) NB) —p(A)p(B)
=o(T*(T"(A)NB)) —p(T**'(A)) o (T (B))
=T (T (A) NT**(B)) —p(T**' (A))p(T**'(B))
=o(T"(A) NT"(A) NT**(B)) —p (AN As) (T (B))
=p(T"(A)) p(T"(A) NT**(B)) —p(A)p(A) p (T (B))
=0(A) {o(T"(A) NT**(B)) —p(A) o (T (B))}.
As A, is a cylinder set on (0, %] and T°*(B) on (0,2a+ 1], we have
lo(T"(A) NT**(B)) —p(A) o (T (B))]
<const.r*  for all n>0.
lo(T"(A)NB) —p(A)p(B)!

<const, 7" for all »=>0. q.e.d..

2.6 Appling these theorems we can verify the theorems of
section 1.

We show that the system (X, g, T') which satisfies the conditions
(1), (2) and (3) of the theorem 1 of the section 1 is a special case
of a process (X, p,7") with interaction C where C is a dissipative
local collision.

Let V.= {(Z',---,2*) €Z*; |2*|<k for i=1, .-, v} be such a bound-
ed set of Z* that

if a&V, then ¢,=trivial.

It is easy to see that we con concentrate our consideration on such
sites x= (', 2, --+, ") € Z* that for some =1, -, y|x!|<k. Because
there is no interaction outside the V,, so the particles on the sites
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= (z', 2%, -+, x*) where |2f|>k for all i=1,2,---,y move like ideal
gas.

For the simplicity we consider only the case when y=2 and £=1.
It is not hard to see in general case.

Now we constract a mapping f of Xyp=||.erX. to X=S% where
V={a= (2!, .-, 2) €Z"; for some i=1, -y, |z'|<k}.

For a configuration X(a;v), a€V, the image {w.,} €S? of it
under f is given by

Wn=(€a', &', -, €2). {0, 1}¥=8
where
¢ =X((n—-2,1);(1,0))
e=X((2—2,0):(1,0))
e =X((n—-2,-1);(1,0))
&'=X((=1,2-2):(0,1))

e =X((—1, —n+2): (0, =1))

The interactions {g,; a€V} induce the local collision C on
K= (0,2k+1].
The dissipativeness of C follows from the dissipativeness of p=

{¢a}.
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