On realization of Siegel domains of the second kind as those of the third kind

By

Kazufumi NAKAJIMA

(Received Jan. 22, 1975)

Introduction

Let D be a Siegel domain of the second kind associated with a convex cone V and a V-hermitian form F. Realization of D as a Siegel domain of the third kind was studied by Pyatetski-Shapiro [5], Wolf-Korányi [13] and by Satake [6] when D is symmetric.

Kaneyuki [1] and Takeuchi [8] treated the case where *D* is homogeneous. Their methods are based on the correspondence between "j-algebras" and "homogeneous Siegel domains of the second kind".

The purpose of the present paper is to prove that D can be realized as a Siegel domain \mathcal{D} of the third kind in such a way that the group Aut(D) acts on \mathcal{D} as quasi-linear transformations. This is a generalization of a result of Takeuchi [8].¹⁾

In § 1, we recall some results in [2] and [4] on the structute of the Lie algebra $\mathfrak{g}(D)$ of $\operatorname{Aut}(D)$ and construct a symmetric domain S which corresponds to a semi-simple part of $\mathfrak{g}(D)$. We also recall Tanaka's imbedding of the domain D ([10], [3]).

In § 2, we study a Cartan decomposition of $\mathfrak{g}(D)$ assuming that D is symmetric. Many results in this section can be obtained also from Satake [7]. But our methods and proofs seem to be more direct and simpler.

¹⁾ Takeuchi [7] obtained this result for the identity component of Aut (D) when D is homogeneous.

By using the results in previous sections, we shall study in § 3 the structure of the cone V and introduce a cone V_r and a V_r -hermitian form H.

Finally in § 4, by the same arguments as in Satake [6], we construct a Siegel domain \mathcal{D} of the third kind, with S as a base space, whose fiber is the Siegel domain of the second kind associated with V_r and H. And making use of Tanaka's imbedding, we shall see that D and \mathcal{D} are holomorphically equivalent.

§ 1. Summary of known results.

1.1. Let R (resp. W) be a real (resp. complex) vector space of a finite dimension. Denote by R_c the complexification of R. For every vector $z \in R_c$, we denote by $\operatorname{Re} z$ (resp. by $\operatorname{Im} z$) its real (resp. imaginary) part.²)

Let D be a Siegel domain of the second kind in $R_c + W$, due to Pyatetski-Shapiro [5], associated with a convex cone V in R and a V-hermitian form F on W, and let $\mathfrak{g}(D)$ be the Lie algebra of $\operatorname{Aut}(D)$, the group of all holomorphic transformations of the domain D. Denote by E (resp. by I) the element of $\mathfrak{g}(D)$ induced by the following one parameter group in $\operatorname{Aut}(D)$ (with parameter t):

$$z+w\rightarrow e^{-2t}z+e^{-t}w \quad (z\in R_c, \ w\in W)$$

(resp. $z+w\rightarrow z+e^{\sqrt{-1}t}w$).

Then from Kaup-Matsushima-Ochiai [2], the Lie algebra $\mathfrak{g}(D)$ has the following graded structure:

$$\begin{split} & \mathfrak{g}(D) = \mathfrak{g}^{-2} + \mathfrak{g}^{-1} + \mathfrak{g}^{0} + \mathfrak{g}^{1} + \mathfrak{g}^{2} \quad ([\mathfrak{g}^{\lambda}, \mathfrak{g}^{\mu}] \subset \mathfrak{g}^{\lambda + \mu}), \\ & \mathfrak{g}^{\lambda} = \{X \in \mathfrak{g}(D); \quad [E, X] = \lambda X\}, \\ & r = r^{-2} + r^{-1} + r^{0} \quad (r^{\lambda} = r \cap \mathfrak{g}^{\lambda}), \end{split}$$

where r denotes the radical of g(D).

We also know from [2] that both E and I are in the center of \mathfrak{g}^0 and that I has the following properties (cf. [3]):

(1.1)
$$ad I = 0 \text{ on } \mathfrak{q}^{-2} + \mathfrak{q}^{0} + \mathfrak{q}^{2},$$

In what follows, for a vector space or a Lie algebra A, we always mean by A_c its complexification.

$$(ad I)^2 = -1 \text{ on } \mathfrak{g}^{-1} + \mathfrak{g}^1.$$

The space \mathfrak{g}^{-2} (resp. \mathfrak{g}^{-1}) is identified with R (resp. with W) in a natural manner. Then the complex structure of \mathfrak{g}^{-1} is given by $ad\ I$, and the hermitian form F and the domain D are expressed as follows:

(1.2)
$$F(w, w') = \frac{1}{4} ([[I, w], w'] + \sqrt{-1}[w, w']),$$

$$D = \{z + w \in \mathfrak{g}_c^{-2} + \mathfrak{g}^{-1}; \operatorname{Im} z - F(w, w) \in V\}.$$

- 1.2. We now recall some results in [4]. There exists a semi-simple graded subalgebra $\hat{\mathbf{g}} = \sum_{\lambda=-2}^{2} \hat{\mathbf{g}}^{\lambda}$ of $\mathfrak{g}(D)$ with the following properties:
- (1.3) i) $\hat{\mathfrak{g}}^1 = \mathfrak{g}^1$ and $\hat{\mathfrak{g}}^2 = \mathfrak{g}^2$.
 - ii) The adjoint representation of \mathfrak{g}^0 on $\mathfrak{g}^1 + \mathfrak{g}^2$ is faithful.

Then \mathfrak{g}^{-1} is a complex subspace of \mathfrak{g}^{-1} and

(1.4)
$$\mathfrak{g}^{-2} = \mathfrak{g}^{-2} + \mathfrak{r}^{-2} \text{ (direct sum)}$$

$$\mathfrak{q}^{-1} = \mathfrak{g}^{-1} + \mathfrak{r}^{-1} \text{ (direct sum)}.$$

Since $\hat{\mathfrak{g}}$ is semi-simple, there exists a unique $E_{\mathfrak{s}}$ in $\hat{\mathfrak{g}}^0$ such that

$$(1.5) \mathfrak{g}^{\lambda} = \{X \in \mathfrak{g}; \ [E_{\mathfrak{s}}, X] = \lambda X\}.$$

We set

(1.6)
$$r_{s}^{-2} = \{X \in r^{-2}; [E_{s}, X] = -X\},$$

$$r_{0}^{-2} = \{X \in r^{-2}; [\hat{g}, X] = 0\},$$

$$r_{s}^{0} = \{X \in r^{0}; [E_{s}, X] = X\},$$

$$r_{0}^{0} = \{X \in r^{0}; [\hat{g}, X] = 0\}.$$

We then have

(1.7)
$$r^{-2} = r_s^{-2} + r_0^{-2} \text{ (direct sum)}$$
$$r^0 = r_s^0 + r_0^0 \text{ (direct sum)},$$

$$z+w\longrightarrow z+ta+w \quad (a\in R)$$

(resp. $z+w\longrightarrow z+2\sqrt{-1}F(w,tc)+\sqrt{-1}F(tc,tc) \quad (c\in W)$).

 $[\]mathbf{g}^{-2}$ (resp. \mathbf{g}^{-1}) consists of all elements of $\mathbf{g}(D)$ induced by the following one parameter group (with parameter t):

$$\mathbf{r}_{\mathfrak{s}^{-2}} = \begin{bmatrix} \mathbf{r}^{-2}, \, \hat{\mathbf{g}}^{0} \end{bmatrix} = \begin{bmatrix} \mathbf{r}^{0}, \, \hat{\mathbf{g}}^{-2} \end{bmatrix} \supset \begin{bmatrix} \mathbf{r}^{-1}, \, \hat{\mathbf{g}}^{-1} \end{bmatrix}$$
$$\mathbf{r}_{\mathfrak{s}^{0}} = \begin{bmatrix} \mathbf{r}^{0}, \, \hat{\mathbf{g}}^{0} \end{bmatrix} = \begin{bmatrix} \mathbf{r}^{-2}, \, \hat{\mathbf{g}}^{2} \end{bmatrix} \supset \begin{bmatrix} \mathbf{r}^{-1}, \, \hat{\mathbf{g}}^{1} \end{bmatrix}.$$

Moreover we know

$$[E_{s}, r^{-1}] = 0.$$

From (1.6), (1.7) and (1.8) we get

(1. 10)
$$[\mathfrak{r}_{s}^{0}, \mathfrak{r}_{0}^{-2} + \mathfrak{r}^{-1} + \mathfrak{r}_{s}^{0}] = 0$$

$$[\mathfrak{r}_{s}^{0}, \mathfrak{r}_{s}^{-2}] \subset \mathfrak{r}_{0}^{-2}.$$

For the algebra $\mathfrak S$, there exists a semi-simple subalgebra $\mathfrak c$ of $\mathfrak G^0$ such that

- i) $[\hat{\mathfrak{g}}, \mathfrak{c}] = 0$.
- ii) $\mathfrak{g}+\mathfrak{c}$ is a direct sum and is a semi-simple part of $\mathfrak{g}(D)$.

Note that the spaces $\mathfrak{r}_{\mathfrak{s}}^{-2}$, $\mathfrak{r}_{\mathfrak{o}}^{-2}$, $\mathfrak{r}_{\mathfrak{s}}^{0}$ and $\mathfrak{r}_{\mathfrak{o}}^{0}$ are stable by $ad\ X$ for $X \in \mathfrak{g}^{0} + \mathfrak{c} + \mathfrak{r}_{\mathfrak{o}}^{0}$, because $[E_{\mathfrak{s}}, \mathfrak{g}^{0} + \mathfrak{c} + \mathfrak{r}_{\mathfrak{o}}^{0}] = 0$.

Let us denote by η_{\bullet} the projection of $\mathfrak{g}_{c}^{-2} + \mathfrak{g}^{-1}$ onto $\mathfrak{g}_{c}^{-2} + \mathfrak{g}^{-1}$ with respect to the decompositions (1.4). Then from (1.6), we get for any $v \in \mathfrak{g}^{-2}$,

$$\eta_s(v) = \lim_{t \to \infty} \frac{1}{e^{2t}} Ad(\exp(tE_s)) v.$$

Therefore if we put

$$V_s = \eta_s(V), S = \eta_s(D),$$

then V_s is contained in \overline{V} , because $Ad(\exp X)V = V$ for any $X \in \mathfrak{g}^{0.4}$. Hence V_s is an open convex cone is \mathfrak{g}^{-2} containing no entire straight lines. Clearly the restriction F_s of F to $\mathfrak{g}^{-1} \times \mathfrak{g}^{-1}$ is a V_s -hermitian form. One of the main results in [4] is the following.

^{*)} \mathbf{g}^0 consists of all $A \in \mathfrak{gl}(R_c + W)$ satisfying the followings: $A(R) \subset R$, $A(W) \subset W$, $\exp tA(V) = V$ and AF(w, w') = F(Aw, w') + F(w, Aw'). And under the identification of $\mathbf{g}^{-2} + \mathbf{g}^{-1}$ with R + W, the equality; $Ad(\exp A)X = \exp A(X)$ holds for any $X \in \mathbf{g}^{-2} + \mathbf{g}^{-1}$.

Theorem 1.1. S is the symmetric Siegel domain of the second kink in $\mathfrak{F}_c^{-2} + \mathfrak{F}^{-1}$ associated with V_s and F_s , and the graded Lie algebra \mathfrak{F}_s is identified with $\mathfrak{g}(S)$.

1.3. In this paragraph, we recall Tanaka's imbeddings. (For proofs of the following facts, see [10] and [3].)

Let G be the identity component of $\operatorname{Aut}(D)$ and let $\mathfrak{g}(D)_c$ be the complexification of $\mathfrak{g}(D)$. We denote by G_c the adjoint group of $\mathfrak{g}(D)_c$. Since G is centerless ([2]), we identify the Lie algebra G_c with $\mathfrak{g}(D)_c$ and G with a subgroup of G_c . Define linear transformations G and G of $\mathfrak{g}_c^{-1} + \mathfrak{g}_c^{-1}$ by

(1.11)
$$Q(X) = \frac{1}{2}(X - \sqrt{-1}[I, X])$$

$$\bar{Q}(X) = \frac{1}{2}(X + \sqrt{-1}[I, X]) \quad \text{for} \quad X \in \mathfrak{g}_c^{-1} + \mathfrak{g}_c^{-1}.$$

We then have for $\lambda = -1, 1$

$$(1.12) g_c{}^{\lambda} = Q(\mathfrak{g}^{\lambda}) + \overline{Q}(\mathfrak{g}^{\lambda}) (direct sum),$$

$$Q(\mathfrak{g}^{\lambda}) = Q(\mathfrak{g}_c{}^{\lambda}) = \{X \in \mathfrak{g}_c{}^{\lambda}; [I, X] = \sqrt{-1}X\}.$$

$$\overline{Q}(\mathfrak{g}^{\lambda}) = \overline{Q}(\mathfrak{g}_c{}^{\lambda}) = \{X \in \mathfrak{g}_c{}^{\lambda}; [I, X] = -\sqrt{-1}X\}.$$

We set

(1.13)
$$\mathfrak{b} = \overline{Q} (\mathfrak{g}^{-1}) + \mathfrak{g}_{c}^{0} + \mathfrak{g}_{c}^{1} + \mathfrak{g}_{c}^{2}.$$

Then \mathfrak{b} is a complex subalgebra of $\mathfrak{g}(D)_c$ and dim $\mathfrak{b} = \dim \mathfrak{g}(D)_c - \dim D$. Let B be the closed subgroup of G_c defined by

$$(1.14) B = \{g \in G_c; \ g(\mathfrak{b}) = \mathfrak{b}\}.$$

The Lie algebra of B coinsides with $\mathfrak v$ as is easily observed. We can now construct a map h of $\mathfrak g_c^{-2} + \mathfrak g^{-1}$ to G_c/B as follows:

(1.15)
$$h(z+w) = \pi \cdot \exp(z+Q(w))$$
 $(z \in \mathfrak{g}_c^{-2}, w \in \mathfrak{g}^{-1}),$

where π denotes the projection of G_c onto G_c/B . The map h is holomorphic because $Q([I, w]) = \sqrt{-1}Q(w)$. Moreover h is an imbedding of $\mathfrak{g}_c^{-2} + \mathfrak{g}^{-1}$ onto an open set of G_c/B and satisfies the following

$$(1.16) h(g(p)) = g \cdot h(p) for g \in G, p \in D.$$

Remark 1. The mapping h was first constructed by Tanaka [10] when the domain D is homogeneous, and extended to general cases in [3].

§ 2. Symmetric Siegel domains.

2.1. Throughout this section, we assume that the Siegel domain D is symmetric, which is equivalent to say that $\mathfrak{g}(D)$ is semi-simple.

Lemma 2.1. Let $e \in V$. Then there exists a unique e^* in g^2 such that $[e^*, e] = E$.

Proof. The uniqueness is obvious, since the mapping: $X \rightarrow [e, X]$ of \mathfrak{g}^2 to \mathfrak{g}^0 is injective (Vey [11]). We shall show the existence. Since D is symmetric, the subalgebra $\mathfrak{g}' = \mathfrak{g}^{-2} + [\mathfrak{g}^{-2}, \mathfrak{g}^2] + \mathfrak{g}^2$ is also semi-simple and E is contained in $[\mathfrak{g}^{-2}, \mathfrak{g}^2]$ ([4]). We denote by ρ the adjoint representation of $[\mathfrak{g}^{-2}, \mathfrak{g}^2]$ on \mathfrak{g}^{-2} . Let φ_V be the characteristic function of V, which is a positive function defined on V and satisfies the following equality (Vinberg [12]):

$$(2.1) \varphi_{\mathbf{r}}(ax) = (\det a)^{-1}\varphi_{\mathbf{r}}(x),$$

where $a = \exp \rho(A)$ $(A \in [\mathfrak{g}^{-2}, \mathfrak{g}^2])$. Put $M(x) = \log \varphi_r(x)$. Since the killing form α' of \mathfrak{g}' gives a duality between \mathfrak{g}^{-2} and \mathfrak{g}^2 , we can write in the Taylor series for M(e+tx) as follows:

$$M(e+tx) = M(e) - t\alpha'(\tilde{e}, x) + 0(t^2).$$

where $\tilde{e} \in \mathfrak{g}^2$. Then from (2.1), we obtain

$$\alpha'(\tilde{e}, [A, e]) = \operatorname{Tr} \rho(A)$$
 for $A \in [\mathfrak{g}^{-2}, \mathfrak{g}^2]$.

Let $e^*=4\tilde{e}$. Then $\alpha'([e^*,e],A)=-4\operatorname{Tr}\rho(A)$. On the other hand from Tanaka [9], we get $\alpha'(E,A)=2\operatorname{Tr}\rho(E)\cdot\rho(A)=-4\operatorname{Tr}\rho(A)$. Therefore $\alpha'(E-[e^*,e],A)=0$ for any $A\in[\mathfrak{g}^{-2},\mathfrak{g}^2]$ and hence $\alpha'(E-[e^*,e],\mathfrak{g}')=0$. This implies $E=[e^*,e]$.

2.2. We now investigate Cartan decompositions of the Lie algebra $\mathfrak{g}(D)$. Let $\mathfrak{g}(D) = \mathfrak{f} + \mathfrak{p}$ be the Cartan decomposition at the point $\sqrt{-1}e \in D(e \in V)$ and let σ be the corresponding Cartan involution.

Then f is the isotropy subalgebra of $\mathfrak{g}(D)$ at $\sqrt{-1}e$. Therefore from [2], we have

(2. 2)
$$f = f^{0} + m + n \quad (\text{direct sum}),$$

$$f^{0} = f \cap g^{0} = \{A \in g^{0}; [e, A] = 0\},$$

$$m = \{X + \frac{1}{2}[e, [e, X]]; X \in g^{2}\},$$

$$n = \{Y + [I, [e, Y]]; Y \in g^{1}\}.$$

We set

(2.3)
$$\widetilde{\mathfrak{m}} = \{X - \frac{1}{2}[e, [e, X]]; X \in \mathfrak{g}^2\},$$

$$\widetilde{\mathfrak{m}} = \{Y - [I, [e, Y]]; Y \in \mathfrak{q}^1\}.$$

Lemma 2.2. $\mathfrak{p} \supset \widetilde{\mathfrak{n}} + \widetilde{\mathfrak{m}}$.

Proof. Let α denote the killing form of $\mathfrak{g}(D)$. Then $\mathfrak{p} = \{X \in \mathfrak{g}(D); \alpha(X, \mathfrak{f}) = 0\}$. Clearly $\alpha(\widetilde{\mathfrak{m}} + \widetilde{\mathfrak{n}}, \mathfrak{f}^0) = \alpha(\widetilde{\mathfrak{m}}, \mathfrak{n}) = \alpha(\widetilde{\mathfrak{n}}, \mathfrak{m}) = 0$, because $\alpha(\mathfrak{g}^{\lambda}, \mathfrak{g}^{\mu}) = 0$ for $\lambda + \mu \neq 0$. Let $X, X' \in \mathfrak{g}^2$. Then

$$\begin{split} \alpha(X - \frac{1}{2}[e, \, [e, \, X]], \, X' + \frac{1}{2}[e, \, [e, \, X']]) \\ = \frac{1}{2} \, \alpha(X, \, [e, \, [e, \, X']]) - \frac{1}{2} \, \alpha([e, \, [e, \, X], \, X') = 0 \; . \end{split}$$

Therefore we have $\alpha(\widetilde{\mathfrak{m}}, \mathfrak{m}) = 0$ and hence $\widetilde{\mathfrak{m}} \subset \mathfrak{p}$. By using (1.1) we can show $\alpha(\widetilde{\mathfrak{n}}, \mathfrak{n}) = 0$ similarly. q.e.d.

Since $\sigma = 1$ on f, we have for any $X \in \mathfrak{g}^2$

$$X + \frac{1}{2} \big[e, \, \big[e, \, X \big] \big] = \sigma(X) + \frac{1}{2} \big[\sigma(e), \, \big[\sigma(e), \, \sigma(X) \big] \big].$$

On the other hand, $\sigma = -1$ on \mathfrak{p} . It follows from Lemma 2.2

$$-X + \tfrac{1}{2} \big[e, \, \big[e, \, X \big] \big] = \sigma(X) - \tfrac{1}{2} \big[\sigma(e), \, \big[\sigma(e), \, \sigma(X) \big] \big].$$

Therefore we get

(2.4)
$$\sigma(X) = \frac{1}{2}[e, [e, X]] \quad \text{for} \quad X \in \mathfrak{g}^2.$$

Similarly we have

(2.5)
$$\sigma(Y) = [I, [e, X]] \text{ for } Y \in \mathfrak{g}^1.$$

Let e^* be as in Lemma 2.1. Then $\frac{1}{2}[e^*, [e^*, X]] \in \mathfrak{g}^2$ for any $X \in \mathfrak{g}^{-2}$.

Hence by (2.4) we have

$$\begin{split} \sigma(\frac{1}{2}[e^*,\,[e^*,\,X]]) &= \frac{1}{4}[e,\,[e,\,[e^*,\,[e^*,\,X]]]] \\ &= \frac{1}{4}[e,\,[e^*,\,2X]] \\ &= X \,. \end{split}$$

here we use the fact that E is in the center of \mathfrak{g}^0 . Since $\sigma^2 = 1$, we have

(2.6)
$$\sigma(X) = \frac{1}{2} [e^*, [e^*, X]] \text{ for } X \in \mathfrak{g}^{-2}.$$

Similarly by using (1.1), we get

(2.7)
$$\sigma(Y) = -\lceil I, \lceil e^*, Y \rceil \rceil \quad \text{for} \quad Y \in \mathfrak{g}^{-1}.$$

By (2.4), (2.5), (2.6) and (2.7), we know that $\sigma(g^{\lambda}) = g^{-\lambda}$ for $\lambda = -2, -1, 1$ and 2. Hence $\sigma(g^0) = g^0$, because $g^0 = [g^{-2}, g^2] + [g^{-1}, g^1]$ ([4]). Clearly $\sigma(e) = -e^*$ and $\sigma(e^*) = -e$. Therefore $\sigma(E) = -E$. We now assert $[e, g^2] = [e^*, g^{-2}]$. In fact $g^2 = [e^*, [e^*, g^{-2}]]$. So, $[e, g^2] = [e^*, [e, [e^*, g^{-2}]]] = [e^*, g^{-2}]$, proving our assertion. We set

(2.8)
$$\mathfrak{p}^{0} = [e, \mathfrak{g}^{2}] = [e^{*}, \mathfrak{g}^{-2}].$$

Then $\mathfrak{f}^0 \cap \mathfrak{p}^0 = 0$, because the mapping: $X \to [e, [e, X]]$ of \mathfrak{g}^2 to \mathfrak{g}^{-2} is injective (cf. (2.2)). Moreover dim $\mathfrak{g}^0 = \dim \mathfrak{f}^0 + \dim \mathfrak{g}^{-2} = \dim \mathfrak{f}^0 + \dim \mathfrak{p}^0$. Hence we get $\mathfrak{g}^0 = \mathfrak{f}^0 + \mathfrak{p}^0$ (direct sum). Being invariant by σ , \mathfrak{p}^0 is containd in \mathfrak{p} . Thus we have proved.

Theorem 2.3. Let D be a symmetric Siegel domain of the second kind and let $\mathfrak{g}(D) = \mathfrak{f} + \mathfrak{p}$ be the Cartan decomposition at the point $\sqrt{-1}e(e \in V)$. Then

$$f = f^0 + m + n$$
 (direct sum)
 $p = p^0 + \widetilde{m} + \widetilde{n}$ (direct sum),

where \mathfrak{t}^0 , \mathfrak{m} , $\mathfrak{i}\mathfrak{t}$, $\widetilde{\mathfrak{m}}$, $\widetilde{\mathfrak{i}\mathfrak{t}}$ and \mathfrak{p}^0 are given by (2,2), (2,3) and (2,8).

2.3. Let us denote by \widetilde{A} the holomorphic vector field on D corresponding to $A \in \mathfrak{g}(D)$. Put $q = \sqrt{-1}e$. It is easy to see that the following equalities hold:

(2.9)
$$\widetilde{A}_{q} = \sqrt{-1} [\widetilde{A}, e]_{q} \text{ for } A \in \mathfrak{g}^{0},$$

$$[\widetilde{I}, Y]_{q} = \sqrt{-1} \widetilde{Y}_{q} \text{ for } Y \in \mathfrak{g}^{-1}.$$

Let J be the complex structure of D. For $X \in \mathfrak{g}^2$, we have $\widetilde{X}_q - \widetilde{\sigma(X)}_q = -2\widetilde{\sigma(X)}_q$, because $X + \sigma(X) \in \mathfrak{f}$ and hence $\widetilde{X}_q + \widetilde{\sigma(X)}_q = 0$. On the other hand by (2.4) and (2.9), $(e, X)_q = \sqrt{-1}[(e, X), e]_q = -2\sqrt{-1}\widetilde{\sigma(X)}_q$. Therefore we have

(2.10)
$$J(X-\sigma(X))_q = [e, X]_q$$
 for $X \in \mathfrak{g}^2$.
Similarly for $Y \in \mathfrak{g}^1$, we have $\widetilde{Y}_q - \sigma(Y)_q = -2\sigma(Y)_q$ and $[I, Y]_q - \sigma([I, Y])_q$
 $= -2\sigma([I, Y])_q = -2[I, \sigma(Y)]_q = -2\sqrt{-1}\sigma(Y)_q$. Therefore
(2.11) $J(Y-\sigma(Y))_q = [I, Y]_q - \sigma([I, Y])_q$ for $Y \in \mathfrak{g}^1$.

We set

(2.12)
$$Z = \frac{1}{2}(I + e - e^*) = \frac{1}{2}(I + e + \sigma(e)).$$

Clearly Z is contained in f.

Proposition 2.4.

- (1) Z belongs to the center of t.
- (2) Under the natural identification of \mathfrak{p} with $T_{\sqrt{-1}e}(D)$, the tangent space to D at $\sqrt{-1}e$, the following equality holds:

$$ad ZX = JX$$
 for $X \in \mathfrak{v}$.

Proof. Since [e, f⁰] = 0, $\sigma([e, f⁰]) = [-e^*, f⁰] = 0$. Let X ∈ g². Then by using (1. 1), we obtain $[Z, X + \sigma(X)] = \frac{1}{2}([e, X] + [σ(e), σ(X)]) = \frac{1}{2}([e, X] + σ([e, X])) = 0$, because [e, X] ∈ p⁰ by Theorem 2. 3. Therefore [Z, nι] = 0. Next let Y ∈ g¹. Then from (1. 1), (2. 5) and (2. 7), $[Z, Y + σ(Y)] = \frac{1}{2}([I, Y] + [I, σ(Y)] + [e, Y] + σ([e, Y])) = \frac{1}{2}([I, Y] - [e, Y] + [e, Y] - [I, Y]) = 0$. Hence [Z, n] = 0, proving (1).

By direct computations, we have

$$(2.13) [Z, X - \sigma(X)] = [e, X] for X \in \mathfrak{g}^2.$$

(2. 14)
$$[Z, Y - \sigma(Y)] = [I, Y - \sigma(Y)]$$

$$= [I, Y] - \sigma([I, Y])$$
 for $Y \in \mathfrak{g}^1$.

Now the statemet (2) follows immediately from (2.10), (2.11), (2.13) and (2.14).

We set

$$\mathfrak{p}_{-} = \{X \in \mathfrak{p}_{c}; [Z, X] = -\sqrt{-1}X\},$$

$$\mathfrak{p}_{+} = \{X \in \mathfrak{p}_{c}; [Z, X] = \sqrt{-1}X\}.$$

Then the following equalities hold:

(2. 16)
$$\mathfrak{p}_{c} = \mathfrak{p}_{+} + \mathfrak{p}_{-} \quad (\text{direct sum}),$$

$$\mathfrak{p}_{+} = \{X - \sqrt{-1}[Z, X]; X \in \mathfrak{p}_{c}\},$$

$$\mathfrak{p}_{-} = \{X + \sqrt{-1}[Z, X]; X \in \mathfrak{p}_{c}\}.$$

Proposition 2.5. The following equlity holds:

$$Ad(\exp \sqrt{-1}e)\mathfrak{b} = \mathfrak{f}_c + \mathfrak{p}_-$$
,

where b is the subalgebra of $\mathfrak{g}(D)_c$ given by (1.13).

Proof. Let $X \in \mathfrak{g}_c^2$. By (2.13) we have $Ad(\exp \sqrt{-1}e)X = X$ $+\sqrt{-1}[e, X] - \frac{1}{2}[e, [e, X]] = X - \sigma(X) + \sqrt{-1} \ ad \ Z(X - \sigma(X))$. Therefore by (2.16), $Ad(\exp \sqrt{-1}e)g_{c}^{2} \subset \mathfrak{p}_{-}$. Next let $Y \in \mathfrak{g}_{c}^{1}$. $Ad(\exp \sqrt{-1}e)Y - \sigma(Ad(\exp \sqrt{-1}e)Y) = Y + \sqrt{-1}[e, Y] - \sigma(Y) - \sqrt{-1}$ $\times [\sigma(e), \sigma(Y)] = Y - \sigma(Y) + \sqrt{-1}([I, Y] + [e, Y]) = Y - \sigma(Y) + \sqrt{-1}$ $\times ad Z(Y-\sigma(Y))$. This implies $Ad(\exp \sqrt{-1}e) \mathfrak{g}_c^1 \subset \mathfrak{f}_c + \mathfrak{p}_-$. Let A $=A_1+A_2\in\mathfrak{q}_c^0$, where $A_1\in\mathfrak{f}_c^0$ and $A_2\in\mathfrak{p}_c^0$. It follows $Ad(\exp\sqrt{-1}e)A$ $\equiv A_2 + \sqrt{-1}[e, A_2] \pmod{\mathfrak{f}_c}$. And $A_2 + \sqrt{-1}[e, A_2] - \sigma(A_2 + \sqrt{-1}[e, A_2])$ $=2A_2+\sqrt{-1}[e,A_2]-\sqrt{-1}[e^*,A_2]=2(A_2+\sqrt{-1}[Z,A_2])\in\mathfrak{p}_-.$ Hence $Ad(\exp \sqrt{-1}e)g_c^0 \subset f_c + \mathfrak{p}_-$. Finally for $Y \in \mathfrak{g}_c^{-1}$, $Ad(\exp \sqrt{-1}e)\overline{Q}(Y)$ $=\overline{Q}(Y)$. Since $\sigma(I)=I$, it follows $\overline{Q}(Y)-\sigma\overline{Q}(Y)=\overline{Q}(Y-\sigma(Y))$. Hence by (2.14), we get $ad Z(\overline{Q}(Y) - \sigma(\overline{Q}(Y))) = ad I(\overline{Q}(Y - \sigma(Y)))$ $=-\sqrt{-1}(\overline{Q}(Y)-\sigma\overline{Q}(Y))$. Therefore $\overline{Q}(Y)-\sigma(\overline{Q}(Y))\in\mathfrak{p}_{-}$ and hence $\overline{Q}(\mathfrak{g}_c^{-1}) \subset \mathfrak{f}_c + \mathfrak{p}_-$. Thus we have proved $Ad(\exp \sqrt{-1}e)\mathfrak{b} \subset \mathfrak{f}_c + \mathfrak{p}_-$. Since $\dim (\mathfrak{f}_c + \mathfrak{p}_-) = \dim \mathfrak{g}(D)_c - \dim D = \dim \mathfrak{t}$, we can conclude $Ad(\exp \sqrt{-1}e)\mathfrak{b} = \mathfrak{f}_c + \mathfrak{p}_-.$ q.e.d.

\S 3. The structure of the cone V.

3.1. We return to general cases. Let η_r denote the projection of \mathfrak{g}^{-2} onto \mathfrak{r}_0^{-2} with respect to the decomposition $\mathfrak{g}^{-2} = \mathfrak{g}^{-2} + \mathfrak{r}_0^{-2} + \mathfrak{r}_s^{-2}$. Put

$$V_r = \eta_r(V)$$
.

By (1.6) we get for any $v \in \mathfrak{g}^{-2}$

$$\eta_r(v) = \lim_{t \to \infty} Ad(\exp tE_s) v.$$

Therefore $V_r \subset \overline{V}$. From this fact, it follows that V_r is an open convex cone in \mathfrak{r}_0^{-2} containing no entire straight lines. It is clear from (1,2) and (1,9) that

$$(3.1) F(w, w) = \frac{1}{4} \lceil [I, w], w \rceil \in \overline{V}_r \text{for } w \in \mathfrak{r}^{-1}.$$

Let $v=e+a+b\in \mathfrak{g}^{-2}$, where $e\in V_s$, $a\in \mathfrak{r_0}^{-2}$ and $b\in \mathfrak{r_s}^{-2}$. Since the domain S, constructed in § 1, is symmetric, there exists e^* in $\mathfrak{g}^2(=\mathfrak{g}^2)$ such that $E_s=[e^*,e]$ by Lemma 2.1. We then have by (1.6), (1.7) and (1.10)

(3.2)
$$Ad(\exp[e^*, b])e = e - b + \frac{1}{2}[[b, e^*], b],$$

(3.3)
$$Ad(\exp[e^*,b])v = e + a - \frac{1}{2}[[b,e^*],b].$$

Since V_s is contained in \overline{V} , we get from (3.2)

$$(3.4) \frac{1}{2}[[b, e^*], b] \in \overline{V}_r \text{ for any } b \in \mathfrak{r}_s^{-2}.$$

And by (3.3)

(3.5)
$$a - \frac{1}{2}[[b, e^*], b] \in V_r \text{ if } v \in V.$$

Let $\eta = \eta_i + \eta_r$, i.e., the projection of \mathfrak{g}^{-2} to $\mathfrak{g}^{-2} + \mathfrak{r}_0^{-2}$. Since $x + y \in V$ if $x \in V$ and $y \in \overline{V}$, we know from (3.2) and (3.4) that $\eta(V)$ is contained in V.

Lemma 3.1.
$$V_s + V_r = \eta(V)$$
.

Proof. Clearly $V_s + V_r \supset \eta(V)$. Conversely let $c \in V_s$ and $a \in V_r$. Then $c + a \in \overline{V}$. Therefore $e + a \in \eta(\overline{V}) \subset \overline{\eta(V)}$. Hence $V_s + V_r \subset \overline{\eta(V)}$. Therefore $V_s + V_r$ is the interior of $\overline{\eta(V)}$. This implies $V_s + V_r$

$$=\eta(V)$$
. q.e.d.

Proposition 3.2. Let $v=e+a+b\in \mathfrak{g}^{-2}$, where $e\in \mathfrak{g}^{-2}$, $a\in \mathfrak{r}_{\mathfrak{g}}^{-2}$ and $b\in \mathfrak{r}_{\mathfrak{s}}^{-2}$. Then $v\in V$ is and only if $e\in V_{\mathfrak{s}}$ and $a-\frac{1}{2}[[b,e^*],b]\in V_{\mathfrak{r}}$.

Proof. The "if" part is already proved (cf. (3.5)). Suppose that $e \in V_s$ and $a - \frac{1}{2}[[b, e^*], b] \in V_r$. Then from Lemma 3.1, $u = e + a - \frac{1}{2}[[b, e^*], b] \in \eta(V) \subset V$. Since $ad(\exp(-[e^*, b]))u = v$, we get $v \in V$.

If we set

(3.6)
$$D_o = \eta_s^{-1}(\sqrt{-1}e) \quad (e \in V_s),$$

Then we get immediately from proposition 3.2

Corollary 3.3.

$$\begin{split} D_o &= \{ u + v + w + \sqrt{-1}e \colon u \in (\mathfrak{r}_0^{-2})_c, \, v \in (\mathfrak{r}_s^{-2})_c, \, w \in \mathfrak{r}^{-1} \\ &\quad \text{Im } u - \frac{1}{4} \lceil [I, \, w], \, w \rceil - \frac{1}{2} \lceil [\operatorname{Im} \, v, \, e^*], \, \operatorname{Im} \, v \rceil \in V_r \} \,. \end{split}$$

3.2. By (1.7), $ad \ e$ (resp. $ad \ e^*$) gives a linear mapping of \mathfrak{r}_s^0 (resp. \mathfrak{r}_s^{-2}) to \mathfrak{r}_s^{-2} (resp. to \mathfrak{r}_s^0). Let $X \in \mathfrak{r}_s^{-2}$ and $Y \in \mathfrak{r}_s^0$. By (1.6), $[e, [e^*, X]] = [[e, e^*], X] = -[E_s, X] = X$ and $[e^*, [e, Y]] = [[e^*, e], Y] = [E_s, Y] = Y$. Thereby

(3.7)
$$ad e \cdot ad e^* = 1 \quad \text{on} \quad \mathfrak{r}_s^{-2},$$
$$ad e^* \cdot ad e = 1 \quad \text{on} \quad \mathfrak{r}_s^{0}.$$

In particular, $ad e^*$ (resp. ad e) gives an isomorphism of \mathfrak{r}_s^{-2} (resp. of \mathfrak{r}_s^{0}) onto \mathfrak{r}_s^{0} (resp. onto \mathfrak{r}_s^{-2}).

Lemma 3.4.

- (1) Let $b \in r_s^{-2}$. Then $[[b, e^*], b] \in \overline{V}_r$ and $[[b, e^*], b] = 0$ implies b = 0.
- (2) Let $c \in \mathfrak{r}_s^0$. Then $[[e, c], c] \in \overline{V}_\tau$ and [[e, c], c] = 0 implies c = 0.

Proof. The fact $[[b, e^*], b] \in \overline{V}_r$ is already proved (cf. (3.4)). Suppose $[[b, e^*], b] = 0$. Then by (3.2), e - b is contained in \overline{V} . Since $\lim_{t \to \infty} e^t Ad(\exp t E_s) (e - b) = -b$, we get $-b \in \overline{V}$. Similarly we have $b \in \overline{V}$, because $[[-b, e^*], -b] = 0$. Now b = 0 follows immediately from the fact that \overline{V} contains no entire straight lines. Hence we have proved (1). We can write $c = [e^*, b'], b' \in r_s^{-2}$. Then $[[e, c], c] = [[e, [e^*, b']], [e^*, b']] = [b', [e^*, b']] = [[b', e^*], b']$. Therefore the assertion (2) follows from (3.7) and (1).

Now we set

(3.8)
$$\mathcal{U} = \mathbf{r_0}^{-2},$$

$$\mathcal{W} = \mathbf{r_s}^{-2} + \mathbf{r}^{-1} + \mathbf{r_s}^{0},$$
(3.9)
$$j_0 = ad(I + c - c^*).$$

It follows from (1.1) and (3.7) that $j_o^2 = -1$ on \mathcal{W} . Hence we can write

$$(3. 10) W_c = W_+ + W_- (direct sum),$$

$$W_+ = \{ w \in W_c; j_o w = \sqrt{-1} w \},$$

$$W_- = \{ w \in W_c; j_o w = -\sqrt{-1} w \},$$

$$\overline{W}_+ = W_-$$

Clearly the following equalities hold:

$$[\mathcal{W}_{+}, \mathcal{W}_{+}] = [\mathcal{W}_{-}, \mathcal{W}_{-}] = 0.$$

Define a \mathcal{U}_c -valued skew-symmetric biliear form \mathcal{A} on \mathcal{W}_c by

(3.12)
$$\mathcal{A}(w, w') = \frac{1}{4}[w, w'] \quad (w, w' \in \mathcal{W}_c).$$

Proposition 3.5. Let $H(w, w') = 2\sqrt{-1}\mathcal{A}(w, \overline{w}')$ for $w, w' \in \mathcal{W}_+$. Then H is a V_r -hermitian form on \mathcal{W}_+ .

Proof. Each element w of W_+ can be written as $w = w_1 + \sqrt{-1} \times [e^*, w_1] + w_2 - \sqrt{-1}[e, w_2] + Q(w_s)$, where $w_1 \in r_s^{-2}$, $w_2 \in r_s^{0}$ and $w_3 \in r^{-1}$. Then by using (1.10) and (3.11), we get

$$H(w, w) = [[w_1, e^*], w_1] + [[e, w_2], w_2] + \frac{1}{4}[[I, w_3], w_s].$$

Hence by (3.1) and Lemma 3.4, we know that $H(w, w) \in \overline{V}_r$ and that H(w, w) = 0 means $w_1 = w_2 = w_3 = 0$. q.e.d.

§ 4. Realization of D as a Siegel domain of the third kind.

4.1. Let S be the symmetric domain constructed in § 1 and let $\mathfrak{g}(S)=\mathfrak{f}+\mathfrak{p}$ be the Cartan decomposition at $\sqrt{-1}e(e\in V_s)$. There exists a unique I_s in \mathfrak{F}^0 such that $ad\ I_s=ad\ I$ on $\mathfrak{F}(=\mathfrak{g}(S))$. Then by Proposition 2.4, $Z=\frac{1}{2}(I_s+e-e^*)$ is in the center of \mathfrak{f} and $ad\ Z$ gives a complex structure on \mathfrak{p} which coincides with one of the domain S under the natural identification of \mathfrak{p} with the tangent space to S at $\sqrt{-1}e$. Let \mathfrak{p}_+ and \mathfrak{p}_- be the subspace of \mathfrak{p}_s given by (2.15) for the domain S. Note that

$$[\mathfrak{p}_{+},\mathfrak{p}_{+}] = [\mathfrak{p}_{-},\mathfrak{p}_{-}] = 0 ,$$

$$[\mathfrak{p}_{+},\mathfrak{p}_{-}] \subset f_{c} ,$$

$$\mathfrak{p}_{+} = \bar{\mathfrak{p}}_{-} ,$$

$$[f_{c},\mathfrak{p}_{\pm}] \subset \mathfrak{p}_{\pm}$$

Let G^* , G_c^* , K, K_c , P_+ and P_- be the connected subgroups of G_c corresponding to the subalgebras \mathfrak{F} , \mathfrak{F}_c , \mathfrak{p}_+ and \mathfrak{p}_- . Then P_\pm , K_c and K_cP_- are closed complex subgroups of G_c^* . Moreover $\exp: \mathfrak{p}_\pm \to P_\pm$ are holomorphic diffeomorphisms. It is also well known that the mapping defined by

$$P_+ \times K_c \times P_- \ni (a, b, c) \rightarrow abc \in G_c$$

is a holomorphic diffeomorphism onto an open set of G_c and that $G^s \subset P_+K_cP_-$. Therefore for each point gK in $S=G^s/K$, there corresponds a unique z in \mathfrak{p}_+ such that $\exp z=$ the P_+ -part of g, and the assignment: $gK\to z$ gives a holomorphic imbedding of S onto a bounded domain S in \mathfrak{p}_+ . This is called the Harish-Chandra imbedding.

Let $z, z' \in \mathcal{S}$. Then we can write $\exp z = g \cdot k \cdot p$, $\exp z' = g' \cdot k' \cdot p'$, where $g, g' \in G^s$, $k, k' \in K_c$ and $p, p' \in P_-$. It follows that $(\exp \bar{z}')^{-1} \cdot \exp z = \bar{p}'^{-1} \cdot \bar{k}'^{-1} \cdot g'^{-1} \cdot g \cdot k \cdot p$. Since $g'^{-1} \cdot g \in P_+ K_c P_-$, $(\exp \bar{z}')^{-1} \cdot \exp z \in P_+ K_c P_-$. Thus we can define a mapping $\mathcal{K}(z, z')$: $\mathcal{S} \times \mathcal{S} \to K_c$ by

$$\mathcal{K}(z,z')^{-1}$$
 = the K_c -part of $(\exp \bar{z}')^{-1} \cdot \exp z$.

It is easy to check the following equality (Satake [6]):

$$\mathcal{K}(z',z) = \overline{\mathcal{K}(z,z')^{-1}}.$$

We also define a mapping $\mathcal{J}(g,z): G^i \times \mathcal{S} \rightarrow K_c$ by

$$\mathcal{J}(g,z) = ext{the } K_c ext{-part of } g\cdot \exp z$$
 .

The group G' acts on $\mathscr S$ in obvious manner. Then $g \cdot \exp z \equiv \exp g(z)$ $\cdot \mathscr G(g,z) \pmod{P_-}$. By a simple calculation we have (Satake [6])

$$\mathcal{K}(g(z), g(z')) = \mathcal{J}(g, z) \cdot \mathcal{K}(z, z') \cdot \overline{\mathcal{J}(g, z)^{-1}}.$$

If we put $\mathcal{K}(z) = \mathcal{K}(z, z)$, then by (4.2) and (4.3) we know

(4.4)
$$\mathcal{K}(z) = \overline{\mathcal{K}(z)^{-1}} \quad (z \in \mathcal{S}),$$

$$\mathcal{K}(g(0)) = \mathcal{J}(g, 0) \cdot \overline{\mathcal{J}(g, 0)^{-1}} \quad (g \in G^{s}).$$

4. 2. Let \mathcal{U}_c , \mathcal{W}_+ and \mathcal{W}_- be as in § 3. Clearly $[\mathfrak{F}_c, \mathcal{U}_c] = 0$ and $[\mathfrak{F}_c, \mathcal{W}_c] \subset \mathcal{W}_c$ by (1.6), (1.7) and (3.8). Since $j_o X = ad(I + e - e^*) X = ad(I_s + e - e^*) X$ for $X \in \mathfrak{F}$, we easily have the followings:

$$[\mathfrak{p}_{+}, \mathcal{W}_{+}] = [\mathfrak{p}_{-}, \mathcal{W}_{-}] = 0,$$

$$[\mathfrak{p}_{+}, \mathcal{W}_{-}] \subset \mathcal{W}_{+},$$

$$[\mathfrak{p}_{-}, \mathcal{W}_{+}] \subset \mathcal{W}_{-},$$

$$[\mathfrak{f}_{0}, \mathcal{W}_{+}] \subset \mathcal{W}_{+}.$$

In what follows, we simply write the actions of $g \in G_c^s$ and $z \in \mathfrak{F}_c$ on W_c as gw and zw $(w \in W_c)$. Since $[\mathfrak{F}_c, \mathcal{U}_c] = 0$, following equalities hold:

(4.6)
$$\mathcal{A}(gw, gw') = \mathcal{A}(w, w').$$

$$\mathcal{A}(zw, w') + \mathcal{A}(w, zw') = 0 \quad (g \in G_c^s, z \in \hat{\mathfrak{g}}_c, w, w' \in \mathcal{W}_c),$$

where \mathcal{A} is the skew-symmetric bilinear form on \mathcal{W}_c defined by (3.12). We now define for each $z \in \mathcal{S}$ a \mathcal{U}_c -valued form $L_t(w, w')$ on \mathcal{W}_+ by

$$L_{\mathbf{z}}(w,w') = 2\sqrt{-1}\mathcal{A}(\overline{\mathcal{K}(\mathbf{z})}\,w,\bar{w}') \quad (w,w'\!\in\!\mathcal{W}_+)\,.$$

Then by (4,4) and (4,6), $L_{\mathbf{x}}(w,w')$ is hermitian.

Lemma 4.1 (cf. [6]).

- (1) $L_{\iota}(w, w')$ is a V_{r} -hermitian form on W_{+} .
- (2) $L_i(w, z\overline{w}')$ is a symmetric bilinear form on W_+ .

Proof. We can take an element $g \in G'$ such that g(0) = z. Now (1) follows immediately from (4.4), (4.6) and from Proposition 3.5. To prove (2), we first show that the following equalities hold:

$$(4.7) (1-z\bar{z}) w_+ = \mathcal{K}(z) w_+ \text{ for } w_+ \in \mathcal{W}_+,$$

$$(4.8) (1-\bar{z}z) w_{-} = \mathcal{K}(z)^{-1}w_{-} \text{for } w_{-} \in \mathcal{W}_{-}.$$

In fact, there exist $z_1, z_2 \in \mathfrak{p}_+$ such that $(\exp \bar{z})^{-1} \cdot \exp z = \exp z_1 \cdot \mathcal{K}(z)^{-1} \cdot \exp \bar{z}_2$. Hence by (4.5),

$$w_{-} + zw_{-} - \bar{z}zw_{-} = (\exp \bar{z})^{-1} \cdot (\exp z) w_{-}$$

= $\exp z_{1} \cdot \mathcal{K}(z)^{-1}w_{-}$
= $\mathcal{K}(z)^{-1}w_{-} + z_{1}\mathcal{K}(z)^{-1}w_{-}$.

Comparing the \mathcal{W}_- -parts we get (4.8). The equality (4.7) follows from (4.4) and (4.8). From (4.7), $\bar{z}(1-z\bar{z})=\bar{z}\,\mathcal{K}(z)$ on \mathcal{W}_+ . And from (4.8), $(1-\bar{z}z)\bar{z}=\mathcal{K}(z)^{-1}\cdot\bar{z}$ on \mathcal{W}_+ . Therefore $\bar{z}\cdot\mathcal{K}(z)=\mathcal{K}(z)^{-1}\cdot\bar{z}$ and hence $\mathcal{K}(z)\cdot\bar{z}=\bar{z}\cdot\overline{\mathcal{K}(z)}$ on \mathcal{W}_+ . It follows

$$egin{aligned} L_z(w,z\overline{w}') &= 2\sqrt{-1}\mathcal{A}(\overline{\mathcal{K}(z)}\,w,ar{z}w') \ &= 2\sqrt{-1}\mathcal{A}(w,\mathcal{K}(z)ar{z}w') \ &= 2\sqrt{-1}\mathcal{A}(w,ar{z}\cdot\overline{\mathcal{K}(z)}\,w') \ &= -2\sqrt{-1}\mathcal{A}(ar{z}w,\overline{\mathcal{K}(z)}\,w') \ &= 2\sqrt{-1}\mathcal{A}(\overline{\mathcal{K}(z)}\,w',ar{z}w) \ &= L_z(w',z\overline{w}). \end{aligned}$$

We now set for $z \in \mathcal{S}$,

$$\mathcal{L}_{s}(w, w') = L_{s}(w, w') + L_{s}(w, z\overline{w}') \quad (w, w' \in \mathcal{W}_{+}).$$

Then \mathcal{L}_{z} is a non-degenerate semi-hermitian form on \mathcal{W}_{+} in the sence of Pyatetski-Shapiro [5]. Indeed, suppose that there exists $w_{o} \in \mathcal{W}_{+}$

such that $\mathcal{L}_z(w, w_o) = 0$ for any $w \in \mathcal{W}_+$. Then $w_o + z\bar{w}_o = 0$ and hence $\bar{z}w_o + \bar{z}z\bar{w}_o = 0$. It follows that $(1-\bar{z}z)\bar{w}_o = \bar{w}_o - \bar{z}z\bar{w}_o = (w_o + z\bar{w}_o) - (\bar{z}w_o + \bar{z}z\bar{w}_o) = 0$. Since $1-\bar{z}z$ is non-singular (cf. Proof of Lemma 4.1), we get $w_o = 0$. Therefore $\mathcal{L}_z(w, w')$ is non-singular. Thereby we can define a Siegel domain \mathcal{D} of the third kind by

$$(4.9) \quad \mathcal{D} = \{(u, w, z) \in \mathcal{U}_c \times \mathcal{W}_+ \times \mathcal{S}; \text{ Im } u - \text{Re } \mathcal{L}_z(w, w) \in V_r\}.$$

Let ξ denote the natural projection of \mathcal{D} onto \mathcal{S} and let $\mathcal{D}_o = \xi^{-1}(0)$. Since $\mathcal{L}_0(w, w') = H(w, w')$, we get

Proposition 4.2. The fiber \mathcal{D}_o is the Siegel domain of the second kind associated with the cone V_r and the V_r -hermitian form H on \mathcal{W}_+ given in Proposition 3.5.

4.3. Let B be the subgroup of G_c given by (1.14) and let $B_o = \delta B \delta^{-1}$, where $\delta = \exp \sqrt{-1}e$. We set

$$t = c + r_0^0,$$

where c and r_0^0 are subalgebras of \mathfrak{g}^0 as in § 1. Then t satisfies $[\mathfrak{g},\mathfrak{t}]=0$.

Lemma 4.3. Under the notations above, the Lie algebra \mathfrak{b}_o of B_o coincides with $W_- + \mathfrak{t}_c + \mathfrak{t}_c + \mathfrak{p}_-$.

Proof. By (1.4), (1.7) and (1.13), the Lie algebra $\mathfrak b$ of B is decomposed in the following form:

$$\mathfrak{b} = \overline{Q} \, (\mathfrak{r}^{\scriptscriptstyle -1}) \, + \, (\mathfrak{r}_{s}^{\scriptscriptstyle \, 0})_{c} + \mathfrak{t}_{c} + \overline{Q} \, (\hat{\mathfrak{g}}^{\scriptscriptstyle \, -1}) \, + \hat{\mathfrak{g}}_{c}^{\scriptscriptstyle \, 0} + \hat{\mathfrak{g}}_{c}^{\scriptscriptstyle \, 1} + \hat{\mathfrak{g}}_{c}^{\scriptscriptstyle \, 2}.$$

By Proposition 2.5, $Ad \delta(\bar{Q}(\mathfrak{g}^{-1}) + \mathfrak{g}_c{}^0 + \mathfrak{g}_c{}^1 + \mathfrak{g}_c{}^2) = \mathfrak{f}_c + \mathfrak{p}_-$. Clearly $Ad \delta(\bar{Q}(\mathfrak{r}^{-1}) + \mathfrak{t}_c) = \bar{Q}(\mathfrak{r}^{-1}) + \mathfrak{t}_c \subset \mathcal{W}_- + \mathfrak{t}_c$. Let $x \in (\mathfrak{r}_s{}^0)_c$. Then $Ad \delta x = x + \sqrt{-1}j_ox \in \mathcal{W}_-$. Hence we have proved $Ad \delta \mathfrak{b} \subset \mathfrak{b}_o$. By considering the equality $\dim \bar{Q}(\mathfrak{r}^{-1}) + \dim(\mathfrak{r}_s{}^0)_c = \dim \mathcal{W}_-$, we get $Ad \delta \mathfrak{b} = \mathfrak{b}_o$. q.e.d.

Let h_o be a holomorphic mapping: $\mathcal{Q}_c \times \mathcal{W}_+ \times \mathfrak{p}_+ \to G_c/B_o$ given by (4.10) $h_o(u, w, z) = \pi_o \cdot \exp u \cdot \exp w \cdot \exp z,$ where π_o denotes the projection of G_c onto G_c/B_o . Note that $\mathcal{U}_c + \mathcal{W}_+ + \mathfrak{p}_+$ is an abelian subalgebra of $\mathfrak{g}(D)_c$.

Lemma 4.4. h_o is a holomorphic diffeomorphism of $\mathcal{U}_c \times \mathcal{W}_+$ $\times \mathfrak{p}_+$ onto an open set of G_c/B_o .

Proof. It is sufficient to prove that h_o is injective. Now suppose that $a = \exp u \cdot \exp w \cdot \exp z \in B_o$. Let $E' = E - E_s$. Since $[E', \mathfrak{E}] = 0$, E' is contained in t. Therefore $Ad\ a\ E' = E' + 2u + w \in \mathfrak{b}_o$, because $t \subset \mathfrak{b}_o$. Hence by Lemma 4.3, u = w = 0. Recall that $Z = \frac{1}{2}(I_s + e - e^*)$ is in \mathfrak{f} and hence in \mathfrak{b}_o . Therefore $Ad\ a\ Z = Z + [z, Z] = Z - \sqrt{-1}z \in \mathfrak{b}_o$. This implies z = 0.

Since [[W, W], W] = 0, we can see the following (cf. [1] or [10]):

$$(4.11) \quad \exp(w+w') = \exp w \cdot \exp w' \cdot \exp \frac{1}{2}[w', w] \quad (w, w' \in \mathcal{W}_c).$$

For an element w of W_c , denote by w_+ (resp. by w_-) its W_+ -(resp. W_- -) component.

Lemma 4.5 (cf. [6]). Every $g \in G^s$ leaves $h_o(\mathcal{U}_c \times \mathcal{W}_+ \times \mathcal{S})$ invariant and hence induces a holomorphic transformation \tilde{g} of $\mathcal{U}_c \times \mathcal{W}_+ \times \mathcal{S}$. Let $\tilde{g}(u, w, z) = (u', w', z')$. Then

$$\begin{cases} z' = g(z), \\ w' = (gw)_{+} - z'(gw)_{-} = \mathcal{J}(g, z)w, \\ u' = u - \frac{1}{2}[w', gw]. \end{cases}$$

Proof. By using (4.11), we obtain

$$\begin{split} g \cdot \exp u \cdot \exp w \cdot \exp z \\ &= \exp u \cdot \exp gw \cdot g \cdot \exp z \\ &= \exp u \cdot \exp gw \cdot \exp g(z) \pmod{K_c P_-} \\ &= \exp \left(u - \frac{1}{2} \left\lceil (gw)_+, (gw)_- \right\rceil \right) \cdot \exp(gw)_+ \cdot \exp(gw)_- \cdot \exp g(z). \end{split}$$

And

$$\exp(gw)_{-}\cdot\exp g(z)$$

$$= \exp g(z) \cdot \exp((gw)_{-} - g(z)(gw)_{-})$$

$$= \exp g(z) \cdot \exp(-g(z)(gw)_{-}) \cdot \exp(gw)_{-} \cdot \exp \frac{1}{2} [g(z)(gw)_{-}, (gw)_{-}].$$

Therefore

$$g \cdot \exp u \cdot \exp w \cdot \exp z$$

$$= \exp \left(u - \frac{1}{2} [(gw)_+, (gw)_-] + \frac{1}{2} [g(z) (gw)_-, (gw)_-] \right)$$

$$\cdot \exp \left((gw)_+ - g(z) (gw)_- \right) \cdot \exp g(z) \pmod{B_0}.$$

Hence z'=g(z), $w'=(gw)_+-g(z)$ $(gw)_-$ and $u'=u-\frac{1}{2}[w', (gw)_-]$ $=u-\frac{1}{2}[w', gw]$. It remains to show $(gw)_+-g(z)$ $(gw)_-=\mathcal{J}(g,z)w$. We can write $g\cdot\exp z=\exp g(z)\cdot\mathcal{J}(g,z)\cdot\exp \bar{z}_1(z_1\in\mathfrak{p}_+)$. Then $gw=g\cdot\exp z$ $w=\mathcal{J}(g,z)w+\mathcal{J}(g,z)\bar{z}_1w+g(z)\mathcal{J}(g,z)\bar{z}_1w$. Therefore $(gw)_+=\mathcal{J}(g,z)w+g(z)\mathcal{J}(g,z)\bar{z}_1w$ and $(gw)_-=\mathcal{J}(g,z)\bar{z}_1w$. Hence we have $w'=(gw)_+-g(z)$ $(gw)_-=\mathcal{J}(g,z)w$.

Next we verify

Lemma 4.6 (cf. [6]). Let $g \in G^s$ and let $\tilde{g}(u, w, z) = (u', w', z')$. Then $\operatorname{Im} u - \operatorname{Re} \mathcal{L}_z(w, w) = \operatorname{Im} u' - \operatorname{Re} \mathcal{L}_{z'}(w', w')$.

Proof. We first assume that z=0. By Lemma 4.5, $u'=u-\frac{1}{2}\times[\mathcal{G}w,gw]$, $w'=\mathcal{G}w$ and z'=g(0), here we put $\mathcal{G}=\mathcal{G}(g,0)$. Therefore $\operatorname{Im} u'-\operatorname{Re} \mathcal{L}_{z'}(w',w')=\operatorname{Im} u-\frac{1}{2}\operatorname{Im}[\mathcal{G}w,gw]-\operatorname{Re} \mathcal{L}_{z'}(\mathcal{G}w,\mathcal{G}w)$. By direct calculations,

$$\begin{split} \operatorname{Re} \, & \, \mathcal{L}_{z'}(\mathcal{J}w,\mathcal{J}w) \\ & = 2\sqrt{-1}\mathcal{A}(\mathcal{J}w,\mathcal{K}(z')\,\overline{\mathcal{J}}\overline{w}) - 2\operatorname{Im}\,\mathcal{A}(\mathcal{J}w,\mathcal{K}(z')\,\overline{z}'\mathcal{J}w) \\ & = 2\sqrt{-1}\mathcal{A}(w,\overline{w}) - 2\operatorname{Im}\,\mathcal{A}(\mathcal{J}w,\overline{z}'\overline{\mathcal{K}(z')}\,\mathcal{J}w) \\ & = \operatorname{Re}\, \mathcal{L}_{0}(w,w) - \frac{1}{2}\operatorname{Im}[\mathcal{J}w,\overline{z}'\overline{\mathcal{J}}w], \end{split}$$

here we used the facts that $\mathcal{K}(z') = \mathcal{J}\overline{\mathcal{J}}^{-1}$ and $\overline{z}'\overline{\mathcal{K}(z')} = \mathcal{K}(z')\overline{z}'$ on \mathcal{W}_+ (cf. Proof of Lemma 4.5). Since $g = \exp z' \cdot \mathcal{J} \cdot \exp \overline{z}''(z'' \in \mathfrak{p}_+)$, $g = \overline{g} = \exp \overline{z}' \cdot \overline{\mathcal{J}} \cdot \exp z''$. Hence $gw = \overline{\mathcal{J}}w + \overline{z}'\overline{\mathcal{J}}w$ and $[\mathcal{J}w, \overline{z}'\overline{\mathcal{J}}w] = [\mathcal{J}w, gw]$. Combining these equalities, we get $\operatorname{Im} u' - \operatorname{Re} \mathcal{L}_{z'}(w', \overline{z}')$

w') = Im u - Re $\mathcal{L}_0(w, w)$. Since \mathscr{S} is homogeneous, for any $z \in \mathscr{S}$ there exist $f \in G^s$, $u_o \in \mathcal{U}_c$ and $w_o \in \mathcal{W}_+$ such that $\tilde{f}(u_o, w_o, 0) = (u, w, z)$. Hence $gf(u_o, w_o, 0) = (u', w', z')$. It follows Im u' - Re $\mathcal{L}_z(w', w')$ = Im u_o - Re $\mathcal{L}_0(w_o, w_o)$ = Im u - Re $\mathcal{L}_z(w, w)$. q.e.d.

By Lemma 4.6, we know that each $\tilde{g}(g \in G^s)$ leaves D invariant. Moreover by Lemma 4.5 we know that \tilde{g} acts as a quasi-linear transformation in the sence of Pyatetski-Shapiro [5].

4.4. Let $\tilde{\delta}$ be a holomorphic diffeomorphism of G_c/B onto G_c/B_o given by

$$\tilde{\delta}$$
 $G_c/B \ni gB \to g\delta^{-1}B_o \in G_c/B_o$,

where $\delta = \exp \sqrt{-1}e$. Clearly $\tilde{\delta}$ is compatible with the action of $f \in G$, i.e., $\tilde{\delta}(fp) = f\tilde{\delta}(p)$ ($p \in G_c/B$). We are now in a position to prove

Theorem 4.7. Let \mathcal{D} be the Siegel domain of the third kind defined by (4.9) and let h (resp. h_o) be the imbedding of D (resp. of \mathcal{D}) into G_c/B (resp. into G_c/B_o) given by (1.15) (resp. by (4.10)). Then

$$h_o(\mathcal{D}) = \tilde{\delta}h(D)$$
.

Proof. First we show that $h_o(\mathcal{D}_o) = \tilde{\delta}h(D_o)$. Let $u \in (\mathfrak{r}_0^{-2})_c$, $v \in (\mathfrak{r}_s^{-2})_c$ and $w \in \mathfrak{r}^{-1}$. Then

$$\begin{split} \tilde{\delta}h\left(u+v+w+\sqrt{-1}e\right) \\ &\equiv \exp u \cdot \exp v \cdot \exp Q(w) \\ &\equiv \exp u \cdot \exp v_{+} \cdot \exp v_{-} \cdot \exp \frac{1}{2} \left[v_{-}, v_{+}\right] \cdot \exp Q(w) \\ &\equiv \exp \left(u - \frac{1}{2} \left[v_{+}, v_{-}\right]\right) \cdot \exp \left(v_{+} + Q(w)\right) \pmod{B_{\theta}}. \end{split}$$

Therefore $\tilde{\delta}h(u+v+w+\sqrt{-1}e)=h_o(u',w',0)$, where

(4. 12)
$$\begin{cases} u' = u - \frac{1}{2} [v_+, v_-], \\ w' = v_+ + Q(w). \end{cases}$$

Since $v_{+} = \frac{1}{2}(v + \sqrt{-1}[e^*, v])$ and $v_{-} = \frac{1}{2}(v - \sqrt{-1}[e^*, v])$, we get $\frac{1}{2}[v_{+}, v_{-}] = \sqrt{-1}/4[[e^*, v], v]$ and $\frac{1}{2}[v_{+}, \overline{v}_{+}] = \sqrt{-1}/4[[e^*, v], \overline{v}]$. It follows

$$\begin{split} & \operatorname{Im} u' - \operatorname{Re} \mathcal{L}_{0}(w', w') \\ & = \operatorname{Im} u - \frac{1}{4} \operatorname{Re}[[e^{*}, v], v] - \frac{\sqrt{-1}}{2}[v_{+}, \overline{v}_{+}] - \frac{\sqrt{-1}}{2}[Q(w), \overline{Q}(w)] \\ & = \operatorname{Im} u - \frac{1}{4} \operatorname{Re}[[e^{*}, v], v] + \frac{1}{4}[[e^{*}, v], \overline{v}] - \frac{1}{4}[[I, w], w] \\ & = \operatorname{Im} u - \frac{1}{4}[[I, w], w] - \frac{1}{2}[[\operatorname{Im} v, e^{*}], \operatorname{Im} v]. \end{split}$$

Hence by Corollary 3. 3, $(u', w', 0) \in \mathcal{D}_o$ if and only if $u + v + w + \sqrt{-1}e \in D_o$. Since for any $(u', w') \in \mathcal{U}_c \times \mathcal{W}_+$ there exist unique $u \in (\mathfrak{r}_0^{-2})_c$ $(=\mathcal{U}_c)$, $v \in (\mathfrak{r}_s^{-2})_c$ and $w \in \mathfrak{r}^{-1}$ satisfying (4.12), we get $h_o(\mathcal{D}_o) = \tilde{\delta}h(D_o)$. Clearly $D = G^sD_o$ and $\mathcal{D} = \widetilde{G}^s\mathcal{D}_o$. Hence $h_o(\mathcal{D}) = G^sh_o(\mathcal{D}_o) = G^s\tilde{\delta}h(D_o) = \tilde{\delta}h(G^sD_o) = \tilde{\delta}h(D)$. q.e.d.

- **4.5.** Since $D \cong \mathcal{D}$ by Theorem 4.7, every $g \in \operatorname{Aut}(D)$ corresponds to a holomorphic transformation \tilde{g} of \mathcal{D} . Then for $g \in G$ and $p \in \mathcal{D}$, the equality; $h_o(\tilde{g}(p)) = gh_o(p)$ holds, because the mappings h and $\tilde{\delta}$ are compatible with the action of G.
- **Lemma 4.7.** Let T be the connected subgroup of G corresponding to the subalgebra $t = c + r_0^0$. Then for each $t \in T$, \tilde{t} is a quasilinear transformation.

Proof. Let
$$(u, w, z) \in \mathcal{D}$$
. Then

 $t \cdot \exp u \cdot \exp w \cdot \exp z \equiv \exp(Ad t u) \cdot \exp(Ad t w) \cdot \exp z \pmod{B_{\varrho}}$.

Since $Ad\ t \circ j_o = j_o \circ Ad\ t$, we know $Ad\ t\ w \in \mathcal{W}_+$. Clearly $Ad\ t\ u \in \mathcal{U}_c$. Therefore \tilde{t} is a quasi-linear transformation of \mathcal{D} .

Next we consider the action of the connected subgroup of G corresponding to the subalgebra $\mathcal{U}+\mathcal{W}$. It is easy to see that this group coincides with $\exp \mathcal{U} \cdot \exp \mathcal{W}$.

Lemma 4.9. Let $f = \exp a \cdot \exp b$ $(a \in \mathcal{U}, b \in \mathcal{W})$, and let $\tilde{f}(u, w, z) = (u', w', z')$. Then

$$\begin{cases} z' = z \\ w' = w + b_{+} - zb_{-} \\ u' = u + a + \frac{1}{2}[b, w] + \frac{1}{2}[b_{-}, b_{+} + w] - \frac{1}{2}[b_{-}, zb_{-}]. \end{cases}$$

$$lar, \ \tilde{f} \ is \ a \ parallel \ transformation \ in \ Pyatetski$$

In particular, \tilde{f} is a parallel transformation in Pyatetski-Shapiro's sence ([5]).

Proof. By using (4.11), one has

 $f \cdot \exp u \cdot \exp w \cdot \exp z$

$$= \exp(a+u) \cdot \exp(b+w) \cdot \exp(\frac{1}{2}[b, w] \cdot \exp z$$

$$= \exp(a+u+\frac{1}{2}[b, w]) \cdot \exp(b_{+}+w) \cdot \exp b_{-} \cdot \exp(\frac{1}{2}[b_{-}, b_{+}+w] \cdot \exp z$$

$$= \exp(a+u+\frac{1}{2}[b, w] + \frac{1}{2}[b_{-}, b_{+}+w]) \cdot \exp(b_{+}+w) \cdot \exp b_{-} \cdot \exp z$$

Since $\exp b_- \cdot \exp z = \exp z \cdot \exp(b_- - zb_-) = \exp z \cdot \exp(-zb_-) \cdot \exp \frac{1}{2} \lceil zb \rceil$

Since $\exp b_- \cdot \exp z = \exp z \cdot \exp(b_- - zb_-) = \exp z \cdot \exp(-zb_-) \cdot \exp \frac{1}{2} [zb_-, b_-] \pmod{B_0}$, we get

$$f \cdot \exp u \cdot \exp z$$

$$= \exp(a + u + \frac{1}{2}[b, w] + \frac{1}{2}[b_{-}, b_{+} + w] - \frac{1}{2}[b_{-}, zb_{-}])$$

$$\cdot \exp(b + w - zb_{-}) \cdot \exp z \pmod{B_{o}}.$$
 q.e.d.

4.6. Define a Subgroup GL(D) of Aut(D) by

$$GL(D) = \{ f \in GL(R_c + W); f(D) = D \}.$$

Then $\operatorname{Aut}(D) = G \cdot GL(D)$ ([2] or [3]) and the Lie algebra of GL(D) is $\mathfrak{g}^0([2])$. By virtue of Lemma 4.5, Lemma 4.8 and Lemma 4.9, each element of G corresponds to a quasi-linear transformation of \mathcal{D} . Therefore it remains to investigate the action of GL(D) on \mathcal{D} .

For any $g \in GL(D)$, let us denote by $\tau(g)$ the isomorphism of G_c given by

$$\tau(g) a = Ad(g) a Ad(g)^{-1} \quad (a \in G_c).$$

Then $\tau(g)B=B$ and hence $\tau(g)$ induces an automorphism (denoted by

the same letter $\tau(g)$) of G_c/B . From the definition of Tanaka's imbedding, we have

$$h(g(p)) = \tau(g)h(p).$$

We now put $\mathfrak{F}'=Adg\mathfrak{F}$. Then \mathfrak{F}' is also a semi-simple graded subalgebra of $\mathfrak{g}(D)$ satisfying (1.3). Hence there exists X in \mathfrak{g}^0 such that $Ad(\exp X)\mathfrak{F}'=\mathfrak{F}([4])$. Put $g'=\exp X\cdot g$. Clearly $g'\in GL(D)$ and $Adg'\mathfrak{F}=\mathfrak{F}$. It follows $Adg'V_{\mathfrak{F}}=V_{\mathfrak{F}}$ and hence there exists $Y_{\mathfrak{I}},\ldots,X_{\mathfrak{m}}\in\mathfrak{F}^0$ such that $Ad(\exp X_{\mathfrak{I}}\cdots\exp Y_{\mathfrak{m}})Adg'e=e$. Let $g''=\exp Y_{\mathfrak{I}}\cdots\exp Y_{\mathfrak{m}}\cdot g'$. Then g'' is an element of GL(D) having the following properties:

a)
$$Ad g'' \mathfrak{S}^{\lambda} = \mathfrak{S}^{\lambda}$$
 and $Ad g'' e = e$.

Moreover it is not difficult to show the equality;

b)
$$Adg''E_s = E_s$$
.

By using a) and b), we can see

c)
$$Ad g''e^* = e^*$$
.

From a), b) and c), we know that the spaces $\mathfrak{p}_+, \mathfrak{p}_-, \mathcal{U}, \mathcal{W}_+$ and \mathcal{W}_- are stable under $Ad\ g''$. Furthermore $\tau(g'')B_o=B_o$ and hence $\tau(g'')$ induces an autsmorphism of G_c/B_o , which is denoted by the same letter $\tau(g'')$. Obviously $\tau(g'')\circ\tilde{\delta}=\tilde{\delta}\circ\tau(g'')$. As a consequence we get for any $p\in D$,

$$\tilde{\delta}h(g''(p)) = \tilde{\delta} \circ \tau(g'') \cdot h(p) = \tau(g'') \tilde{\delta}h(p).$$

Hence for any $(u, z, w) \in \mathcal{D}$,

$$h_o(\tilde{g}''(u, z, w)) = \pi_o \tau(g'') (\exp u \cdot \exp w \cdot \exp z)$$
$$= \pi_o \exp(Ad g''u) \cdot \exp(Ad g''w) \cdot \exp(Ad g''z).$$

This equality leads us to say that \tilde{g}'' (and therefore \tilde{g}) is a quasi-linear transformation of \mathcal{D} . Thus we have proved the following.

Theorem 4.10. In the realization of D as \mathfrak{D} , each element of Aut(D) corresponds to a quasi-linear transformation and each element of $\exp \mathfrak{A}$ exp \mathfrak{A} induces a parallel transformation of \mathfrak{D} .

Remark 2. It is not difficult to see that when the domain D is homogeneous, our realization coincides with one given in Corollary 2, II-37 in Takeuchi [8].

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- S. Kaneyuki, Homogeneous bounded domains and Siegel domains, Lecture Notes in Math. 241, Springer-Verlag, Berlin (1971).
- [2] W. Kaup, Y. Matsushima and T. Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math., 92 (1970) 475-498.
- [3] K. Nakajima, On Tanaka's imbeddings of Siegel domains, J. Math. Kyoto Univ., 14 (1974) 533-548.
- [4] K. Nakajima, Symmetric spaces associated with Siegel domains, J. Math. Kyoto Univ., 15 (1975) 303-349.
- [5] I. I. Pyatetski-Shapiro, Géométrie des domains classiques et théorie des functions automorphes, Dunod, Paris (1966).
- [6] I. Satake, Realization of symmetric domains as Siegel domains of the third kind, Lecture Notes at Univ. of California (1972).
- [7] I. Satake, Infinitesimal automorphisms of symmetric Siegel domains, (to apear).
- [8] M. Takeuchi, Homogeneous Siegel domains, Pub. Study Group Geometry, No. 7, Tokyo (1973).
- [9] N. Tanaka, On the equivalence problems associated with a certain class of homogeneous spaces, J. Math. Soc. Japan, 17 (1965) 103-139.
- [10] N. Tanaka, On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970) 180-212.
- [11] J. Vey, Sur la division des domains de Siegel, Ann. Sci. École Norm. Sup., 4 Série, 3 (1971) 479-506.
- [12] È. B. Vinberg, Theory of homogeneous convex cones, Trans. Moscow Math. Soc., (1963) 340-403.
- [13] J. Wolf and A. Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965) 899-939.