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Introduction

Let D be a Siegel domain of the second kind associated with a
convex cone V and a V-hermitian form F. Realization of D as a
Siegel domain of the third kind was studied by Pyatetski-Shapiro [5],
Wolf-Koranyi [13] and by Satake [6] when D is symmetric.

Kaneyuki [1] and Takeuchi [8] treated the case where D is
homogeneous. Their methods are based on the correspondence between
“j.algebras” and ‘“homogeneous Siegel domains of the second kind”.

The purpose of the present paper is to prove that D can be re-
alized as a Siegel domain 9D of the third kind in such a way that
the group Aut(D) acts on 9D as quasi-linear transformations. This
is a generalization of a result of Takeuchi [8]."

In § 1, we recall some results in [2] and [4] on the structute
of the Lie algebra q(D) of Aut(D) and construct a symmetric domain
S which corresponds to a semi-simple part of g(D). We also recall
Tanaka’s imbedding of the domain D ([10], [3]).

In §2, we study a Cartan decomposition of g(D) assuming that
D is symmetric. Many results in this section can be obtained also
from Satake [7]. But our methods and proofs seem to be more direct
and simpler.

Y Takeuchi [7] obtained this result for the identity component of Aut (D) when D

is homogeneous.
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By using the results in previous sections, we shall study in § 3
the structure of the cone V and introduce a cone V, and a V-her-
mitian form H.

Finally in § 4, by the same arguments as in Satake [6], we con-
struct a Siegel domain 9 of the third kind, with S as a base space,
whose fiber is the Siegel domain of the second kind associated with
V, and H. And making use of Tanaka’s imbedding, we shall see that
D and 9 are holomorphically equivalent.

§ 1. Summary of known results.

1.1. Let R (resp. W) be a real (resp. complex) vector space
of a finite dimension. Denote by R. the complexification of R. For
every vector z€ R,, we denote by Re z (resp. by Im z) its real (resp.
imaginary) part.”

Let D be a Siegel domain of the second kind in R+ W, due to
Pyatetski-Shapiro [5], associated with a convex cone V in R and a
V-hermitian form F on W, and let g(D) be the Lie algebra of Aut(D),
the group of all holomorphic transformations of the domain D. Denote
by E (resp. by I) the element of g(D) induced by the following one
parameter group in Aut(D) (with parameter ¢):

ztw—oez+e*w (z€R., weW)
(resp. z+w—>z+e "t w).

Then from Kaup-Matsushima-Ochiai [2], the Lie algebra g(D) has the
following graded structure:
g(D) =g +g7 +g"+g'+g" ([g" g TCg™™),
¢'={Xeq(D); [E X]=21X},
=1t a*=rNg"H,
where 1 denotes the radical of g(D).

We also know from [2] that both E and I are in the center of
g’ and that I has the following properties (cf. [3]):

(1.1) adI=0 on g7°+¢'+¢’,

In what follows, for a vector space or a Lie algebra A, we always mean by A. its
complexification.

2)



Realization of Siegel domains 145
(adIy=—1 on g~'+g.

The space g~* (resp. ¢~ is identified with R (resp. with W) in a
natural manner.® Then the complex structure of g~'is given by ad I,

and the hermitian form F and the domain D are expressed as follows:
1.2) F(w,w’) =5 ([[{, w], w]+ v —1[w, w’]),
D={z+weg.*+g7"; Imz—F(w, w) € V}.

1.2. We now recall some results in [4]. There exists a semi-

simple graded subalgebra 8= 3. ;8" of g(D) with the following prop-
erties:

1.3) i) 8'=g' and 8°=g".
ii) The adjoint representation of 8" on 8'+§* is faithful.
Then 87! is a complex subspace of g~' and
1.4 g =8+t (direct sum)
g '=8"'+17' (direct sum).

Since § is semi-simple, there exists a unique E, in 8" such that

(1.5) | 8*={Xes; [E, X]=1X}.
We set
(1.6) r, ' ={Xer? [E, X]=-X},

' ={Xer’; [8 X]=0},
' ={Xe1; [E, X]=X},
1= {Xe1’; [8, X]=0}.
We then have
1.7 172=1,"24+ 1,7 (direct sum)

=141 (direct sum),

9 g7 (resp. g~') consists of all elements of g(D) induced by the following one pa-
rameter group (with parameter 2):
zt+w—>z+ta+w (aeR)

(resp. 2+ w—>z+2y/ T F(w, 1) + V=1 Fte,20)  (ce W)).
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i =[r% 8 =1 8] D[} 8]
,'=[t,8]=[r" 8] D[ 8].

Moreover we know

(1. 8) [E,t']=0.

From (1.6), (1.7) and (1.8) we get

1.9 [t v ]Cr

(1.10) [’ v i+t '+ 1] =0

[z’ v,

For the algebra 8, there exists a semi-simple subalgebra ¢ of ¢’

such that
1) [8,¢]=0.
ii) 8+4c¢ is a direct sum and is a semi-simple part of g(D).
Note that the spaces 1,7% 1,7% 1" and 1, are stable by ad X for
Xe8'+c+1,, because [E,, 8°+c+1,] =0.
Let us denote by 7, the projection of g.~*+¢g~" onto 8.7+ 8! with

respect to the decompositions (1.4). Then from (1.6), we get for
any veq’,

7. (v) =lim . Ad(exp(tE)) v .
to @

Therefore if we put

V,=‘/],(V), S=77&(D)’

then V, is contained in V, because Ad(exp X)V =V for any Xeq'.
Hence V, is an open convex cone is 3% containing no entire straight
lines. Clearly the restriction F, of F to 3 'x38"! is a V,hermitian

form. One of the main results in [4] is the following.

9 g° consists of all A=gl(R.+W) satisfying the followings: A(R)CR, A(W)cC W,
exptA(V)=V and AF(w, w’) =F(Aw, w’) + F(w, Aw’). And under the iden-
tification of g~*+g~! with R+ W, the equality; Ad(exp A) X=exp A(X) holds for
any Xegi+g7"
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Theorem 1.1. S is the symmetric Siegel domain of the second
kink in 8,7+ 87! associated with V, and F,, and the graded Lie
algebra 8 is identified with ¢(S).

'1.3. In this paragraph, we recall Tanaka’s imbeddings. (For
proofs of the following facts, see [10] and [3].)

Let G be the identity component of Aut(D) and let g (D), be the
complexification of g(D). We denote by G. the adjoint group of
qg(D).. Since G is centerless ([2]), we identify the Lie algebra G,
with (D). and G with a subgroup of G.. Define linear transforma-
tions Q and Q of g. ' +g.' by

(1.11) QX)=%X—-v—=1[L, X])
O(X)=3(X+v—1[, X]) for Xeg. '+g.l

We then have for 1= —1,1

(1.12) 3r=Q(g") +Q(g" (direct sum),
Q(gH =0(g.") ={Xeg*; [[, X]=v-1X}.
Q(g» =0 ={Xeg>; [I X]=—-V=1X}.

We set

(1.13) b=0(g™) +g."+a.'+g.%

Then b is a complex subalgebra of g (D), and dim b=dim g (D). —dim D.
Let B be the closed subgroup of G, defined by

(1. 14) B={9eG,; g(b) =b}.

The Lie algebra of B coinsides with b as is easily observed. We
can now construct a map & of g.*+g~' to G./B as follows:

(1.15) h(z+w) =r-exp(z+Q(w)) (z€¢., weg™,

where 7 denotes the projection of G, onto G./B. The map 4 is
holomorphic because Q([I, w]) =+ —=1Q(w). Moreover A is an im-
bedding of g.”*+ g~ onto an open set of G./B and satisfies the fol-
lowing

(1.16) h(g(p))=9-h(p) for ¢ge&G,peD.



148 Kazufumi Nakajima

Remark 1. The mapping A was first constructed by Tanaka
[10] when the domain D is homogeneous, and extended to general
cases in [3].

§ 2. Symmetric Siegel domains.

2.1. Throughout this section, we assume that the Siegel domain
D is symmetric, which is equivalent to say that gq(D) is semi-simple.

Lemma 2.1. Let e€V. Then there exists a unique e* in @'
such that [e*, e] =E.

Proof. The uniqueness is obvious, since the mapping: X—[e, X]
of ¢* to g’ is injective (Vey [11]). We shall show the existence.
Since D is symmetric, the subalgebra g’=g7*+ [g% g*]+g® is also
semi-simple and E is contained in [g~?% g°] ([4]). We denote by p
the adjoint representaiton of [g~% g*] on g7>. Let ¢y be the charac-
teristic function of V, which is a positive function defined on V and
satisfies the following equality (Vinberg [12]):

2.1) gv(ax) = (det @) 'gy (),
where a=exp p(4) (A g% ¢"]). Put M(x)=Ilogpr(x). Since the

killing form a’ of g” gives a duality between g~* and ¢°, we can write

in the Taylor series for M (e+tx) as follows:
Me+tx) =M(e) —ta’ (& x) +0().

where #=g’. Then from (2.1), we obtain
a’ (8 [A,e]) =Trp(A) for Ae[g?g’].

Let e*=4é. Then o’ ([e* ¢e], A)=—4Trp(4). On the other hand
from Tanaka [9], we get a'(E, A) =2Trp(E) -p(A)=—-4Trp(4).
Therefore o’ (E — [e*, e], A) =0 for any Ae[g~% ¢*] and hence a’(E
—[e*, €], g”) =0. This implies E=[e*, ]. q.e.d.

2.2. We now investigate Cartan decompositions of the Lie algebra
g(D). Let g(D)={+p be the Cartan decomposition at the point
v —=1leeD(ecsV) and let ¢ be the corresponding Cartan involution.
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Then f is the isotropy subalgebra of g(D) at v/ —1e. Therefore from
~[2], we have

(2.2) f=f"+m+n (direct sum),
P=tNg’'={Aeg’; [e, A]=0},
m= {X+4i[e, [e, X]]; X g7},
n={Y+ [l [e,Y]]; Yeg}.

We set

(2.3) fit={X—1%[e, [e, X1]; X =g},

T={Y—[] [ Y]]; Yeg}.

Lemma 2.2. pDON+.

Proof. Let a denote the killing form of g(D). Then p={X
eg(D); a(X, t)=0}. Clearly a(fi+1, ) =a@@i, 1) =a(i, m) =0,
because a(g* ¢*) =0 for 1+ #30. Let X, X’=g’. Then

a(X—1%[e, [e, X11, X" +4[e, [e, X'1D)
=3 a(X’ [3’ [e’ X,]]) ) a([e’ [e’ X]’X,) =0.

Therefore we have a(iii, m) =0 and hence MiCp. By using (1.1) we
can show a (i, 1) =0 similarly. q.e.d.

Since 6=1 on f, we have for any Xeg?
X+i[e, [e, X]]=0(X) +i[o(e), [0(e), 0 (X)]].

On the other hand, 6= —1 on p. It follows from Lemma 2.2

—X+4[e, [e, X]11=0(X) —%[0(e), [0(e), 0 (X)]].
Therefore we get
2.4) 0(X)=4%[e, [e, X]] for Xeg
Similarly we have
(2.5) 0(Y)=1[I [e,X]] for Yeg.

Let ¢* be as in Lemma 2.1. Then $[e*, [e*, X]] €g® for any Xeg™*.
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Hence by (2.4) we have
o (g[e*, [e*, X1]) =1[e, [e, [e*, [e*, X]11]
=1[e, [¢*, 2X]]

= X )
here we use the fact that E is in the center of ¢°. Since ¢°=1, we
have
(2.6) 6(X) =}4[e*, [*, X1] for Xeg~

Similarly by using (1.1), we get

2.7 0(Y)=—[I[e*Y]] for Yeq

By (2.4), (2.5), (2.6) and (2.7), we know that ¢(g*) =g~* for A
=—2,—1,1 and 2. Hence ¢(g°) =g°, because ¢°=[g7?% ¢°]+ [¢7" g']
([4]). Clearly 6(¢) = —e* and 6(e*) = —e. Therefore ¢(E)= —E.
We now assert [e, g7] = [e*, ¢~*]. In fact g°= [e*, [e*, g7*]]. So, [e, g°]
= [e*, [e, [e*, g7*]1]] = [e*, g1, proving our assertion. We set

2.8) p'=T[e, g°1=[e*, g7’

Then {'Np°=0, because the mapping: X—[e, [¢, X]] of g° to g~ is
injective (cf. (2.2)). Moreover dim ¢°=dim {’+dim g~*=dim {’+ dim p°.

Hence we get ¢°=f"+p" (direct sum). Being invariant by g, p° is
containd in . Thus we have proved.

Theorem 2.3. Let D be a symmetric Siegel domain of the
second kind and let q(D)=ft+Y be the Cartan decomposition at the
point / —1e(ecV). Then

f=f'+m+u (direct sum)
p=p"+m+n (direct sum),
where £, m, n, M, W and Y° are given by (2.2), (2.8) and (2.8).

2.3. Let us denote by A the holomorphic vector field on D cor-

responding to Aeqg(D). Put g=+—1e. It is easy to see that the
following equalities hold:
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- o~
2.9 A=v —1[A4,¢], for Aeq’,

~ o

[L,Y],=v—1Y, for Yeg

N
Let J be the complex structure of D. For Xeg? we have X, —0(X),
—~ NN
= —26(X),, because X+ 0(X) et and hence X,+6(X),=0. On the
I~/ N Y
other hand by (2.4) and (2.9), [e, X],= v —1[[e, X], e],= —2V —10(X),.
Therefore we have
N ~
(2.10) J(X—0(X)),=[e, X], for Xeg.
N ~ I~ N
Similarly for Y eg', we have Y, —0(Y),= —20(Y ), and [1, Y], — ([, Y ]),
N ~— o~
=—-20([I,YD,=—-2[L,6(Y)],= —2v—=16(Y),. Therefore
N ~ N

(2.11) JY—-06(Y))=[LY],—0([L,Y]), for Yeg'
We set
(2.12) Z=3U+e—e*)=1T+c+0(e)).

Clearly Z is contained in f.

Proposition 2. 4.
(1) Z belongs to the center of f.

(2) Under the natural identification of y with Ty=.(D), the
tangent space to D at + —1le, the following equality holds:

ad ZX=JX for Xep.

Proof. Since [e, t]1=0, d([e, t']) =[—¢*, {]1=0. Let Xeg’
Then by using (1. 1), we obtain [Z, X+ ¢(X)] =3 ([e, X] + [0 (e), 6 (X))
=%([e, X]1+0([e, X]))=0, because [¢, X] )’ by Theorem 2.3.
Therefore [Z,m]=0. Next let Yeg'. Then from (1.1), (2.5) and
@C.7, [Z, Y+o(M)]=%L YI+[L, c(Y)]+[e, YI+0([e, YD)
=3([LY]—-[e, Y]+ [e, Y]—[L, Y])=0. Hence [Z, n]=0, proving
1.

By direct computations, we have
(2.13) [Z,X—0(X)]=[e, X] for Xeg
(2.14) [Z,Y—-0(Y)]=[L Y—-0d(Y)]



152 Kazufumi Nakajima
=[LY]1-0([LY]) for Yeg

Now the statemet (2) follows immediately from (2.10), (2.11), (2.13)
and (2.14). q.e.d.

We set
(2.15) p_={Xep;[Z X]=—-v—1X},
po={Xep;[Z X]=v-1X}.
Then the following equalities hold:
(2.16) pe=p,+p_ (direct sum),
b ={X—-v-1[Z X]; Xep.},

p_={X+v—=1[Z, X]; Xebp.}.

Proposition 2.5. The following equlity holds:
Ad(exp v —1e)b=*f.+p_,
where b is the subalgebra of q(D), given by (1.18).

Proof. Let Xeg.>. By (2.13) we have Ad(exp v —1e) X=X
+ v —=1[e, X]—%[e, [e, XTI=X—0(X)+ v—1ad Z(X—0(X)). There-
fore by (2.16), Ad(exp v —1e)g. Cp_. Next let Yeg,'. Then
Ad(exp v—1e)Y —0(Ad(exp v —1e)Y)=Y+ v —1[e, Y] —0(Y)— v —1
x[o@),c()]=Y—-(X)+v-1(LY]+[e, Y])=Y—0(Y)++V—1
xadZ(Y—0(Y)). This implies Ad(exp v —1e)g./Cf.+p_. Let A
=A,+A;=q., where A,et,” and A,p,’. It follows Ad(exp v —1e) A
=A,+ v —1[e, A;](mod £.). And A;+ v —1[e, A;] —0(A:+ v —1[e, A:))
=2A,+ v —1[e, A;] — v —1[e* A1 =2(A,+ v —1[Z, A;]) €p_. Hence
Ad(exp v—1¢)g.'Cf.+p_. Finally for Yeg.™', Ad(exp v —1¢)Q(Y)
=0 (). Since 0(I)=1, it follows Q(Y) 60 (¥Y)=0(Y —6(¥)).
Hence by (2.14), we get ad Z(Q(Y)—0(Q(Y))) =ad I(Q (Y —a(Y))
= —+/—1(Q(Y)—0Q(Y)). Therefore Q(Y)—0c(Q(Y)) €p_ and hence
Q(gc“) Ct.+p_. Thus we have proved Ad(exp v —1e)bCf.+p_.
Since dim (f.+p-) =dim (D). —dim D=dim [, we can conclude
Ad(exp v —1e)b=f.+p_. q.ed.
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§ 3. The structure of the cone V.

3.1. We return to general cases. Let 7, denote the projection
of g~ onto 1,~* with respect to the decomposition g~*=8""+1,""+1,7%
Put

V,=9.(V).
By (1.6) we get for any veg™
7r(v) =lim Ad(exp tE,)v .
t—roco

Therefore V,CV. From this fact, it follows that V, is an open con-

vex cone in 1,”? containing no entire straight lines. It is clear from

(1.2) and (1.9) that
3.1 F(w, w) =%+[[I,w],w]l €V, for wer™

Let v=e+a+beq’, where ee€V,act,?and ber,”®. Since the
domain S, constructed in § 1, is symmetric, there exists e* in 8°(=g*)
such that E,= [e*, ¢] by Lemma 2.1. We then have by (1.6), (1.7)
and (1.10) : ’ ’

3.2) Ad(exp[e*, b])e=c—b+1[[b, e*], ],
(3.3) Ad(exp[e*, b]yv=e+a—3[[6, ¢*], ].

Since V, is contained in V, we get from (3.2)

3.4 1[[b,¢*],6] €V, for any ber, ™
And by (3.3)
(3.5) a—3[[b,e*],0]eV, if vV,

Let p=17,+ 7 l.e., the projection of g% to 87+ 1,7". Since z+y
eV if xeV and y€V, we know from (3.2) and (3.4) that 5(V)
is contained in V.

Lemma 3.1. V. +V.=9(V).
Proof. Clearly V,+V,Dy(V). Conversely leteeV,and a€V,.

Then e4+a€ V. Therefore e+acsy(V)CTy(V). Hence V,+ V.Cy(V).
Therefore V.-~ V, is the interior of (V). This implies V,+V,
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=7(V). q.e.d.
Proposition 3.2. Let v=e+a+beq™, where e€8™?, acy,™

and ber,t. Then veV is and only if eV, and a—3%[[b, ¢*], b]
eV,

Proof. The ¢“if” part is already proved (cf. (3.5)). Suppose
that e V, and a—3[[4, ¢*], 6] € V.. Then from Lemma 3.1, u=¢+a
~3[[6, ¢*], bl =9(V)CV. Since ad(exp(—[e*, b]))u=v, we get
veV, q.e.d.

If we set
(3.6) D,=5"'(V=1e) (e€V),),

Then we get immediately from proposition 3.2

Corollary 3. 3.
D,={u+v+w+V—1le;uec (1), ve (1,7, wer™

Imu—1+[[I, w], w] —%[[Im v, ¢*], Im v] € V,}.

3.2. By (1.7), ade (resp. ade*) gives a linear mapping of
1" (resp. 1,7 to 1,7° (resp. to 1,"). Let Xe1,7* and Yer,'. By
(1.6), [e, [e¢*, X]]=[[e, ¢*], X]1= —[E,, X]=X and [e* [e, Y]]
=[[e* €], Y]=[E, Y]=Y. Thereby

3.7 adc-ade*=1 on 1,7},
ade*-ade=1 on 1.

In particular, ade¢* (resp. ade) gives an isomorphism of 1,7* (resp.

of 1,) onto 1’ (resp. onto 1,7%).

Lemma 3. 4.

(1) Let ber,®. Then [[b, ¢*], b]1€V, and [[b, ¢*], 6]=0
implies b=0.

(2) Let cex,. Then [[e,c],c]€V. and [[e,c], c]=0 implies
c=0.
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Proof. The fact [[b,e*], 5] €V, is already proved (cf. (3.4)).
Suppose [[4, ¢*], b]=0. Then by (3.2), e—b is contained in V.
Since lim,_ ¢t Ad(exp tE,) (e —b) = —b, we get —be V. Similarly we
have b€V, because [[—b,e*], —6]=0. Now b=0 follows immedi-
ately from the fact that V contains no entire straight lines. Hence
we have proved (1). We can write c=[e* b’],6’=1,”°. Then
[le cl, cl1=[[e, [e*, &'1], [e*, &'11=[?', [e*, &' 11=[[8’, *], &’]. There-
fore the assertion (2) follows from (3.7) and (1). g.e.d.

Now we set
(3.8) U=1,",
W=r,""+r7"+1,,
(3.9) Jo=ad(l+ec—e*).

It follows from (1.1) and (3.7) that j,!= —1 on 9. Hence we can
write

(3.10) W.=W,+W_. (direct sum),
CW+= {we(We;jowz \/‘:_l‘w}y
CW~—= {wECWc;jow= - \/:TTU},

@4.:(”)—
Clearly the following equalities hold:
(3.11) (We, Wil=[W-, W-1=0.

Define a Q[.-valued skew-symmetric biliear form 4 on 9§, by
(3.12) A(w, w’) =1w, w’'] (w,w’ eW,).

Proposition 3.5. Let H(w,w’)=2v—=1A(w, @’) for w, w’
€9Y,. Then H is a V,-hermitian form on 9,.

Proof. Each element w of G, can be written as w=1w,+ v —1
X [e*, w] +w,— v —=1[e, w,] +Q(ws), where w,€1,7%, w,e1," and 1w,
17", Then by using (1.10) and (3.11), we get
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- H(w, w) = [[wi,e*]; w,] + [ [, w,,} we] + 1 [[1,ws], wa]

Hence by (3 1) and Lermna 3.4, we know that H(w, w) eV, and
that H(w, 'w) 0 means w, wg——ws—() o qed

§ 4. Realization of D as a Siegel domain of the third kind.

- 4.1. Let S be the symmetric domain constructed in § 1 and let
g(S)=f+p be the Cartan decomposition at +—1e(ecV,). There
exists a unique I, in 8° such that ad I,=adl on 8(=g(S)). Then
by Proposition 2.4, Z=4§(I;+e—¢*) is in the center of f and adZ
gives a complex structure on p which coincides with one of the domain
S under the natural identification of p with the tangent space to S at
v—Tc. Let p, and p_ be the subspace of p. given by (2.15) for
the domain S. Note that '

(4.1) [ps, pu]=[p, p-1=0,
e . ‘[p+,p-_']c'f§, »
Pe=b_,
[t pi]cpt

Let G, G/, K, K,, P, and P be the connected subgroups of G,
corresponding to the subalgebras 8;8,f, ., p;-and p_. Then P,, K,
and K P_ are closed complex subgroups of G.*. . Moreover exp: p,— P,
are holomorphic diffeomorphisms. It is also well known that the
mapping defined by T Erve s e .

P, xK.xP_3(a,b,c)—>abceG,
is a holomorphic diffeomorphism onto an open set of G, and:that G*
CP,K.P_. Therefore for each point ¢gK in S=G'/K, there corre-
sponds a unique 2 in P, such that 'expz=thé P,-part of g, and the
assignment: gK—z gives a holomorphic imbedding of S onto a bounded
domain .% in p,. This is called the Harish-Chandra imbedding.

Let z,2’€.%, Then we can writé expz=¢-k-p, expz’ =9’ -k -p’,
where ¢,9’€G*, kb, E’eK, and p, p’eP_.. It follows that (expz’)!
cexpr=>2""1k'"1.g"'.g-k:p.: Sice ¢’ ge P, K P_; (expz’) ' expz
€P,K.P.. Thus we can define a mapping K(z, 2’): ¥x—>K,
by
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K(z, 2")'=the K part of (expz’)"expz..
It is easy to check the following :equality (Satake [6]): .
4.2 o KE, ) =HEE)T
We also define a mapping g_(g, g): G‘xy—ch by
gt Kepartof geexpz.

The group G* acts on .% in obvious matiner. Then ¢-exp z==exp ¢(z)
-4(9,2) (mod P_). :By a simple calculation we have (Satake [6])"

(4 3) L]{(g (Z) g (,Z..,) ) =dﬂ (grz) __'-;]{(Z, Z,) .'5 (g) Z)_l°
If we put K (2)=K(z, 2), then by .(4.2) and (4.3) we know
4.4 K@) =XE)" (), |

K(g(0))=4(9,0):9(9, 0" (geG").

4.2, Let U, 9, and GY- be as in § 3. Clearly [8,, U.]=0
and [8,, W.]CW. by (1.6), (1.7) and (3.8). Since j,X=ad(l+e
—eMX=ad(l,+e—e*) X for X8, we easily have 'the followings:

4.5 e W =[, W =0,
'- | v.'liPhCW-] CW+ . |
W lcw-,
e WL ICTWs

In what follows, we simply write the actions of =G, and z€ 3, on
W. as gw and zw (weW.). Sﬂince [8., U.] =0, following equalities
hold : ' ' o '

4.6) AQw, gw’) =A(w, w’).
A(zw, 0') + A(w, zw’) =0 (GG, z€8,, w, w €W,),

where A is the skew-symmetric bilinear form on ), defined by (3.12).
We now define for each z&€.% a QU.-valued form L, (w, w’) on 9, by

L(w, ) =2V -1A(K@w @) (w,w eW,). ‘
Then by (4,4) and.(4.6), L, (w, w’).is hermitian. . . . . .
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Lemma 4.1 (cf. [6]).
(1) L,(w,w’) is a V,i-hermitian form on G, .
(2) L,(w,zw’) is a symmetric bilinear form on Y ,.
Proof. We can take an element g & G"* such that ¢(0) =2z. Now

(1) follows immediately from (4.4), (4.6) and from Proposition 3. 5.
To prove (2), we first show that the following equalities hold:

4.7 A-2n)w,=K()w, for w,e9,,
(4.8) (1-z2)w_.=K()'w. for w_€9_.

In fact, there exist z,, z;€p, such that (exp z)'-exp z=exp z;* K (2)™*
-exp Z,. Hence by (4.5),

w_+zw_—Zzw_= (expz)'- (expz)w_
=exp 2z, K (2)w_
=K@ 'w_+z, () w._ .

Comparing the G}/ _-parts we get (4.8). The equality (4.7) follows
from (4.4) and (4.8). From (4.7),z(1—2%)=2K(2) on 9Y,. And
from (4.8), (1 —z2)z= K (2)'-Z on GY,. Therefore z- K (2) = K(z) ' 2
and hence K (z)-z2=2 K (z) on 9Y,. It follows

L, (w, 2@") =2V =1A (K (2) w, zw’)
=2y =14 (w, X (2)zw")
=2V =1 A (w, z- K (@) w’)
= -2V =14 (Gw, X(z)w’)

2V -1 (K (2)w’, zw)

=L,(w’, z@). q.e.d.

We now set for z€.%,
L (w,w’) =L, (w, w) + L, (w, z@’") (w,w €W,).

Then _[, is a non-degenerate semi-hermitian form on 9§, in the sence
of Pyatetski-Shapiro [5]. Indeed, suppose that there exists w,= T/,



Realization of Siegel domains 159

such that [, (w, w,) =0 for any weJ}/,. Then w,+2w,=0 and hence
Fw,+22w,=0. It follows that (1—22)@,=w,—22W,= (w,+ 2W,)
— EFw,+Zzw,) =0. Since 1—Z2z is non-singular (cf. Proof of Lemma
4.1), we get w,=0. Therefore .[,(w, w’) is non-singular. Thereby
we can define a Siegel domain 9 of the third kind by

4.9 D={(ug,w,2) €U XW,XS; Imu—Re L,(w, w) €V,}.
Let & denote the natural projection of 9 onto % and let D,=&1(0).

Since [y(w, w’) = H(w, w’), we get

Proposition 4.2. The fiber D, is the Siegel domain of the
second kind associated with the cone V., and the V -hermitian form
H on 9, given in Proposition 3.5.

4.3. Let B be the subgroup of G, given by (1.14) and let B,
=0B0~!, where §=exp v —1e. We set
t=c¢+ Too,
where ¢ and v,’ are subalgebras of ¢’ as in §1. Then t satisfies

[8,t]=0.

Lemma 4.3. Under the notations above, the Lie algebra b, of
B, coincides with YW _+t.+f.+p_.

Proof. By (1.4), (1.7) and (1.13), the Lie algebra b of B is
decomposed in the following form:
b=Q ™)+ (e +t.+Q (8" +8. + 8. + 8.

By Proposition 2.5, Add(Q(8™") +8. +8,+8.5) =f.+p_. Clearly
AdSQ(™) +1t) =01 +t.CW_+t.. Let z& (1, Then Addz
=z+ v —1j,x=9Y _. Hence we have proved Ad §bCb,. By consider-
ing the equality dim Q (x™%) +dim (1,).=dim JJ_, we get Adob=0,.
q.e.d.

Let %, be a holomorphic mapping: U, X W, xp,—G./B, given by

(4. 10) hy(u, w0, 2) =T, eXp u-exp w-exp z,
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where 7, denotes the projection of G. onto G./B,. Note that [,
+9 . +p, is an abelian subalgebra of g(D)..

Lemma 4.4. h, is a holomorphic diffeomorphism of UXW,
Xp, onto an open set of G,/B,.

Proof. It is sufficient to prove that £/, is injective. Now sup-
pose that a=exp u-exp w-expz<B, Let E'=E—E, Since [E’, 8]
= O, E’ is contained in {. Therefore Ada E'=E +2u+web,, because
tCb,. Hence by Lemma 4.3, u=w=0. Recall that Z=3(I,+¢—e*)
is in f and hence in b,. Therefore AdaZ=2Z+ [2,Z]=Z— v —1z€&b,.
This implies 2=0. q.e.d.

Since [[W, W], W]=0, we can see the following (cf. [1] or
[10]):
(4.11) exp(w+w’) =exp w-expw’-exp 3[w’, w] (w,w €9,).
For an element w of 9§/., denote by w, (resp. by w_) its J/,-(resp.

) _-) component.

Lemma 4.5 (cf. [6]). Every 9€G* leaves ly(Ue XYW, XS)
invariant and hence induces a holomorphic transformation § of U.
X, X Let G(u,w,z)= (@', w' 2z"). Then

2’ =9(2),

.l w’: (gw)+ —Z/ (gw)-zg(g’ Z)'ZZU s

' =u—%[w’, gw].

Proof. By using (4.11), we obtain
g-exp u-exp w-expz
=exp #-exp Jw-g-exp 2
=exp u-exp Jw-exp ¢(z) (mod K.P_)
=exp (« —3[ (9w),, (gw)-]) -exp (gw), -exp (Jw)--exp g (2).

And
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exp (Jw)_-exp ¢ (z)
=exp ¢ (2) -exp ((gw)- —¢(2) (gw)-)
—exp g (2) exp(—g(2) (gw)-) -exp (gw)_-exp $[¢ (z) (9w)-, (Jw)-].
Therefore
g-exp u-exp w-expz
=exp (u—3}[(gw),, (Gw)-1+%[0 (=) (Gw)-, (gw)-1)
-exp ((gw), —g(z) (gw).) -exp g (z) (mod B,).

Hence 2’'=¢(z), w’ = (gw), —¢(2) (9w). and #'=u—%[w’, (gw)-]
=u—%[w’, gw]. It remains to show (gw),—¢(2) (9w)-=4(9,z2)w.
We can write g-expz=exp¢(2)-4(9,2) -expz (z:€p,). Then gw
=g-expz w=4(9, 2w+ (9, 2)zw+9(z) (9, 2)z;w. Therefore (gw).
=499, 2)w+9(=) 49, 2)zw and (gw)-=4 (9, 2)Zw. Hence we have
w’ = (gw), — ¢ (2) (9w)-=4 (9, 2)w. q.e.d.

Next we verify

Lemma 4.6 (cf. [6]). Let g G* and let §(u, w, 2) = (u', w’,2).
Then Imu—Re L, (w,w) =Imu"—Re L,.(w, w’).

Proof. We first assume that z=0. By Lemma 4.5, «'=u—%
X [w,9w], w'=FJw and 2’=¢g(0), here we put §=49(9,0). There-
fore Imz’ —Re L, (w’, w’) =Imu—% Im[Jw, gw] —Re L..(Jw, Jw).

By direct calculations,
Re /.. (Yw, Jw)
=2V =1 (Jw, K () F®) —2 Im A (Jw, K (") Jw)
=2y =1 (w, @) —2Im A (Jw, 2’ K (z") Jw)
=Re Lo(w, w) —} Im[Jw, 2’ Jw],

here we used the facts that K (2') =49 ! and 2’ K (2’) =K (2’)2’ on
9, (cf. Proof of Lemma 4.5). Since g=expz’-J-expz”(z”<€p,),
g=g=expz’-J-expz”. Hence gw=Jw+z'Jw and [Jw, ¥Jw)]
=[4w, gw]. Combining these equalities, we get Im #’—Re .L,.(w’,
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w’) =Imu—Re Ly(w, w). Since & is homogeneous, for any z&.¥
there exist f€G’, u,€ U, and w, = Gy, such that f(u,, w,, 0)=(u, w, 2).
Hence 07'(%,, w,, 0) = (v, w’,2’). It follows Imu’—Re [, (w’, w’)
=Im u,—Re L, (w,, w,) =Imu—Re L, (w, w). q.e.d.

By Lemma 4.6, we know that each §(¢g€G*) leaves D invariant.
Moreover by Lemma 4.5 we know that § acts as a quasi-linear trans-
formation in the sence of Pyatetski-Shapiro [5].

4.4. Let 0 be a holomorphic diffeomorphism of G./B onto G./B,
given by

0
G./B>9B—g0~'B,€G,/B,,

where 0 =exp v —1e. Clearly 0 is compatible with the action of f
G, ie., 0(fp)=f0(p) (p€G./B). We are now in a position to

prove

Theorem 4.7. Let D be the Siegel domain of the third kind
defined by (4.9) and let h (resp. h,) be the imbedding of D (resp.
of D) into G./B (resp. into G./B,) given by (1.15) (resp. by
(4.10)). Then

ho (D) =06h(D).
Proof. First we show that 4,(D,) =6h(D,). Let u< (1,%)., v
€ (1,79, and wer™". Then
Sh(u+v+w+ v —1e)

=exp u-exp v-exp Q (w)

==exp u#-exp v, -exp v_-exp s[v_, v,] -exp Q (w)

=exp («—%[vy, v-]) -exp (v, +Q(w)) (mod B,).
Therefore 8h(u+v+w+ v/ —1¢) =h,(4’, w’, 0), where

u'=u—%[vy, v_],

(4.12)
w' =v, +Q(w).
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Since v,=%(w+ v —1[e*, v]) and v_=%(v—+v —1[e* v]), we get
%['vi-’ ‘Z)_] = '\/—_1/4[[8*7 ‘U], 'U] and %[’v+a Tj+] = \/:1/4[[6*7 'U], ;5]' It

follows

Im o’ —Re Ly (w’, w’)

=Im Z‘—Tll' Re[[e*, v], v] — \/—2:—1 [ve, T4] —‘/T:—I[Q(w), Q(w)]

=Im « —% Re[[e*, v], v] + %[[e*, v], 7] —%[[I, w], w]

=Im « ——%[[1, w], w] ——;—[[Im v, e*], Im v].

Hence by Corollary 3.3, (¢/, w’,0) €9, if and only if u+v+w+ v —1e
€D,. Since for any (', w’) €. X, there exist unique z < (1,7,
(=AU, ve (1,7%). and wer™! satisfying (4.12), we get h,(D,)
=0h(D,). Clearly D=G'D, and D=G*D,. Hence h,(D) =G h,(D,)
=G*0h(D,) =0h(G'D,) =6h (D). q.ed.

4.5. Since D==9) by Theorem 4. 7, every g € Aut (D) corresponds
to a holomorphic transformation § of 9. Then for ¢g€G and p D,
the equality; 4,(G(p)) =gh,(p) holds, because the mappings A and
o are compatible with the action of G.

Lemma 4.7. Let T be the connected subgroup of G correspond-
ing to the subalgebra t=c+1,". Then for ecach t€T, I is a quasi-

linear transformation.

Proof. Let (u,w,z)€ 9. Then
t-expu-expw-exp z=exp(Adtu)-exp(Adtw)-expz (modB,).

Since Ad toj,=j,0Ad¢t, we know AdtweG),. Clearly Adtucsd]..

Therefore 7 is a quasi-linear transformation of 9. q.e.d.

Next we consider the action of the connected subgroup of G cor-
responding to the subalgebra QU+ ). It is easy to see that this
group coincides with exp QU-exp GJ.
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Lemma 4.9. Let f=expa-expb (acsU,b<€9), and let f(u

w,2)= W, w',z"). Then

b

2=z

w =w+b, —2b_
w=ut+a+$[b, w]+4[b_, b, +w] —%[b_,2b_].
In particular, f is a parallel transformation in Pyatetski-Shapiro’s
sence ([5])-.
Proof. By using (4.11), one has
f-expu-expw-expzg
=exp(a+u) -exp(b+w) -exp 3[b, w] -exp z
=exp(a+u+4[b, w]) -exp(b,+w) -expb_-exp $[b_, b, +w] -expz
=exp(atu+3$[b, w]l+3[b_, b, +w]) -exp(b,+w)- -expb_-expz.

Since exp b_-exp z=exp z-exp (b_ —zb_)=exp z-exp(—zb_)-exp $[zb_,
b_] (mod B,), we get

f-expu-expw-expz
=exp(atu+i[b, w]+3[b_, b, +w] —%[b_,26_])

cexp(b+w—=zb_)-expz (mod B,). q.e.d.

4.6. Define a Subgroup GL(D) of Aut(D) by
GL(D)={feGL(R.+W); f(D)=D}.

Then Aut(D)=G-GL(D) ([2] or [3]) and the Lie algebra of GL (D)
is ¢°([2]). By virtue of Lemma 4.5, Lemma 4.8 and Lemma 4.9,
each element of G corresponds to a quasi-linear transformation of 9.
Therefore it remains to investigate the action of GL(D) on 9.

For any g GL (D), let us denote by t(g9) the isomorphism of
G. given by

t(@a=Ad(@aAd(@) (a€G.).

Then 7(¢g)B=B and hence r(9) induces an automorphism (denoted by
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the same letter 7(¢)) of G./B. From the definition of Tanaka’s im-

bedding, we have
h(@(®) =t(@h(p).

We now put 8’=Ad ¢gs. Then 8" is also a semi-simple graded sub-
algebra of g(D) satisfying (1.3). Hence there exists X in ¢° such
that Ad(exp X)8 =8([4]). Put g’=exp X-¢9. Clearly ¢’eGL(D)
and Ad9’8=8. It follows Adg’ V,=V, and hence there exists Y,
.., X, €8 such that Ad(exp Xi-expY,Ad g c=e. Let g”=expY,
-+ exp Yn+9’. Then ¢” is an element of GL(D) having the following

properties:
a) Adg’8*=8 and Adg’e=e.
Moreover it is not difficult to show the equality;
b) Ad9”E,=E,.
By using a).and b), we can see
c) Adg’e*=c*.

From a), b) and c¢), we know that the spaces p,, p_, U, G/, and G _
are stable under Ad ¢”. Furthermore 7(¢”)B,=B, and hence 7(g”)
induces an autsmorphism of G./B,, which is denoted by the same
letter 7(9”). Obviously 7(9”)o0=007(9”). As a consequence we
get for any pe D,

0n(9” (p)) =60t (¢”) -h(p) =7 (9”6 (p).
Hence for any («, 2z, w) € D,
he (@ (, 2, w)) =m,T(9”) (exp u-exp w-exp z)
=m.exp (Ad 9”u) -exp (Ad 9" w) -exp(Ad 9"2).
This equality leads us to say that §” (and therefore §) is a quasi-

linear transformation of 9. Thus we have proved the following.

Theorem 4.10. In the realization of D as 9D, each clement
of Aut(D) corresponds to a quasi-linear transformation and each
element of exp U exp Y induces a parallel transformation of 9.
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Remark 2. It is not difficult to see that when the domain D is
homogeneous, our realization coincides with one given in Corollary
2, II-37 in Takeuchi [8].
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