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Introduction

In  th is  article w e treat form al aspects o f zeros o f ideals o f  C. ' functions
including the case r = 0 .  Usually the zero of an ideal is defined to  be the in-
tersection of the zero sets of its functions. H ow ever there occurs a  difficulty
in treating the zeros o f ideals o f germs unless they are finitely generated. The
reason is that w e have no natural definition of the germ of intersection of an
infinite number of germs of sets (cf. [8 , ( s ) ] ) .  Thus, as the zero of an ideal of
germs, we introduce a  new  object i / a w hich m ay be expressed by an abusive
term  "filter o f  germ s o f  closed sets". M ainly we study lattice-theoretic pro-
perties of the correspondence o f  ideals and "filte rs" using  Tougeron's lemma
(3) and the results in  [8]. I n  the la s t th re e  sections w e  show miscellaneous
results related to cardinal numbers. Special regard is  pa id  for finitely generated
C s° rad icals since  they  seem s to  have zero sets of simple figures (cf. [7]).
It should be noted that Bochnak [2] has treated a related them e. See [14 ] also.

The author w ishes to express thanks to  P rofessors Adachi and Shiota for
helpful discussions.

(This article was given o u t  in  1974 a s  a  preprint (cited in  [13]: (12) o f  th e  present article).
But publication has been delayed for correction. This correction  needed another article [8].
[7] is originally a  development o f  this study.)

Moore families (cf. [8])

Let g  b e  a  Moore fam ily on a set S  i. e .  S' is  a  subfamily of the family
P(S ) o f  a ll subse ts o f  S  su c h  th a t S e  g  an d  n X e  f o r  a n y  {X}A, A

AEA
C =  C g :  P(S) -+ S denotes the associated closure operation; c (A )=  n  X .  We

xDA ,x .s
sa y  th a t X S  g e n e ra te s  Y e g  i f  Y = c (X ). I f  X e g' is generated  by one ele-
m ent it is called p rin c ip al. A  Moore family has a natural structure of a com-
plete lattice w ith  respect t o  the order o f inc lusion . Let a n d  T  b e  Moore
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families o n  S  a n d  T  respectively, 0: 3 --+ T  a  m ap a n d  in, n  b e  cardinal num-
bers greater than 1. W e  c a ll 0  a n  (in V , n A )-morphism (o r (in V , n A )-con-
tinuous) when

0( V X,t ) =  V  0 (X ) , 0 ( A  Y )=  A  0 (Y )
AEA AEA ttEM p eM

hold for a n y  {X ,},EA a n d  { Yp } p c m c 3; su c h  th a t ItA I f  0  i s  (m V ,
n A )-continuous for a n y  in ,  w e  c a l l  i t  (Vv, nA )-continuous, etc. (in V )-mor-
phisms a n d  (n A )-morphisms are defined similarly. I f  9: is a  map of sets
w ith M oore families, we can define th e  direct induced map g---44 and the
inverse one yo*: 7 ,3  by

9 * (X)=c(49(X)), 9*(Y )=c(9 -  '(X)).

In  th e  previous paper [8 ] th e  author has studied lattice-theoretic properties of
these m aps. There we paid attention to  the following conditions:

(a) 9 * ( Y) = (P-1 ( Y) f o r any YE T;

(a') 9 * (X)= ço(X) f o r any X e ;

(b) 9*.(p* (X)= X V 9*(0) for any X cg, where 0 denotes th e  minimal element
o f  T.

Let's call a  M oore family 3- o n  S  (o r cs ) .finitary when the  following two con-
ditions are  mutually equivalent for any subset X S  (c f . [1; VIM):

(i) X =c(X );

(ii) c (Y )cX  f o r any finite subset Y X.

A ll M oore families a re  finitary in  th is article. A s  fo r  a n  in d u c tiv e  system {S A ,
90 A }

2
,4 "  of sets with Moore families 3A , w e have assumed that A  is  a  directed

set and that:

( A )  All (p t h , satisfy (a).

Then there exists a  unique M oore family (lim SO -  o n  t h e  set-theoretical induc-
tive lim So such that:

( i) The inductive maps 9 : satisfy (a).

(ii) If {O A : T}  is  a  system o f  maps satisfying (a ) a n d  ip ,09„=0„ th e  ca-
nonical maps lim tko : liin Sm-*T  satisfy (a).
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We have also considered the following conditions :

(B) A ll 90 , satisfy  (b).

(C) ( i )  go"*(SA)=S„.

(ii) 9A( X ) = ( 9 „ A *(X )) f o r any  jt_.2, i. e . if  X e a n d  b e 9 * (X ) ,  there
exist and  a e x such that 9 (a )= 9 „ (b ).

Rings of C r  functions

Let C2 be an open subset of Rn a n d  V  be the family o f  a ll nonempty
open subsets o f  Q. I f  a e Q, Ta deno tes th e  subfamily {LT eV : Un a}. T.
is a  directed set with respect to the order dual to inclusion. e r (U ) (0 c o )
denotes the ring of real valued C r  functions o n  U e q .  I f  V  c  U  th e  map
of restriction 9" : Sr(U)e f— >f I Ve e r ( V )  i s  a  unitary r in g  homomorphism.
{1 W), (Pvu}U,VEI. is an inductive system o f r in gs with limit 6%, the ring
of germs o f Cr-functions at a. (Pau: 

S r ( U ) -- e ;  denotes the inductive map.
The following is well known.

1. Lem m a. I f  {U i l i e i c g  i s  a  locally  f inite cov ering o f  Q , there ex ists
{9 i

}
ie 1 c r (Q )  such that goi > 0  o n  U1, 9 i = 0  on Q—U and iZyui = 1  on Q.

2. Lem m a. I f  V c U, f  e 6"(U), f i( x )= 0  o n  U— V, (P v u (P E r (V )  and
gi e r (V )  f o r  i, j=1, 2, .., th e n  th e re  e x is ts  a  f unction O eS "(R ) such that
0'(x)>0 (x00), 0 is co-f lat at 0 and the functions hi1 - (00fi)x g ;  (def ined on V )
have extensions h o e (U ) w hich are  r-flat o n  U—V.

P ro o f . (cf. [4; (3 .3 )]) We treat the essential case r= co. Let V,. c V 2  • •  •

be a  sequence o f relatively compact open subsets o f  U  such that u V k =  U.
For 10 =( — co, cc) and I k = (

- 1 1 k , 1 1 k ) ( k  1 ) w e take  Ok E 8 ( R )  such that
0(x)> 0  o n  Ik_ 1 — 1k + 1, 0(X ) = 0  elsewhere, Ok( — x) = —Bk( x )  a n d  Ok ir±i
where I ok ir+ , sup 10»(x)I. Putting Aik  =f  TI(I k ) n V k  and 0= sk Ok f o r  a

xelt k=1v5k+1
positive sequence {ck }, we have

h i f - a k 1 0  k -  i - I k /  1 4.
I & J k

E  ei( b i i  > 0 )  .
1=k-1

Choosing s i m in  {1/(21 s u p  /4"), 1/2% we have
i+.151+1
ms 1+1
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A L .112k - 2

for is clearly C c° and û '(x )> 0  on (— oo, 0) u (0, co). Since 1 k  are
neighbourhoods of 0, a ll the derivatives of 0  approach 0  when x  d o e s . Then,
b y  Hestence's lemma (cf. [12; p. 80]), 0 e S(R) and 0  i s  co-flat a t  0. Hence

e
If x o e U —V, Af k o)  a re  neighbourhoods o f  xo f o r  som e ko . T hen  by  the
inequalities I h id : , -1 1/2k - 2  (i-Fj k )  an d  b y  Hestece's lem m a, hu  h ave the
required properties, g. e. d.

3. Corollary. (Tougeron [11] o r  [12; p. 113]). I f  V U  a n d  f i e Sr(V)
(1=1, 2,...) then there ex ists a n  inv ertib le  g  egr(V ) such  that f i g  hav e exten-
sions h i e gr(U) w hich are r-f lat on U—  V .

4. Corollary. (i) I f  V  c U , 
g r ( V )

 i s  f l a t  o v e r  d 'r ( U )  a n d  an y  id e al of
S r(V ) is generated by  the im age of  an ideal of  gr(U).
(ii) I f  a e U, Sra is f lat ov er

 g r ( U )
 and goau is surjective.

P ro o f . Flatness of S r(V ) is proved in  Tougeron [1 2 ;  p .  113]. Flatness of
er

a follow s from  the fact that flatness over a  fixed ring is preserved for induc-
tive limits (cf. [3 ] ) .  The rest are easy to prove.

The family of a ll idea ls  o f  S r(U ) form s a  finitary M oore family ir(U).
Then GA" (U ) co- V U, U,V eT  i s  an inductive system o f se ts  w ith  Moore families
satisfying (A ) an d  (C ) .  (C )  fo llow s from  (1). H ence th e  canonical Moore
family ira o n  ea  is  ch a rac te rized  b y  th e  f a c t  th a t  yoat, satisfies (a) an d  (a')
by  [8; (7)]. B y  [8; (1, iv), (Ex. 1, ii)], ira co in c id es  w ith  th e  fam ily o f all
ideals o f S'L and cpau  satisfy (b).

5. Theorem. If  a e V U  we have the following;
(i) goy " : ir( U ) - 4 " ( V )  is  (VV, aA )-continuous, where a  denotes the  car-
d inal of  the set of  natural num bers.
(ii) (p u : ir(V ) -4 r(U )  is  (V A )-continuous.
(iii) ( P v c e 4 u  i s  the  identity.
(iv) (Pau*: ir((J) —) it is  (V  v  , 2 A )-continuous.
( y )  9 : o : 6"„—>Sr(U) is  (VV, VA )-continuous.
( v i )  (Paue(P:u is  the  identity.

P ro o f . Excepting the fac t tha t 9 " , , ,  is (a A )-continuous, a ll the assertions
follow from [8; (1), (2), (Ex. 1)] and (4). Let a1, a2 ,... be  a  countable number
o f ideals o f  S r( U ) .  The inclusion cpv u ,R( A  ad  A  9,,0 * (a i )  is obvious. T ake
J e A 9vu*(ni). T h e n  fo r a n y  i th e re  a r e  g11 ,...,  g , 1  e Sr(V) a n d  h",...,
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P i

e ai s u c h  t h a t  f= gio v u (11,i ). B y  (3 )  th e re  e x is ts  a n  invertible k e d'r(V)

s u c h  th a t  a n y  auk  h a s  a n  e x te n s io n  /i f  e Sr( U )  w hich vanishes o n  U — V.
Pj P i

Then the expression E e a i does not depend upon i  and f= k - 1 9vu (E 1 1 h1 )

E (Pvu*( A a1), g. e. d.

6. E x am p le . W e  p u t U=R, V= {x  R : x >  0 } a n d  M =  {f E d'"(U): f= 0  on
oo, 0], f ' > 0 o n  (0, co)}. L et ( f )  b e  th e  principal ideal of g r ( U )  generated

b y  f. O bviously  A  yov u * ( ( f ) )= 6 " (V ) .  I f  g e  A ( f )  w e  p u t  a1=  max W I.
f e M fe M 0 5 x 1 / i

L et x i b e  th e  p o in t w here lg a tta in s  its  maximum a ,  o n  [0, 1/i]. I f  a l l  a,
are  positive , there exists f e M  su c h  th a t f (x ,)_a i li o r  Ig(x i )11f(x 1) i. This
contradicts to the inclusion g  e  (f ).  Thus ai = 0 fo r som e i  a n d  g  vanishes in
a  neighbourhood of 0. H e n c e  9vu*( A ( f ) )0  6"( V )  a n d  9 v u*  i s  n o t  (V A )-
continuous (not (c A )-continuous by (20)).

7. E x am p le . W e  p u t  U= R 2 = {(x, y)}, V= {(x, y): x > 0}. L e t  a  a n d  b
b e  the principal ideals o f  d ' r ( V )  generated  by y — sin 1/x a n d  y + sin 1/x respec-
tively. T h e n  y e P u ( a V b) and y 0 P u ( )  V p u (b). For

(Pvu(Y)= {(y — sin 1/x) + (y + sin 1/x)1/2

and .f e (PtL/(a) V 9tu(b) vanishes on 1(0, Y): IYI l  1 .  T hus (pPt,  i s  n o t  a  (2 V )-
morphism.

8. E x am p le . L e t  U= R "  a n d  ap (p > 0 )  b e  t h e  id e a l  o f  a l l  fe Sr(U)
vanishing o n  {1x1 . .p } .  Then

Co Co

A ou*(ai = 0 { 0 } = (Pou*( A a111)
1=1 1=1

and (p o u *  is not (a A )-continuous.

Closed subsets (cf. [8; (Ex. 3)])
L et W /(U) b e  th e  se t  o f  all closed subsets o f  U  e g .  T he  order o f  inclu-

sion defines a distributive lattice structure on V i ( U ) .  The dual ideals ( t ) o f  W/(U)
form  a  finitary M oore family i i ( U ) .  Elements of i / ( U )  are ju s t  1-1 corre-
spondent to filters generated by closed subsets o f  U  except the maximal element
V i(U ) e -- 1 (U ).  I f  V c U, tlfv u : i ( U ) 3  A I V  e  / ( V )  denotes the restriction
m a p . T his is obviously surjective and satisfies (a), (a ')  a n d  (b). It is  easy  to

(t) A dual ideal of W /(U ) means a  subset 11c / ( U )  such that (i) A n B e ll for any A and BE
11 and (ii) A U C E ll for any A U and C E '/ ( 1 J ) .
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see  th a t {W l(U), vu.,v ,ueg„ i s  an inductive system of sets with finitary Moore
families satisfying (A), (B) and (C ) .  Let denote the canonical Moore family
o n  the lim it Wi a = lim W/(U) a n d  tka u : VI(U).- c / ,  the  inductive  m ap. Thenu . l .
Oa ,  i s  a  surjection satisfying (a), (a ')  a n d  (b ) b y  [8 ; (6 ), (7 )]. O n  th e  other
hand, since Ou v  i s  (2 v , 2 A )-continuous, Wi a i s  a  lattice a n d  tfra u  i s  ( 2 v ,  2 A )-
continuous by [8 ;  (s ) ] .  Let 1„ denotes the  M oore  family o f  dual ideals of
Wi a i n  th is  se n se . T h e n  t/Juu : W1(U)-+Wl a (with i „ )  satisfies (a) a n d  (a')
by  [8; (Ex. 2)]. Hence we have the following:

9. Proposition.

10. T heorem . I f  U , V eg , V  cU  and an  U  w e hav e  the following:
(i) if rv u * : i/ (U ) -4 / (V )  is  ( V V , V A )-continuous.
(ii) t/4 u : 'i/ (V )-+g/ (U ) is  (V v , V A )-continuous.

tif vu*°4 u  is  the identity.
(iv) k i l l * :  % -;;/ (U )— ila  is  (V V, 2 A )-continuous.
(y ) i l a - 4 / ( U )  is (V  V  , V A )-continuous.
(Yi) O a u 0 n u  is the identity .

P ro o f . Excepting (i') (V  A )-continuity o f  0, a n d  (ii') (2 A )-continuity of
all assertions follow from [8 ; (1 ), (2 )]. (i') The minimal element o f  i ''/ (V )

is the principal one, ( V ), and t4 u (( V))= ( V  n U ) .  I f  {91A}A.A

1//tu((V ))V  ( A 91)={ B EW /(U); 3A,EIT À f o r  any

BDV n un = n Itlitu((v))\/ 91 ,11.

Hence Oy u* i s  (V A )-continuous by [8; (2,
(ii') Since W /(U ) i s  distributive, ' i / ( U )  i s  Browerian b y  Stone's theorem (cf.
[1; (V , 10)]) a n d  hence d istribu tive . T hen  t/Jau *  is (2 A)-continuous b y  [8;
(2, iii)], q. e. d.

t/Ja u *  is  no t (a  A )-continuous (cf. (8)).

Duality (c f . [5]).

H e re  w e  s tu d y  th e  r e la t io n  betw een t h e  com plete  la ttices i ( U )  and
i i ( U ) .  L e t 's  p u t  Zu (f)= {x  E  ;  f ( x ) =0 } .  T h is  defines a  s u r je c t iv e  map
Zu : dr(U)--W /(U) satisfying (a) and (a').

11. T heorem . Zu *  i s  (V v , a A )-co n t in u ou s  a n d  Z t  i s  (V v)-con tinu ou s.
Z u e Z t  i s  the identity.



Z eros of ideals of cr functions 419

B y (16), (17), (18) a n d  [8 ; (8 )], Z u *  i s  n o t  (V A )-continuous a n d  4 1 i s
not (2 v )-continuous.

P ro o f . L e t ai , a2 ,•.. e i r ( U ) .  I f  A E A Zu * (a i ) ,  there exist f i E a i such  tha t
A=-Z u ( f i). T hen by  (3) there exist g E 4 1(A ) a n d  hi e Sr(U) such that g
and A =Z u (g). Thus A  Z ( a 1)c: Z u * ( A a i ). T h e  converse inclusion is obvious.
T he  rest fo llow  from  [8; (2)], q.e. d.

Now we define the Cr-radical (r) V71- o f  a e ir( U )  as the  se t o f all f  e Sr(U)
such  tha t 04E a  fo r  some O Eg r (R ) satisfying 0(0 )=0  a n d  0'(x)> 0  f o r  any
x 0 ( i f  r = 0  w e  assum e o n ly  0 (0 )=0  a n d  B  is stric tly  increasing). T hen
we can easily prove the following using (2):

12. Proposition. Z to Z u , (a) --= ( r )
NI a  f o r  any a € 67 ( U ).

13. Lem m a. I f  V  c  U , lle il(U ) , and beir(V ), w e have the following:

(i) z -v i -Ovu ( 91 ) = (Pvu*(z 1
(

1) ) .

(ii) zuo9T, b(b)=11/17bozv(b)•

Pro o f . ( i )  fo llow s from  (3). The inclusion Z u 09,-,b (b ) t/i O4 ( b )  is ob-
v io u s .  I f  A E t h lZ v ( b ) ,  there exists f  b  such that  Z ( f ) = A  n V. Then c f
has an extension g E Z (

-
J

1 (A U (U — V )) f o r  some invertible a e Sr( V). L e t's  put
B= {x E U: d(x, A ) d(x, U—  V)} a n d  tak e  a  function h e 4 1 (B ). T hen  gov u (h)

( f )  and A =Z ( k )  fo r k  g= 2  + h 2e (p i-7111( ' ‘ .u) This proves (ii).

14. E x am p le . P u t  U = R 2 , V= R 2 —  {(x, 0): x 0} a n d  A = {(x, 0): x >0}.
Then y  ZV I c ti/ VU(A ) n {9vu0zul(A )}c and A E 0 ° ZV(Y) n {Z u°91,(Y )} c

.

15. Proposition. I f  U P V  w e have the following:

(  i) Zv*°(Pvu*= vueZ u*• (i i) zPotPvu*= ( P v u e z t.
(iii) ( r ) (Pv u*(a) = v u*( ( r ) f ( -1 ). (iv) z ooPtu=0'uoz v *.

( v ) Z t o i P t u = ( p t u o Z . (vi) ( r ) V9tu(b) = 91, u ( ( rY ).

P ro o f . Obvious from the following implications.
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Duality in the case of germs

W e  have  o b se rv ed  th a t { (e/(U), ti/ u y E , „  a n d  Ir ( U ) ,  (Pi/0  u, vE y. are
inductive systems o f  s e ts  w ith  fin itary M oore families satisfying (A ) a n d  (C).
(pu  a n d  iPu  satisfy (b). Z u : Sr( U)—> I (U ) satisfies Z v oçov u  = Oyu° Zu, ZNIvu*=
(pv u * . Z t  a n d  (a ) , (a'). Z u ,  i s  (V V , a A )-continuous a n d  Z t  is (V A )-con-
tinuous. I t  is  o b v io u s  th a t Z u ,o(pt u (0))= iPt u (( V ) )  a n d  Z,* • t/itu (( V))= cpt u ((0)).
T h e n  b y  [8 ; (6 ) , (7 ) , (8 ) , (9 )] t h e  in d u c e d  m a p s  o f  t h e  lim i t  m a p  lim Z u

satisfy th e  following:

16. T heorem , Z lirn  Z u : Sra —vel a i s  an  epim orphism  satisfy ing (a)  and
(a'). Z , : l a  i s  (V V , n A )-continuous a n d  Z*: a -4 irt, is (V  A )-con-
t in u o u s . These satisfy  the following:

Z e (PaU* = 1 1/ aU*'ZU*• Z ue(Pau=iii:u°Z *• Z*=(PaueZU*°11/a*U•

Z*00 aU* =  (PaUeZt• zt 114u =  L z *•z *  = (Pau*.ztolia*u.

Z* , Z , ( ( t )  a. Z*.Z* = (identity).

17. E x am p le . L e t /  b e  th e  s e t  o f  all ideals a E I  s u c h  th a t  Z ( a )  is
the principal dual ideal ({the origin 0}) Then we have

4 (  n  =  9 0 , * (R")) ( {0}) n  Z,1(n) (cf. (6)).
a d / d e /

Hence Z*  is  n o t  (V A )-continuous.
It is obvious that Z *(A  v  B )=Z *(A )V  Z *(B ). The following proposition gives

a  necessary condition for the equality Z*((A )V  (B))= Z*((A )) V  Z*((B)) fo r princi-
pal dual ideals ((A)), ((B)) e  i'1 0 . U sing it w e can easily  show th a t Z * is not
(2v )-continuous. Yet the condition is not sufficient for the equality.

18. Proposition. I f  r I  a n d  if  Z*((A )V  (B))=Z*((A ))V  Z*((B)),n  PrL a

P5inB,a5 w here PrA ,„ m eans th e  s e t  o f  G laeser's  lineariz ed  p aratin g en ts  of
order r  at a (see  [6 ;  p. 55]).
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P ro o f . Iff l Pr n 8,a,a , a
,t h e r e  i s  a  vector y E  (P rA ,  n P rB , a )  n ( P rA n B  ,a) rti.t 

an d  a  germ f  e ó  such  tha t (y, f )0  0 and f=  0  on A  n B  i. e . f e Z*((A)v (B)).
B y the assumption, f =  g  h  for some g e Z * ((A )) and som e h e Z*((B )). Since
(y, g)0 0 or (y, h)00 we m ay assume ( y ,  g)0 O. But this contradicts to the fact
ye PrA . ,, and g  E Z N A )). T hus w e  have PrA ,a n qP rl i 3 O.  e .  d .P rAnn,a,

W e define the local Cr-radical ( "V a  of a e 1  a s  th e  s e t  o f  fe  I ra su c h
th a t Oefe a  for the germ  00  o f  some 0 egr(R ) such  that 0(0)=0 and 0'(x)> 0
for x00  (if r = 0 , w e  assume 0 is strictly increasing). By (12) and (16) we have:

1 9 .  Proposition. I f  U e Ga w e hav e the following equalities.

T au*( N kl u(a) ) = r o z * (a ) .

(r ) ,/ (pou*(0= (pau* ( rY a  ) . ( r) V9:u(n) VP,u( ( r)f a — ).

The cardinals of the fam iliy of ideals

I f  X  satisfies the second countability axiom the cardinal of the family of
all closed subsets is at most c=2a=1#11, where itR  denotes the cardinal number
of R .  Since f E ( U )  h a s  a  closed graph, 1#6"(U) O n  th e  o th e r  hand,
Wi a  conta ins a ll the germs of lines through a .  It is clear that it Wi a W I (U ) ,
gr < r( ), 11W/ a _- _1#6"ra an d  #Wl(U) _1#6'r(U). Thus w e have:

20. Proposition. #W 7=#W l(U )=#gra =#Sr(U )=c.

This m eans lti / a# i r a ,  # t i r ( U ) _  2 '  f .  W e show tha t these  are
a ll  e q u a l. Let X = {xi } be a  sequence of points on R"— {0} converging to 0 and
le t 0  b e  the set of a l l  ultrafilters on X  w hich do no t converge in X .  Then,
i f  A e 2t e c/), {xi e A: e91. W e p u t A.= A u {0} e Wl(12") and = A :
A e 9 I I  e  i i (R " )  fo r  A e 91 e 0 .  L e t  91, 3ecP a n d  t/Joan*(W)= tPow.( 0 ). If
A e 91 th e re  e x is ts  a  n a tu ra l n u m b e r p  and B e 93 s u c h  t h a t  Ap =13, e 93.
H ence A e 93 and 'fl c 3.93. By the symmetry 91=93. T h u s 1#f l  0 #{9oRn*(W):
91e 0} =#0. On the other hand, it  is  k n o w n  th a t #0= f (cf. [5; (6.10), (9.2)].
These prove the following:

21. T heorem . 14/ 0  = 1 # i/(U )= = # ir (U )=  f.

Cardinals o f generators

22. E x am ple . L et 91 e ii(R ) be generated by the closed subsets of the
form
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{0} u( rU , - 1.- +a i
- ) (0<a 1 <11 (i-1 )-11 i).

i=21_

Then neither 91 n o r  i/f0 „ ( )  has a  countable basis. Hence neither 4 ( 9 1 )  nor
Z* 4 oR*19 0

23. E x am ple . L e t  A  b e  a  closed subset o f  R  su c h  th a t A  and A c  a r e
adherent to  0  a n d  a e ( R )  b e  th e  ideal consisting o f  all functions co-flat
o n  A .  Then (A )=  Z (a )  is  principal but a  h a s  n o  countable basis. To prove
th is , assum e the  c o n tra ry . T h e n  a  i s  principal b y  [1 2 ; p . 9 3 ] . I f  f  i s  the
generator, flx  e a .  This cannot be generated by f ,  a contradiction.

24. Proposition. L e t a e i r ( U ) .  Then Z ( a )  is p rin c ip a l  i f  a n d  only
if  ("), / a is c losed w ith  respect to  the Cr-topology.

P ro o f . O nly-if-part is obvious. Assume t h a t  fry  a  is  c lo s e d . I f  cutA
Z (f ) ,  there exists f a  e a  s u c h  th a t  f 2(a) 0. T h en  b y  the  covering theo-

f ea
re m  o f  L indelK  there  ex ist a  p o in t  sequence {a1} c  U— A  and a positive se-
q u en ce  {ci } s u c h  t h a t  E Ei ( f  a  0 2 E ( IV  a a n d  Z u [E c i( i 4 0 2 ] - Hence
A E Zu* ( ( r Y  a ) =Zu * ( a )  and Z ( o )  i s  principal, q.e.d.

L et S r  b e  th e  sheaf o f  germs o f  Cr functions over U  a n d  le t  M  b e  the
sheaf o f  germs o f  Cr functions vanishing o n  a  closed subset A c U .  Then by
(3 )  M  i s  a  quasi-flasque ideal o f  g r .  H e n c e  Tougeron's theorem  [II ;  (IV)]
implies the following (r  may not be co.):

25. Proposition. L e t  Ue6„, a E e7r (U )  and Z ( n )  = ( A ) ,  t h e  principal
dual ideal generated by  A e c '/ (U ). (p a u * (a ) is  a lo c al Cr-radical if  an d  only
if  there ex ists Ve(e a  su ch  th at (p, u * (a ) is  a  Cr-radical in r (V ) .

Finitely generated C"-radicals

I n  th is  section w e  treat C m -case  on ly . I f  t h e  id e a l ZI;((A))c d'OE)(U )  of
A e c '/ (U ) is  f in ite ly  g e n e ra te d , it  is  a  Lojasiewicz ideal (cf. [12; p. 102]).
B y  th e  theorem  o f  Thom [1 0 ]  A  i s  th e  closure o f  a  submanifold M .  Since
(pa u * .Zt,((A)) is  a  Cm'-radical, any system o f  generators contains th e  equations
of M a fo r  any a e M . T h u s  w e  have the following:

26. Proposition. (c f. B o ch n ak  [2 ]). I f  Aa eW i a  a n d  Z *((A )) is generated
b y  p (<œ ) e le m e n ts , th e n  Aa i s  th e  g e rm  o f  th e  closure o f  a  submanifold
whose codimension is less than o r equal to p  everywhere.

has a  countable basis.
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Let ..F=.F„ be  the ring of formal power series in n  cordinate variables of
R "  and T: d' a'- 4 .c F „  b e  the ring homomorphism d e f in e d  b y  the formal
Taylor expansion a t  a. I t  is  surjective by  Borel's theorem.

27. L em m a. Let ne..9-7  b e  a  C c-rad ica l genera ted by a fin ite num ber
o f e lem en ts  f,, f2 ,..., fr  I f  T f p  is  d is p e n s a b le  i .e .  Tf,,..., Tfp _ ,  generate
T,Ka e , "  then f p  is  d ispensab le  i.e . f1 ..... f,,1  g e n e ra te  a. E specia lly  a  f la t
generator is dispensable.

p - 1
P ro o f.  T here  are g 1,•••9 g1, 1  e d -o  su c h  th a t f p — E gi f i is  c o - f la t . T h e na

(f — E gi f i)I E x? E (`°) V a  = a  b y  the theory  o f  multipliers [9 ;  p. 54]. Hence
P i =  1 j=  i.

we have

P- 1 n
( f p — E g E  x ?  =  E h i f i

i=l J=1 1=1

for some h,,..., h p e Snœ . Then

P-1
fp  =  z  (g i + h i E x3)f,1(1— hp x 3 ) ,

i=1 •=i J=1
g. e. d.

28. Proposition. L e t  A n  b e  t h e  g e r m  o f  a  r e a l a n a ly t ic  set. Then
Z*((An)) is  fin ite ly  g e n e ra te d  if and  o n ly  i f  A „  i s  the g e rm  o f a  coherent
analytic set.

P ro o f.  If-part follow s from  the theorem o f  Malgrange and Tougeron (cf.
[9 ; p. 9 5 ] or [12 ; p. 1 2 7 ]) . Let f 1 , . . . , fp  b e  the generator o f ideals o f analytic
functions vanishing on  Aa . T h e n  Tf, =f 1 ,..., Tfp =fp  g e n e ra te  T * .Z*((.4n)) by
[9 ; IV , (3.5), (3.8)]. Hence i f  Z*((A n)) is finitely generated, f 1

..... f,, d o  so by
the previous lem m a. Thus A u  is  coheren t aga in  by  the theorem o f Malgrange
and Tougeron, g. e. d.
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