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§ 0. Introduction.

Mixed problems for hyperbolic equations have been studied by
many authors. In the case when the domain is a quarter space and
the coefficients are constant, S. Osher studies a mixed problem for
hyperbolic systems ([6], [7]). On the other hand some authors
treat with a mixed problem for hyperbolic equations with discontinuous
boundary conditions in the case when the boundary of a domain is
smooth ([1], [3]). K. Hayashida showed that a mixed problem of
(1.1)-(1.4) has a unique solution which satisfies the boundary con-
ditions weakly (See §1. Theorem 1). A mixed problem with dis-
continuous boundary conditions and a mixed problem in a domain with
corners seem to be similar.

In this paper we extend the result of K. Hayashida [1] in the
case when the boundary of a domain has corners and we study the

regularity of solutions.

§ 1. Statement of the results.

Jet 2 be a domain in the n-dimensional Euclidean space R".
We assume that £ and its boundary S satisfy the following three
conditions;

1) S is compact,
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i) S=r,ur.UL, r-NL=¢ (G=1,2), I'NIy=¢, I'i is the
(n—1)-dimensional C>-manifold (;=1,2), and L is the (n—2)-di-
mensional compact C*-manifold, and

iii) for every point x, on L there exist a neighborhood V(x,) of
x, in R,", a neighborhood W of the origin in R," and a regular C>-
mapping y=¢(x) such that ¢(L) C{y,=y,=0} and

0: V(x) N@SWNRE  (case 1)
or

0: V(@) N2SWNRY, (case 2)
or

¢: V(z) NQSWNR, (case 3)
where R."= {(y1,52,5");5>0, (3,,5") e R"'}
Ri= {1, ¥, 5"); »>0,5.>0 and y" € R""%}
Rip=A{ (31, ¥2,¥") s3>0 or »<0,y” € R""%}

and we mean the diffeomorphism by 5.

We consider the strictly hyperbolic equation of second order;

(1.1 {56':74‘01<x; —;;)%+ az<x; %)}u(t,x) =f(¢, x)

in [0,T]x2,
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2 0 ) oy 0
a (71 o5) =2 X (@) gt @),

0
0x

O P B 0 ¥ 0
a2<x, > =—3" axtau (x) axj'f' S1hi(x) axi+cz (x),
where h;(x) and a;;(x) (=a;i(x)) are real functions, all the coef-
ficients of the equation (1.1) belong to B(2)Y and ¥ a;; (x) &:£,=0€|°
for all (z,¢) €2x R" (0>>0). Further let us impose the initial con-
dition (1.2) and the boundary conditions (1.3) and (1.4).

(1.2) (i%)ju(o, 2)=u,(x) (j=0,1)
(1.3) u(t,x)=0in [0, T]) X T,

o 9 N q
(1. 4) (737 Py +0‘(x)>u(t,.r) 0 in [0,T]X I},

o _ >tag cos(y, x;) i, y=the unit outer normal of I,
on 0x,

hyy>=3 hicos(v, xi),
where ¢ (x) is a real C=-function on [’
We denote by H*(2) the Sobolev space and by K(2) the com-
pletion of all #(x) each of which belongs to C,*(£2)? and vanishes

in a neighborhood of I', with H'(2)-norm. Let us define two weak
boundary conditions (B;) and (B,).

Definition 1. We assume that a,(x;0/0x)u(¢,x) is in L*(Q)
and z(¢,x) is in ENH'(D)).Y We say that u(z,x) satisfies the
weak boundary condition (B,), if the following two conditions (1.5)
and (1.6) are satisfied;

(1.5) u (¢, ) belongs to &' (K(Q)),

and

v B(R) is the set of all functions defined in the closure & of 2 such that their
derivatives of any order are continuous and bounded.

Co™(E) is the set of all functions in C*(E) which have a compact support in E,
where E is either open set or not.

“u(t,x) €€.F(B)” means that u(¢, z) is k-times continuously differentiable in ¢ as
B-valued function, where B is a Banach space.

2)

8
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Nt DTN LA . .
+ jr:<o‘u (/z,y)a—%odS for every ¢(zx) e K(Q).

Remark 1. For «(¢,x)eCy([0,T]x2), (1.3) and (1.5) are
equivalent, and (1.4) and (1.6) are equivalent.

Definition 2. We assume that {«(x),v(x)} is in H'(Q) x H'(Q)
and a,(x;0/0x)u(x) belongs to L*(2). {u(x),v(x)} is said to
satisfy the weak boundary condition (B), if the following two con-
ditions (1.7) and (1.8) are satisfied;

(1.7) u(x) and v(x) are in K(Q),
and

¢ 0 0 \ . O0u 0p
1.8 -3 L gy, —u, @)= a,—, =&
( ) ( = axiaijal'ju‘ (0) —<alja.1:j’ ax,:

+ Yr (cu—<h, D) pdS for every ¢(x) e K(RQ).

Theorem 1. (K. Hayashida [1]) Let {uy, u,} be in H'(Q)
X H (D) and a,(x:8/0x)u,(x) belong to L). If {u,, u} satisfies (By)
and f(t,x) belongs to £ (K(D)), then there exists a unique solution
u(t,x) of (1.1) in ENK@)NEI(LH(R)) which satisfies (1.2)
and (By), and the following energy inequality holds;

1.9)  lu@l+ 1" () o =Cie® (ol + leslo + Jﬁtllf(S) lodls) .

Remark 2. K. Hayashida proved Theorem 1 in the case when
2 is a bounded domain with a boundary S of class C>, but he did
not assume that L is smooth. We can also prove Theorem 1 in the
case when £ and S satisfy our assumptions by the same way as his
proof (See [1]). We omit the proof of Theorem 1, but in §4 we

%  We denote an inner product in L*(2) by ( , ).
D w/(t),u”(t) and «™® () are (0u/0t), (8°x/8t*) and (8*u/0¢") respectively. And || ||«
is a norm in H*(2).
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make up for its proof.

Corollary of Theorem 1. In Theorem 1, if f(¢,x) is not in
ENK (D)) but in EX(LH(R)), then the same result as Theorem 1
holds, and further the energy inequality (1.10) holds;

(1.10) (1734 @+ la” ® Hoéczem (lzeylls + | azeee + ayeasflo

FLFO L+ | £ () hds)

Remark 3. We do not prove Corollary of Theorem 1 in this
paper, but we can prove it by the same way as [2] or [4] (See
[4] pp. 28 Théoreme 2.1). '

In order to consider the regularity of solutions of (1.1), (1.2),

(1.3) and (1.4), we introduce some spaces of functions.

Definition 3. Let £ be an integer, then we define for £=1

GH(Q) = {u (x):ue}(Q) and <T%>Iﬂl_l<%>”ueLz(.Q)

for 1§lﬂ|§k}6)

and we define for £=0

FE(Q) = {u () (1:7_ )'“(aix)”uev(m for mlgk}

where »=distance(z, L).

Remark 4. We easily see that G'(2) =H'(2) and F*(2) =L*(2)
and that G*(Q) and F*(Q) are Hilbert spaces with their appropriate
inner products. If z(x) is in G**!'(®), then 0u/0x is in F*(®), and
if a(z) is in B®@) and u(zx) is in G*(Q) (resp. F*()), then au
belongs to G*(Q) (resp. F*(Q)).

We define the compatibility condition (C,) of order % for data

O =, oy oy M), ol =g pe 4o+ s, and (8/02) = (8/8x1) " (8/022) "2 -+ (8/020) "n.
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{f, wo,u,} of (1.1) and (1.2).

Definition 4. Let f(¢,z) be in &' (F*)NEHFN - NEF (LY,
{uo, u,} be in H'(Q) x H'(2), and a,(x;0/0x)u, be in L*(). Then
{f,u, u;} is said to satisfy the compatibility condition (C,), if {uj,
#;.y belongs to H'(2) x H'(2), a,(x:0/0x)u;(x) belongs to L*(Q),
and {u,, u,;.,} satisfies (B,) for j=0,1,--- k.
where #;(j=2) is inductively defined as

Wy =f9(0) —al(.’v; a%)ulﬂ—ag(:r: a%)u, for j=0,1,2, -

Now we state our main theorem.

Theorem 2. We assume that f(¢,x), {u,, u,} and au, belong
to ENEFH NEEFN M- NEF (LY, H' (Q) X H' (2) and L*() re-
spectively, and that {f, u,, w,} satisfies (C.), then the solution u(t,x)
of (1.1) and (1.2) which satisfies (B,) belongs to &E°(G**NK)
NENG*NK) N NEF(K) NEF (LY.

Remark 5. If #, and «, are in C7(2) and f (¢, x) is in Cy ((0, T
X £), then {f, u,, u;} satisfies the compatibility condition of order oo.
And then we see from Theorem 2 that the singularity of the solution
of (1.1)-(1.4) is located in a neighborhood of ‘L.

§ 2. Proof of Theorem 2.

In this section we prove Theorem 2 in the same way as [2] or
[4] using Lemma 1 proved in § 3. '
‘We introduce the space of C*valued functions as follows; E*=
{(u,v); ueG*** ve G auesF* and {u, v} satisfies (B} (k=0)
with the Znor‘m: v V B

I (2ty ) lpe= (letligeee + [V1Geen + llatel ) 7.

Then E* is a Hilbert space. And we consider the following bounded
operator P from E* to (G**'NK) x F*;

P Hu, 'v)=[:].
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0
P=

b —1]
a—e +4, @

where ¢, (x;0/0x) =3 b:(x)0/0x;+ ¢y (x).

Proposition 1. P is a one-to-one and onto mapping, if we take
a sufficiently large number as A.

Lemma 1. If for g€ G**'NK and fEF* the following equality
(2.1) holds, u(x) in K(Q) belongs to G***(Q).

2.1  Blu.ol=(f.¢)+ L 97dS for all peK(Q),
where Blu,¢]=3](ai;(0u/0x,), 0¢/0x:)) + (u,¢).
The proof of Lemma 1 is given in § 3.

Proof of Proposition 1.
For any given ¢&G**' and feF* we consider the equation;

—p=y
2.2) PU=F ie.
(a;—e;+Dutav=f,
u g
where U=[ 1 and F=[f] By (2.2) and (1.8) we have
v,

@3 2(a? ) i@ + | oupdS=(ag+s,0)
. 8.1:, 0x; Ty

— L Ch, 7509dS for any e K (D).

If 2 is sufficiently large, then using Lax-Milgram’s theorem, we see
that there exists uniquely a function #(x) in K(£) which satisfies

(2.3). Thus P is a one-to-one mapping. By (2.3) we have
(2.4) Blu,pl=(a,9+f+u—2u,¢) + L (—ou—<h, r>9)@dS.

Since @, +f+u—Aiu is in F* and —ou—<h,7>g is in G, using
Lemma 1 (s=0), we see that « belongs to G®. Therefore a,g+f+u
—2Au is in F', —gu—<h,r>9 is in G% and by Lemma 1 (s=1) « be-
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longs to G®. Repeatedly we see that = G***, (2.3) holds for every
¢eCy(2). Therefore setting v= —¢g, we see that ‘(u,v) satisfies
(2.2). By (2.2) and (2.3) {u, v} satisfies (B,). Thus P is an onto
mapping. . (Q.E.D)

Proof of Theorem 2. By Proposition 1 and the closed graph
theorem of Banach, there exists an inverse operator of P which is

continuous. Therefore we have

(2.5) 2]l gere =Cs (| vl geor + lctstt — eyt + At + a, vl pe)
for every U="‘(u,v) € E*

It follows from (2.5) that

(2.6) leelgee =Co (&t genr + [Vllgres + | @sts + @rv] pe)
for any U="(u,v) €E* (k=0).

Let u(¢,x) be a solution of (1.1) and (1.2) in &MNK)NEFLY)
which satisfies (B;). Its existence is guaranteed by Corollary of
Theorem 1. From (1.8) and (1.1) it follows that

2.7 Blu, ¢l = (au—eu+u, ) + L «h, r)% —o‘u)@dS

o du _ 0u
= (f—a,——— Yo —eu+u, (p)

—|—j ((11,r>a—u—du>¢d8 for any =K (9).
r, ot /

Since (f—a,(0u/ot) —0*u/0 —eyu+u) is in F°'=L* and ({h, y)ou/ot
—ou) is in K(£2), we see that u (¢, x) belongs to G* from (2.7) and
Lemma 1 (s=0). Therefore *(u«, 0u/0¢) is in E°. From (2.6) (£=0)
it follows that «(z,x) is in & (G'NK) since u(¢,z) is in &NK)
and au+ a, (0u/0t) =f (¢, x) —0°u/0¢ is in E°(LP).

Now we consider an equation;

2
a@;l +a aa'z;, +aw,=f' (¢, x)
2.8 2,(0, x) = 2, (x)

— 621: (O, Z') :f(()’ x) — i, (x) —'(lzllo(x)= Uy (‘r) .

0v,
—L (0, :
o 0, x)
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By applying Corollary of Theorem 1 to (2.8), we see that there
exists a solution v,(¢,z) in &(K) NEHLY). From the above argu-
ment it follows that v,(¢, ) belongs to &'(G*NK). Let us set

2.9 v(t, x) =u(x) + J;Lv, (s, x)ds,

then v (¢, x) is nothing but u#(¢,z). In fact we get from (2.8) and
2.9

0 |0* v
Sl e ran=r}=0
2
<67; +ﬂxa—v+agv—~f> =0
(2.10) ot ot e

v (0, x) =u,(x)

ov - =
E(o, x) =2,(0,2) =u,(x) .

From (2.10) and the uniqueness of solutions of (1.1), (1.2) and
(B) in EMK)NEL(LY), we see that v(¢,x) =u(t,z). Therefore
u(t,z) belongs to EXILHNELEK)NEHNGNK). In 2.7) (f—a
(0u/0t) —0*u/0t* —equ+u) is in F* and ({h, 7D0u/0t —ou) is in G?'NK.
By using Lemma 1 (s=1), we see that #(¢,z) belongs to G*. There-
fore ‘(u,0u/0t) is in E'. Since u(¢,x) is in &(G*NK) and au
+a,(0u/0t) =f(t,x) —0u/0t is in E'(F'), it follows from (2.6)
(k=1) that «(¢,x) belongs to &'(G*NK). Repeating this argument,
finally we see that u(¢,x) belongs to &°(G**NK)NEHG'NK)
N---NEXYK)NEF (LY. Theorem 2 has been proved. (Q.E.D.)

§3. Proof of Lemma 1.

By the assumption on @, S, I'y, I, and L, there exists an open
covering {V,}._y,..y of 2 such that

1) for k=1,2,..- N, V,(N L3¢ and there exists a regular C*-
mapping y=¢(x) from V, into R, satisfying (case 1) or (case 2)
or (case 3) in §1,

(2) for k=N,+1, N,+2,---, N—1, V,NS#¢ and V,NL=y¢,

and
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3) VNﬂS=¢.
Let a;(x) (=0) be in C7(V,) such that >¥_ a,=1 in 2. We get

(3.1) (ai,a (axu) O >= (Gu ou ’@(ak(o)‘)

ax, ’ 8.7:,: 8:5, 01‘1 /
_l,_ y — ,
<a” axj “ 0x; ) <a 0x; 6.'1?j /)
and therefore from (2.1) it follows that
(3.2) Blasu, ] = (arf, @) +Cilu, ¢l + Jr . gpdsS

for any @K (2)

where

3.9 Culu, o] = X (a 2000, 00 ) (g, 0 Bu_ )]

0xr;  Ox; 0x; Ox;
For k=N, +1, since a,f is in H* @0 is in H**' and supp lau] NL
=¢, we see that a,u belongs to H**’(CG**?) by the well-known
method (see [5] Chap. III). So we have only to verify that a,u
belongs to G*** for k<N,

Now let us suppose that there exists a neighborhood W, of the
origin in R," such that V,N®, V,NI, and V,NI, are mapped dif-
feomorphically onto W, N R,", W,N{y,=0,5,>0}, and W, {y,;=0,
v¥,< 0} respectively. (In the other cases we can prove in a similar
way.) From now on we omit the sufix 2. Then we have

(3.4) Co-r=ly'| =V ity <Cyor.

Once more we change independent variables from y= (y,, v, y”) to

0,7,0);
s y,=e " sin §
(3.5) v y:=e " cos O
l yi=0; B=j=n)

We obtain the following rules of calculus;
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4

0 _ ”(cos@ 9 —sin @ 0 )
00 0y 0y:
[ 0 0
(3.6) rra e (sm 0 oo, +cos 0 P )
0 0 .
=—— (B=j=n),
\ 00)] ay, (
ie.
(0 _ e’(cos 0—6— —sin 0—6—>
Gy; 00 ot
0

= —e <sin 0-6%+ cos 0—0-)

0y: ot

0 0 .
= B=i<n),
\ ay} aw!

(3 7) a(‘rhxh ) xn) {=e—2rxJ where J= l 8(1:1, Iy, ~-,x,,)
0@, ,0) 0 (1, Y2, > V)

By the above change of variables, we have
(3.8)  Blu,¢]l=Bu,9]=2e"a,Eu, Eg)y+ e Ju, pp,”

0

where dy=JxXay; and E=—"-.
ax{

Then it follows from (3.2) and (3.3) that

3.9 Blaw, gl = Jaf,p+& o]+ | | e oaspdrdo

where
(8.10) &[u,¢] =2 {Ke™ad,(E;a)u, Ep) —<e™"a:; (E;a) Eu, gD}

and dS=p(r,w)drdw on S.
Set

® “y(,r,0)sLi,..” means that #(6,r,w) is a square integrable with respect to the
usual Lebesgue measure dfdrdw, and its inner product is denoted by <, ).
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4.900, ¢, ) =%{0(0, T+h,0)—g9@0,7,0)},
4..90,7,0) = —1h~{g(0, t—h,0)—g 0,7, 0)},

(3.11)
4,000, 7, 0) =,i{g<a, T 0+hy) —g(0, ¢, 0)},
1

4_400,7,0) =L]{g(0, T,0—h;)—g(0,7,0)},
—n

\
3 J
v v ,
where A,=(0,---,0,4,0,---0) (3Zj<n).
We can suppose that ¢=0 in t<{—~M. (M is a large positive

constant.) Since 4.¢p belongs to K(2) for 9= K(Q), it follows from
(3.9) that

(3.12) Blau, 4.¢] = <e"z'Jaf, d.o>+F[u, 4.9]

+ jj,_ epagd.pdrdw. .
On the other hand we have

(3.13) . DBlau,d.9]=—B[4-.(au), ] + Gulu, ¢]

where

(B.14)  Gulu, ¢ = — S 4o (e TLE)} (au) (c — 1), Epd

+<Le"ay, (au), (4.E)o(c+h))}.
By (3.13) and (3.14), we get

(3.15)  B4_.(aw),p) = —<e*Jaf, 4.4)
= jﬁ epagd.pdrdo — € [u, 4.1+ Gulu, ¢].

Now feF'=L(2), ¢g=G' and u,9=K(2), so by (3.6) and (3.7)
each term of the right side of (3.15) convergers when % tends to
+0.

There 4_.(au) weakly converges in K (), because B[u,¢] is a
positive definite Hermitian form equivalent to the inner product of
K(.Q). In the other view
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0
ot

d-(auw) >——(an) in D (Q),

so we see that §(qu) /0t belongs to K(2). Further if feF!'(2) and
geG*(9), it follows from (3.15), (3.10) and (3.14) that

(3.16) @[air (au), ¢] = ( a% (e*Jaf), <o>

+ j‘j;ﬂ {Ear_ (e "pag) } pdrdw —&1[u, 9] + Gi[u, ¢],
where

@, 01 = S{ (L2, Eww, Eg)

B <e_2r?ftj (Eja)u, 0% ¢> N <e-2r iy (Eye) B, i(p>}
or ot

and
Gilu,9l= -2 {< {% (e_gfﬁqu)} (aw), Ei(ﬂ>
-+ <€‘2r5i1E1 (awm), —a£l—¢>} .
ot
In a similar way we get for 3<I[<n
3.17) Ble~d-i(au), 9l = —Le "Jaf, 4ip>

- ere'z'pagA@drdw —&[u, e dip] + Gh,[u, ¢],
where
G, 9] = — K4 (e a,E))} (aw) (0 —h)), B (e~ 9) >
+<e"a,E, (aw), (4E) (e"p(0—h))D}.

From (3.17), we see that e " (9 (au)/0w,) belongs to K(2). If feF!
and ¢ =G?, we have from (3.17)

(3.18) B [c"% (au), (p] = <e"'aiwl Jaf), (/’>

L H}e {—z%(pag)}(idfdw—?z[u, o1+ G[u, ],
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where
_ e 0 o —c
g42[“»@]-23{_<‘3 ° (@ (Es)u), Ei(e ¢)>
l
~(eay E @ n, 22 )
Oa);
(e (E,) Bat, 20 )}
6?a);

and

.01 = -2{((L <-2‘~UE,>)<au> Ede9))

0w,
e )

Until now we have taken a(x)=a,(x), but the above argument
holds for every a(x) in Cy (V).

Repeating this argument for (3.16) and (3.18), finally we have

(3.19) <e_%><aa_r> "auw) €K (@) for ot r|<s+1.

From (3.19) it follows that

(3. 20) (e"%)r(%)h“(au)

and (e“’%)X—%) <06—2'> 8 (aw) €Lj..,

for B+|rISs+ 1
Let ¢ be in C3(V.N2) in (3.9), then we have from (3.6)

(3.21) (o) +dz

000 or?
o Bl D el 2

+e ¥ d, (%)ru +e Fdaf,

(au)
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where d,,d,, di,;, ds,;,d, and d; are C™-functions and their all partial
derivatives of any order are bounded in (6, t,w)-space, and d,,,d;,
and d, have a(x) or its derivative as a factor. Applying the operator

(e (0/0w))7(0/97)** to both members of (3.21), we see from (3. 20)
that

(3. 22) @-r%)'(%)’(_a%)ﬂ’(au)eLg,,,a, for B+ |7]<s.

Again applying the operator (e7*(0/0w))"(9/80) (0/07)% (Bt |7I=s
—1) to both members of (3.21), we have

(3.23) (e”’%>r<%>a<%>ﬁz(au)eL?,r,m for B+ |7ISs—1.

Repeating this, finally we get

AVTALTEAL ; -
3.24) (e 6w> <ao> <ar> (u)eLi., for [Bl+Ir|<s+2.
Since a(x) =0 in t<<—M, it follows from (3.24) that

(3.25) aucs G (D).

Thus the proof of Lemma 1 has completed.

§ 4. Comments.

In this section we prove Lemma 4 (see K. Hayashida [1] Lemma
9) which is necessary for the proof of Theorem 1. At first we
state the following two lemmas without proof.

Lemma 2. For any u(x) in K(Q), there exists a sequence
{p;(x)} such that

1) @;(x) is in Cy(R) and wvanishes in a neighborhood of
UL,

@) ¢;(@)—>ulx) in H'(Q) as j—oo.

Considering that L is 1l-polar set in Schwartz’ sense, we can
easily prove Lemma 2. (see L. Schwartz [8])

Lemma 3. (K. Hayashida [1] Lemma 7)
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For u(y) in Cy(R}), there is a sequence 0 () in Co(RD) such
that

1) o, —»u)in H'(R}) as jooo,

(2) (0/0y:+0(¥2,5"))p;=0 on y,=0,

3) if u(y,y:,y")=0 for the fixed (y., ") and any y, then
each ¢;(y) also wvanishes for the (y,,y") and y..

We set
4.1) D(A) = {U=‘(u, 0):u,ve H'(Q), az(x,i)uelf(g),
0x

and U satisfies (Bz)}.

Lemma 4. D(A) is dense in K(Q) X L*(2).

Proof. Let '(u,v) be in K(£)xXL*(®), then there exists a
sequence {*(u;,v,;)} converging to ‘(u,v) in K(Q) X L}*(2) such that
each v, is in Cy(2) and u, belongs to Cy(2) which vanishes in a
neighborhood of I';UL. So we can suppose that x belongs to C7(2)
and vanishes in a neighborhood of T,UL and v is in C¢(2). For u
there exists an open covering {V,}¥_, of 2 different from that in § 3
such that

1) for 1<k<N, V.NL=¢, V.NI=¢, V.N2 can be mapped
in a one-to-one C* way into R, and 8/dn is transformed into /0y,

(2) for N,+1=<k<N, 4=0 in V,,
and

(3) for N,+1<k<N V.CAQ.

Let {a:} be the partition of unity of class C* corresponding to {V,}.
Applying Lemma 3 for a,u on R}, we can find a sequence {p,®}
(1=ZkXN,) such that

4.2) ¢;¥=0 in a neighborhood of I'yUL,
(4.3) (i+6(x))¢,(k)=0 on I

on
and

4.4 ;P >au in H'(R) as j—ooo.
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Let us set
N, N
(4.5) ;= 20,04+ 23 awu,
k=1 k=N +1

then ¢,—u in H'(Q). Setting v;=v, *(¢;,v;) is in D(A) because
for *(u,v) €Cy(2) xCy(2) (1.7) and (1.8) are equivalent to the
condition;

(4.6) u(x)=v(x)=0 on I},

and
4.7 Ba—u —<h, you+06(x)u=0 on I, respectively.
n

And ‘(p;,v;)—>'(u,v) in K(Q)XL* (). Therefore D(A) is dense
in K(2) XxL*(9Q). (Q.E.D.)
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