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§1. Introduction and Preliminary

In the paper [9] the author discussed the explosion problem of
branching stable processes in connection with the problem of uniqueness
and non-uniqueness of solutions for a class of non-linear integral equa-
tions (the S-equations of branching stable processes). The present
paper is an extension of [9], and is devoted to strengthening of the
conditions for explosion. First we shall give two sufficient conditions
for explosion for a class of branching Lévy processes (Propositions |
and 2 of §2). Then we shall apply the conditions to branching stable
processes and branching Poisson processes, and explicitly distinguish
explosion case from non-explosion case (Theorems 1 and 2 of §3,
and Theorem 3 of §4). Finally we shall prove two comparison theo-
rems for explosion of branching Lévy processes, and give some applica-
tion of them (Theorems 4 and 5 of §5).

1. Let X=(W, X,, P,, xeR) be a Lévy process on the real line R,
that is, a standard Markov process on R, homogeneous in space and
time and characterized by the representation

E(exp (iEX))=exp {t¥(O)} 1,

1) We denote Py(-) and Ey(-) related to a Lévy process by P(-) and E(-), respectively.
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Y(&) =i - 5 02¢?

ity_l,___ iiy >

+SR\(0)<8 I+y? (),

where £eR, yand o are real constants, and n(-) is the Lévy measure.

The function ¥(&) is called the Fourier exponent of the Lévy process.
We call a Lévy process the stable process of indices {a, B} when-

ever its Fourier exponent is of the form

W)= — |é|“<l —ip sgnétan-’%“-)

if ae(0,1)U(1,2) and —-1<f<I,
or

YE)=—|& if a=1 and f=0.

We call a Lévy process with Y(&)=—(1/2)¢%? the Brownian process
and a Lévy process with P(¢)=e'¢—1 the Poisson process.

2. Let {p,;2<n<oo} be a probability sequence, that is, p,>0 and
0

p,=1, and define a stochastic kernel n(x, dy) on RxR by
2

n=

(]) 7[(X, dy)="§2 Pn 6(:: ..... x)(dy)a

———
n

where R= \U R" is the topological sum of product spaces of R
0<n<

with R°={9} and R®={4}. Let k(x) be a locally bounded non-negative
measurable function on R.

Consider (X, k, m)-branching Markov process on the state space
R?». We call the process ((X, k, n)-) branching Lévy process and
denote it by X=(2, X,, P,; xeR). The Lévy process X, the function
k(x) and the stochastic kernel n are called base (Lévy) process, killing
rate and branching law of X, respectively. We call a branching Lévy

process branching stable process of indices {«, B} whenever the base

2) Notations and terminologies on branching Markov processes are found in [3] and

[91.



Branching Lévy processes 243

process is the stable process of indices {a, f}. We call it branching
Poisson process (branching Brownian process) whenever the base process
is the Poisson process (resp. Brownian process).

Branching Lévy process is a standard Markov process, and the
points 0 and A4 are traps of it. @ represents the state that no Lévy
particles exist (extinction), and 4 represents the state that infinitely
many Lévy particles exist (explosion). Let e, be the explosion time
of a branching Lévy process, that is, e,=inf{t; X,=4}3. Following
[9] a branching Lévy process is said to be non-explosive if P(e;<o0)
=0 for xeR, explosive if P(es<o0)>0 for xeR, and explosive with
probability one if P(e,<x)=1 for xeR.

3. Let {p,;2<n<oo} be the probability sequence in the previous
subsection, and set

(2) F(x; u)= ,i pat(x)"
and
3) G(x;u)=1—F(x; 1—u), xeR

for ueBY(R)%. Consider the non-linear integral equation which is
derived from the S-equation (of initial date 1) of (X, k, m)-branching
Lévy process;

“ { u(t, x)=S;Ex<exp {—SZk(X,)dr}k(Xs)G(Xs: u,_s))ds 5)
o<u(t, x)<1, (t, x) € [0, c0) X R.

It is easy to see that (4) always has the trivial solution u=0. More-
over from [3; III, §4.3] or [9], we have

Proposition 0. The maximal solution i of (4) is given by u(t,
x)=PJe,<t). Hence we obtain for the equation (4) the following

3) The infimum of an empty set is taken to be co.

4) For a measurable space S, Bi(S)={f; measurable function on S with 0<f<1},
where u<v denotes u(x)<uv(x) for all x&S.

5) u(t, -)=u, by convention.
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assertion:

() If X is non-explosive, then the uniqueness of solutions holds
that is, i(t, x)=0 for (t, x)e[0, o) x R.

(i) If X is explosive, then the non-uniqueness of solutions holds,
that is, u(t, x)>0 for (t, x)€(0, ©)xR. Moreover if X is explosive
with probability one, then 'lirg u(t, x)=1 for xeR.

’

Acknowledgement. The author wishes to express his hearty thanks
to Professor K. Sato for his valuable advices and encouragements.

§2. Sufficient conditions for explosion

1. In §§2, 3 and 4 we restrict our consideration to branching Lévy
processes which, with the branching law n(x, dy)=0, . (dy), satisfy the
following conditions:

(X-1) The base Lévy process X satisfies P( sup X,=o0)=1.
0<r<®

(X-2) The killing rate k(x) satisfies lim k(x)= co.

Remark 1. A necessary and sufficient condition for Lévy processes
to satisfy the condition (X-1) is found in Rogozin [6], where he
proved that all stable processes except those of indices {a, —1} with
O<a<1 satisfy (X-1). The Brownian process and the Poisson process
also satisfy (X-1).

For each real valued function f on R,f is a function on R de-
fined by

1 if x=0
f(x); fx)fixy) if x=(x4,..., x,)ER", I<n<o
0 if x=4.

Following [9], let us define for ye R, Markov times j, and j» for X,
and j, and j» for X by
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jy=inf{t: X,>y}, jr=inf{t: X,<y},
Jy=inf{t: I _ 5 ,(X)=0}©,
jr=inf{t: I, »(X)=0},
where I is the indicator function of a set E. Let Z(t, w) (>0, 0 e Q)

be the number of particles at ¢, that is, Z(t, w)=n if X(w)eR", 0<n
<oo. The next lemma will play essential roles in later discussion.

Lemma 1. (i) Let x and y be reals with x<y, then P, (e4=00,
Jjy=00)=0.
(i) P(Z(j,)/ 0 as y/w)=1.

Comments for the proof. The first part (i) is obtained from
[9; Lemma (1] and (X-1). The second. part (ii) is obtained from
(X-1), (X-2) and the conservativity of the base process.

The next corollary is a direct consequence of Lemma I.

Corollary 1. For each real x, Px(ylifgjy=e4)=1.
Consider the following sequences‘ of numbers:
(8-1) h,>0(n>1) satisfying %h,,:oo, and H,,="él h,,,
(8-2) 1,=0(n>1) satisfying [,/H,—0 as n—> 0,
(§-3) t,>0 (n>1) satisfying %t,,<oo,

(S-4) positive integer N, (n>1) satisfying N,— 00 as n— 0.

For a positive integer b, set k,= inf = k(y) and set
y=H,=bl,

I= Z(le)b—lp(inf Xt< —111)7)
n <ty

(N )b—l Soo _
1= LAY LA xxNad
; Nn' kntne *

6) Lemma 11 of [9] is not correct if 7, is defined as [9; p. 45]. In order to make
the lemma correct we should modify the definition of j, and jv as given here,
7) Xa, denotes the sum of @, taken over all sufficiently large ».
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= ZSM{P(SUP X,<bl,+h,, )} ¥"dr.
nJo st

Then we have

Proposition 1. If the sequences in (S-1)-(S-4) and positive integer
b can be chosen so that I, Il and IIl are finite, then the branching
Lévy process is explosive with probability one.

In order to give another sufficient condition for explosion, set
k,= inf  k(y) and for a positive integer b set
y=>Hu—1,

V=S {P(infX,<—1)+ !

RS * —xybN, b
<ty + (an)!gk:ﬂue .x dx}

V=5 "(Psup X, <1, Dy )},
n 0 s<t
Then we have

Proposition 2. [f the sequences in (S-1)-(S-4) and positive integer
b can be chosen so that IV and V are finite, then the branching
Lévy process is explosive with probability one.

Remark 2. When X is a branching stable process of indices
{o, B}, then I and 1l can be expressed in the following form by the
space-time transformation of stable processes:

I=Y P(inf X,<—t;1/2])

n <1

dx

xett

HI=Y a(bl,+h,, 1)“S:{P(sup X, <x)} N
n <1
IV and V also can be expressed in a similar way.

2. Let us prove Proposition 1. First we fix an weQ with Z(0, w)>1
and e (w)=o00, and give some definitions (for simplicity, symbol w
will be omitted often).

Let @ bc a mapping fromI \J R, to R defined by ®(x)=max {x,

Sn<wo

o X,y for x=(xy,..,x,)eR". Define random variables j, (w) and
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Yu(w) (n>1) by
(l) j(")=j“u’ -yn:d)(X(j(u)))'

Consider the branch of w starting from y, at j,, and after shifting
the time scale by j,, denote it by @,w. Define

i,=t, Ainf{t: [X(@,w)]; <y,—[,} *,

where [X,(-)], denotes the first coordinate of the vector X, (:). Let
z, be the number of occurrences of splitting of [X,(O,w)], in the time
interval [0,i,]. For k>1, let j,, and y,, be the time and place,
respectively, of the k-th splitting of [X(O,w)];. Denote by O,,w
the branch of ©,w starting from y,, at j,, with the time scale shifted
by j.. For the branch @,,w, define

in,k = 'n A il]f {’ . [Xt( @n.kw)]l < yn,k - ln} .

Let z,, be the number of occurrences of splitting of [X(O,,w)],
in the time interval [0,i,,]. For k,=(k,, k), ki, k=1, let j, .,
and y,,, bc the time and place, respectively, of the k,-th splitting of
[X(O,,,w)];. Denote by O,,,w the branch of O,, w starting from
Vuk, At Jui, With the time scale shifted by j, ,,.

Repeating similar procedurcs b times, we can define random vari-

ables i,4 . Zy ko Yukn., and the branch @,, o (I<m<b-1,k,
=(ky,.-.., k,,) and ky,..., k,>1). For the branch 0, , w, define

jn,kb=inf{t: i(—OO.H,,+|](X1(@n,kbw))=0} .
Finally, setting
Fo=min{j, 0, ky=(ky,..., kp), 1<k <zp+ 1, 1<k, <z, +1,
e 1<Ky <z gy, + 17,
then we have

(2) j(n+ l)_j(n)< btu +j—n'

Next we prove two lemmas, which are important in the proof of

8) aAb=min{a, b}.
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Proposition 1.

Lemma 2. [If the sequences in (S-1)-(S-4) and positive integer
b can be chosen so that 1 and Il are finite, then there exists a random
variable n taking finite values and satisfying the following property
a.s. (P) on {e,=o0}: If n>n and 1<ky,..., k,_y<N,, then

Z,,>N,,, zn,k|>Nm"'7zn.(k1 ..... kp,-1)>Nn'

Proof. First of all we give several definitions. {Q(1); t>0} is a
Poisson process with Q(0)=0, independent of X and X: (p(t)=gtk(Xs)ds
and D, ,={Q(¢(j*~'"At,))<N,}. Consider a sequence of evel(l)ts Ano
={e,=, z,<N,}, n=1. Let us estimate P(A4,,), using the strong
Markov property and the branching property of X (see [3:; 1 §1.2.]).

(3) PX(A".O) < E-t(j(") < €4t PYII(D"sy)ly:)’n)

Nll
< sup PD,,)= sup E\( 3 exp{=¢(""'" A1)}

y=Hy,
2]

x (U7 ALyl m) =7 sup E |

ne y=»Hp

e"‘xN"dx>.
‘I’(.I.y-,"'/\’n)

In the first inequality of (3) we employed the fact: j,,<e, a.s. (Py)
on {e,=o} for n>1, which is a consequence of Lemma 1, (i). In
the last equality we employed the next identity

4) i emadt = 1 Swe“"‘x"dx
m=0 . m! n! ), '
Set k,,= inf k(y)(>k,). Since the last member in (3) is not
y2H,—1In

greater than

P(jI"<t,) +-N,,_!

=}
e *xNndx,
kn,1tn

the finiteness of [ and Il gives X P(A4,0)<c. Now let us apply the
Borel-Cantelli lemma to {4, ], tl:en we obtain the following assertion:
There exists a random variable n, taking finite values such that, a.s,
(P, on {ey=o0}, z,>N, for nzn,.
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Let n, be an arbitrary fixed positive integer, and consider events
B, =B ={es=0}n{z,>N, for all n>n;} and A,,=B;n{z,,<N,
for some k=1,...,N,}, n>n,. Let us estimate PJA4,,) in a similar
way as we did in (3).

N”
(5) Px(An,l) < kzl Px(Bl n {zn,k < Nn}) < Nu >l§lupl Py(Dn,y) .
= y n~in
Set k,,= inf k(y)(>k,). Since the last member in (5) is not
y>H,—21,

greater than

N, P(j~I"<t,) +

}G:"!— Si 2l”e"‘x’v"dx,

the finiteness of I and Il gives Y P(A,,)<c. Again applying the
Borel-Cantelli lemma to {A4,,}, we "obtain the assertion: There exists
a random variable n, taking finite values (n,>n; and n, may depend
on the choice of n,) such that, a.s. (P,) on By, z,,>N, for all n, k
such that n>n, and 1| <k<N,.

Repeating similar procedures b—1 times and setting B, ;=
Bio—timirms -1y =Bio-2310mp - N {Znkrroy-y> Ny for all n, k such that
n=n,_, and 1<k,...,k,_,<N,} for an arbitrary fixed integer n,_,
with n,_,>n,_, (=:-->n,), then from the finiteness of I and II we
obtain the assertion: There exists a random variable n, taking finite
values (n,>n,_, and n, may depend on the choice of n,,...,n,_y),
such that, a.s. (P,) on B,_, z, 4. .o-n>N, for all n, k..., k,_,
such that n>n, and 1<k,,..., ky-; <N,

Finally, setting  Byn,,...n00=Btinyono-1) N {Zmhrroen- >Ny for all
n, ky,..., ky_, such that n>n, and 1<ky,..., k,.;<N,} for an arbitrary
fixed integer n, with n,>n,_, and summarizing the above results, we
have ’

@ s
Px({eA= w}\ Ul B(l;m)):Px(B(l;n,)\ U B(Z;nl.n;))
ny= na=n,

a0
=I,x(B(b—1;111,....m,_|)\ \V B(b;nl....,n,,))=0
1

np=np-
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(I<n;<ny<--<n), from which we conclude

Px({ed = CXJ}\ . V) B(b;lu,...,lu,j):O‘

N =iy

This completes the proof.

Let C,, n>1, be a sequence of events defined by C,={e,=o0}
N{z,>Np 2y, >Nuwo ooy Zokyoboon >N, for all k..., k,_, such that
1<ky..., ky- <N,}. It follows from Lemma 2 that

(6) Px({L)A= w}\ v ;i/\ Cln)=0'

n=1
Lemma 3. For each positive integer m,

(7) E,\( N Cn: ; (j(n+l)_j(n)))<b Z tn+

n=m n=m

i Sw {P(Sup Xs< b1n+ hn+ 1 )}(N")hdf.
St

n=mJ0
Proof. First using the inequality (2), we have

(8) the left hand side of (7)
< i EX(C": bt"+.7")<b i ’Il+ i EX(("": ﬁl)'

In order to estimate E(C,:J,), set {,=inf{r: Q(p(t))=n}, where Q(r)
and () are given in the proof of Lemma 2, x,=X({,) and D(n, y)
={0(e(j*~'*))>N,}. Then by the strong Markov property and the
branching property of X, we have

(9) Ex(vcn:7::)<Ex(j1u)<e4: SD Py“(dW) X

(n,yn)
Nn S p d ) ﬁ
Y( Wy )
ky1=1JD(n,xi(w)) Fher () ! kp-1=1JD(n,xky-1 wky-3))

-] "o
P‘x"h‘l(w"b—Z'(d“”‘bq)So ...SO min {t,,: k, =v(/¢ freenrky),
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: 9)
1<k 1 9""kb < Nn} l<kl’.l:lkb<NnR\'kb(Wkl,_1)(Jy+hn+ 1 Edtkb)l)’:y:-)

) Nan
=E.(jm<es :S Py, (dw) kI_=[| SD(rl,xul(w))kal(W)(dwk1)

D(nyyn)

Nn

kp-1=1 SD( "’x"1—1(“"‘0—2))kao—1("”‘u—z)(dw"u-1)
b-1=

©
> .
SO l<k|,-l~:[ku<N,.1 x"'b(“'kb—x)(-]l”*"wl >1) |y=y"dt)'

Now, using [9; Lemma 11], we have
ka,,( Wul,_,’(JyHr,,H>t)|y=y..<kah(Wk,,_l’(Jy*"'nH>t)ly=yn

< PYu"bllz(~iy+”:x+ 1 > t)|y=y,, = P(jbln‘*'/’ru 1 > t)

for w,,_, in the last expression of (9). Hence the last member of (9)
does not exceed Sw{P(j,,,“H,"H>1)}(""”’dt. This, combined with (8)
0

and (9), gives the inequality (7)

Proof of Proposition 1. Choose the sequences in (S-1)-(S-4) and
and positive integer b so that I, Il and III are finite. By Corollary
1,

;(j(,,Jrl,—j(,,)):oo a.s. () on {ey=o0}.

Suppose that P(e,=00)>0 for some xe€R, then P({ej=c0}nN R C,)
>0 for some m by (6). Hence we have

© o
Ex(,Q" Cn: ngm(j(lw 1nH— j(n))) =0,

which contradicts the finiteness of [II. This proves P/e,=w)=0
for all xe R, completing the proof.

3. Let us prove Proposition 2. First of all we introduce some nota-
tions. For a Markov time T of X, 0, is the mapping from € into
itself such that X(07.,0)=X, 1 (w) for all t>0. For an weQ

9) guﬂwm(dw):lzxw;f(w».
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consider a subgroup of the branching Lévy particles that exist at 1=0.
When we denote the history of the subgroup for (>0 by o' (eQ),
let us denote the history of the complementary subgroup by w\w’ (€ Q).

Now we give some definitions related to an weQ with Z(0, w)>1
and ey (w)=oc0 as we did in the previous subsection. Let j (), y,(w)
and O,w (n>1) be those defined in the previous subsection. For arbi-
trary fixed positive integers b and m, B,={e,;= 0, Z(j,)=>b}. For
weB, and n>m, let us define j,,, i,, and z,, by induction of k
=1,2,...,b.

0, ,0w=0,0, O, 0=0; .00, o,
O,4+10=0,0, 0, O, 0=0; o 00, 0\O,; ®
(I1<k<b-1).
Jnai=jm and joo i =juxF i (1<k<b-—1), where
Foe=inf{t: I _ o 4 (X(O, @))=0}.

yn,l =Vu and Ynk+1= (D(X(j;y,k» @;1,kw)) (l < l‘< b— 1) For 1 < k Qb, de-
fine

in,k = tn A inf{t: [Xt(@n,kw)]l < yu,k_ [n} .

Let z,, be the number of occurrences of splitting of [X/(O,,»)],
in the time interval [0, i,,].

Following two lemmas will play similar role in the proof of Propo-

sition 2 as Lemmas 2 and 3 did in the proof of Proposition 1.

Lemma 4. If the sequences in (S-1)-(S-4) and positive integer b
can be chosen so that IV are finite, then there exists a random vari-
able n' (=min{n: Z(j,,)>b}) taking finite values and satisfying the
following property a.s. (P,) on {e,=o0}: For each nz=n’', there exists
an integer k with 1<k<b for which z,,>bN, holds.

Proof. Lect D,, be the event defined in the proof of Lemma 2
(of course we should replace N, in the previous definition with bN,
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b
here). Consider a sequence of events A,,,,,,=B,,,n(kf\ {z,, <bN,}),
=1
n>m. Then by the strong Markov property and the branching proper-
ty of X (refer to the estimate (3) of Lemma 2),

P (A, m)<{sup P(D,,)}®
y>H,

1 © b
<{P(j""<t,,) + S e"‘x"”"dx} ,

(an)! k’nt,,
where k,= inf k(y). Therefore if IV is finite, then % P(A4,,) <®.

Hence the yB>oHr'é—l-lbantelli lemma implies that the assertior: of Lemma 4
is valid if we replace the phrase ‘“‘on {e,=o0}” in it with ‘“‘on B,”.
Moreover, since P ({e,=0}\ C} B,)=0 because of Lemma 1, (ii),
it follows that Lemma 4 is vali5=iln itself. This completes the proof.

Now set Z,,.,,,=B,,,n(\_l_,/{z,,'k>bN,,}) for n>m. It follows from
Lemma 4 that =

(10) P{es=o}\ U N 4,,)=0.
For we A,,, (n>m) define
ko=ko(n, w)=min {k: 1<k<b with z,,>bN,}.

Consider the first bN, branches split off from [X(O,, w)], in the
time interval [0, i,,,] and classify them into b groups as follows:
From the first split branch to the N,-th one to the first group G,,
from the (N,+1)-th one to the 2N,-th one to the second group G,,...,
and from the ((b—I1)N,+1)-th one to the bN,th one to the b-th
group G,. We note that each group G, (1<k<b) consists of just N,
branches of 0,,,w. Let j, 1 (1<k<b) be a random variable defined
by
Jinkosy=min{jgu, , (0): @ €G,}.
Then by the definitions given in this subsection, we have

(11) jn+l,b_jn,bgtn-}-max{j(n.ko,k): lgkgb}

b —
<t"+kzl"("'k°'k) on A,,.
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Using the inequality (11), we have

Lemma 5. For each positive integer m,

(12) F Q A_n me ; (Jn+l,b—jn,b))

0 0
<Sn+02 % S°°{P(sup Xy <yt hyy ) Ndr,
n=m n=m JO s<t

Proof of Lemma 5 is similar to that of Lemma 3 and we omit
the detail here.

Now we are at the final step of proof of Proposition 2. It is
similar to that of Proposition 1, and we obtain Proposition 2.

§3. Explosion of branching stable processes

In order to simplify the situation, we make the following additional
assumption on branching stable processes to be considered in this
section.

(X-3) The killing rate k(x) is bounded for x<0.

Main results of this section are the following two theorems.

Theorem 1. Consider a branching stable process of indices {a,
B} with a€(0, 1)U(1,2), —1<B<1 or indices {l, 0}.
(i) Let the killing rate be such that k(x)=<x?1% as x—oo. Then for
any constant y>0, the process is explosive with probability one.
(ii) Let the killing rate be such that k(x)=<logx as x—oo, then the
process is non-explosive.

Theorem 2. Consider a branching stable process of indices {a,
—1} with l<a<?2, and let the killing rate be such that k(x)=<x?
as x—o0. Then the process is explosive with probability one or non-
explosive according as the constant y>af(a—1) or y<af(a—1), respec-
tively.

10) f(x)=<g(x) as xac®0<ﬁTr3[f(x)/g(-V)}<@_T{/'(x)/g(X)}<w.
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1. Proof of the case of explosion in Theorems 1 and 2

First we choose the sequences of numbers in (S-1)-(5-4) as fol-
lows;

(1) h,=1,=n® t,=n"" and N,=[n]'V
where 8, ¢ and v are constants satisfying the condition;
) 6>—1, u>1 and v>0.

Let M,=supX, and M_=inf X,. Recalling Remark 2, we see that
<1

<1

I, I1I and III of Proposition | are

(3)  I=3(n"])""'P(M_< —nb*uiz)

4) H<sY{([r))e 1 [n] '}S: var - e = xIdy 12)

xa+l

©) I”Sszn““gw{P(M+<x)}ln"1" dx
n 0
and IV and V of Proposition 2 are

6) IV {P(M_ < —no*uiay 4+ {1/(b[n']) z}g e-*xblndx}b

a0
Canv(s+1)-n

@) V5C4Zn“"8:{P(M+<x)}[""l dx

9
" xa+l

where b is a positive integer, and C; (1<i<4) are positive constants.
Next we list the conditions for the above quantities to be finite.

Lemma 6. (i) Let the indices be either {a, B} with ae(0, 1)U
(1,2), —1<B<!l or {1,0}. Then I is finite if ad+u—(b—1)v>1.
(ii) Let the indices be {a, 1} with 1<a<2. Then I is finite if od
+u>0.

Lemma 7. II is finite if y(0+1)—pu>v.

11) [a] is the greatest integer not exceeding a.

12) For two positive quantities 4 and B, we write 4<B whenever the following two
conditions hold:
(i) A<LB. (ii) A< oo if and only if B<oo.
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Lemma 8. Let the indices be either {oa, B} with ae(0, 1)U(1, 2),
—1<B<1 or {1,0}. Then 11l is finite if ad—bv< —1,

Lemma 9. Let the indices be {a, —1} with |<a<2. Then IV
is finite if both b(ad+p)>1 and y(6+1)—u>v hold.

Lemma 10. Let the indices be {a, —1} with |<a<2. Then V
is finite if ad< —1.
Proof of Lemmas 6 to 10 follows from Lemmas 11 and 12 below.
[eo]
0

Define ¥(x)=P(M, <x) and J(n)=S Y(x)x-*~dx, then we have

Lemma 11. (i) Let the indices be either {o, 8} with ae(0, 1)U
(1,2), —1<B<1 or {1,0}, then J(n)<n~' as n— 0.
(ii) Let the indices be {a, —1} with |<a<2, then J(n)=<(logn)!'~*
as n—oo.

Proof. For O<e<k, put
®  Jo={" + e S =+ e+ 1500,

Let us estimate Jy(n) (i=1,2,3). For J,(n), because of [I; Theorem
3a], we have

J,(n)QS: (aV,.’c"‘f')"v)—‘fhcI =(d,e**)"[{ae*(pn—1)},

where p=P(X,>0), and ¢ is chosen sufficiently small so that d,e*°
<l.
For J,(n), put g=y(x), then 0<y(x)<g<1 for e<x<k. Hence

Jy(n)<a (e *—Kk"%)g".

Estimation of Jj(n) for the case (i). Because of [1; Theorem 4a],
we have for some choice of a positive constant d,

J3(n) <S:°(1 — dyx—o)" xffl
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“ —ayn dX =1
orz\ (1—d,x *)"——7+ )=n as n— 00,
x X

Hence it follows that Jy(n)=<n~"' as n— 0.
Estimation of J,(n) for the case (ii). Because of [l; Proposition
3b], we have for some choice of positive constants d5y and dg

(0" >gm{l —dsexp(—d,x")}" :l)fl >

=(£:|_ a—ISK' —(n+1)y d,V
a (ds) 0 ¢ (Il—e ){logd;—log(l—e?)}*

where n=af(a—1), y=—log{l —dyexp(—d,xm)} and «'=—log{l—
dyexp(—d,km)}. Since 1/{(1—e7){logd;—log(l—e™?)}*} ~I/{y(—logy)*}
(y—»0+) and since (—logy) is a slowly varying function at 0, we
have from the Abelian Theorem [2], the last member of (9)=(logn)!~=
as n—oo!3, Hence it follows that J;(n)=<(logn)'"* as n—oo.

Finally applying these estimates for Jyn)(i=1,2,3) to (8), we
complete the proof.

Lemma 12. (i) Let C be a constant with C>1, then for every
positive integer n large enough and for r=Cn,

[o2)
%!Sr e *x"dx<C, exp(—C;n),
where C, and C, are positive constants given by C,=C/{\/7r—(C—l)}

and C,=C—logC—1.
(i) Let C be a constant with 0<C<|, then
n!

1 (* _
—\ e *x"dx — 1 as n— oO(r —> ™)
r

under r<Chn.

13) flx)~g(x) as x—»c@lirg{f(x)/g(x)}=l~
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Proof. (i) When C>1 and r>Cn, it is easy to see that

max (e ¥/Cx")=e "/Cy". Therefore for r>=Cn,
r<x

[e] 0
S e“"x"dx — SU e—( 1-1 /C)x(e-.r/(‘xn)d'\.
r r
i C
ge—r/(?rng e_"_‘/C’-"d,\'z___ e T,
, C—1

Now applying the Stirling’s formula n!~./2nn"*!/2¢" (n—>0), then
for every positive integer n large enough, we have
1

g __._ ® =Xy __C_ np—r+n,—1/2
(10) n!g,e xdx<\/E(C_l)(r/n) e "thn

=C,exp{(logr—logn+1)n—r—(1/2)logn}.
Now put r=C'n (C'>C), then

(11) the exponent of the last member of (10)
=—(C'—=logC'—n—(1/2)logn
<—(C-logC—-1)n=—-C,n.

In the inequality of (11) we used the fact; f(C)=C—logC—1 is a
strictly increasing function for C>1, so that f(C')>f(C)=C,> f(1)=0
for C’>C>1. By (10) and (11), we have proved (i).
(ii) Note that

l ? —Xxh = 3 _’_r_m_z =

-n—!—gre xdx—mzzzoe p P(Q,<n)=P(Q,[r<n|r),
where {Q,: r>0} is a Poisson process with Q,=0. And the law of
large number implies that P(Q,/r<n/r)>P(Q,/r<1/C)>1 as r—o0
(n— ) under n/r>1/C>1. Thus we have proved (ii).

Comments for the proof of Lemmas 6 to 10. Since Lemmas 6 to
10 are direct consequences of Lemmas I1, 12 and [I; Proposition
3b, Theorem 4a], we will not give detailed proof, instead, we state a
few comments. Lemma 6, (i) (Lemma 6, (ii)) is proved if we apply
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[1; Theorem 4a] (resp. [1; Proposition 3b]) to the right hand side of
(3). In the application we remark that P(me <-—-x)= P(sup( X))
>x) and that (—X,) is a stable process of mdlces {0, — B} whenever
X, is that of indices {a, f}: Lemma 7 (Lemma 8) is proved if we
apply Lemma 12, (i) (resp. Lemma 11, (i)) to the right hand side of
(4) (resp. (5)): Lemma 9 (Lemma 10) is proved if we apply [I; Theo-
rem 4a] and Lemma 12, (i) (resp. Lemma II, (ii)) to the right hand
side of (6) (resp. (7)).

Proof of Theorem 1, (i). The proof is based on Proposition I,
and it takes following form on account of Lemmas 6, 7 and 8.
(i-1) Let the indices be either {a, B} with ae(0, )U(I,2), —1<f<I
or {1,0}. If we can find 4, & and v in (1) and (2), and positive integer
b satisfying a set of inequalities

ab+pu—(b—1y>1, YO+ 1)—u>v,
(12)
ad—bv< —1,

then the process is explosive with probability one. (12) has a solution
if y>0.

(i-2) Let the indices be {a, 1} with O<a<! or {a, I} with |<a<?2,
then the set of inequalities on 4, u and v in (1) and (2), and positive
integer b are

(13) YO+ 1)—pu>v, ad—bv< — 1
or
(14) ab+u>0, po0+1)—pu>v, ad—bv<—1,

respectively. Both (13) and (14) have solutions if y>0. That establishes
Theorem 1, (i).

Proof of Theorem 2 (the case of explosion). The proof is based
on Proposition 2, and it takes following form on account of Lemmas
9 and 10. If we can find 6,4 and v in (1) and (2), and positive
integer b satisfying a set of inequalities
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(15) bad+p)>1, YO+ 1)—pu>v, ad<—1,

then the process is explosive with probability one. (15) has a solution
if y>af(a—1). That establishes Theorem 2 (the case of explosion).

2. Proof of the case of non-explosion in Theorems 1 and 2

A useful sufficient condition for non-explosion is given in [5;
§5.14.] or [9; Theorem 2], and we adopt it for the proof. Because
a similar discussion was precisely given in [9; Theorem 3], we give
only a few comments for it here. Note that by the Jensen’s inequality,
we have

(16) E(exp{S'Ok(Xs)ds})<+S:)E(exp (k(X)})ds

_ —H ; dsg‘j’wdam exp {k(»)},

where F(y)=P(X,<y). Let us apply on the last member of (16) the
asymptotic property of stable distribution function F(y) (s>0) for y— o0
(see Skorohod [10]). Then for each killing rate k(y) considered in
this subsection, we see that the last member is finite for some >0,
which establishes the result just desired.

§4. Explosion of branching Poisson processes

In this section we show that Proposition | is also valid to another
typical branching Lévy processes-branching Poisson processes, and the
results are as follows.

Theorem 3. Consider a branching Poisson process, and let the
killing rate be such that k(x)=x* as x—oo. Then the process is
explosive with probability one or non-explosive according as the con-
stant y>1 or y< |, respectively

Consider a semi-linear differential-difference equation of the form:
%—Z;(t, X)=ut, x+ 1) —ult, x)+x7u(t, x) (1 —ut, x))

(D
o<u(t, x)<1, u(0, x)=0, t>0, x=>0.



Branching Lévy processes 261

Corollary 2. For the equation (1), the uniqueness or non-unique-
ness of solutions holds according as the constant y<1 or y>1I, re-
spectively. Moreover in the case of non-uniqueness, for the maximal

solution u, lim u(r, x)=1 for x>0.

{ =0

Proof of Theorem 3. The case of explosion. First we choose the
sequences of numbers in (S-1)—(S-4) as follows:

h,=1=the height of a jump of a Poisson process,
(2) (and therefore H,=n), [,=0,

t,=n""and N, =[n"],
where u and v are constants satisfying
(3) u>1 and v>0.

Then I, Il and 111 of Proposition | are /=0 and

‘ < _[-l‘_—]b:_igx o~ XvInvid v
(4) 1< % ] C”n‘_“c xtridy,
(5) HI=3[n"]",

n

where b is a positive integer and C, is a positive constant. Here we
note that (5) follows from

g% {P(supX,< )}l")di= Sm {P(X, < 1)}n1de
0 s<t 0
= S:exp( — [n*]bt)de=[n"]".

Now applying Proposition 1 and Lemma 13, (i) in this case, we have
the following: If we can find u and v in (2) and (3). and positive
integer b satisfying

(6) y—u>v and bv>1,

then the process is explosive with probability one. (6) has a solution
il thc constant y>1, That cstablishes the result on explosion.
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The case of non-explosion. The proof is similar to that of non-
explosion for Theorems | and 2 given in 2 of §3. Hence we omit
the detail, instead, give a comment: When X is a Lévy process with
a Lévy measure of bounded support including a Poisson process, satis-
factory information on the asymptotic property of distribution function
F(y)=P(X;<y) (s>0) for y—>oco are found in [7].

Proof of Corollary 2. Consider the equation (1) in §1 of a branch-
ing Poisson process with k(x)=x? (x>0) and n(x, dy)=20,,(dy)

[ u(t, x)= g;E(cxp{ —SZQ"'(r)dr}QV(s)u(t—s, Q(s))

(7 x {2—u(t—s, Q(s))})ds

lO<u(r, x)<I, (1, x)e[0, o) %[0, ),

where (W, Q(1), P.; x>=0) is a Poisson process.

To prove the corollary, we only need to show the equivalence of
equations (1) and (7) because of 4 of §1. For the first step, let us
prove the equivalence of (1) and the following equation

l u(t, x)=g’ E(Q7(s)u(t—s, Q(sN {1 —u(t—s, Q(s))})ds
(8) v Jo

o<u(t, x)<1, (1, x)e[0, o0)x[0, o).

Differentiate on both sides of the equality (8) with respect to t, then
we obtain the equality (1). (Note that the infinitesimal operator
of a Poisson process is the following difference operator; J f(x)=
f(x+1)—f(x).) Moreover remark that bounded solution of the equation

Ju L i _
?t—-(t, X)=u(t, x+1)—ult, x)
u(0, x)=0, t>0, x=0

is only the trivial solution w=0. Thus we proved the first step. The
second step consists of proving the equivalence of equations (7) and (8).
A proof will be given by Lemma 14 in the next section (note also
Remark 3), so we omit it. Thus we proved the equivalence of equa-
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tions (1) and (7). This completes the proof.

§5. Comparison theorems for explosion

1. In this section we consider branching Lévy processes with the
general branching law given in §1, (1), and note also we need not
assume on them any of the conditions (X-1)-(X-3) in the previous

sections. Now let us state our main results.

Theorem 4. Let X;(i=1,2) be (X, k(x), n)-branching Lévy pro-

cesses, and suppose that k,(x)<k,(x) for xeR. Then

P << PR (el for (1, x)€[0, 0)x R,
and

PV <o)< PR (e'P <)  for xeR,

where P and € are probability measure and explosion time of
X;,

respectively.

Let X and Y be Lévy processes such that Y,=X,+Ct for (=0,
where C is a real constant. Let Y be (Y, k(x), n)-branching Lévy
process. Let X;(i=1,2) be (X, k(x), m)-branching Lévy processes,
where k{(x) are given by

(1) ki(x)= inf k(x—Ct and kyx)= sup k(x—Cr)
0=<t<T 0

<I<T

(T is a positive constant). Then we have

Theorem 5. (i) If X, is explosive, then so is Y.
(ii) If X, is non-explosive, then so is Y.

Let us state simple application of Theorems 4 and 5. Let {p,;
n>=2} be the probability sequence in the definition of the branching
law of X, and set F(&)= %‘, pE" (0<E<!). Then we have

n=2

Corollary 3. (Savits [8]). Let k(x) be the killing rate of a branch-
ing Lévy process X, and supposc
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(2) 0<k,= inf k(x)<<sup k(x)=k,<o0.
xeR x€eR

Then X is explosive (with probability one) if and only if
1
S (E—=F(&) 'dé< for some &>0.
1-¢

Let X be one of branching Lévy processes considered in Theorems
I, 2 and 3, and let (X, be the base process of X. Let Y be the
branching Lévy process with the base process (Y,=X,+Ct) (C is a real
constant) and with the same killing rate and branching law as those
of X. Then we have

Corollary 4. [f we see from [Theorem 1,2 or 3] that X s
explosive, then we conclude that 'Y is also explosive.

2. Proof of Theorems

(i) Let S be a measurable space, and for 0<T<oo let Sy be the

product space [0, T]xS. Let £ be a mapping from BY(Sy) into itself
which satisfies the conditions (Z-1)—~(Z-3):

(E-1) E0=0, ZI<I.
(E-2) (Monotonicity) u,veBi(Sy) and u<v, then Zu<ZEv.
(E-3) (Continuity) u,, ueBi(Sy) and wu,/u (u,\u),

then Zu,/Zu (resp. Zu,\Eu) '4.
Consider the following equation in BY(Sy)

3 u=_=2u.

Then from [4; §1] (3) always has the unique maximal solution i, and
moreover we have

Lemma 13. Let ve B(Sy) and v<Zv, then v<i.

For ue B{(R;) let us set

14)  w,,u (u \u)Duy (x) Su(x) (resp. u,(x)\u(x)) as n oo for each x&s.
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(4) (Eu)(t, x)= S;Ex(exp{ - S;k,-(t— r, Xr)dr} k(t—s, X,)
x G(X,; ut_s)>d5, (t, x)eRy,  i=1,2,

where kft, x) is a locally bounded non-negative measurable function on
Ry. It is easy to see that from the definition of G(x;u) in §1, each
mapping =; satisfies the conditions (E-1)~(Z-3).

Proposition 3. Let ii; (i=1,2) be the maximal solution of u==Zu
in BY(Ry). Suppose that k (1, x)<k,(t, x) for (1, x)e Ry, then (1, x)
<iiy(t, x) for (t, x)eRy.

Before the proof of Proposition 3, we show the next lemma.

Lemma 14. Suppose that k(t, x)<ky(t, x) for (&, x)eRy. If
u € BY(Ry) satisfies the equation

(5) u(t, x)=(Eu)(t, x)= S'O E,(exp{ — Sllcl('r -, X,)dr}
sk (f—s, X )G(X,; u,_s)>ds, (1, x)€ Ry,

then u also satisfies the equation

(6) u(t, ,\')=g' E <exp{— g; ky(t—r, X,)dr}{k,(t—s, X)xG(X; u,_y)

O RY
F(ky(t—s, X)—k,(1—s, Xs))u(t—s.Xs)})ds, (t, x)€ Ry
Proof. For simplicity we introduce the notations; @, s, t)=@(r,
s, 1 w)=gsk,~(t—q, X, (w)dg for O0<r<s<t<T, i=1, 2, ky(t, x)=ky(t, x)

—k,(1, x). Here we note that k,(f, x) is non-negative in Ry by the
assumption. Then

7 the right hand side of (6)

=S’ E(em02® 0k, (1 =5, X)G(X,; u,-))ds
0

t
+ SOE.\-(C‘_"'”O’S"’A'g(’—Sa XJu(t—s, X Nds=1,+1,,
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and then

I =S;Ex(€“”“°"‘"’/\‘1(l —s5. XJG(X,; u,_))ds

-I—S;Ex({e““‘o'-"”—c‘"’"o's"’}k,(t—s, X)G( X5 u,_y))ds
=1,+1,.
Substituting the equality (5) and using the Markov property, we have
12=S;dsg;_SdrEx(e"”l‘O-S'”I<3(!—s, X))
X Ey (et 0rt=ofe (t—s—r, X,)G(X,; u,—,-,)
=S;dsg;_sdrEx(cxp{—(pz(O, S, D+ (0, ry t—=5; 0w ks(t—s, X,)
xki(t—s—r, X0w)G(X(0w), u,_,_,)).

By the definition, ¢, (0, r, t—s; O0,w)=¢ (s, s+r.t:w) and ¢ (s, s+7r, 1)
=@ (0, s+r, )= 0, s, 1) so that we have

t et
[3.—_K d5\’ drE (exp {—¢,(0, s, )+ (0, s, D} ky(1—s, X))
Jo Jo
xemertOstn il (f—s—r, X0 )G Xghp i—g—,)

==S’ drE—r<S'ds{—- exp(— @10, 5, 1)+ ,(0, s, 1))}e P10
0 0

X ky(t—r, X)G(X,; u,_,)>=S;Ex({e“""o"'”
—em 0200 (t—r, X)G(X,: u,_,))dr.
Finally summing up the above results, we conclude
the right hand side of (6)=1,,+(I,,+1,)=u(t, x),

which completes the proof.

Remark 3. Suppose that g’Ex(k,-(t—s, X)ds<oo for 0<t<T and
0

XeR (i=1,2). Then wc casily see that Lemma 14 holds without the
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assumption “‘k,(t, x)<k,(1, x) for (t, x)e Ry™.

Remark 4. As the proof shows, Lemma 14 holds when X is a
standard process on a locally compact Hausdorfl space with countable
base. Proposition 3 and Theorem 4 also hold under the same condi-
tion on X.

Proof of Proposition 3. By Lemma (4
a1, x)=(=,i (1, x)=St Ex<exp{—gs ky(t—r, X,)dr}
0 0
x {ky(t—s, X)(G(X,; iy(t=s5, ) =il (1=s, X))
Fhy(1—s, X )it (t—s, Xs)}>ds

Since k,(t, x)<k,(t, x) for (1, x)eR,; and G(x;u)—u(x)=0, xeR for
ueBY(R) by the definition of G, we have u (1, x)<(Z,ii,)(t, x) for
(t, x)e Ry. Hence Lemma 13 implies @,(1, x)<iiy(1, x) for (t, x)e Ry,
which completes the proof.

(ii) Proof of Theorem 4. By Proposition 0, ¢f(t, x)=DP('"<1) is
the maximal solution of thc cquation

8) u(t, x)= S’O[ix<exp{ - SO k,.(x,)dr} k(X )G(X,; u,_s)>ds,

in B¥([0, c0)x R) (i=1,2). Because k,(x)<k,(x) for xe R (independent
of 1), we conclude by Proposition 3 that e (t, x)<e,(t, x) for (t, x)
€[0, 0)x R, which is just the first conclusion. Now, letting t—o
in the first conclusion, we obtain the second conclusion. This com-
pletes the proof.

In order to prove Theorem 5, we need the following lemma.

Lemma 15. Suppose that ue B(Ry) satisfies the equation

9) u(t, x)= S:)E.(exp{ - Ssok( Y,)dr} k(Y,)G(Y,; u,_s))ds,
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for (1, x)€ Ry, and set v(t, x)=u(t, x—Ct). Then v satisfies the equation

(10) ot x)=g’ Ex<exp{ - S (X, — C(t—m)dr k(X = C(1 = 5)) x
0 0 J

x G(X,; u,_s))ds
for (t, x)eRy.

Proof. By the spatial homogeneity of Lévy processes and the
relation Y,=X,+Ct for t=0, (9) is rewritten to

(L) ut, x)=gl E0<cxp{— gx k(x+ X, + (‘/')dr} k(x+ X+ Cy)
0 0
x G(x+ X,+Cs; u,_5)>ds

Applying the change of variables; t=1, x=y—Ct, and using the relation
Gla+b; u(-)=G(a; u(b++)), (11) is rewritten to

= o v X — (r—dr
(12) u(t, y Ct)—SOIJ(,(cxp] gol\(,\ +X,-C(t l))dl}
xk(y+ X,—C(t—=s))G(y+ X,; u(r—s, -—C(r—s)))ds.

Substituting v(t, y)=u(z, y—Ct), and again using the spatial homogeneity
of Lévy processes, (12) is just rewritten to (10). This completes the
proof.

Proof of Theorem 5. Let us prove only (ii) because we can prove
(i) quite similarly. Set eft, x)=P(e{'<r) (i=1,2) and ey (1, x)=
P (eY)<1), where PV and e’ (P'Y' and e€!') are probability measure
and explosion time of X; (resp. Y), respectively. Then by Proposition
0, e; (ey) is the maximal solution of the equation

u(t, x)=S;Ex<exp{—S:)k,‘(X,)dr}k,-(Xs)G(iXs; u,_s)>ds

<rcsp. u(t, x)= S;E,\(exp{— Slk( Y,)dr} k(Y x G(Y; u,_s)>cls>
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in B*(Ry). Setting (1, x)=ey(t, x—Ct) and applying Lemma 15, we
conclude that v is the maximal solution of the equation

u(t, x)= g;E,\(exp{ - S‘;k(x,—cu— r))dr}k(Xx—C(l —9)
x G(X,; u,_s)>ds

in BY(R;). Because k(x—Cr1)<k,(x) for (¢, x)e Ry by (1), we conclude
by Proposition 3 that e, (1, x—Ct)=u(t, x)<e,(t, x) for (t, x)e Ry. Since
X, is non-explosive, we have e,(1, x)=0 for (¢, x)e Ry, so that we have
ey(t, x)=0 for (t, x)e Ry. Finally by the Markov property of Y, we
conclude that ey(t, x)=0 for (1, x)e[0, 0)xR. Hence Y is non-
explosive.

3. Proof of Corollary 3. Let X, (i=1,2) be branching Lévy processes
with the same base process and branching law as those of X, and with
the killing rate k; (=positive constant in (2)). From [3; II, §3.5],
we see that X, and X, are explosive (with probability one) if and
only if S] (E—F(&) 'dé<oo for some ¢>0. Now applying Theorem 4
on X; amli_sX, we easily obtain the conclusion.

Proof of Corollary 4. We only remark that k,(x)= jn/f k(x—Ct)
=x? and k,(x)= sup k(x—Ct)=x¥ as x—oo when k(x);?’c:’(ras X— 00
for some positiveozafstant y. Then the rest of proof is obvious from
[Theorem 1, 2 or 3] and Theorem 5, so we omit the detail.
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