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Introduction

In this article we treat formal aspects of zeros of ideals of C’ functions
including the case r=0. Usually the zero of an ideal is defined to be the in-
tersection of the zero sets of its functions. However there occurs a difficulty
in treating the zeros of ideals of germs unless they are finitely generated. The
reason is that we have no natural definition of the germ of intersection of an
infinite number of germs of sets (cf. [8, (1)]). Thus, as the zero of an ideal of
germs, we introduce a new object ¥/, which may be expressed by an abusive
term ‘‘filter of germs of closed sets”. Mainly we study lattice-theoretic pro-
perties of the correspondence of ideals and ‘‘filters” using Tougeron’s lemma
(3) and the results in [8]. In the last three sections we show miscellaneous
results related to cardinal numbers. Special regard is paid for finitely generated
C> radicals since they seems to have zero sets of simple figures (cf. [7]).
It should be noted that Bochnak [2] has treated a related theme. See [14] also.

The author wishes to express thanks to Professors Adachi and Shiota for
helpful discussions.

(This article was given out in 1974 as a preprint (cited in [13]: (12) of the present article).
But publication has been delayed for correction. This correction needed another article [8].
[7] is originally a development of this study.)

Moore families (cf. [8])

Let S be a Moore family on a set S i.e. S is a subfamily of the family
P(S) of all subsets of S such that SeS and N X,eS for any {X},.,<S.

AeA
c=cz: P(S)— S denotes the associated closure operation; ¢(4)= N X. We
- - X>A,Xes
say that XS generates YeS if Y=c(X). If XeS is generated by one ele-

ment it is called principal. A Moore family has a natural structure of a com-
plete lattice with respect to the order of inclusion. Let § and T be Moore
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families on S and T respectively, @: S§— T a map and m, n be cardinal num-
bers greater than . We call @ an (mV, nA)-morphism (or (inV, nA)-con-
tinuous) when

P(V X)=V (X;), @(AY,)=A &)
AeA AeA neM neM

hold for any {X,},., and {Yﬂ}”eMcS‘ such that $A<m, M <n. If & is (mv,
nA)-continuous for any m, we call it (VV, nA)-continuous, etc. (imV )-mor-
phisms and (n A)-morphisms are defined similarly. If ¢: S—T is a map of sets
with Moore families, we can define the direct induced map ¢,:S—T and the
inverse one ¢*: T—>S by

P X)=c(p(X)),  @*(Y)=c(o™'(X)).

In the previous paper [8] the author has studied lattice-theoretic properties of
these maps. There we paid attention to the following conditions:

(@ o*Y)=¢ (YY)  for any YeT;
@) @u(X)=0(X) for any XeS;

(b)  @*op.(X)=XV @*0) for any X €8S, where 0 denotes the minimal element
of T.

Let’s call a Moore family § on S (or cg) finitary when the following two con-
ditions are mutually equivalent for any subset X<=S (cf. [1; VIII]):

(1) X=c(X);

(ii) «(Y)=X for any finite subset Y<X.

All Moore families are finitary in this article. As for an inductive system {S,,
@ui}apea Of sets with Moore families S,, we have assumed that A is a directed
set and that:

(A) All @, satisfy (a).

Then there exists a unique Moore family (limS,)~ on the set-theoretical induc-
tive lim S, such that:

(i) The inductive maps ¢,: S;—lim S, satisfy (a).

(i) If {Y,: S,—T} is a system of maps satisfying (a) and Y,c@,,=y,, the ca-
nonical maps limy,: limS,— T satisfy (a).
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We have also considered the following conditions:
(B) All ¢, satisfy (b).
© () ¢.*S)=S,.

(i) @ X)=0,(0,,*(X)) for any pzi, i.e. if XeS, and be @, ,*(X), there
exist vzu and a€x such that @,(a)=¢,,(b).

Rings of C* functions

Let 2 be an open subset of R” and ¢ be the family of all nonempty
open subsets of Q. If aeQ, ¢, denotes the subfamily {Ue%:Usa}. &,
is a directed set with respect to the order dual to inclusion. &"(U) (0<r=<)
denotes the ring of real valued C" functions on Ue®. If V< U the map
of restriction ¢@py: &"(U)af—-f|Veé&™ (V) is a unitary ring homomorphism.
{¢"(U), ¢yu}u,ves. is an inductive system of rings with limit &}, the ring
of germs of Cr-functions at a. ¢,y: &"(U)—¢&, denotes the inductive map.

The following is well known.

1. Lemma. If {U;}, ;=% is a locally finite covering of Q, there exists
{0:3}ic1 =€ (Q) such that ¢;>0 on U, ¢;=0 on Q—U and Zo;=1 on Q.

2. Lemma. If VcU,f,ec®U),f(x)=0 on U=V, opu(f)e&’(V) and
g;eé"(V) for i,j=1,2, .., then there exists a function 0e&"(R) such that
0'(x)>0 (x#0), 6 is co-flat at 0 and the functions h;;=(0f;) x g; (defined on V)
have extensions h;;e &"(U) which are r-flat on U—V.

Proof. (cf. [4; (3.3)]) We treat the essential case r=o00. Let V,cV,c.-.
be a sequence of relatively compact open subsets of U such that U V,=U.
For I,=(—o0, ) and I,=(—1/k, 1/k) (k=1) we take 0,e&*(R) such that

W()>0 on I,_;—Iq, 0i(x)=0 elsewhere, 6(—x)=—0,(x) and |[0,R <1,
where [0,|R,, = sup |0 (x)|. Putting Ai=f7!(I)nV, and 0=k§18k9,‘ for a

. v§7¢+1
positive sequence {¢}, we have

Ai _Ai _ Ai _Al Ai _A(
[hyjlik=t e Sap |0 e~ le(L+ | fil k-t )k gy |-t "
o .
<oy 2131 (b >0).

Choosing ¢, <min {1/(2! sup bi), 1/2!}, we have
sdsi
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0] fk-1-T S 1/26=2, | By | k-1 Ak g 1282

for i+j<k. 0 is clearly C® and 6'(x)>0 on (—o0,0)U (0, ). Since I, are
neighbourhoods of 0, all the derivatives of 0 approach 0 when x does. Then,
by Hestence’s lemma (cf. [12; p. 80]), e &*(R) and 6 is oco-flat at 0. Hence
hije &>(V).

If xoeU-V, Al (I=2k,) are neighbourhoods of x, for some k,. Then by the
inequalities |h,-j|f"<-1_$_1/2"‘2 (i+j<k) and by Hestece’s lemma, h;; have the
required properties, g.e.d.

3. Corollary. (Tougeron [11] or [12; p.113]). If V<U and fie&" (V)
(i=1, 2,...) then there exists an invertible ge&"(V) such that f,g have exten-
sions h;e &"(U) which are r-flat on U—-V.

4. Corollary. (i) If VcU, &' (V) is flat over &'(U) and any ideal of
&"(V) is generated by the image of an ideal of &7(U).
(i) If aeU, &7 is flat over &"(U) and ¢,y is surjective.

Proof. Flatness of &"(V) is proved in Tougeron [12; p. 113]. Flatness of
¢r, follows from the fact that flatness over a fixed ring is preserved for induc-
tive limits (cf. [3]). The rest are easy to prove.

The family of all ideals of &7(U) forms a finitary Moore family &7(U).
Then {€"(U), ¢yy}u,ves, 18 an inductive system of sets with Moore families
satisfying (A) and (C). (C) follows from (1). Hence the canonical Moore
family &7 on &', is characterized by the fact that ¢,, satisfies (a) and (a")
by [8; ()]. By [8; (1, iv), (Ex. 1, ii)], &% coincides with the family of all
ideals of &7 and @, satisfy (b).

5. Theorem. If aeVcU we have the following;

(i) opux: E"(U)—&"(V) is (VV, aA)-continuous, where a denotes the car-
dinal of the set of natural numbers.

(i) @y: £7(V)»&"(U) is (Y A)-continuous.

(iii) @yyxo@Fy is the identity.

(V) @aux: €7(U) —»é;{, is (VV,2A)-continuous.

(v) o@¥y:67-67(U) is (YV, Y A)-continuous.

(Vi) @ uxc@¥y is the identity.

Proof. Excepting the fact that ¢,y4 is (a A)-continuous, all the assertions
follow from [8; (1), (2), (Ex. 1)] and (4). Let a,, a,,... be a countable number
of ideals of &"(U). The inclusion @, yx(Aa;)< A@pyg(a;) is obvious. Take
fe ANopyyx(a). Then for any i there are g;,...,g;,, €8"(V) and hyy,..., by,
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€q; such that f= fg”goy,,(h,.,) By (3) there exists an invertible ke &' (V)
such that any gijl\ has an extension /;;€&"(U) which vanishes on u-"v.
Then the expression Zl ih;j € a; does not depend upon i and f=k'oyy (Z l,Jh,,)
€pyux(Aay), H g.e.d.

6. Example. We put U=R, V={xeR: x>0} and M={feé&"(U): f=0 on
(=0, 0], f'>0 on (0, c0)}. Let (f) be the principal ideal of &"(U) generated
by f. Obviously A, epu((f)=¢"(V). If ge /\(f) we put a;= lsngxljgi
Let x; be the pomt where |g| attains its maxnmum a; on [0, 1/i]. 1f all a;
arc positive, there exists fe M such that f(x)<a;i or |g(x)|/f(x)=i. This
contradicts to the inclusion ge(f). Thus a;=0 for some i and g vanishes in
a neighbourhood of 0. Hence @uux(A(f)#E(V) and @pys is not (VA)-
continuous (not (¢ A )-continuous by (20)).

7. Example. We put U=R2={(x, y)}, V={(x, y): x>0}. Let a and D
be the principal ideals of &"(V) generated by y—sinl/x and y+sinl/x respec-
tively. Then ye@}y(avDh) and yé¢o¥y(a)V e¥y(b). For

Pvy(y)={(y—sin 1/x)+(y+sin 1/x)}/2

and fep¥y(a)V @fy(b) vanishes on {(0, y): |[y|=1}. Thus ¢}, is not a 2V)-
morphism.

8. Example. Let U=R" and a,(p>0) be the ideal of all feé&"(U)
vanishing on {|x|=p}. Then

[ee) [}
ii\l(/’ou*(ﬂl/i)'—"gﬁ # {0} =‘Pou*(ii\101/i)
and @qy4is not (a A )-continuous.

Closed subsets (cf. [8: (Ex. 3)])

Let €/(U) be the set of all closed subsets of Ue%. The order of inclu-
sion defines a distributive lattice structure on €/(U). The dual ideals'™ of €/ (U)
form a finitary Moore family €/(U). Elements of ¢/(U) are just 1-1 corre-
spondent to filters generated by closed subsets of U except the maximal element
g/(U)e€s/(U). If VU, Y,y: ¢/(U)3 A->A|Ve@/(V) denotes the restriction
map. This is obviously surjective and satisfies (a), (a’) and (b). It is easy to

" A dual ideal of @ /(U) means a subset 1c % /(U) such that (i) AN Bl for any 4 and Be
1 and (ii)) AUCEU for any A€l and Ce g /(U).
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see that {#/(U), Y¥yy}v,vey, 1is an inductive system of sets with finitary Moore
families satisfying (A), (B) and (C). Let €/, denote the canonical Moore family
on the limit ¢/,= hm €/(U) and y,y: €/(U)>¥7,, the inductive map. Then
Y,u is a surjection satnsfymg (a), (@) and (b) by [8; (6), (7)]. On the other
hand, since Yy is (2V, 2 A)-continuous, €/, is a lattice and Y,y is (2V, 2A)-
continuous by [8; (})]. Let ¥/, denotes the Moore family of dual ideals of
%/, in this sense. Then Y, : ¥/(U)—»%/, (with €/,) satisfies (a) and (a’)
by [8; (Ex. 2)]. Hence we have the following:

9. Proposition. ¢/,=%/ -

10. Theorem. If U, Ve%, VcU and ae U we have the following:
(i) Yyuw: €2(U)>E2(V) is (YV, YV A)-continuous.

(i) Y¥u: €/(V)»%/(U) is (VV, YV A)-continuous.

(iii) YyyxoWiy is the identity.

(V) Yauu: €/(U)>€ 7, is (YV, 2 A)-continuous.

(V) Y*:%/,~%/(U) is (VV, YV A)-continuous.

Vi) Yauscdy is the identity.

Proof. Excepting (i') (V A)-continuity of ¥, 4 and (ii’) (2 A)-continuity of
Vs all assertions follow from [8; (1), (2)]. (i) The minimal element of €/ (V)
is the principal one, (V), and y¥,((V))=(VnU). If {A,},..c€/(U),

SV V(AN ={Be®¥/(U);34,€N, for any 2,
BovVaUnA}=n{yE (V) Vv,

Hence Yy is (V A)-continuous by [8; (2, iii)].

(i) Since #/(U) is distributive, €/(U) is Browerian by Stone’s theorem (cf.
[1; (V, 10)]) and hence distributive. Then ,,* is (2A)-continuous by [8;
(2, iii)], q.e.d.

Vausx 18 not (a A)-continuous (cf. (8)).

Duality (cf. [5]).

Here we study the relation between the complete lattices &(U) and
%/(U). Let's put Z,(f)={xeU;f(x)=0}. This defines a surjective map
Zy: &"(U)»%/(U) satisfying (a) and (a').

11. Theorem. Z,, is (YV, aA)-continuous and Z§ is (VV)-continuous.
ZygoZ§ is the identity.
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By (16), (17), (18) and [8; (8)], Zy4 is not (V A)-continuous and Zj! is
not (2V )-continuous.

Proof. Let ay, az,...eé;’(U). If Ae A Zyy(a;), there exist f;eaq; such that
A=Z,(f). Then by (3) there exist ge Zy'(4) and h;e &"(U) such that g=fh;
and A=Zy(g). Thus A Zy«(a;)= Zyx(Aa;). The converse inclusion is obvious.
The rest follow from [8; (2)], g.e.d.

Now we define the C-radical ) /a of aeé"(U) as the set of all fe&"(U)
such that Oofea for some 0Oed&"(R) satisfying 0(0)=0 and 0'(x)>0 for any
x#0 (if r=0 we assume only 0(0)=0 and 0 is strictly increasing). Then
we can easily prove the following using (2):

12. Proposition. Z}eZy.(a)="/a for any ae&(U).

13. Lemma. If VcU,Ne%/(U), and beé&"(V), we have the following:

(1) Zy'edyy (W =pys(Zy'(N)).

(i) Zyopyi(b) =yYyioZy(b).

Proof. (i) follows from (3). The inclusion Zjepy{(b)cyifeZ,(b) is ob-
vious. If AeyylZ,(b), there exists feb such that Z,(f)=AnV. Then of
has an extension geZj'(AU(U—V)) for some invertible ae&"(V). Let’s put
B={xeU:d(x, A)<d(x, U-V)} and take a function heZj'(B). Then ¢,y(h)
e(f) and A=Z (k) for k=g2?+h?e ¢y{(b). This proves (ii).

14. Example. Put U=R2 V=R?—{(x,0): x<0} and A={(x, 0): x=0}.
Then yeZy'oyyy(A) N{pyyoZy'(A)}c and AeyyleZy(y) N {Zyepvi(y)}©.

15. Proposition. If U>V we have the following:

(1) Zysooyusx=¥yysoZyx. (i)  Z¥oYyysx=@yysoZ.
(i) OJVoyux(a)=yux("y a). (iv)  ZywooFu="uoZyx.
(V) ZEy¥u=0fyZF. (vi) "’\/Wu(b)=<p¢u("’\/ﬁ)-

Proof. Obvious from the following implications.
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(13, x)~—>(u)\

[8; (1)}<(12)/

(v)——=——(i)

(13, ii)—»(iv)/

Duality in the case of germs

i)

We have observed that {€/(U), Yyytu,ves, and {&"(U), @yulu,ves, are
inductive systems of sets with finitary Moore families satisfying (A) and (C).
oy and Y satisfy (b). Z,: &7(U)-»%/(U) satisfies Zyo@ =y, yoZy, ZiVYyyx=
oyuxcZE and (a), (@'). Zys is (VV, aA)-continuous and Z§ is (V A)-con-
tinuous. It is obvious that Z,.o0¥, (0)=yF,((V)) and Z§-¥¥, (V) =eF((0)).
Then by [8; (6), (7), (8), (9)] the induced maps of the limit map limZ,

satisfy the following: o

16. Theorem. Z=limZ,: §, %/, is an epimorphism satisfying (a) and
(a’). Z*:é;,’,—“é/,, is (VV, aA)-continuous and Z*:@/,,—»é‘;; is (VY A)-con-
tinuous. These satisfy the following:

ZoPaux=Vavxe Zyx- ZysoPay=WivoZx. Zy=Qauxe Zux-Viy-
Z*oY qyse = Pauso ZY- ZEopky= iy Z*. Z*= @ LV

Z*¥Z(a) 2. Z o Z* = (identity).

17. Example. Let I be the set of all ideals aedh such that Z,(a) is
the principal dual ideal ({the origin 0})e 4/, Then we have

Z*(Q’a)=<Pon*(R"))¢({0})= QIZ*(Q) (cf. (6)).

Hence Z, is not (V A)-continuous.

It is obvious that Z*(AV B)>Z*(A)Vv Z*(B). The following proposition gives
a necessary condition for the equality Z*((A4)V (B))=Z*((4))V Z*((B)) for princi-
pal dual ideals ((A4)), ((B)e®/, Using it we can casily show that Z* is not
(2V)-continuous. Yet the condition is not sufficient for the equality.

18. Proposition. If r=1 and if Z¥(A)V (B)=Z*(A)V Z*((B)), P4 .N PG,
< Plop,a» Where Py, means the set of Glaeser’s linearized paratingents of
order r at a (see [6; p. 55]).
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Proof. If P% .0 P . P%qp.q there is a vector ve(Py , N Py ) N(PY.p..)°
and a germ fe &’ such that (v, /)#0 and f=0 on ANB i.e. feZ*(A)V(B)).
By the assumption, f=g+h for some geZ*((4)) and some heZ*((B)). Since
(v, g)#0 or (v, h)#0 we may assume (v, g)#0. But this contradicts to the fact
vePy , and geZ*(A)). Thus we have Py ,N PG ,<Plpa q.e.d.

We define the local Cr-radical "'\/? of aeé&” as the set of feé&” such
that Oyofea for the germ 6, of some O &"(R) such that 0(0)=0 and 6'(x)>0
for x#0 (if r=0, we assume 0 is strictly increasing). By (12) and (16) we have:

19. Proposition. If Ue G, we have the following equalities.
")\/a—=(an*(""\/(p;‘U(a))=Z*OZ*(a).

O @aua(@) = @aux(VVa).  OYolu(a) =k ("y/a).

The cardinals of the familiy of ideals

If X satisfies the second countability axiom the cardinal of the family of
all closed subsets is at most ¢=2°=#R, where ¥R denotes the cardinal number
of R. Since fe&"(U) has a closed graph, #6"(U)<c. On the other hand,
%/, contains all the germs of lines through a. It is clear that $¥/,<#%¢/(V),
$&r <t&"(U), $6/,54#68" and #€/(U)<#6"(U). Thus we have:

20. Proposition. #%/,=#€/(U)=4&,=4#8"(U)=c.

This means #?/agﬁfé/(U), #tff,. #67(U)<2°=f. We show that these are
all equal. Let X={x;} be a sequence of points on R"—{0} converging to 0 and
let & be the set of all ultrafilters on X which do not converge in X. Then,
if AeUed, A,={x;eA:i2p}eA. We put A=AU{0}e¥/(R") and A= {4:
AeWe@/(R") for AeUed. Let A, Bed and Yornx(W) =Y ora(B). If
A€ there exists a natural number p and Be®B such that A4,=B,e®B.
Hence Ae®B and A<=VB. By the symmetry A=B. Thus #‘f/og#{(pow.*(ﬁ):
Ae P} =4%#P. On the other hand, it is known that #@=f (cf. [5; (6.10), (9.2)].
These prove the following:

21. Theorem. #€/,=#%/(U)=4#6%,=4#&"(U)=f.
Cardinals of generators

22. Example. Let Ae%/(R) be generated by the closed subsets of the
form
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{0}u<yz[—:.—,%+aﬂ> O<a,<1/Gi—1)—1/).
Then neither A nor Yor«(2W) has a countable basis. Hence neither Z¥(?A) nor
Z*o orx(2N) has a countable basis.

23. Example. Let A be a closed subset of R such that A and Ac are
adherent to 0 and aeé;w(R) be the ideal consisting of all functions oo-flat
on A. Then (A)=Zg(a) is principal but a has no countable basis. To prove
this, assume the contrary. Then a is principal by [12; p.93]. If f is the
generator, f/xea. This cannot be generated by f, a contradiction.

24. Proposition. Let ae&"(U). Then Zy4(a) is principal if and only
if (')\/? is closed with respect to the C"-topology.

Proof. Only-if-part is obvious. Assume that ./a is closed. If a¢A
= N Z(f), there exists f*ea such that f%(a)#0. Then by the covering theo-

fea
reme of Lindelof, there exist a point sequence {a;}cU—A and a positive se-
quence {g} such that Xg(fe)2e®/a and Zy[Te(f*)*]<A. Hence
AeZU*((')\/F)=ZU*(a) and Zy,(a) is principal, g.e.d.

Let &7 be the sheaf of germs of Cr functions over U and let M be the
sheaf of germs of C* functions vanishing on a closed subset AcU. Then by
(3) M is a quasi-flasque ideal of &'. Hence Tougeron’s theorem [11; (IV)]
implies the following (» may not be c0.):

25. Proposition. Let Ue¥9,, ac&(U) and Zye(a) =(A), the principal
dual ideal generated by Ae€/(U). @uys(a) is a local Cr-radical if and only
if there exists Ve €, such that @yys(a) is a Cr-radical in &7(V).

Finitely generated C®-radicals

In this section we treat C®-case only. 1If the ideal Z¥(A))c&>(U) of
Ae%/(U) is finitely generated, it is a ZLojasiewicz ideal (cf. [12; p. 102]).
By the theorem of Thom[10] A is the closure of a submanifold M. Since
@auxeZ((A)) is a C=-radical, any system of generators contains the equations
of M, for any ae M. Thus we have the following:

26. Proposition. (cf. Bochnak [2]). If A,e¥/, and Z*((A)) is generated
by p(<oo) elements, then A, is the germ of the closure of a submanifold
whose codimension is less than or equal to p everywhere.
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Let # =%, be the ring of formal power series in n cordinate variables of
R* and T:¢&7,-»%, be the ring homomorphism defined by the formal
Taylor expansion at a. It is surjective by Borel’s theorem.

27. Lemma. Let aeZ>® be a C®-radical generated by a finite number
of elements f,fy....f,. If Tf, is dispensable i.e. Tf,,... Tf,_, generate
T a€Z then f, is dispensable i.e. f,,...,f,, generate a. Especially a flat
generator is dispensable.

Proof There are g,,...,9,-1€€7 such that f,— ng- is oo-flat. Then

f,— Z gf)/Zx e(w‘\/a =a by the theory of multlphers [9: p. 54]. Hence
we have

p—1 n 4
(fo— i; glfi)J;l xt= i§'1 hifi
for some h,,..., h,e &7. Then
pP-1 n n
fp=.;l(gs'*'hij;le)fi/(]_hpjgl x3), qg.e.d.

28. Proposition. Let A, be the germ of a real analytic set. Then

Z*((A,) is finitely generated if and only if A, is the germ of a coherent
analytic set.

Proof. [If-part follows from the theorem of Malgrange and Tougeron (cf.
[9: p. 95] or [12: p. 127]). Let f,....,f, be the generator of ideals of analytic
functions vanishing on A, Then Tf,=f...., Tf,=f, generate T,-Z*(A,)) by
[9; 1V, (3.5), (3.8)]. Hence if Z*((4,)) is finitely generated, f,...,f, do so by
the previous lemma. Thus A, is coherent again by the theorem of Malgrange
and Tougeron, g.e.d.
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