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Introduction

We mean by a classical infinite Lie algebra one of the following
Lie algebras which arise from primitive infinite Lie tansformation
groups:

(I) the Lie algebra of all vector fields,

(IT) the Lie algebra of vector fields of divergence zero,

(III) the Lie algebra of vector fields of constant divergence,

(IV) the Lie algebra of vector fields preserving a hamiltonian
structure (the hamiltonian Lie algebra),

(V) the Lie algebra of vector fields preserving a hamiltonian
structure up to constant factors,

(VI) the Lie algebra of vector fields preserving a contact structure
(the contact Lie algebra).

Though we have not clalified the category to which vector fields
belong, specifying it, we may speak of formal or global classical infinite
Lie algebras. More precisely, formal algebras are those algebras con-
sisting of formal (i.e. formal power series) vector fields, and global
algebras are those algebras consisting of vector fields which are defined
globally on certain differentiable manifolds.

In this paper we shall determine completely the derivation algebras
of the classical infinite Lie algebras, both formally and globally.

The first cohomology group H'(L, L) of a Lie algebra L with
adjoint representation is ipso facto the derivation algebra D(L) of L

factored by the ideal of D(L) consisting of inner derivations.



2 Tohru Morimoto

Therefore the first cohomology groups of the classical infinite Lie
algebras will be determined at the same time.

The present paper is composed of two chapters.

Chapter I is devoted to the study of formal version. Let L, (n),
Ly (n), Ley(n), Ly, (2n), Ly,(2n) and L, (2n41) be the formal classi-
cal infinite Lie algebras corresponding to (I), (II), :-- (VI). We shall

prove the following

Theorem I. The derivation algebras D(L) of the formal
classical infinite Lie algebras L are as follows:

) D(Lu(n)) =Lu().

i) D(La(n)) =D(Lew(n)) = Loy (1).
). D(Lsy(21)) = D (Lesy (21)) = Loy, (21) .
iv) D(L.(2241)) =Ly (2n+1).

The formal classical infinite Lie algebras are defined purely alge-
braically, and our proof is algebraic and elementary only except that
we use some knowledge of the structures of those Lie algebras.

After preparing the manuscript, the author was informed that the
first cohomology groups of the formal classical infinite Lie algebras
had been determined by C. Freifeld [2].

Chapter II is devoted to the study of the global version. We shall
obtain the results parallel to those of Chapter . Denote by L, (M),
Lg(M,2), L.g(M,R2), LM o), LM o), L.,.(M,0), the global
classical infinite Lie algebras corresponding to (I), (II), --- (VI).

Then we shall prove

Theorem II. The derivation algebras D(.L) of the global

classical infinite Lie algebras L are as follows:
) D(Ly (M) = Ly (M),
i) D(Ly(M 2))=D(Lq(M2))=L.u(MQ),
i) D(Ley(M. 1) =D(Loy(M, ) = Loy (M, 0),
iv) D(L.(M0)) =L (M,O0).
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Since the global algebras are deeply related to the formal algebras,
the formal results in Chapter I give us a clear perspective and much
information to study the global version.

The principle of the proof of Theorem Il is very simple: Let _[
be a global classical infinite Lie algebra and « be a derivation of _[.
We show that « is a local operator and further that at any point p
it induces the derivation «, of the formal algebra of .L at p. By the
formal results we see that there exists a formal vector field &£, such
that a,(§,) =[&p, §,] for all formal vector fields &, of L at p. To
show that £, really defines a global smooth vector field on the manifold,
we are led to solve certain partial differential equation, the solvability
of which is assured by the formal integrability and the uniqueness of
the formal solution.

Recently F. Takens [7] has proved the reseult for L, (M) and
A. Abez, A. Lichnerowicz and A. Diaz-Miranda [1] and Y. Kanie [3]
for L,(M,w) and L,(M,»), but their proofs seem to be rather
complicated and use the case by case analysis depending on the peculiari-

ty of each structure concerned.

Chapter 1. Formal Version

1. Let %2 be the complex number field C or the real number field
R. The following Lie algebras are called (formal) classical infinite
Lie algebras over k:

(I) Ly (n): the Lie algebra of all formal (i.e. formal power series
with coefficients in %) vector fields in n-verialbes x', x%, --- z".

(II) Ly (n): the Lie algebra of formal vector fields in n-veriables
x', x% -+ x", preserving the volume form dx'Adz*A--- Adx".

(III) L.y (n): the Lie algebra of formal vector fields in #-vari-
ables x', 2%, -+ ", preserving the volume form dz'Adx*/\-- Adx" up
to constant factors.

(IV) Ly (2n): the Lie algebra of formal vector fields in 2#n-vari-
ables x!, 2%, --- 2*, preserving the symplectic form > 7_.dx'Adx'*".

(V) Lp(2n): the Lie algebra of formal vector fields in 2n-vari-
ables z!, 2%, .-+ 2™, preserving the symplectic form Y} 7_,dx' Adz'*" up
to coustant factors.

(VD)  L,(2n+1): the Lie algebra of formal vector fields in
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(2n+1)-variables x° x', -+ £, preserving the contact form
dx®+ 1 3 xldxtt — 2" dx' up to functional factors.
In this chapter we shall determine the derivation algebras of these

Lie algebras.

2. Here we recall briefly a few fundamental facts about the struc-
tures of the classical infinite Lie algebras. Details are refered to [4],
[5], and [6].

a) Let L be a classical infinite Lie algebra. L has the filtration
{L,}pez, defined as follows.

L,=L for p=<-1
L,={XeL| the value X, of X at the origin=0}
L={XeL,,|[X LICL,..} (p=1)

Specially for the contact Lie algebra L,(2n+1) we define another
filtration {L,} which is more convienient than usual one. Itis defined

inductively as follows:
L,=L for p<-2
L_,={XeL|KX, 0),=0, where 6=dz’+% > 2'dx**" —x**"dz'}.
L,={XeL|X,=0}
L={XeL,.|[X,L.]CL,-.} (»p=D)
This filtration is compatible with the usual one: We have

L,OL,,, and L,DL,,.,

Since we exclusively use the filtration {L,} for the contact Lie algebra,
we denote it by the same letter {L,} by abuse of language. The

filtrarion L, satisfies
(L,,LJCL,., forall p,geZ.

We topologize L by assigning {L,} as a system of fundamental
neighpourhoods of L. Then L is a topological Lie algebra and it is

separated and complete.

b) The graded Lie algebra ¢r(L) =3 ,cz0,(L), where g,(L)
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=L,/L,,,, satisfies the following conditions:

i) dimg,<oo for all p€Z and [g,, ;] Cqp:, for all p,geZ.

ii) There is a positive nteger x# such that ¢g_,0 and ¢,=0
forall g<—p (u=2 for L,(2n+1) and =1 for the other classical
infinite Lie algebras.)

iii) The subalgebra m=3],4@, is generated by g§-.

iv) For any »p=0, the condition that x,&¢, and [z, m]=0 im-
plies x,=0.

¢) Any classical infinite Lie algebra L is isomorphic to the com-
letion [],ez8,(L) of the graded Lie algebra 3,ez8,(L) of L.

Hereafter we identify L with the direct product [[,czg,(L) and
each g,(L) is considered to be imbedded in L.

d) The subalgebra g,(L) is reductive, and either g,(L) is simple
or (L) is a direct sum of a simple ideal §,(L) and 1-dimensional
center % (L).

If L=Ly(n), Ley(n), Ley(2n) or Lo(2n+1), 3 (L) contains a

unique element I such that
(1, x,] =px, for all z,eqg,(L).

e) Ly(n) (resp. L,,(27n)) is an ideal of L. (n) (resp. L¢,(2n))
and

Leg(n) = Lo (n) +kI

L.,(2n) =L,,(2n) +kI
f) The graded Lie algebra 3,c50,(L) is determined by its lower
subspaces {g,},<p, for some p,. If L=Ly(n) or L,,(2n), then for p=>1

g,(L) is identified with the prolongation g,-,(L)®, where g,-,(L)®
is the subspace of Hom(g-,, g,-;) consisteing of those T such that

[T(x),¥y]1=[T(y),x] for all xr,yeq-_,.

g) [L, LJ]=L,., for all p,¢g>0.
Moreover dim L/[L, L]<(1, equality holds if and only if L =L, (n) or
L., (2n).

3. From now on L always represents a classical infinite Lie alge-
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bra over R or C.
Proposition 1. Every derivation of L is continous.

Proof. Since L, constitutes a fundamental system of neighbourhoods
of the origin of L, it suffices to prove that for a derivation « of L
and for any integer » there exists an integer s such that a(L,)CL,.

Let 7' be an integer such that />0 and »'>>r+2, and put s=2".
Then by 2-g) we have Ly=[L,., L,.]. Since [« (L,.), L,.]C[L_,. L,.]
CL,, we see that a(L,)CL,. q.e.d.

A derivation « of L=][g,(L) is said to be of degree k if
a(g,(L)) Cg,v (L) for all PeZ.

We denote by L the Lie algebra containing L defined as follows:
Est(n) =L (n), 123,,(2;:) =L,,(2n), and L=L for the others.

Proposition 2. Let L be a cleassical infinite Lie algebra and
o be a derivation of degree 0. Then there exists an element u,

of 8 (L) such that a(x) =[u, x] for all z<L.

Proof. First assume that the ground field of L is the complex
number field C.

Let b, be the simple part of g,(=g,(L)). Since [g,, §o] =ho «
induces a derivation of f,. 0, being simple, there is v,€0, such that
a—adv,=0 on b,

Let 8 be the restriction of @ —ad v, to g-,, then

B([xo. x-1]) =[x, B(x-,)] for all o0, and T EQ-.

This implies that the map 8: g-,—@-; commutes with the representation
of By to g-;. Since g, is hoirreducible, we see from Schur’s lemma

that there exists a complex number A such that
B+2idy ,=0.

Put uy=v,+2I, where I is the element of g,(L) determined by [Z, x,]
=px, for all r,&q,(L). Then we have aw—ad#,=0 on g-, and b,
Since m=3,.q, is generated by g-,, « —ad#, vanishes on m, which,
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combined with the fact that &t —ad 2, is a derivation of degree 0 and 2-b)
implies that &« —ad #,=0 on g, forall p. Since the derivation o —ad , is
continuous, we see that a@=ad #,. Thus we have completed the proof
in the complex case.

In the real case we just note that « induces the derivation «° of
the complexification L° of L, and that L° is also classical infinite Lie
algebra over € of the same type as L. Thus we can find an element
u#y of L° such that a=ad u,. As easily seen, u, proves to be an element

of L, which proves our proposition.

Proposition 3. Let L be a classical infinite Lic algebra and
« be a derivation of degree k. If k20, then there exists an element
e of qu(L) such that a=adw,.

Proof. 1f L=L,(n), Le,(n), or L,(2n+1), the fact that I is
contained in L facilitates the proof.
Put u,=—Q/kB)a(l), and f=a—ad u,. Then g, (L) and §

is a derivation of degree k, moreover 3(I) =0. Hence we have

B(UL, z,]) =[1.8(xp)] for all z,Eq;,.

On the other hand B([I, x,]) =pB(x,) and [ B(x,)]=(@+k)B(x,),
from which it follows that 8(x,) =0 for all x,€¢,. By the continuity
of B we have =0, that is w=ad #%;, which proves Proposition 3 in
our case.

The rest of this section is devoted to the proof of Proposition 3
for the Lie algebras L, (n#) and L,,(2n).

Now we assume that L=Lg(n) or L,,(2n).

Lemma 1. Let «a be a derivation of L. 1f a vanishes on g,
for p<<0, then a=0.

Proof. By our assumption we have
(1) [a@(x), r]=0 for r,€q, z.,€g-.
(2) a([zy, 1,]) =[x, a(x;)] for x,€q,, 20E qo.

From (1) we see that «(x,) €g-, for all z,&¢q, and therefore the



8 Tohru Morimoto

restriction «|g, maps ¢, into g_,. (2) implies that g, commutes with
the representations of g, to ¢, and g-;. It is known that every g,, (»
=>—1) is geirreducible and that g, and g, are never isomorphic to each
other if p=2gq. Hence we have «]g,=0. By the same way, or by
using the fact that the Lie algebra generated by {g,},< is dense in

L, we have our conclusion.

Corollary. For k<—1, any derivations of L of degree k are
trivial.

Proof. Let a be a derivation of degree £ Since g,=0 for ¢<
—1, we have a(g,) =0 for p<<O0. Hence we have ¢« =0 by Lemma 1.

Lemma 2. Let « be a derivation of degree —1. Then there
exists a u_,€g_, such that a=adu_,.

Proof. Denote by «’ the restriction of & to @, The formula:
a’ ([x0, yo]) = [’ (x0), ¥o] + [x0. @' (31) ] for x, & Qo »

implies that a’ is closed, regarded as an element of C'(g,. g,), where
2 e=0C (8o, ;) is the complex associated to the representation of g, to
g-i. It is well known that the 1-st cohomology group H'(g,, g-,) van-
ishies for any semi-simple Lie algebra g,. Since g, is simple, this applies

to this case. Thus we can find a #_;€g_, such that
a’ (xo) = [#u-y, 2,] for all z,€go.

Put f=a—ad u_, then 8 vanishes on @, and also on g_;, for 8 is of
degree —1. From this and Lemma 1 it follows that a=ad u«_,.
q.e.d.

Lemma 3. Suppose that k>0 and that « be a derivation of
degree k. Then there exists a u, €Q. such that a=ad u,.

Proof. Let a be the restriction of & to g_,, then a’ is a map

from g_; to g.-; and satisfies

[a' (x_), vy ]+ [z, &’ (vy-)]=0 for x_, ¥y €9,
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which implies that @’ is an element of the prolongation g{>; of ge-;.
For the algebras L, (n) and L,,(2n), it holds that g{2,=g, for all
p=>1. Hence we can find u.€gq, such that a—adwu, vanishes on
g-i. It easily follows that a=ad u,. q.e.d.

Combining Corollary, Lemma 2 and Lemma 3, we have proved
Proposition 3 for L, (n) and L,,(2x), and the proof of Proposition 3

is complete.
4. Now we are in a position to prove our theorem.

Theorem. The derivation algebras D(L) of the classical in-
finite Lie algebras L over C or R are as follows:

) D(Ly(n)) =Lgu(n).
i) D(Lu(n))=DLen(n)) =Lea(n).
ii)  D(Ly(27)) =D(Leyp(27)) = Ly (21).
iv) D(Ly(2n+4+1)) =L,(2n+1).
Proof. We show that for any derivation « of L there exists one
and only one #€ L such that
a(x)=[u,x] for xL.

Denote by a,® the Hom(g,(L),g,+x(L))-component of a. The
continuous derivation @® of L determined by a®|g,=«,” is a deriva-
tion of L of degree 2. By Proposition 2 and Proposition 3 we can
find a ukegk(f/) for each % such that

a® (x) =[u,, x] for all xeL.

The direct product #=]],z, is an element of L. The continuity of &
assures that u satisfies the required property.

The uniqueness of u« follows from the obvious fact that the condi-
tion “uc L and [u, L]=0" implies 2=0, q.e.d.

The first cohomology group H'(L, L) of the Lie algebra L with

adjoint representation is immeadiately from the definition seen to be the
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derivation algebra D(L) factored by the ideal of D(L) consisting of
inner derivations.

Thus we have the following

Corollary. Let L be the classical infinite Lie algebra over k,
where k=C or R, and H'(L,L) be the 1-st cohomology group of
L with adjoint representation. Then we have

1) H(L,L)=0if L=L,(n), Ly (n), Le,(2n) or L,(2n+1).
i) H(L,LYy=Fkif L=Ly(n) or L,(2n).

Chapter II.  Global Version

1. In this chapter we consider a global version of the results in
Chapter I. Throughout this chapter manifolds are assumed to be
connected, paracompact, and of class C>, and vector fields, forms and
functions on them are all assumed to be of class C* and defined globally
on them even if it is not stated explicitely.

Our objects are the following Lie algebras which we call (global)
classical infinite Lie algebras:

(D The Lie algebra L, (M) of all smooth vector fields on a
smooth manifold M.

Suppose that it is given a volume form £ on M.

(L)  L,(M,2) is the Lie algebra consisting of smooth vector
fields X on M satisfying Lyf2=0, where Ly denotes the Lie derivative
along X.

(III) L., (M, w) is the Lie algebra consisting of smooth vector
fields X on M satisfying Li2=cf, where ¢ is some constant depending
on X.

Suppose that (M, ) is a symplectic manifold of dimension 2z, that
is, there is given a closed 2-form w on A with a)/\co/r{-t-‘-n?e;\u)#o every-
where.

(IV)  L,,(M, ) is the Lie algebra consisting of smooth vector
fields X on M satisfying L yw=0.

(V)  L.p(M,0) is the Lie algebra consisting of smooth vector

fields X on M satisfving Lyw=cw, where ¢ is some constant depending
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on X.
If (M,0) is a (2n+1)-dimensional contact manifold, that is, there
n-times
is given a l-form with OAdOA -+ Adf0 everywhere.
(VI) _L.,(M, 0) is the Lie algebra consisting of smooth vector

fields X on Af satisfying Lyl =pf, where p is some function depending
on X.
Hereafter L, (M), L, (M, 2), -+, L., (M,0) are often abbriviated
as Ly (M), Ly(M), -, Lo(M), or more simply as Ly, Ly, =+, Le-
For an open set U of M, L, (U), L, (U), -, L(U) always mean
La(U), La(U,21U), -, L(U,01U).

2. We begin with introducing some general properties of the glob-

al classical infinite Lie algebras.

Proposition 1. There are canonical isomorphisms between

1) Lg(M,2) and the space of closed (n—1)-forms on M.
where n=dim M.

) L,(M,w) and the space of closed 1-forms on M,

i) L.(M, 0) and the space of smooth functions on M.

Proof. The isomorphisms are given by
1) XX 12 for Xe L,(M, 2).
i) X->X_Jo for Xe L,,(M, ).
i) X—-X_10 for Xe L,(M,0),

where X_| denotes the interior product by X. Non-degeneracy of the

forms assures that the maps are isomorphisms.

Proposition 2. L, (M. 2) (reep. .L,,(M,0)) is an ideal of
Loy (M, 2) (resp. L,(M,0)) of codimension 1 if 2 (resp. ) is
exact. If it is not exact, L(M, Q) (resp. L.,(M.0)) coincides
with L, (M, 82) (resp. .L.,(M,0)).

Remark. By this reason, hereafter we always assume that 2
(resp. w) is exact whenever we speak of L, (M, 2) (resp. L., (M,
U))).
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Proof. Since L, is the kernel of the Lie homomorphism which
maps X€ Lo to cx€ R, where Ly2=cyR2, L, is an ideal of L. of
condimension at most 1.

If there exists an X& L., with cy>x0, then £ is exact, because
R=cy 'Ly2=d(cy ' X_12).

Conversely suppose that 2 is exact, say 2=d®2’. Let X, be the
vector field determined by X, 12=%2’. Then we have Ly £2=9£, which
shows that L./ L =R.

The assertion for L., can be proved quite analogously.

q.e.d.

Let us introduce filtrations of the global calssical infinite Lie alge-
bras which connect the global algebras with the corresponding formal
algebras.

Let L represents one of the classical infinite Lie algebras. For
any point p of M, a filtration {.L,},ez of L is defined as follows:

Ly ={Xe L]7*(X) =0} for k=0
Lr=L for k<1,

where 7,°(X) denotes the k-th jet of X at p.
Specially for the contact Lie algebra .L,(M,0) we use another
filtration, which we denote by the same letter {L,}. It is defined

inductively as follows:
Lrf=L for k<-2
l.fp—’: (Xe L(X, 65, =0)
L= {Xe L]X,=0}
Lr={Xe L}[X L, JC L " for k=1.
The filtration {.L,*} of L satisfies
LFDLF for all keZ.
l[.f;, LT LA for all kleZ

Let j,(.L) be the projective limit lim,.L/.L,* and denote by j, the
canonical projection from .L to j,(L). j,(L) inherits a Lie algebra
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structure and a filtration {j,(.L,*)}«ecz, which make it a topological Lie
algebra called the formal algebra of of L at p.

Proposition 3. The formal algebra of a global classical in-
finite Lie algebra at any point is isomorphic to the corresponding
Sformal classical infinite Lie algebra.

Here we agree that the corresponding formal classical infinite Lie
algebras of L, Ly, -, L, are respectively L,, Ly, -+, L,..

It is a well-known fact that for each of a volume form £, a
sympletic form , and a contact form 0, there exists a coordiante neigh-
bourhood and a coordinate system such that it is expressed in the follow-

ing form:

R=dz' Ndz*/\--- N\dzx",

dxi/\dxi n

<
Il
™-

]

T

" i

0=dz"+1} 3 2'det " —2'dx
i=1

We mean by _L-coordinate system a coordinate system by which the
defining form of _L has the above standard representation. _[-coordi-
nate neighbourhood is a coordinate neighbourhood on which an (-
coordinate system is defined.

Proposition 3 follows from the existence of _L-coordinate systems

and from Proposition 4, which will be proved in the next section.

3. From now on we use the following convention.

L always represents a global classical infinite Lie algebra. We
denote by L oand 1 respectively the ideal of .L and the Lie algebra
containing [ defined as follows: .Em=.f.l, .f;,,,=.f.p, and L=1
otherwise, and .f,l =L, .f,p=.,fc,p and L= L otherwise. To exhibit
the base space we often write as L (M), .E(U), etc.

First of all observe that any local vector field of L can be extend-

ed globally. More precisely,

Proposion 4. Let L (M) be as above, and U be an open subset
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of M. For any X L(U) and for anv p€U. there exists an
Xe L(M) such that X=X in a neighpourhood of p. Moreover
if Xe L(U), then X can be taken so as to satisfy supp XCU.

Proof. Say Xe L, (U). Let ¢ be the isomorphism from L to
the space of closed (n—1)-form. Since ¢(X) is closed, there exists
an (n—2)-form 7 on M such that d7=¢(X) on some neighbourhood of
p and supp7CU. X=¢ '(dp) satisfies the desired properties.

Let Xe L., (U, 2]y). Recall that in this case we always assume
£ to be exact. (See Remark after Prop. 2). Thus there exists X,
€ Lg(M) such that Ly 2=82. Since X—cyXp€ L, (U) where Lyx2
=@, there exists X such that X=X in a neighbourhood of p

Proof for the other cases is quite similar. q.e.d.

Proposition 5. For any X& L, the condition that [X, .E] =0
implies X=0.

Proof. This follows from Proposition 4 and the corresponding fact

on the formal algebra of _[.

Proposition 6. Any derivation « of L is a local operator,
that is, if a vector field X of L wvanishes on sonie open set U of
M, then a(X) also vanishes on U.

Proof. Suppose that Y& .,Z'(M) and supp YCU. Then we have
[X,Y]=0 and then «a[X, Y]=0. On the othe hand
a([X, YD) =[a(X), Y]+ [X a(Y)].

Since [X, a(Y)]|y=0, we have [a(X). Y]|y=0. From this fact,
taking accout of Proposition 4 and Proposition 5 we see that a(X) =0
on U. q.e.d.

By Proposition 4 and Proposition 6 we have

Proposition 7. Let « be a derivation of L(M). Then for
any open set U of M, « induces the derivation a, of .L(U) such that
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(X ) =a(X)]|y for all Xe L(M).

4. In this section we show that derivations of £ induce the deri-
vations of the formal algebra of L. In order to prove it we establish

the following local properties of _[.

Proposition 8. Let L be a global classical infinite Lie algebra
and U be a contractible L-coordinate neighbourhood. Let {.L*(U),}
be the filtration of L(U) at p€U. Then for any integer r there

exists an integer s such that

LHU),CLLU) . L7(U),].

We see easily that for k=1 L&, (U),=.L5(U), and L%, (U),
=_L{,(U),. Hence it is sufficient to prove this proposition only for
Ly, La, L and Lo The proof for L, is not difficult and the
proof for .L,,(U) is almost covered by that for .,fu Therefore we
omit the proof for L, and L,,

Proof of Proposition 8. (for the contact algebra L)

Let (x,, Xy =+*, X, ¥, =" ¥y 2) be coordinate system on U with
0=dz+4> . 1xidy; —yidx;. We may assume that p is the origin 0 of
the coordinates. :

Denote by & the ring of all smooth functions on U, and let ¢
be the canonical isomorphism of L onto & (See Proposition 1.). ¢
induces a Lie algebra structure on ¥, of which bracket operation is
called generalized Poisson bracket and will be denoted by { , }.

Then it has the following coordinate representation:

01 = = ()‘xi 6yg 6yl ox: 6z f

where

To introduce a filtration of &F, we define ord(f) for any fe&F.
For a monomial x%*2’, where a= (&), 3=(B8 - B, and z*

=1, - 1,% ete, ord(x"y*2") is defined as
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ord (x*y®2") =|a|+ Bl +27 -2

where |a|=Y7,a;, |8 =271:B8:. For any function f€F, ord(f) is
defined to be the minimum of orders of non-zero monomials which
apper in the Taylor expansion of f around O.

Then we define a filtration {F*} of & by,

Fr={feFlord(f)=Fk} for ke Z.

This is the filtration which corresponds to that of _L, namely we
see that ¢(.L,*) =F"*
Hence we can reformulate the proposition in the following dual

from.

Lemma 1. For any integer r there exists an integer s such

that F C{F", 47}

Proof. We may assume that 7>>0. Let s be an integer satisfying

(1) s=>2(n+1)r+2(2n+5).
Any f€%* can be written as

2) f= 3 Y2 fop,, where fop, €.
lal+18]+2r—228
Hence it suffices to show that each £%y*2’f, where |a|+|B] +27r—2>s5,
is included in {7, F"}.
From (1) we see that one of {---c;:-+f3;:-:}, is not less than »+2,
or y=>r-+6.
In the first case we may without loss of generality that a,=>7+ 2.

We consider a following equation with # unknown.
3) {2, up =x"y’2f,
which reduces by a simple calculation to

0 1 0

+ — _>u:xla,—r—lx2a, xnanyﬁzrf"

ay] 2 az

) (+2

A solution ¢ of (4) with ¢(0) =0 can be obtained by integration.
Thus %27 f={x,"*% g} and ord(x,""®) =7 and
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ord(g) =|a|— (r+1) + |8 +2r+1-2

=>s—r

\%

r

In the latter case where y=>r+6. Let 4 be an integer such that
1(r+2)+1>1=1(r+2). Now we consider a following differential

equa tion for u:
%) {=%, 2%u} =x"y’2f

By a simple calculation the equation (5) reduces to

(6) A i +yi— )tz —=zh,

e PARE =

where we put h=x%’2""*f. Differential equation (6) 1is easily in-
tegrated, in fact, we see that

1
) g= j h(trxy, -z, - try,, - t2) 2dt
0
is a solution of (6). Hence we have
xayﬁz7:f= {zzl’ zZlg}
and we see easily that ord(z®) =4A—2>r. and that

ord(2"g) =|ar| + 18] +27—44

=>s—(44—2)
=>s—r—4.
=>r.

Thus proof of the lemma is complete.

Proof of Proposition 8 (for L,).

Let (x,, x,, -+, x,) be a coordinate system on U such that £ =dx,
Ndzx,/\ - Ndx, and p is the origin 0O of the coordinates. We denote
by L the Lie algebra _L,(U). Let C*' and A"* be respectively
the space of closed (2—1)-forms and the space of (7—2)-forms on U,
and let ¢ be the isomorphism of C*! onto L as in Proposition 1.

Since U is a contractible domain, we can define a homotopy integral
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operator K from C*™' to A% such that d-K=1ids-. and further that
7o (Ka) =0 if j* " (a) =0,
for aeC*! and £=>0.
Set # =god and b=Kogp™ ', then we have

#ob=id,
§t(=#(&))eLS " if E€4™ and j,*(£) =0
WX =0 if Xe Ly, where X*'=5(X).

Hence to obtain the proposition it is sufficient to prove the follow-

ing lemma.

Lemma 2. For any integer r there exists an integer s such
that the following holds: Any 0%, with 6 A** and j,*(0) =0, can

be written as
ot = # ot
l:%i‘te[gl 771 ]

Sfor some &, 9,€ A" with j (&) =7, (m) =0.

Proof. Any 0"7% is written as

0= 2 fuyby.
<)

A A\
where 0y=(—1)""""dx, \--- Ndzx;/\--- Ndzx;/\--- Ndzx,. If j,f(0) =0,
then j,’' (fiy) =0 for all 4,7, and fi; is written as

fr‘j: Z x° s
la|=3+1

where o= (a,, -+, &) and x*=x,%x,% - 2,%".
Thus it suffices to prove that (z%f0;;)#, where |a| =s+1, is written
in a form [&#, 7*] with j,"(§) =4, (1) =0, provied s is large enough.

Take s so as to satisfy
s=max(n(r+1) —1, 2r—1),
then we see that for some %, a,=>r-+1.

Case 1. k3xi and k%)
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Let ! be an integer such that 1<{/<<s# and /=ck. For simplicity we
assume that k<I. Put é=ux,""'0,, and 7=¢g0;, where g is given by
z, x“f
Zyy ) =— | TS g,
g (xy, x3, *** Zn) J; r+ 1Dz i
By a simple calculation we see that
#
(6%, 7*] = <_ (r+1x” a—g 0«1) .
axl
Hence we have [&# 7*] = (x%f0;)*. Itis easy to see that j," (§)=4"(7)
=0.
Case 2. k=1 or j.
Observe that the following formula holds,

[@0p*. (h0)*]=— (g, Ay uli) ¥,

where {¢./h}y is the Poisson bracket of g and 2 with respect to x;, x;,
that is,

{0, by, =09 Ok Ok 09

iy o o

0x; 0x; Ox; 0x;

In the same way as the proof for the contact algebra (or better
for the hamiltonian algebra) we can find ¢, A such that

- {g. h}gj:xaf

and jy" (9) =4 (h) =0.
We have completed the proof of Proposition 8.

From Proposition 8, taking account of the structures of the formal

algebras, we have the following more detailed result.

Proposition 9. Let [ be a global classical Lie algebra, U be
a simply connected L -coordinate neighbourhood of a point p. Then
it hold that

(LU, LTU),) =L (U), for all r,s>0,

and further that
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[LU), £U)]=LWOU),
Now we can prove the following

Proposition 10. Let a be a derivation of L. Then for any
point p there is induced a unique continuous derivation «, of the
formal algebra j,( L) of L at p such that the following diagram
commutes:

«
L — L
S
Jp (I) '_)]p(—[:)

Proof. It is sufficient to show that for any L7, there exists s

such that a(L,)CL,”. This follows from Proposition 8 and Proposi-

tion 4.

5. Let L(M) be a global classical infinite Lie algebra on M
and « be a derivation of _L (M).
The following equation (E) for unknown vector field Z,

(E) [Z, X]=a(X) for all Xe L (M),

has a unique formal solution at any point, that is, for any point pe M

there exists a unique formal vector field {, at p such that

[vajp(X)] =j,(a(X)) for all Xe L(M).

In fact, Let «, be the continuous derivation of j,(.L) induced from
«a, we see, by Proposition 3 and the theorem in Chapter I, that there

exists a unique &, satisfying

[vajp(X)]:ap(jp(X)) fOI‘ all XE ,C(]\[),

Since a,(J,(X)) =j,(a (X)), we have our assertion.

Now we prove that (E) has a smooth global solution. By virtue
of the uniqueness of the formal solution of (E), it suffices to prove it
locally.

Let U be an _L-coordinate neighbourhood of M, and consider the
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following equation (Ey) for unknown vector field Z on U,
(Ey) [Z, X]=au(X) for all Xe L(U),

where ay is the derivation of .L(U) induced from «

Since X runs in the infinite dimensional space L (U), we introduce
an appropriate finite dimensional subalgebra 4 of _L(U) and reduce
(Ey) to a differential equation (E’y).

Let (&, x,, -+, x,) be an [-coordinate system of U. J is defined
to be the subspace of L (U) consisting of those vector fields X=> 7,
P;(0/0x;) such that each P; is a polynomials in z,, x,, --+, &, of at
most degree 1. Then 4 is a finite dimensional subalgebra of _L(U),

and we see easily that

1) 7o (I +7, (L)) =5,(LU))  for any peU.

Lemma 3. Let Z be a local vector field around p and assume
that for some integer k=1 j*'[Z, X] =0 for all X< Y{, then j,*(Z)
=0.

This lemma follows from (1) and the corresponding facts on the
formal algebra of _[, and we omit the proof.

Now we consider the following equation for Z,
(E'v) [Z. X]=ay(X) for all Xe X,

which is an inhomogeneous partial differential equation of 1-st order.

Proposition 11. The differential equation (Ey') has a unique
smooth solution, and the solution Z satisfies (E,) and Ze L (U).

Proof. First of all we note that (E,’) has a formal solution at
any point of U, and further we see by Lemma 3 that the formal solution
is unique. From these facts we can conclude that (E,’) has a smooth
solution.

We now see it more precisely. Let T be tangent bundle of U
and 7'(T) be the 1-st jet bundle of . Hom (Y, T) is a vector bundle
over U, 9 being regarded as the trivial bundle over U.

The differential equation (E,") comes from the following differential
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operator:

¢ J(T)—>Hom (4, T),
where ¢ is the bundle map defined by

b, (7, 2) (X) =[Z. X],, Xe4.

From Lemma 3 we have immediately

Lemma 4. ¢,: J'(T),»Hom (X, T), is injective for all p.

For the given derivation @, we define a cross-section & of Hom (4, T")

by &,(X) =a(X), for p€U and Xe .

Lemma 5. Ther erxists a smooth cross-section ¢ of J'(T) such
that ¢oo=2a.

Since (E;’) has a unique formal solution, such ¢ exists. The

smoothness of ¢ is ensured by Lemma 4.

Let 7, be the projection of J'(T) to T, and put Z=mo0d. We
claim that Z is a solution of (Ey’). This will follow immediately if
we see that j'(Z) =0, and it is equivalent to say that j'0 € J*(T"), where
J*(T) is regarded as the subbundle of J'(J'(T)). Let &, be the formal
solution of (E,’) at p, and £ be the projection of {, to J,(T). It
will not be difficult to see that &’=j,'0. Hence j'o€J*(T) and we
see that Z is a solution of (E,").

It is clear from the above argument that Z is uniquely determined
and that Z satisfies (Ey). The fact that Z& L (U) follows from the
theorem in Chapter I. This completes the proof of Proposition 11,

By Proposition 11 we see that there is one and only one smooth
vector field Z on M which satisfies (E). Moreover we see that Z

e (M.

Thus we have the following theorem.

Theorem. The derivation algebras D(.L) of the global clas-
sical infinite Lie algebras L are as follows:
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) D=L if L=Ly(M), Lo(M.O), Ley(M, 2), or
Loy (M, ).
i) D(La(M, 2)=Lw(M, 2).
iil) D(Lp (M, 0)) =Ly (M, o).

As a corollary of the theorem we have

Corollary, Let L be a global classical infinite Lie algebra,
then the 1-st cohomology group H' (L, L) of L with adjoint re-

presentation 1s as follows:
1) H(Iv -E) :O lf ,EZ_Evl(Z\J),I”(M,H)..fc;L(M,Q), or
Leap(M, 0).

R if 2 is exact
11) Hl(-ESl(M’AQ)a vEsl(Myg))z
0 if 2 is not exact.

R if v is exact
i) H'(L,(M,w0), LM, 0))=

0 if o is not exact.
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Added in Proof.

The same result of the theorem in Chapter II has been obtained by other
authors: Prof. A. Lichnerowicz let me know that he had determined the 1-st cohomology
groups also for contact and unimodular cases in J. Math. pure et appl, 53 (1974),
459-484, and Ann. Inst. Fourier, Grenoble 24, 3 (1974), 219-266. Recently Y. Kanie
has extended his result [3] of hamiltonian case to contact and unimodular cases in
Publ. RIMS, Kyoto Univ. 11 (1975), 213-245. Compared with their proofs depending
on case by case analysis, our proof seems to be more systematic and simple.



