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Introduction

The generalizations of the canonical slit m apping theorem s fo r  a  planar
Riemann surface t o  open Riemann surfaces with finite genus were studied, at
first, by K usunok i [7 ] and, afterwards, along his method by many authors, for
example, W atanabe [1 5 ]  [1 6 ] , M iz u m o to  [1 2 ] , Shiba [ 1 4 ]  and Matsui [11].
All of these conformal mappings can be classified to the same type in the sense
th a t  the image of each boundary com ponent o f  R  is, roughly speaking, a
l i n e  segment. In th is paper w e  sha ll consider som ew hat d iffe ren t type of
conformal mappings o f R  such that the image of each boundary component of
R  is, roughly speaking, exactly tw o segments w ith  on ly  one  com m on point.
Such a  m apping will be called here a  conformal mapping o f X -type (concern-
in g  the strict definition, see Definition 2). This paper consists o f tw o  parts.
The aim  of the first part (§ 2) is  to  show th a t on a finite Riemann surface R
with genus g  there exists a  meromorphic function f  o f K usunoki's type which
satisfies the following conditions (cf. Theorem 1 ): ( i)  the image of each bounda-
ry component o f R  is exactly tw o segments w ith only one common point and
each segment of the image has an arbitrary prescribed direction, (ii) the divisor
of f  is  a multiple of (P I P 2 .••Pg +  i ) '  where 13

1 , P 2 ...,  P g + ,  are suitable points
o f R ,  ( iii)  residue of f  a t  P 1 i s  e q u a l  t o  1 (or i ) ,  (iv) f ( R ) ,  the image of R
under f ,  i s  o f a t  m o s t  g + 1  sheets over the extended plane C. Further, we
shall show a sufficient condition for the existence of a function o f Schwarz-
Christoffel's type on R  (cf. Theorem 2).

The a im  of the second part is to  ex tend  above m apping  theorem  to  an
open surface. For th is  pu rpose , in  §  3  w e w ill in troduce  the notion of a
K uram ochi's boundary point of border type and show several convergence theo-
rem s for real harmonic differentials on an open Riemann surface R .  N ext, in
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§4  w e sha ll show the existence theorems o f  th e  behavior spaces Ax  of X -type
an d  th e  (Shiba's) Riemann-Roch theorem fo r  A x  o n  R  (cf. Theorem 3). From
these  resu lts  w e  can  show  tha t the re  ex ists , o n  a n  arbitrary open Riemann
surface with finite genus, the meromorphic function of K usunoki's type which
h a s  Ax  behav io r a n d  satisfies the conditions (ii), (iii) and (iv) as stated above
(cf. Theorem 4).

The content of this paper is as follows :
§ 1 Fundamental results on the behavior spaces.
§2 A  conformal mapping o f  X - ty p e  o f  a  finitely bordered Riemann sur-

face and the functions of Schwarz-Christoffel's type.
§ 3 Orthogonal decompositions on open Riemann surfaces and convergence

theorems for real harmonic differentials.
§  4  Convergence theorems fo r the  behavior spaces of X -type and its appli-

cations to conformal mappings.
T h e  author w ishes to  express his hearty thanks to Professor Y . Kusunoki

for his ceaseless encouragement and kind remarks in  this research.

§ 1 .  Fundamental results o f th e  behavior spaces

1.1. Behavior space. L et R  be a n  arbitrary Riemann surface. The totality
o f  sq u a re  integrable com plex (resp. real) differentials o n  R  fo rm s  a  real
H ilbert space A =A (R ) (resp . T =T (R ))  over t h e  rea l num ber field  w ith  the
inner product defined by

<2 1 , 2 2 > =R e11 (a i ii 2 +b i b2 )dxdy

where 2i =a i (z )dx+b i (z )dy  for a local parameter z = x + i y .  It should be noticed
th a t th e  meanings o f  th e  letters A  a n d  F  a re  different from those in Ahlfors
a n d  S a r io  [2 ] . W ith these exceptions, we inherit the terminologies and the no-
tations of [2] and  [11], if not mentioned further.

Suppose R  is  an open R iem ann surface of genus g  (m ay be infinity) and
{R„} is  a  canonical exhaustion o f  R , then we can choose a  canonical homology
basis {A i , Bi }l= 1  o f  R  m odulo dividing curves such that {A i , B i } n D k„ is also
a  canonical homology basis o f  Dk„ modulo ODk„ for each  k  a n d  n ,  w here Dk„
denotes a  component o f  R , — k „  (c f . [2 ]) . F u r th e r , suppose 2' = {4 }5, 1 i s
a  family o f lines on  the  complex plane each o f  which passes through the origin.
W e consider a  linear space A 0 o f  Ah s e  which satisfies th e  following conditions:

(a) there exists a  subspace A ,  o f  A h „(R ) su c h  th a t  A , -  iAT-LcA,) ,  where
A ,+iA t l  means the  vector sum o f A , and iA ti,

(b) <  /A '> =0f o r  a n y  AEA ° ,

(c) E Li, EL f o r  a n y  2  E /to a n d  j= 1, 2,..., g .
Ai - B j -
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Such a  space A0 = A,(2, A,, R) is ca lled  th e  behav ior space o n  R  associated
w ith 2 ' an d  /11 , and A 0 = {2: )e A0  where d e n o t e s  th e  complex conjugate of
A }  th e  dual behav ior space  o f  A ,  (cf. S h ib a  [1 4 ]) . H e re  w e  n o te  th a t  the
definition of the  behavior spaces is simplified as follows:

Lemma 1 . 1 .  A  behav ior space A0 =A 0 (2 , A ,, R ) satisf ies alw ay s the fol-
lowing conditions:

(a) A0 =  iA ti (therefore, A , w ith w hich A , associates reduces to A O,
(b) Çe L i f o r any  , e  A0  a n d  j=  1, 2,..., g.

.1 4 ,
Conversely , th e  su b sp ace  A , o f  A h „  satisf y ing (a ) , (b )  i s  a  behavior space
associated w ith 2  (an d  A i = A0 ).

P ro o f . S in c e  <  + .1 2 , 0:1` + 0.1> =0 f o r  a n y  p a ir  o f  A i, .12e A ° ,  we can
get <A i , 0 .1  >  = 0 , hence  A , c  iA ti. O n  the  other hand, from  A , c A , w e have
iAt± iAT 1  c A , + iATL A„, h e n c e  w e  h a v e  A l = A , = T he converse  is
evident.

From  Lem m a 1.1 w e denote a  behavior space associated w ith 2 ' a n d  A,
simply by A 0 = A0 (2 , R).

Lemma 1 .2 .  I f  a  subspace A ', o f  Ah„ satisf ies the conditions:
(a) A',D iA'0 *± ,
(b) e L i f o r  a n y  .2e A ',  a n d  j=  1, g,Ai s;

( c )  A'0  n A u = {0}, A ', n 71a = 101 where A a  denotes the  subspace of  all ana-
ly tic dif ferentials,

then A '0 i s  a  behav ior space associated w ith 2 ,  and the  converse is also true.

P ro o f . F rom  (a )  w e  have A', = +A '0 n IA and from  (c) n
=A'0 n /1„+ A '0 n A .= {0}. Therefore, A'0 =iA*±. q. e. d.

Corollary. A  behav ior space A,(2 , R ) an d  its dual behav ior space alw ay s
exist f o r any  2 .

Pro o f . C f. Lemma 1.2 and Theorem 2 in  Matsui [11].
N ow  w e consider th e  following linear subspaces o f  functions a n d  differ-

entials on  R:
S(A o , 11(5)=U : (i) f  is  a meromorphic function which has A ,  behavior,

(ii) the divisor of f  is a multiple of  l / } ,

D(A 0 , 6) = {0 : (i) (b. i s  a m erom orphic differentials which has A ,  be-

havior, (ii) the divisor o f  0  is  a multiple of 61 .
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Then the following proposition is well known (cf. Shiba [14]).

Proposition 1. Suppose 6=6p16,2 (6,, n 6Q -101) is a  f in ite  d iv iso r o n  R ,
then the follow ing Riemann-Roch theorem for A o holds:

dim S(4 0 , 1 /(5) = 2[ord 6p + min (ord (5Q , 1)] — dim [D(A 0 , 11601D(Ao, 6 )].

1.2. Convergence theorem s f o r  t h e  behavior spaces. L e t  { G„}  b e  an
exhaustion o f R  by regions w hich m ay be G „=R  for a l l  n. W e assume the
existence of a canonical homology basis {A i , Bi } o f  R  modulo dividing curves
on R  such  that, for each  n, {A j , is  a lso  a  canonical homOlogy basis of
G„ modulo dividing curves on G„ where g„ denotes the genus o f G„ which may
be infin ity . Let An = A „(Y   G„) b e  a behavior space on G„ associated with s„.
We consider the following subspaces of the differentials:

A'c, = A{ ) (R )= { 2: the re  ex ists  a  sequence 12„1 w ith  2„ e A „ such that

11A- -  A„11G„ 0 a s  n col ,

A- 0 =  A- 0(R) = iA :0 (R ) * ±  •

Lemma 1.3. I f  {2,,} with 2„E /1„ i s  a  sequence such  that sup M2,JG ‹
th e  lim it of  each locally  unif orm ly  conv ergent subsequence I2 j  belongs to
Ao.

P ro o f . F or each  a' e A'0 and  c> 0 w e can  find  a  regular region Da n lI o n R
0.

0
such  tha t 11' 11 R— D < 8  a n d  a  sequence lo- „{ w ith a„E A „ su ch  th a t Ila' —
a s  n—> co. Let .K = sup j.l.„11,n . For the lim it  2  o f  a  locally uniformlyu con-

vergent subsequence { 2 „ , }  (which we write simply {2,j) we have

ia' * > +i<A , ic r' * > R-101-11ina <1 k, ia' * > Ke
k—■Go

<  /ILO  ia'k* > G ,1+2K e=2K e,

hence we can conclude  2 E i/F0*± = J o . q. e. d.

I n  section 4, w e sha ll conside r som e  m etric  conditions for /16 = { , * 1

(cf. Lemmta 4.2 and 4.3).

Definition 1. Suppose = and „= j  s u c h  th a t  Aj , B j c
W e  say  that a  sequence {AVY  „, G„)}"'„_ , o f  behavior spaces converges to Â (R)
(a  subspace of A aR )) if the following condition *  is fulfilled :
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i f  {A O  w ith  A„a AVY„, G„) is  a .sequence such s u p 1 1 ),,,M G ,,< G ° , th e n  the

li m it  o f  each  loca lly  un ifo rm ly  convergen t subsequence  { 4 j  belongs

to  71(R).
I n  this case w e w rite A 16(..T„, G„) ;1(R).

N o t e .  S in c e  ;1(R)c A 'o (R ) ,  th e re  e x is ts , f o r  any An ( R ) ,  a  sequence

{),„} w ith  A„G AVL„, G,,) s u c h  t h a t  IIA — ),„1 1 0 ,,--> 0  a s  n—*co.

L em m a 1.4. Suppose A;;(..r„, G„) Ao (R ), then A 0 (R )  i s  a  behavior space
associated  w ith  2 .  M oreov er, there ex ists a  sequence T—{n,i } of  positiv e
in tegers such  that the  sequence  {0 i (A i , A 16, ( r e s p .  { C i (B1 , A ,  G k)} kET

and { OW , A t, GO}k eT ) c o n v e rg e s  lo c ally  u n if o rm ly  o n  R  t o  0 (A j , A o , R)
(resp. A o ,  R )  an d  0(0, A o , R)).

Fo r th e  defin ition o f  C i (A i , A o, R) etc., see [14] o r  [11] p. 81.

Pro o f . See Lem m ata 3.1 and  3.3 in  [11].

1.3. Extremal len gth . Suppose (2 i s  a  co m p a c t bordered  Riemann surface

such  tha t each  com ponen t o f  er2 is a  c lo s e d  a n a ly t ic  c u rv e  o r  m a y  b e  a

piecewise ana ly tic  Jo rd an  cu rve . W e  ca ll h e rea fte r su ch  a  surface E2 a  finitely
bordered Riemann surface, and  an  endpo in t o f  an  ana ly tic  a rc  o n  ao a vertex
o f  0 .  L e t  E-2  b e  the  doub le  o f  w ith  respect t o  an —tvertex}. F o r  a  p o in t
P  o f 0E2, we consider the fo llow ing  fam ily  {C} , o f  curves o n  El:

{C : (i) the re  ex is ts  a  ne ighbourhood U,, on f2  o f  P  such that
C=01.1,-0f2, ( ii)  U' n 0( — U p) is  sm oo th , w h e re  U ' i s  a  region
(o n  S2) tha t con ta ins the  c lo su re  o f Up, (iii) C c f l— k  w he re  R  is
a  (fixed) com pact region o n  n1.

Proposition 2 .  (K u sunok i [6 ]) . ( i)  T he extremal leng th  o f  {C},, i s  zero,
independent of  R.

(ii) L et 0,, 4) 2 be any  tw o non-negativ e covariants square  integrable over
f2--(2 n R. ,  then there ex ists a  sequence o f  curves y„ e {C} , (y„ n R =OD tending
to P  such that O i l d z 1 + 0 2 1 d z 1 — › 0  a s  n—"co.

Y
Further, we shall use frequently the following results:

Proposition 3 .  (O h tsuka  [13 ]). E v ery  D irichlet f unc tion  f  o n  a n  open
R iem ann surface has f inite  lim its along alm ost all curv es tending to  th e  ideal
boundary.

Proposition 4 . (Fu ji- i-e  [4 ]). L et {f„} be a  sequence of  D irichlet functions
conv erging to a  Dirichlet function f  in  D irich le t norm  such  that f „ = f  o n  a
com pact region K o  f o r  a l l  n, an d  L  be  the  f am ily  o f  all curv es w hich start
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f rom  points o f  K o  an d  te n d  to  th e  ideal boundary . T hen, there ex ists a  sub-
sequence {f„ ,} o f  { L }  such  that th e  lim it in k  l im f „ ,  along a curv e  c e  L  con-

e
verges to l = lim f f o r nk --*oo, for alm ost all curv es of  L .

§ 2 .  Conformal mappings o f  X-type o f  a  finitely bordered Riemann surface
and the meromorphic functions o f  Schwarz-Christofell's type

In o rde r to  use the Green formula for the harmonic differentials, we shall
study in 2 .1  the properties o f differentials in som e subspaces and certain or-
thogonal decom positions. In 2.2, the notion o f  the behavior spaces o f X-type
is introduced. U nder this notion, we shall consider, in 2.3, the conformal map-
pings o f X-type o f a  finitely bordered Riemann surface. In 2.4, after defining
the meromorphic functions o f Schwarz-Christoffel's, type, w e shall show a suffi-
cient condition for the existence of such functions.

2 .1 .  T h e  properties o f  rk e  a n d  t h e  orthpgonal decompositions. Suppose

R is the interior of a finitely bordered Riemann surface R  and OR= A , where
k=1

each d k  is a boundary component of R .  We set

„e (R)= Idf F , c (R ): f is harmonic on R — {vertex} and continuous on k ).

The following lemma was suggested by Y. Kusunoki and F. Maitani.

Lem m a 2.1. F ,(R )= C l IF ,( 1 )1, where C l stands f or the  c losure  in  I - JR ).

P ro o f . A t f irs t  w e  p ro v e  th a t du e C/{F„,(6,)} for du e F„,(R) w here Gk

denotes an  e n d  to w a rd s  d k  (cf. [11], p. 76) which is conformally equivalent
to  a ring domain r <1z1<1. We write

gdz = du + idu* — 0 7 du*) d
z
z

2 it

where y  denotes an analytic closed curve on G,, hom ologous to OG, n R .  The

function g  being analytic in r <  <  I, g  has the Laurent expansion g= E ak zk.

Next, we set

g„= ak zk, a =S du*,

du=Re(g„dz + .

W e normalize so that i./,(Qk )--= u(Q,) for a fixed point Q k  on G k , then  w e have
du,k, e FaC k )  and Ildu— du ,k,11,,-4 0  a s  n  c o , hence du c Cl{r„,(G,)}. Now we
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show  C/{r„,(R)} = F„e ( R ) .  L e t  G k  be  ano the r e n d  tow ards L l k  which is con-
form ally equivalent to a  domain I >1z1> r' (> r) ,  a n d  o k  a  function e Cc°(R)
such that ifr k = 1 on G , =  0  o n  R — Gk . We write for du e T h e (R)

E  tliku,k,„ f=  Ek= 1k 1

G= Gk, G' = G;,
k=1k = 1

T he function t„ (resp. f )  o n  R  has the Royden decomposition o f  th e  form t„
= um  -Efo m  (resp. f =u  +f o )  where u m  e H D(R) and A m , fo  a re  D irich le t potentials.
Since A m  is  ha rm on ic  o n  G ', w e can  set t o m  = 0 o n  OR from  the . regularity of
each  p o in t  o n  O R  a n d  L em m a 3 in  O h ts u k a  [1 3 ] . Consequently, we have
dv„, c F e (k) and

Ildvm—  du  2 +  I l d f o m —  d.fo112 =11d.fm—  df 112

5-_( 11d141;,— + GMa6],( ui IldOkiD2

Therefore, ildv„,— du11—*0 as m--+ co, hence du c ci{rhe(k)}. q. e. d.

We consider the following spaces of differentials on  R:

Fk (R)= fcv e T h (R): (a) co is harmonic on —  {vertex}, (b) u  is continuous

at each vertex P , where w = du  near P } ,

/„„(R )= Tim e (R) n 1 1,(R),

F k o ( R ) = k o (R) n r h (R).

C orollary . F„,(R )=ci{ r h o (I1)} , 1"„„(R)=Cl{ r,„(R)} , T k (R )=C l{ rk (k)} .
P ro o f . F rom  L em m a 3  in  A cco la  [1 ] w e  h a v e  co = 0 along OR — {vertex}

fo r  co e T h o (R ) and  from  Proposition 2 u is continuous at each vertex P  where
w= du n e a r  P ,  hence r„„(R ) T h o ( R ) .  O n  th e  o th e r  h a n d , it holds Tho(R)J-
rhe(R) *  f ro m  L e m m a  2 .1  a n d  Proposition 2, hence C l{ F hO ( k ) }  

1 „ ( ) ,  s o  w e
have FaR )=C l{ 1 " ,(k )} . The other are evident by Lemma 2.1. q .  e .  d .

N ow  w e introduce som e subspaces o f  1-
 k( R ) .  W e  d iv id e  e a c h  4 , in to  a

union of rx , and A, where oc k , 13k  a re  open  se ts  on  z l k , Ac— closure o f  13k  o n
and a A  nk = - k k• Let a =  J ak , /3= J  /3k . Further, we set

k= 1k =  1
f l o (Ec, R )= { df  F;(R ): there exists a  neighbourhood o f  5  o n  R which

is disjoint with the support of f }

T e ,,(«, R)=C1{ 1 . „(0-Z, R)}, r h e „( a ,  R ) =  h (R ) n R) ,

Ak
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r„,„(d, = {(1.0 F he(R): f  = 0  on al ,

T h „(II, R)=1"n e o (rx, R)*± n F,„

F„0(13, R)= Ito E Fh (R): = 0 along fi - {vertex}} ,

Do = the family of Dirichlet potentials o n  R.

We shall identify hereafter all constant functions with zero.

Lemma 2.2.R ) k ) :,  f l,„(13, R)=CIIF„„(II, k)} .

P ro o f  The proof consists of the following four steps :
(a) F„,.„(5i, T w icitr„,o, R){
(b) R).1 F„„„(ix-, R), i. e . Cl{T h0 (13, R))c1 ,Jf i, R ),
(c) R)c Clfr,,„(13, R)),
(d) Tali, R )=CI{ F„„(11, R )}  a n d  F„(ci, R)= Cl{ F„„(5, k ) ) .

(a) This is evident from Proposition 2 and the Green formula.
(b) W e show a t f irs t th a t w e  m ay  set f = 0 o n  a - {vertex} fo r  die T heo ( ,  R).
From  the definition o f F„„(Cx, R) there exists a  sequence {df,} with df„EC 0 (d, R)
and neighbourhoods U „ o f  ci ou k  s u c h  t h a t  f n =  0  o n  U „ a n d  II df„ -  df
a s  n -* o o . L e t  f ,=u „+f „„ b e  the  R oyden decomposition o f  f ,  where fo„ E Do

a n d  u„E H D (R ). Because f„= 0 on U„, w e have u„= -f ,„=T IL11.° ,, on U „. From
the regularity  of each point o n  a  and  L em m a 3  in  O htsuka [13] w e  can  set
u„ =  0  on  a. C onsequen tly , if  w e  pu t n„(p)= u„(p) fo r p e  R  and  u„(p)= - u„( jp)
fo r  p e k - R  where it d e n o te s  the  doub le  o f R  with respect to a - {vertex{
and j  is the involutory m apping o f  k ,  th en  { dfi„{  i s  a  C au ch y  sequence on
ROE a n d  Ci„ =  0  o n  a. A ccordingly, there exists a  subsequence {n,J, f o e D o a n d

E HD (R ) su c h  th a t  M dJ OUk - df0II -*0 a n d  r  du„ - du F 4 0  a s  n-3co , where u = 0
o n  a -{vertex}. Therefore, f = u + f o + const., w hile  fo =  0  a s  df e F h e ( R ) ,  hence
f = 0  o n  a - {vertex}. Next, we show r h {5, R)} . F o r  dfe T h e o (5i,
R )  w e se t F(p )=f (p ) fo r  pe R  u a - {vertex{ a n d  F ( p ) = - f ( jp )  f o r  pe k „ -R ,
th e n  d F  is o d d  f o r  j  a n d  dE E r „ ,(k ) . Therefore, from  Lem m a 2.1 there
exists a  sequence { d F {  w ith  dF„E F„,(k„-{vertex}) such that II cifln dflfZ„-*O .

1D e n o te  -,7-{ F„(p)-F„(jp)}  b y  G„(p), th e n  dG„I R k ) .  Further, we can

get JcIG„-cIFII R— 2 1 - M (IF—c/F„ +M  cl(Fj)- d(F„j)11-> 0  a s  n  co. Consequently,

w e  have df=dFI R E C ItT ,,(5 , R )} . B y th e  sam e w ay a s  in  ( b )  we can prove
(c) easily  a n d  so (d) is evident, q. e. d.

C o ro lla ry . I f  a  dif f erential w  E T „(R )  is  in T„„(13, R), (1)=0 along  [3 -
vertex} , an d  th e  c o n v e rse  is  also  tru e . I f  a  harm onic Dirichlet f unction f

can be w ritten in a jO rtn f= W I. w here f ' =0 on a, then d i e  R ) .
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For a harmonic Dirichlet function f  there exists a function f '  on (3R  such
that f=  H ,  ( c f .  Constantinescu und C ornea [3]). Hereafter, f '  will be called
the resolution of f.

L em m a 2 .3 . R io=  r0-1-re„(a, F,0(f3, R),

r e o (a, R) = F k ,„(Et, R) e „.

P r o o f .  Omitted.

Lemma 2.4. CI{F„(d, R)} R ) }  =  r  , , o (cTc, R),
where I" t°,0 (d, R)= {cif : (a )  f  is  a  c o n tin u o u s  D ir ic h le t  fu n c t io n ,  (b ) there exists
on a ne ighbourhood U  o f E t w h ich  is  d is jo in t w ith  th e  s u p p o rt o f P .

P r o o f .  Let f= u +f0  b e  the Royden decomposition o f f  w here u E HD(R)

and f o  E  D0 . Analogously as in Lemma 2.2, u  has a  resolution f '  such that f '
= 0  on a. Therefore , by  C orollary  of L em m a 2.2 w e have du E T-

1 (d, R )  and
s o  tlf R ) - j -  F  c tr L((, R)]. o l r e■0 (6i, R)} c R)} is evident.

q. e. d.

C o ro llary . I f  d f, a n d  df2  a r e  i n  I -
 co (Ec, R), th e n  dtMax  ( f 1 , f 2 )} e r e a (5, R)

a n d  d{Min ( f 1 , f 2 )} e Fe „(6i, R). I f  d f E  (E t, R ), t h e n  d[M ax {Min (f , k), — k}]
E r e o, R ), prov ided  k  is  a  positive constant.

2 .2 .  Behavior spaces o f  X-type on  a  finitely bordered Riemann surface

L et OR= (resp....99) b e  the sam e as in  2.1 (resp. §  I). W e d iv ide  each
k = 1

boundary component zlk  in to  a union of ak and flk w here  each  o f ak , fik  i s  an
open arc on il k a n d  a, n f3k = O . The set S = ni, a 2 , fl 2 , . . . ,  ocK , /3,1 will be
called hereafter a  p a r t i t io n  o f  R .  Next, we associate each a„ (resp. 13k )  with a
com plex num ber zk (resp. z )  s u c h  t h a t  lzk l =  zrk = I and d en o te  the set
{z 1 , z ,  z2 , z i o  z ,' } b y  Z. For S  an d  Z  w e consider the  fo llow ing
subspace of differentials:

A (R )= A ( ,  R, S, Z)=1e A k „: (i)5 E  Li  fo r  any AeA  a n d  each
Ai , B j

j, (ii) 1m (2 k )) E Faa k , R), 1m (2).)E r h o k , R) for each kl .

Lemma 2 .5 . A ssum e tha t a rg  z k — a rg  zk'  x 0  (mod 7r) a n d  OE A a „. satisfies
the  cond itions: 1m ( )ET,„(1,, R) a n d  1m (f k')) e R ) f o r  e a c h  k. Then
there  ex is ts  a  sequence o f  a rc s  ta n (resp. {13 } °̀„= ,) such that

(a) (resp. [30 is  a n  a rc  o n  ak (resp. fl k ) and az (resp. fiZ t  11,),

(b) lim Ç 0 = 0  (resp. lim Ç 0=0).
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P ro o f. L et P k , Q , b e  th e  endpoints o f  /3, a n d  {c}°°„.„ 1 ( r e s p . {c"},T= 1 )  a
sequence of arcs in Proposition 2  that separates P k  (resp. Q ,) from  a compact
region o n  11 — {Pk , Qk } t=,. Then there exists f o r  e a c h  c,n, (resp. c i ") a  neigh-
bourhood UZ (resp. U )  o f  P k  (resp. Q k)  o n  1Z such that = a1.4 n R  (resp.
c'k "= auk—  n R ) .  Next we write

u u;:', 13z=fik —L4 u tri", 4 =cq +M+ c; + c;," .

Note that each (or /3 )  is  a n  a r c .  From  Proposition 2  a n d  the  semiexactness
o f  ck we have ,c/;• = 0 and „0+ . — 0- 0 3  a s  n—*œ , hence  1

;

— > 0  as
C k

oo. O n the other hand, from the conditions on ck we can get

0 = (2k0)= (co* cos 0— co sin 0),

0 = 1 f l z  1m (2k0)=- 1f l ,k,(w* cos O' — co sin 0'),

where Re (0)= co, zk e ' °  a n d  z;, = . C onsequently , w e can conclude that

and ck converge t o  0  as fl—a3.q .  e .  d .

In  order to prove that Ax (R) is  a  behavior space, we consider the following
auxiliary subspaces:

A'(R)= the space spanned by the set 1 o(A1 ), Ci o(B1 )} = 1  where C .; e Li ,
Ci * 0  fo r  each j ,  g  means th e  genus o f  R  and o(y ) i s  th e  y-re-
producer in  r c ,

A"(R)= T h ,„(R) 4-  ir h „,(R),

A '"(R)= CI{ ki t (Z k r . „ c (A  —  ak , R )+ z rk e0 (4 — l3k, R))1

A'x (R)= C I{A '(R)+ A"(R)+ AAR)} ,

where z x Fx  d en o te s  th e  subspace {zk df  : dfe r }  a n d  A+ B  (resp. EA „) means
the vector sum of A  and  B  (resp. {AO).

Lemma 2 .6 .  Ax (R ) is a  behavior space, i. e. A x (R )=iA x (R)*I.

P ro o f. B y th e  sam e m ethod a s  in  Lemmata 4.1  a n d  4 .2  i n  Matsui [11]
w e can  ge t easily  th e  relations iA x (R)*±= A 'x (R )ciA x'(R)*±-= A x ( R ) .  Therefore,
we have only to prove that iA : n Ax  n Aa = {0} and /At n Ax  fl A a = {0} (cf. Lemma
1.2). L e t P k , Q k  b e  th e  endpoints o f  /3,. From  Lem m a 2 .5  there  ex ists on
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faz} ,°=1, Ifiz} ,T=1, ftPkil 1 a n d  { U } c„°=1 such that each of 12 ; ‘, 4), 1f l ,,, 4) and

0 converges to  0 a s  n-4 co, where = OUrk! n R , cik " = n R, cTeki U

U "  and  13 = UZ UU'k". O n the  other hand, from th e  semiexactness o f  0  we
can take  a  function f ,  separately  near each Ak s u c h  t h a t  dfk = 0 . Now we
denote 17,-- J  U;, a n d  r a  = U ,  then we have by the Green formula

k=1k = 1

110112 =lim<0, 1 4 ) * > B - y „ - y „
n ,c o

=ERe(1p5ï —  g6 R e[E (1 „ fk k + 1  f k i (-3)1•A ; B ; B , „-,0° k Œk -

W hile from 0 G Ax  w e  k n o w  Im (2,0)=0 along ot:', a n d  Im(2,fk) =const. on
Consequently, from Lemma 2.5 we obtain

Re( fk i(k)—  _ 5 [R e  ( 2 k fk ). Iln(zkO)cc;: cek,

+Im(2kfk)•Re(fk0)] 0 as n cc .

Similarly we know Re O r  fk i0)— )0 as n--'cc, h e n c e  A , n iA n A a = {0 } .  B y the
same w ay, w e can prove Ax  n iA t n 21„= {0 } a n d  A x =iA ti. q. e. d.

Hereafter, such a  space A x (R ) w ill be  ca lled  a  behav ior space of  X -type
associated with (S, Z).

2.3. Conformal mappings X-type. A t  f irs t w e  show  the  ex istence  o f a
meromorphic function w ith A „ b eh av io r . L e t S={oc,, Th Œ 2, ,  2 1 •  •  • a k ,  flIC}  and
Z= {z 1 , z,c, z} be  the  same a s  in  2.2. From Lemma 2.6 and Proposition
1 the R iem ann-R och theorem  holds f o r  A  „(r , R , S , Z ), h e n c e  b y  the  same
method as  in  Kusunoki [7] o r  Matsui [I l ]  we can prove the following lemma:

Lemma 2.7. F o r each  p air (S , Z ) , there  ex ists  a m erom orphic  function
f  o n  a f initely  bordered R iem ann surf ace R  su ch  th at (1 )  f  h as  A ,  behavior,
(ii) the  d iv isor o f  f  is  a  m ultiple of  (P 1 P2 •• Pa + 1 )- 1  w h e re  P ,  is  an  arbitrary
p o in t an d  P 2 ,  P3 ,..., Pa . "  a re  suitably  chosen g  p o in ts  o f  R , (iii) residue of
f  at P , is  e q u al to  1  (or i).

Lemma 2.8. T he m erom orphic function f  i n  L em m a 2.7 is continuous on
OR.

P ro o f . W e have only to prove the continuity of f  a t  the point P  belonging
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t o  th e  s e t  {vertex o f  RI u {endpoint of cz k l. A t  f irs t  w e  p ro v e  it  in  c a se  P
e {vertex o f  R}n {endpoint of oc k }. L e t  U  b e  a  neighbourhood o f  P  on
which isis mapped homeomorphically by h (Q ) onto 1:;0.={: < 0}
su c h  th a t  h ( P ) =0  a n d  U —  P is conform ally equivalent to 131 — {0}. Further,
suppose D„, i s  th e  im a g e  o f  U  under t h e  function F(Q )={ f (Q )} e - Y i where
0 =0 k =argz k — argz;„ 0 < 0 < 2 n  a n d  y  is  a  suitably chosen real constant. Then
G( ) = F(h -  I ) = u( ) + iv ()  i s  f in i t e  Dirichlet integrable over El and v ( )=  0  on
rea l a x is . Therefore, i f  w e  s e t  G ( ) = G ( ) ,  th e n  G( ) is  a n a ly t ic  in  g : 0 .< 11
<  1 .  Consequently, the Laurent expansion of G( )  in 0 < I <  I  h a s  the singular
p a r t  w ith finite term s a n d  G( )  m ay h a v e  a  p o le  at = O .  B ut, from Propo-
sition 2 there exists a  sequence {y„} o f  curves o n  R  tend ing  to  P  such that

s„ dG-41 as co w here spi =h (y „) . Accordingly, G( ) h a s  n o  singularities at
= 0 ,  hence f  is continuous a t P .  B y th e  sam e w ay, w e can  p rove  th e  con-

tinuity of f  at each  point belonging to the  se t {vertex o f  R} u {endpoint of a k }.
q. e. d.

A t last, w e show the existence of a special kind o f  conformal mappings of
R .  Suppose R  is  the  interior o f  a  finitely bordered Riemann surface with genus

g  and  O R = J d k w here each d k  i s  a  component o f  O R . L et S =
k=1

a  pa rtition  o f OR where each of Œk , 13k i s  a n  o p e n  a rc  o n  Z ik  and ock = d k —fik .
Further, le t Z = { z ,, ZK, z'K } b e  a  se t  o f  complex numbers.

Definition 2 .  A  conform al m apping f  o f  R  in to  a  R ie m a n n  sphere C
is said to  be of  X -ty pe if f  is a meromorphic function with A x (R ) behavior.

According to Lemmata 2.6 and 2.8, we can get the following theorem.

Theorem 1. Fo r e ac h  pair (S , Z ) , th e re  e x is ts  a  m erom orphic function
f  on R  uniquely  except additive constants such that:

(i) f  is  a  conform al m apping o f  X -ty pe, th at is, each im age o f  d , under
f  is ex actly  tw o segm ents w ith  only  one com m on p o in t .  M oreover, the  direc-
tion of  each segment on f ( il k )  is arbitrarily  prescribed,

(ii) the div isor of  f  is  a m ultip le  o f  (P 1 P 2 .••Pg .,. ,) - '  where P ,  is an arbi-
trary  point of  R  and P 2 ,. . . ,1 3 0 . ,  are  suitably  chosen g points of  R,

(iii) residue of  f  at  P ,  is equal to  1 (or i),
(iv) f (R ) , the im age of  R  under f ,  is at m ost g + 1 sheeted over C.

Pro o f . From  L em m a 2.7 w e have o n ly  to  p ro v e  (iv). F o r  w  f ( a R )  we
have by the argument principle
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K
df  2ni L  •— w  —   2 tri 

E d arg (f — w) =0 (cf. Lemma 2.8) .
Ak

Consequently, we obtain N(f , w , R )= N(I; oo, R ).g -I- 1 . q. e. d.

R e m ark . Suppose R  is  plamar and f  is  a  conformal mapping in  Theorem
1, then f(t1,) is a figure like Roman capital letter V  o r  T.

2.4. The meromorphic function o f  Schwarz-Christoffel's ty p e . L et R  be
th e  interior o f  a  c o m p a c t  bordered Riem ann surface w ith  genus g  a n d  OR

nk
=  t J Z i k  w here each A k  i s  a  con tou r. S uppose  tl k =  tJ cek  w h e re  e a c h  ark  i s

k=1 r= I
a n  o p e n  a rc  su c h  th a t  ark n c4' = {O} fo r r  m  .  The set {c j, ,..., ,...,
is  d e n o te d  b y  S G . N ext, w e associate each ark  w i t h  a  com plex num ber 4
such that 141= 1 and denote the set {z 4,K} by ZG.

Definition 3 .  W e say  that a  meromorphic f u n c tio n  f  on R  is  of Schwarz-
Christof f ers type associated w ith (S ,, Z G ) i f  Im (4 d f )= 0  along c4,1 . 1( K,
1 H ereaf ter, w e  call such  a  f unc tion  sim ply  a  G. S. C. function as-
sociated with (S G , Z G ).

N ow  our nex t p rob lem  is  w he ther w e  can  construc t a  G. S. C. function
associated with given (SG , Z0 )  o r  n o t .  In order to study this problem, we con-
sider the following subspace of differentials:

A s = A s (R )= R , SG , Z 6 ) ={2.e A k „: (a) E L  f o r  e a c h  2 e A s
A  I l i

and j= 1 , g, (b) 1m (2) ET„o (a';‘ , R ) for each pair (k, r)} .

Lemma 2 .9 . A ,D iA  .

Pro o f . This is proved analogously a s  in  [ I I ] ,  hence omitted.
I f  As = iA 1  f o r  a  p a i r  (S ,, Z ,) , w e can construct a  G. S. C. function as-

sociated with (S G , ZG )  according to the Riemann-Roch theorem fo r  A , (cf. [7]
o r  [1 1 ]) . However, th e  next example shows that there  ex ists a  p a ir  (S G , Z G )
such that iA 1  = As .

E xam p le . L e t  R = {1z1 < 1 } a n d  R ' b e  t h e  in te rio r o f  tr ian g le  A i A 2 /13 .
Then there exists a n  analytic function f  (classical Schwarz-Christoffel's function)
which maps R  conformally onto  R '.  N ow  w e se t  SG = {a l , a2 , a 3 } with ai =f - '
(segment A i A ; + , )  w here  A4 = A ,, a n d  Z G  = {z i , z 2 , z3 } w ith  z i =A i A i + i . The
existence of above stated function f  m eans As n iA : n 1ae { 0 }. Therefore, we
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can conclude A s + (cf. Lemma 1.2).
This example shows tha t so  long as we restrict our m ethod to the behavior

space's theory only, it is difficult to construct a  G. S.C. function.
N ex t, w e  s h o w  a  sufficient condition  on  (SG , ZG )  for the  ex istence  of a

G. S. C . function. W e divide each com ponent d k  o f  OR  in to  a  u n io n  o f  con-
secutive a rcs 5,1, f i T k  so  th a t  e a c h  o f  0(1', Pk' i s  a n  o p e n  a rc  a n d

n 6-q= fink ' n PI= {0} , n {0} fo r  each  k , r, m , r m  (c7q, i s  th e  closure of
ark o n  d k  a s  i n  2.1). N e x t, w e  set a  a n d  u/31*,=/3. L e t  k  b e  the

k ,r k ,r
interior o f the  doub le  o f k  w ith respect t o  /3. Then R  i s  a  finitely bordered
Riemann surface and each component 21)-, o f ak can  be  w ritten  by  24 =c7q,
where j  is  th e  involutory mapping o f  R .  Further, w e associate each ark w ith
a  complex number z;', and denote the  se t {z1, zne, 22K} (resp. f ah ... ,

j a p l )  by 2 0 (resp. g' 0 ). From Lemma 2.6, ./1(:i',R, g o ,  2 0 )  is  a  behavior
space of X-type on  k  and so by Theorem 1  there exists a  meromorphic function
f o n  k  such that, f o r  each  pair (k , r), Im(2;c d f )=0  along a1*„ Im(4df)=0 along
ja;', a n d  th e  divisor o f f  i s  a  multiple o f  (P,,..., P 2 a , K ) - 1  w h e re  P,,..., P 2 g + K

a re  suitably chosen 2g + K  p o in ts  o n  R  (n o t  o n  k ).  Denote Re ( d f )  b y  co,
then, for each (k , r), we can get

Im[4(co — co ) + f i rk(CO —  (01 * 1 = 0  along 4 ,

[4(0) — co- ) +i4(0)— w i  = 0 along ja;„

Im[i(a)—  co- ) + (co -  — co)*]= 0  along f i .

N o w  w e  w r ite  =(a)— co ) + kw— 0)1*, then  t/i is  a  differential o f  a  function f
on  R  whose divisor is a m ultiple of (P,P,•••P 2 + K jP,•••jP 2 , + K )- 1  . By the argu-
ment principle we have fo r w _f(0/1)

1  (  d f _ E  ( df _ 0 — w , k )— N (f ,00, ,
2 t ri  im f — w  k ,r ) 217, f — W

N(f, w, 11) 2(2g +K).

Thus we obtain the next theorem.

Theorem 2 .  L e t  R  b e  th e  interior o f  a c o m p ac t bordered R iem ann sur-

f ace  w ith  genus g  a n d  OR = E d k  w here each d k  i s  a  con tour. Suppose dk
k=1

= E (ark u f i r )  (k = 1, K ) w here each 4, fir, i s  an  o p e n  arc  an d  ark n 4=
r= 1
n {o}, 4 n fi = {0} f o r each  k , r, r= m . L e t 4  be com plex  num bers and

S o = {al, /31,..., ar, Z, = {z1, i, z i, z'kuk, i}, then there ex ists a  G. S.C.
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function f  associated with (S o , Z0 ) on  R such that
(i) Im (4df)=0 along cq, and Im (idf)=0 a long  M, f o r  each p a ir  (k, r),
(ii) the  d iv iso r o f f  is  a  multiple P 29 Ko f  (PiP2•P2 g +x) where P 1 ,•••

are suitably chosen 2g+K points o f R,
(iii) the residue of f  at P I is  e q u a l to  1 (o r  i),
(iv) f(R), the im age of R  under f ,  is  a t m ost 2(2g + K) sheeted over C.

§ 3 .  Orthogonal decompositions on open Riemann surfaces and convergence
theorems for real harmonic differentials

I n  th is  section we consider som e orthogonal decompositions o f  Th(R) and
the convergence theorems o f  a  sequence {con }  w ith con e F ( R )  w here IR O  is a
properly given exhaustion o f  R  (R „  is no t necessarily  relative compact) and
P(R„) is  a  subspace o f  T h(R„). T he results o f  th is  section is very useful when
we consider the existence theorem o f  a  meromorphic function w ith Ax (R) be-
havior in §4 .

3 . 1  Elementary convergence theorem s. L et r (R )  a n d  T(R), n= 1, 2,... be
subspaces o f r h (R) and  F± the orthogonal complement in  r  h  of F .

Lemma 3 . 1 .  Suppose the fo llow ing conditions are fu lfilled :
(a) T x (R)nr„„,(R) 1",„(R) f o r  each in and n (m> n),

CO

(b) r  { r(R )± } =r x (Ry.
n= 1

Then f o r  a n y  a e F (R )  there exists a  sequence {a„). w ith  p.„E  F (R ) such that

110  on11 - - 0 :1 a s  n ,0 0 . The  same conclusion a s  above holds, i f  r (R )Œ r(R )
fo r  each n.

Proof. A  differen tia l a  Fx (R )  has a  decomposition o f  th e  form  o- = +  co„
where o-,, e F„„(R) and con e Fx „(R)±. F or m > n, we get a m — = con — (pm x„(R)1,
hence — 0 ..112 = <t7m — an, >  =  0 ..112 — 1167,112 , that is, II an 11 I k 1mM Mull. There-
fo re , w e  h a v e  llam — (7.11, 0  a s  m>n,00, hence  by  the  triang le  inequality we
have  a  harmonic differential ao  such that — ao --A  a s  n ,0 0 . O n  th e  other
h an d , fo r  each  co e Tx (R) 1  ( Fx „ (R )i)  w e  have < o -

0 , > = lim < a„, > = 0 , so
n  co

o-
o  e Fx (R ). Consequently, we h a v e  cr = a- 0 + coo  w h e r e  Ilco, — 0 411 —>0 as

while co„, e Fx „(R) 1  f o r  each  m>n, hence W o E  n  { r(R ) -1-}=r x (R)±. Therefore,
n=1

ci — cio =w o e F(R) fl F x (R)-L =  { 0} , s o  a =o-
o . T h e  la s t s ta te m e n t is  e v id e n t if

we set cr„ = o- . q. e. d.

Lemma 3.2. T h e  lim it  o f  e a c h  lo c a lly  u n ifo rm ly  convergent subsequence
o f {o-„} w ith  crh e  r(R )  and  sup Ma,M<cc belongs to Tx (R) i f  the following con-

ditions (i) o r (ii) holds:
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(i) T (R ) x (R) f o r a n y  n,
(ii) there ex ists, f o r  an y  w e  T x (R )± , a  sequence { a )n }  w ith  co„ E  F x n (R)±

such that 110 ) ( 0 .11—>0  a s  n—co.

P ro o f . Suppose ( i )  h o ld s . For e > 0  a n d  each co e Fx (R )±  there  exists a
regular region D  su c h  th a t  11(0 11 R -D < E . Suppose ao  i s  th e  lim it  o f  a  locally
uniformly convergent subsequence t h e n  w e  have

I<U1 W >D1+1<C)W >R-D1 K g+ IliM < C fnk , W > D I
k -K o

_ Kc+IIIim <u n t o  w >I+ 1urn < ank
, >  R-DI

k - . 0 0 k-400

<cr„,, co>1_21(s,
k - .0 0 -

w here K  is a  constant > sup 110;11e„.
T he case  (ii) is evident, n q. e. d.

Suppose, for each n, PA U  is  a  subspace o f  Fh (R„). B y th e  same way as
in  Lemmata 3.1 and 3.2 we can prove simply the following Lemmata :

Lemma 3 .3 .  A ssume the follow ing conditions are fulf illed:
n(a) FT(R,h) -L 1R„ Pxl (R„) ± F x (R ) i  I R, 1 (R”)-1- f o r m and  n (m>n),

(b) i f  {co„} with co,,e T (R „ )±  is  a  sequence such that 110 ) — (0 .11Rn
- 0 3  a s

then co e Fx (R)±,
then, f o r an y  creT x (R ), there ex ists a  sequence {o-

n }  with ern e T'x'(R„) such that
aid R„—*0  a s  n—>oo. T he sam e conclusion as abov e holds if  Tx (R)1R . c P (R . )

f o r each n.

Lemma 3 .4 .  T he lim it o f  each locally  unif orm ly  convergent subsequence
o f  {o-,,} w ith  crn e T ; (k )  an d  sup 11a,,11„n < c o  belongs to  F x (R ), i f  there ex ists,
f o r each w e Tx (R )±, a  sequence { o)„} with con e T'AR„)± such that „ IIR„-40
as  n-4 x .

Definition 4 .  W e  s a y  t h a t  a  sequence {T;(1?„)} 1 (resp . {T x n (R)} 1 )
converges to  T x (R ) if the  following conditions are fulfilled :

( i) f o r  each co n E F x (R )  th e re  ex is ts  a  sequence {co n } w ith  c o n  E P(R„)
(resp. co„ F x „(R)) such that 11(.0 „ — R„ — 03 (resp. 110 ). —

(ii) i f  {con }  w ith  con e F co;c
1(R „) (resp. „  E (R )) is a sequence  such  tha t

sup 110411e„< 0 0  (resp. sup 11(0 .11 < c o ) ,  th e n  t h e  lim i t  o f  each locally
uniformly convergent subsequence {co„,j belongs to F x (R).

In  this case w e w rite sim ply  F',',(Rn ) x (R ) (resp. Fx„(R) Fx(R)).

Therefore, < a, w> = 0 , hence a E F(R ).
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From Lemmata 3.1 a n d  3.2 w e can prove F x n (R) 1' x (R) if  F x „(R) r x m (R)
z  x (R ) fo r  each  m, n  (rn >n ) and n {1,(R)-'-}  =1(R)1. F u r th e r , f ro m  L e m -

n =1
mata 3.3 a n d  3.4, w e can  ob ta in  l'(R, r) F x (R ) if  th e  following conditions are
fulfilled: (a) PAROI D 1T(R„,)± 1R„ and  F (R n ) i p rx (R)1 1R„ fo r  e a c h  m, n (m> n),
(b) if  {con } with con e P(R n )  satisfies 110 ) — (0 .11R„—>0  a s  n—>co, then co e T x (R).

In  th e  following, we shall consider, fo r specific spaces F x (R), the conditions
in  order that l'i(R n ) .F x (R ) o r  F x n (R) F x (R).

3 .2 .  Orthogonal decompositions on an open Riemann surface. L e t  R  be
a n  o p e n  R ie m a n n  s u r fa c e  a n d  R *  (resp. 4  = R* — R) its Kuramochi com-
pactification (resp. Kuramochi ideal boundary). Suppose Q  i s  a  region o n  R
whose relative boundary OS2 consists o f  at m ost countable num ber o f  analytic
a rc  clustering nowhere o n  R .  N o te  that th e  topology on (closure o f  0)
is the  relative topology induced by the  topology on  R *. W e set

.40 ={0  n u Q .

L e t  a  be non-em pty o p e n  se t o n  Llo  a n d  fl=4
0

—d+ {0} where di denotes the
closure o f  a  o n  A .  W e consider t h e  following linear subspaces o f  differ-
entials:

e
0

9 (5 , 0)={ df e FAO): (a) f  is continuous o n  0 , (b ) there exists o n  r2  a
neighbourhood Uf  o f  a w hich  is  disjoint w ith  the  support o f
f }

e 0 (c7c, t2)= 0 )1 ,  T h a d ,  0)=1 -0 2 ) n  
e o ( ,

 (2),

Fe n (E:c, f2)*1 =T co (fl, (2), 1"(13, s2)=Fh(Q) n 0 ).

Hereafter we identify all constant functions with zero.

Lemma 3 .5 .  (i) F(D)= eo( 0 ) *  + 1e o C, 1h(13, Q) *

(ii) I f  cTc' c7c, then we have
rheo(a, 0 ) D i -ha d ' ,  Q), no (Œ, rha(ce , 0 ),

(iii) Theo(, £2) c Q).

P ro o f. ( i )  a n d  (ii) a re  evident a n d  so  o m itte d . T o  p ro v e  th e  ca se  (iii),
we have only to prove F e°„(d, 0)11-1(fl, Q ) * .  L et {Q „} b e  a  canonical exhaus-
tio n  o f  Q .  F o r  a n y  d f e  n o (ci, f2) a n d  a n y  dg  e  n o ( f l ,  0 )  there exists a large
number n  such that 00 9 c U f U U9 . Consequently, it holds

<df , dg*> = <c/f , dg*> o n + <df , dg*> 0 _0 „.= <df , dg*>n.
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O n the  other hand, the restriction of f  (resp. g )  to  Q „  has the Royden decom-
position of the form

f  = +fo„ (resp. gl0 n = on + g„),

where f o„  (resp. go?)  i s  a  D irich le t potential o n  Q „  a n d  dun , dv„ c r,,,(52„).
B u t, from  Lem m a 2.4 a n d  Corollary o f  L em m a 2 .2  w e can  ge t dun e T ne„(6i,„
Qn) a n d  dyn e  r h e a n ,  n )  

where =  c l o s u r e  o f  { 00„n U1 } o n  5 2  a n d  fin =
closure o f  {00„ n Ug } o n  O .  B y  G reen  form ula  w e  have <du ,,, dc , > o n = 0,
hence <df , dg* > -=lim  <df , dg* > = O. T h e re fo re  F?„(5i, S2)111) ,( f l ,  O r which

n -0  co
implies r he.(5- E2)OEFno(ol, S2). q. e. d.

3.3. Kuramochi's lo c a l capacity a n d  th e  boundary point of border type.
L et P  b e  a  p o in t o f  A =R *— R  a n d  W  a  region o n  R  such  tha t W  is  a  com-
pact neighbourhood o n  R *  o f  P  and the re la tive boundary OW o f  W  consists
o f  a t  m o s t  a  countable num ber o f  analytic a rc s  clustering nowhere o n  R.

1 Suppose Q E R*, d(P, }  w here  d(P, Q ) deno tes the distance

between P  a n d  Q  (note  R *  is  a  metric space, cf. Constantinescu und Cornea
[3 ])  a n d  { R„}  i s  a  canonical exhaustion o f  R .  W e consider a  function o4,
o n  R „ s u c h  th a t  ( .4 = 1  o n  F„„ co,';,= 0  o n  R„—W, co;,', is h a rm o n ic  in  Rn n
(W— F„,) and  the  inner normal derivative of co„  on  {OR„ n ( W— F„,)} is  z e ro . I f
DwnR„(c00<K fo r  a n y  n ,  there exists a  function co n,  on R  such that Dw n R (co,.„

• co„,)-+0 a s  n  o o , a n d  moreover there exists a  function w  o n  R  such that
Dw (co„,—co)—>0 a s  m — )x . S uch  a  f u n c tio n  co  is  called  the local capacitary
potential o f  P  w ith  respect to  W  and D w (co)=C w ( P )  is  called  the local ca-
pacity  o f  P with respect to W  (cf. K uram ochi [8]). Hereafter, we express simply

O f th e  boundary behavior on  il o f a  function f  like above w„, as aN  n ( W - Fno= O.
L e t A ' b e  a  component of A . I f  there exists a  connected neighbourhood

U  o f  A ' su c h  th a t LI n (A — A')={0}, then A ' is  c alle d  a n  isolated boundary
component of A .

Definition 5. W e say  tha t a p o in t  P  o f  an  isolated boundary  com ponent
is  a  boundary  po in t o f  border ty pe  if  th e  following condition (*) is fulfilled:

(*) there exists a  sequence { W„} of regions o n  R  such that
(a) each W „ is a com pact neighbourhood o f  P  o n  R * a n d  W „  P  as

oo,
(b) Cw n (P)= 0  for each n.
F o r  a  boundary po in t P  of border type , there

regions on R which satisfies W m + W , , , .  Let co,„„

W,,— W„, such that w„,„ = 1 o n  Wm , co. = 0 o n  OW„ and

exists a  sequence {W,} o f
be  a  harmonic function on
further, Ar I A n(  vn - wm)

 O w n,. 
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=0. T h e n ,  b y  Dirichlet principle, we have easily lim D(coi n „)= O. We call the
m -■ CO

function co,„„ a local capacitary  potential o f W„, with respect to  W,.

Lemma 3.6. Assume /1' is an isolated component of t i  a n d  a  is  an open
connected set on  z r  such that the set a is exactly two points of border
type, then we have

h e o f f(  n ,  R )=F  h e o ( 5 5  R )= Cl{ j  F h e o (f7„, R)}
n 1 n=1

f o r  any sequence {a „} (resp. {y„}) o f  open sets on  A' such that an 't (resp.
y„ cc) as n-+ co.

CC

P roo f. W e have only  to  prove cif e Fn e n (5, R ) , if  df e  fl F„„(eic„, R ) fo r  any
n=1

fixed {a„}  (cf. Lemma 3.5). A t first, w e  m ay  assum e If I < K o n  R .  L et the
se t 6i - c  b e  { P, QI a n d  W,I, { W O  be  th e  sequences o f  regions satisfying the
conditions (*) o f  Definition 5  such  that W „-+P (resp. W , -Q )  a s  n-* co. N e x t ,
denote by (o mit (resp. con,„) the local capacitary potential o f  W n i (resp. W ) w ith
respect t o  Wn ( r e s p . W ) . Suppose {e„1 is  a  sequence of positive numbers such
tha t en 0  as n-+  x . T hen , w e  can  choose  a  sequence {m„} of positive integers
such  tha t 11 + <e,, (therefore, m„ > n )  a n d  m„ t co a s  n-4 oo . Fur-
ther, w e can choose another sequence fk i ,I of positive  integers which satisfies

a - Wn i n  - k „> m „ a n d  k „  co a s  11-4 co. W h i le ,  f r o m  the condition
CO

df  E n T h e „(5„, R), w e can find a  sequence {dg„}  w ith dg„ e 11,f f,c„, R) such that
n=

II d f -  dgn11 <8 „. F o r  sim plicity, we denote k „=k  a n d  inn = m .  N ext, denote (1
-  co„,„)( I -  co;„„)g,, b y  f n  w h e r e  g;,= Min [Max (g„, -2K ), 2 K ], t h e n  w e  have
df„e F2 0 (5, R ) and moreover

II df df„11 2 < II df - d k11 2 + 1141114 ,,u II df dfull v „- w „,+ II df  - df  „II w ;„

<251Icif  dg k II2  + + 1 2 K 2 (Ildwm„11 2  + Ilda4„11 2 )

T hus w e h a v e  a  sequence {df„}  w ith clfn e R )  s u c h  th a t  11 df - df„Il -40 as
n - c o ,  hence dfe R ) , s o  F h e o (OE-, R )= F h e o ( i n , R). q. e. d.n=

Now we consider a n  example of a Riemann surface w ith a  boundary point
of border type which has arbitrary small neighbourhoods o f infinite genus.

Exam ple. Suppose Gz  (resp . Go )  b e  a  d is k  lz <1 ( r e sp . 1  >  >  r ) , and
maps Go o n e  to  one conformally onto a  region G„, o n  w-plane by the function

w(z)= u(z)+ iv(z)
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1z1= log +i[Arg z —Arg(z — p) — Arg(z — 1/p) + 27r] ,
lz —  Pll — 1 1 PI

where Arg z denotes the principal value (i. e. 0 Arg z < 2n) and 0 < p < r .  (cf.
I s h id a  [5 ] ) .  O G  consists o f  a  J o r d a n  curve  a n d  a  h o r iz o n ta l slit { ( u ,  y):

log P
(1

< u  log P  ,  v = n }  w hich is the image of 1z1= 1 under w(z).
+

_.
— — P /2

The point z = i  is  m apped  to  the point w o = log [  P
J . p 2

 l+ n i  which lies on the

lower side o f  ab o v e  s lit . Suppose {a„} be  a  sequence of positive numbers such
th a t  a„.f i = a n a n d  a ,  i s  a  suitable positive n u m b er. L et {J„}  b e  a  se-1 + 1/n
quence of horizontal segments on G„, satisfying the following conditions :

(i ) each  o f  J 2 „  a n d  J 2 „  , l ie s  in  a  domain iw: —
4

n < Arg (w — wo)< —

5  

7E,3 3

a2n+1<1 14' —14'01 < a 2 n }

( i i ) 2n, 2 n +  1  have the same projection to  th e  real axies.
Denote the inverse image w -  I(J„) of i n b y  In ,  and  cu t G,„ (resp. G o ) along each
J„ (resp. I„). Denoting th e  lower side o f  J„ (resp. In)  b y  J ;  (resp. /1,7,) and the
upper side  o f  J„ (resp. I n)  b y  J+„ (resp. I ; ) ,  w e identify  JI„  (resp . 1 -1„) with
J -2 n + 1  (resp. / n + 1 )  a n d  .1' „  (resp . Ii„ ) w ith  J -12- „4 (resp. / 42„4. ,). T h is  gives
a surface D,„ (resp. D O . A surface Dz u {1z1. r} is denoted  by  R .  Further, let
g  b e  a  function e Cc°(R) such  tha t g= 1  o n  Dz , g =0 on 1z1<  r  +

2 P  . Then, the

function  U p (P )= g (P )u (P ) b e lo n g s  to  t h e  fam ily N  o f  functions w here N =
IF E CD(R): F has continuous extension on d and  p o in ts  o f  d  a re  separated by
the above extended functions}, that is to say, N-compactification of R  is equiva-
le n t  to  R *  (cf. [3]). L e t i b e  th e  d o u b le  o f  R  w ith  respect to {z : 1z1= 1,
z Then, k e  0 ,,  hence from  P roposition  7  in  K usunok i [7 ], d  is  a  quo-
tie n t sp a c e  of {z : 1z1= 1}. O n  t h e  o th e r  h a n d , w e  k n o w  t h e  c lass N 0 =

{ U : ° }0505n separates the points on {z : 1z1= }  and s o  d  is equivalent to {z :P 
1z1 =  1}. T hus w e  know  th e  boundary p o in t z -= i i s  o f  b o rd e r  ty p e  a n d  has
arbitrary small neighbourhoods o f infinite genus.

3.4. Region D * o f 2 *ty p e  and normalized exhaustion associated with D*.
Let A 1 b e  a n  isolated boundary component and d o = z1— d 1 .

Definition 6 . A  region D * on  R * is called to be 9T -ty pe associated w ith
A1 o r  sim ply  2T-type if the follow ing conditions are fulfilled:

(i) e ac h  o f  D* n A and d  — D* is connected  nonempty and D* nzl,
= {O}.

(ii) D* n R = D  is connected on R and OD is an analytic curve,
(iii) D * fl A= D* fl A.
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For D * of  9T -ty pe, w e call D = D* n R  a  region (on R ) of  .9 1 -type.
Some example o f  regions o f  2T-type (resp. non 2T -type) a re  show n in

Fig. 1-3.

Lemma 3 .7 .  S uppose D * is  o f  9 T -ty p e . T h en  w e  hav e ( i)  nDn(R—R n )
n= 1

=D* n tl f o r each regular ex haustion IR O of  R , and  (ii) if  D * satisfies D* D*
=O D , it holds (R — D — OD) n A =LI— D* n A . H e re  bar stands f o r the  closure in
R*.

P ro o f . Case (ii). R*—D* cR—Dc R* — D* is  ev id en t. O n the other hand,
from  aD.R — D w e have  R*—D* = R* — D* + O D  R — D, hence R—D=R* — D*.
Consequently, we have

R— D —a D = R* — D* — ap =R*—D* + D* — ap =R*—D*,

and so we obtain (R — D — OD) n = — D* n J .  The proof of (i) is omitted.
Let D  b e  o f 2 1 - ty p e . T hen OD is weakly homologous zero on R  which

w e w rite OD 0  on R .  Recall that a p , o  if, fo r any regular region G  on R,
w e have C u j(— C)— 0 o n  0  where 6 denotes the doub le o f G, c= (3D) n G
and j  the involutory mapping of O  (cf. M a rd e n  [9 ]) . F ro m  the assumption of
D  we have

Lemma 3 .8 .  Fo r a  giv en D  o f  9 1 -ty pe, there ex ists a  canonical exhaus-
tion  {R„} o f  R  such  that (i) OR„ is  piecewise analy tic, (ii) Dn (O R ) is  an  arc
which divides D  into tw o regions of  D.

P ro o f . D e n o te  b y  L I (resp. (2) th e  d o u b le  o f D u O D  (resp. Q=R— D)
with respect t o  OD, and {fin } (resP- KJ) a regular canonical exhaustion o f  b
( re sp . 6 ) . W e  set A, = /3„ U jr)„ (resP. a„--Onu .0„) w here j  m eans th e  in-
volutory mapping of 15 ( re sp . 0 ) , th e n  { 6 }  ( r e s p . { 0 } )  is  a n  exhaustion of
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b  (re sp . 6 )  b y  relative compact reg ions. F u rthe r, by  se tting  G„ =(b,, n D) U
n 0), w e get an exhaustion {G„}  o f R .  N ext, by suitable m ethod, w e can

take  th ree  sets {S„} , { S }  and { S }  o f strips on R  su ch  th a t, (a ) each com-
ponent o f {S„} contains a  subarc on OD, (b) {S ,}  (resp . {SM  is contained in
D  (resp. 0 ) ,  s o  t h a t  the set R „=(A , n D—{S„} — ISO) u (n'„ n -  {so - {so)
i s  a  canonical region on R .  T hus w e  can  ob ta in  the exhaustion { R „}  o f  R
satisfying the conditions of th is L em m a (c f. Ahlfors, L .  and Sario , L . [2 ],
p. 61-63).

Hereafter, we call such a canonical ex haustion { R„}  a  normalized exhaus-
tion associated w ith D* of  S T - type.

3.5. Convergence theorems o f  harmonic differentials 1 . L e t  R , D  b e  the
sam e as in 3.4. W e set Q  =  R —D UOD and d ,  Q  w here bar stands for
the closure in R *, and consider the following sets :

a  relative compact (on R )  open arc on 052,

= {the boundary component of d ,  including 3t -2 }— d .

Lemma 3.9. ( i)  F o r d ie Q )  ( re s p .  F h ,„ (Z io — d ,  0 ) )  w e m ay
s e t ,  o n  d  (resp . 00  n a), f = O. ( i i )  F o r  co e 1.„0 (d ,  Q )  ( re s p .  F „ 0 ( .1 ,  Q ) )  it
holds that w -=0 along d  (resp. n 3 f2).

P ro o f . Omitted (cf. Lemma 2.2 and its Corollary).
A t first, we consider convergence theorems o f  real harmonic differentials

in case where R n n = S-2„—* Q .  Suppose {R „}  i s  a  normalized exhaustion as-
sociated with D* of g T-type, and we set

i„ = {the boundary component of Of2„ including d } ,

ZI 0n — a g 2 r1 . -371  U  In ,

and show the following lemma.

Lemma 3.10. (1) F hea(a0„— d, f2„) ir'he.( 4— sa f , g2), F ho(s, h o
(.91, 0),

( i i )  r  h e o ( a  „  f  Q r 1 ) -r h e o ( L i ft — a 3  
(2 ) ,  

r
h 0 (

i
n l  

Q
 / I )  .1-'h()(.11 g7 ),

h e o (a Q t, 4 011, g2
n)

f .  heo(AS2 g 2 ), h o ( 4 011, Q n ) 1 1 0 ( Z I 0 ,  12 )•

Pro o f . W e must show on ly  tha t fo r co e F ( Q )  there exists {w„},°°,_ w i t h
co„e T (,Q) such that Ilco — wa,„—>0 as n.—(x), where r ( Q )  (resp. F (52„) means
Fh e „(Z10 — Ja Q )  etc ., (resp . -  hen(  Q n — d ,  Q „) etc.,) (cf. Lemmata 3.3 and 3.4).
Concerning the case c f .  Lemma 2.5 in [1 1].
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Case (i). F rom  L em m a 3.9  and Lemma 2.2, it h o l d s  t h a t  rasif, f2)1 0 ,,c
ho(.1  Q n ) ,  hence we get the conclusion in case F,„(..al, *) by Lemma 3.3. Next,

w e prove the case r h e o (* —  d ,  * ) .  From  Corollary o f Lemma 2.2 w e have, for
m > n , the relations: r a d ,  Q„)= Tad , 52,„)1

0 ,, and F a d ,  E2)10„ rh o (S1  Q„).
W hile, suppose that {co n }  w ith  con E Q„) i s  a  sequence such that Iko n —
0)110 . -- 0  a s  11-4 co. For each dg eF e

°
0 (4 — d ,  S2), the restriction of d g  t o  Q„

h a s  a  decomposition o f th e  fo rm  dgl o ,,=du„+dg o „  w h ere  dg„„E f e ,(Q „) and
du„ E F„0 ( 0„ — 0 „ )  f o r  sufficiently large n. C o n se q u e n tly , w e  g e t <co,
dg* > =lim  <co„, du„> 0 = 0. H ence, w e F a d ,  52) and from  Lem m a 3.3 we
have the conclusion.
The case (ii). At first, w e prove the case of 1- ,,„(*— e , *). Let y  be an ana-
lytic closed curve on Q 1 w hich  separa tes the component o f  z l ,  including d
from  A . W e w rite  Q ,, —y =Q u S2',', w here d  caS2'„. F o r  a  function g  with
dg E  r h e 0 0 0

 Q ) w e set f „=g  on Q„ and f „=- 1 1 "  where g '= g  on y and
g ' =0  on 052 — y . T h en  df „ h a s  a  decomposition o f th e  fo rm  df„=du n +d f o r,
where du„E F eo(a Q n — / II ' g2n )  ( c f .  Corollary o f  Lemma 2.2) and dfo n e Fe 0 (0„).
T h u s  w e  have a sequence {du,,} w i t h  dit„e - h (ar2 i „ ,  Q „) s u c h  th a t  11 du n- er).-

df II „ II df — df.11 Q„ -40 . N ext, w e show the case E h„(., 0 ) .  I n  o rd e r  to  use
Lemma 3.3, we consider a special exhaustion. Let G  be an end towards
W e set G„= on u G  a n d  if„---aGn u (4— ti ,), then for each m, n (in> n), w e  have

heoa n — n t, G  n i)IG n rheo(Âr  I , , , G„) and rhoo(AQ g2)I rh e O an  I n , GO (cf.
Lemma 3.9). The restriction of w  t o  G„ w ith  w Q ) has a  decomposi-
t io n  o f th e  fo rm  w = a„+ w „ where a: E rh„(Z, —  I„ , G„) and con e l . „0 (/„, G„).
From  this form  w e know  a: = 0 along naQ , hence o-„= e  F , m (i„ n of2, G„).
By the same way as in Lemma 3.3, w e have w =w , + d f *  where co, e F„„(a, Q)
a n d  (if — (if, I I G,,—> 0  as n—> oo. F ro m  df .„ e Fa/„ n ao, G„) we have df E rh e o

(AQ
Q), so w= w 0 . W riting w„ = w„}„,, w e can  g e t {w„} w th e ( / )- - - hos- - -

so  tha t 11 w — co„11,2n - 0  as n—)oo. Thus from Lemma 3.3 w e have the conclusion.
q. e. d.

3.6. Convergence theorems o f harmonic differentials II. W e consider the
convergence theorems o f  real harmonic differentials on R „u Q where n  is fixed.
Let R , D * and {R n }  b e  the sam e as in 3.5. W e  set W„—R, u Q, 4 „= W„— W„
and

a= D* n A , dn—  awn, d„„,—R„, n c l
n

fl = {the component of tr„ including sat„}—,sin ,

= { th e com ponent o f  A'n in c lu d in g  d„} —

Lemma 311. Assume t h a t 6 -4— a consists o f  ex ac tly  tw o  boundary  points
o f  border ty p e  an d  is equal to O D  n A , then  w e  hav e  the follow ing relations
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f o r m—oo (n: fixed):
(i) Theo(d'u-1 n m  ifn) r

heo(
4

;1
—,s

i „
,
 WH), W ,7)-rk0 (si„ , wn),

r h e 0 (4,, — w„) -rkeo(4;, — fl, w,,), rho(a,.,n, w„).rk0(13, wn).

P ro o f . This lem m a can be proved by the  analogous method a s  in  Lemma
3.13 and so omitted (cf. Lemma 3.6 and 3.7).

Lemma 3 .1 2 . ( i )  Suppose L  i s  the f am ily  o f  all cu rv es  o n  W„ (n: fixed)
w hich start f rom  a  param etric disk  and  tend  to  13, then w e m ay  set, f or each
dg e Th e o (z1 —d„, W„), limg = 0 f o r  alm o s t all c  o f  L p  w h e re  lim g  m eans the
lim it g  along c.

(ii) A ssum e th at  ai—a consists o f  ex actly  tw o p o in ts  o f  b o rd e r ty p e . I f
{df,,} , w ith df,,ET„ eo . Wn) a  sequence such that Ildf—df„11,,,—>0 as
n-+u , th e n  df e rhazi R).

P ro o f . Case (i). B y use of Propositions 3 , 4  a n d  Lemma 1  in Yamaguchi
[17] we can prove (i) easily and  so omitted.
C ase (ii). Because OD c (2, w e  h av e  VV„ nd=d n = 4  n (R— D)D(R* — D*) n d,
hence from  th e  definition o f  D * of 9 f - ty p e  w e  have /3= W,, n — n

— — (i)-c — oc) = d — ,  a n d  s o  w e  have (71 U fi =4 1 .. N ext, w e  m ay  se t IfI< K ,
Ifk l < 2 K  a n d  lim f,(P )= f (P ) fo r  fixed P E R .  From  Lem m a 3.6 w e have only

k  co

to  p ro v e  dfe u d o , R )  w here y,„={Q e  :  d(Q, a) 1/m} a n d  d,= — /1 1 .
Denote th e  se t  {Q E R*: d(Q, D*)<11m} b y  S .  T h e n  th e re  e x is ts  a Dirichlet
function on, o n  R  w hich is continuous o n  R *  a n d  0 .=  1  o n  S , tk , n = 0  on
R* — S I„ , a n d  0 From  L em m a 1 i n  [1 7 ] , t h e  differential
d[(1 —0, ) .fk ]  belongs to r 0(R )  because u fi = 4  a n d  lim G  = 0  f o r  almost
a l l  c E L (concerning L ,  se e  Proposition 4), a n d  w e  have  ci[f (1 V i.).fk ]
= e  dy m u zl , R ) because E n y,„— {0} a n d  (1( f e r iôkm U 4 o  R ) .  While
we have

IldF„„k df II 211dfk— df II wk + m: xlfk—f 1114.11+ 2KE ,

where S  denotes a  com pact set on  R  such that II dt/f,„11,_s  < c .  N ote  m  is fixed.
Therefore, from  ifk —fl —*0 o n  S  a s  k--)- c o , w e  g e t  11 — df11-4) as
we obtain df heo(Y. U z 1 ,,

 R ) .
q .  e .  d.

From  now  o n , we consider the convergence theorems o f  real harmonic dif-
ferentials in case W„ = R„ U R .  Note d„' = W„— 14/„.

Lemma 3 .1 3 . A ssum e th at  d —  consists o f  ex actly  tw o boundary  points
of  border ty pe and  is  equal to  ap n d , then w e have the follow ing relations:
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( i ) Wn).Th0(fJ, R), r h„(A;,— — 13, R),
(ii) h o (s( '1,0(oc, R), — „, W n ) . F 1,„(4 — of, R) .

P ro o f . C a se  (i). A t  f ir s t  w e  s h o w  th e  c a s e  F h o (13, R). W e can extend
df E n o (A;,— WO to R  such  tha t df e r?,,(A R ) since fl =  —a (cf. Lemma
3.7). Therefore, for each co E  h o (fl, R) we have < a), df*> w n = 0  where dfe

W„), hence co„ = col w „ Fa/3 , W ,) a n d  from  L em m a 3.3, w e have the
conclusion. N ex t, w e  p rove  th e  c a se  r heo (z1 — R ) .  W e  have  already known
that T h0 (13, R )  r h o (fl, ( m  >  n). W hile, suppose {ain } w ith  c o n e F„„(1, W„)
is a  sequence such that 11(11 — colt w n —>0 a s  n—> co, then by Lem m a 3.7 w e have,
f o r  each dfe n o (A — R ) ,  < w , df*> =lim  <df*, to n > w n = O. H e n c e ,  w e  have

n .00

wc F
h 0

(13, R ) and  from Lemma 3.3 w e can get th e  result o f  this lemma since
dfe W„) for sufficiently large n  (cf. Lemma 3.4).
Case (ii). F o r  t h e  c a s e  I- — , R ) ,  w e  h av e  dfl w „=df„ E r h e o (AL—se„, wn)
w ith  each  dfe F„,„(A R ) (c f . Lemma 3.7), hence from  Lem m a 3.3 we get
t h e  result. F o r  t h e  c a s e  r h„(x, R ) , w e  a lre a d y  k n o w  th a t  The„(4 — R ) I

T„,„(A,, — n, W OI F heo(A ;n —  .5zif  W m )1 W  .rh e o (A ;t—  '- sz n , WO f o r  m > n. O n  th e
other hand, if  {df„} w ith  di:, e The„(z1,, — Wn) i s  a  sequence such that 11 df„— df

v v „— >0 a s  n—> co , then from  Lem m a 3.12 w e have  tlf e "„e „(4 — R ) ,  hence we
can get the conclusion. q. e. d.

§ 4. Convergence theorems o f  behavior spaces of X-type and its  applications
to conformal mappings

L et R  b e  an open R iem ann surface of genus g  ( g  co) a n d  R * (resp. A)
its  Kuramochi's compactification (resp. Kuramochi ideal boundary). Suppose D*
(resp. D = D* nR) i s  a  region o f  .9 Nresp.1 -)type a n d  {R „ } i s  a  normalized
exhaustion associated with D * . A s in  § 3 ,  w e  s e t  S2 = R —D, Q =
Ru ns2 a n d  W,, = R„ u  0 ,  th en  the re  ex is ts  a  canonical hom ology basis {A i ,
B1 } 1 o f  R  (mod 4 ) such that (i) {A i , Bi }  w ith  A i , B 1 cS 2„ is  a lso  a  canonical
homology basis o f  f l„ (m od dividing curves o n  Q „) fo r  each  n ,  (ii) {A i , Bi }
with A i , B i c Wn is  a ls o  a  canonical homology basis of l4'  dividing curves
o n  W„) (cf. Ahlfors and Sario [2]). Further, a s  in  § 3, we set

= {Li , j -= 1, 2,..., g: e a c h  L i  i s  a  straight line o n  th e  complex plane
which passes through the origin} ,

e  =  {Li : f  for Ai , B.; c (2} ,

szie = a  relative compact (on R) open arc on a D ,

= {the component o f A ,  including aDI ,

„= {the component o f 052„ including sal ,
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.40 „=8s2„—a u I„ .

Besides these sets we consider a set of complex numbers and spaces o f differ-
entials on R  and Q„ such that

Z ={ z o , z i , = Iz i I = lz;7 1= 1}

A x (g2)= A.„(-To , Q, Z)

= {.1e C/1 A „„(Q) + A h e (S-2)} E L i  for j  with A j , B i c 0 ,  (ii)

Im (A )e r h 0 (.21, 0 ) , Im(2'1,1)eF h 0 (.4, Q) and Im(2 0 /1)e F „„(A0, f2)}

/q(0„)= A s= A x (..2 „o , „, Z )= { A e /1„„(0„): (i)5 ÂeLi with A i , Bi

Q, (ii)1m(2, A) E r h o (d , Q„), lm (2'1 ,1) e F,, 0  (I „, „ )  and
IM(2 0 A) E F„o (d o „,t2„)} .

Then we can get the following lemma:

Lem m a 4 . 1 .  A.z(0„) A .„(0), hence A x (0 )=

P ro o f . At first, we consider the following auxiliary subspaces:
A' = the space spanned over the real number field by {Ci a,(A i ),

A i , B i c 521 where a „(y ) denotes the reproducing differentials in
r e w i associated with y  and Ci  i s  a  complex number such that
Ci  E L i  and lCi l =1,

A" =CItz  IF heo(A Q) + f i r h e P l o  —a, Q)+ z0Fh e
0(Al2—  /10, g2)1

A " = A .(0 ) n A „„(0), A = CI{ A ' + A "+ A "} .

Then from Lemma 2.6 we have A =- i/4*1-. Next, from Lemma 3.10 we can
get i i t t i = Ax. Since iAt-L D A ., can be proved analogously as
in Lemma 4.3

▪ 

in  [Il] (c f. added in proof this paper), we can conclude A ( Q 0 )
q. e. d.

Next, we set .4;,= -If„—pv„ (where W„.---R„ u Q  as above) and

• = aw,„ Lze„„,= ,‘„ n R,„, a= A  n D*

„= {the component of zr„ including .21„}—.4„ ,
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.q„„, = { the  com ponent of Ll'n in c lu d in g  „el— tun, nm •

N ote th a t  A = A = 4 — si„U .q„ a n d  D* is 9 ''-type . Further, w e consider
the following subspaces o f differentials on Wn :

= wn) ;r„ (2' w „, w„, Fv =  {  E Ci{ A 1,0 ( W„)+ A h e ( W„)} : (i)
AE L i  f o r  A i , W „, (ii) Im  (f, A) e r h s io( n, W„), Im (2', /I) T n o (g „, Wn ) a n d  1 m

(4 /1) e WO},

A'L„= w W „, Z)= /1„,(W „) = the spaces which a re  defined analogously
by replacing si n a n d  .1„ with si„,„ a n d  a n ,„ respectively, where m > n .  Then,
analogously a s  in  Lemma 4.1, we have

Lemma 4.2. A ssum e th at  the set c7c—ot consists o f  ex actly  tw o boundary
poin ts o f  border ty pe  and  is equal to OD n A, th en  w e  have A ,„(W „) /1"rxl(W„),
hence we obtain ;1-  x(W )=i/Tx(W ) * I .

A t last, we write Œ = D * n LI a n d  /3 =  — , and  consider the  following spaces
of differentials:

/LAY, R , Z ) =  x ( R ) =  x = Cl{A ho(R)+ A he(R)} : (i) AE L i , j =1,
A,,a,

2,..., g , (ii) 1m (6Z, ).) e r„„(oc, R ) ,  l in ( f i / l ) e r ho(fl, R) and Im(20/1) e rho(A0, R)}.
Then, by the same way a s  in  Lemma 4.1, we have the following lemma :

Lemma 4.3. A ssum e that d i h a s  a  planar neighbourhood in S toilow 's sense
a n d  D  a  region o f  g  1-ty pe , then  w e  hav e  ;1 - (1Y„) x (R ), hence w e obtain

x (R) = x (R)* I .
H ereaf te r, w e  call such  a  behavior space X ( R )  t h e  behav ior space of

X -type associated w ith 2, D* and Z.
Consequently, by use  o f Lemmata 4.1, 4.2 and 4.3, w e obtain the following

theorems:

Theorem 3 . A ssum e th at  d i h a s  a planarneighbourhood in S toilow 's sense
and D * is  a  region on  R *  o f  Pd-ty pe . T hen  w e hav e  f o llow ing  (1), (ii)  and
(iii).

(i) T here  ex ists th e  behav ior space irk  o f  X - t y p e  associated w ith .2 ,
D* and Z.

(ii) T here ex ists a  sequence T= {n k } (nk —>co a s  k--co ) o f  positive integers
su c h  th at th e  sequence { (b OE,(A i , A l W )1 k e T  ( r e S  P  •  {C O  j5 Wk)}keT
and { 0(0, Â ,  W ) 1 k e r ,

 conv erges locally  unif orm ly  o n  R  to cb„,(A i ,1
A ,  R ) (resp. 0 0 9 (B i ,  f x , R ) and 4)(0, A ,  R)).

(iii) Riemann-Roch's theorem f o r j .„ holds.



372 Kunihiko Matsui

P ro o f . Case (i). C f. Lemma 4.3. Case (ii). C f. Lemmata 1.4 and  4.3. Case
(iii). Since Ax  i s  a  behavior space, we have th is  conclusion by Theorem  4  in
Shiba [14].

Theorem 4. L et R  be  an open R iem ann surface w ith f inite  genus g  an d
z l, a n  isolated boundary  com ponent w hich consists o f  m o re  th an  one point.
S uppose D* i s  a  region of I ''- ty p e ,  a n d  that A (R )  i s  a  behav ior space of
X-type associated w ith  D *  a n d  Z . T h e n , f o r  su itab le  choice  of  g + 1
points P 1 , P 2 ,..., P g + ,  on  R , there ex ists a  meromorphic function f  which satis-
f ies the follow ing conditions: (i) f  has 71„(R ) behav ior an d  th e  residue of  f  at
P ,  is equal to  1 (or i), (ii) th e  div isor of  f  i s  a  m ultiple o f  (P 1 P 2 -..P g + ,) - ',
(iii) f (R ),  the im age of  R  under f ,  is  at m o st g +1  sh ee ted  o v er the R iem ann
sphere.

L e t D*= D t  b e  a  o p e n  s e t  w here D r denotes a  region of  9 ?- type,i=1
Z= {z 0 , z i , a n d  oci =z1 (1 D t ,  fl i =4 1 —oci . Generally  speak ing, the
sam e  conclusion  as abov e holds f o r  ;ix , w h ere  ;ix = {2 e a { A  ko + A he} ; (i)

E Li for each j ,  ( i )  Im21A e T h o (ct i , R), R), i =1, K  and
AJ ,Bi

lIn fIlE rh 0 (4 0 ) where z1 0 ) =4—
i =1

P ro o f . Since Kuramochi's compactification h a s  a  boundary property, A,
can  be  considered  a s  a  u n i t  circle. T h e re fo re , the  conditions in  Theorem 3
are  satisfied because R  is  o f  finite genus, hence by the  same way a s  in  Matsui
[11] we can prove this theorem.
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Added in  Proof

1. Correction in "Convergence theorems o f Abelian differentials with ap-
p lica tions to  conform al m appings. I "  This Journal, Vol. 15, N o. 1, (1975),
pp. 73-100.

W e  replace the p ro o f  o f  Theorem  2  w ith  the following (concerning
the prec ise  p roof, c f.  n e x t  paper). A t f ir s t ,  w e  note „A  Ahc, n A,,,, hence
„Ac Cl{A„o +A h e } , therefore, 0 A =C1{ 0 4 1 + A + A 3 }  where „A l =th e  space spanned
b y  g i o-(Ai ), Ci o-(Bi )11°=1 ( h e r e  Ci ELi c,,,...T), A =A h 0 1 a n d  A3= C/{ E  Zhl "  he 0 (.4

k=1
CO CO

— M } . C onsequen tly , w e  have Cl{A 1 ± A +A 3 } c  9t= n C l( E „A )={ 2eCl(A ,
n=1 k=n

+A +A 3 ): A eL ic  Y }  where A 1 =the  space spanned by g i o-(Ai ), ci 0.0 1 ) } A 1 ,
A•Bj

(here ( i = A h a ' n  Ah,. Therefore, w e have iW*1  9 1 ,  hence we can
conclude i91*-L = 91 and 0 A=91 in  the sense o f  Definition 1 o f  this paper

2. Supplement o f  th is  paper. In the p ro o f  o f  Lemma 4 .1  (o r  Lemma
4.2), the fa c t  iA*- A „ can  be  p roved  as fo llo w s (I  fo u n d  th a t it  is  n o t so
analogously as in Lemma 2.6). A t first, from Theorem 2  in  [11] w e can as-
sume n =  {Li: Lie i z ,  for A 1 , .B.; U0 an d  L i e fo r  A i , Bi c  U ,  w here  U0

(resp. U 1 ) denotes a  neighbourhood o f  A 0  (resp. —210 = d  ) } .  F o r  4.=
.1.+ 0 . *  with A e Ax  n M x*, 24.= df + io- = d f  + i*d f  o n  U ,  w h e r e  *df=

rho(B, 52) n F „„(Q) n h s e (Q)* T h u s  w e  have 114)112 < 4 , i e >  =  -
das-2

Re S (4))/(/)
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(see p. 93 in  [11 ]). Concerning th e  meanings o f  1 co, see [11] p. 77. From
z1 i n

w e g e t 110112 = _ 25f a .  B u t , since Ç j= O =  ( ; ) ,  we have

5 f  o- -=constant d(f 2 ) = 0  in  c a s e  arg z' — arg z +  n 
' 
1 fa=  constant 1 o- = 0 in

A A 2   A A

ircase arg z' — arg z =  2   , hence 13fa 1 = f a  =11m f a  < e  w h e re  B— yA, 0
p

and o-,, e r h o (/ „ ,  on) n r h s e  with Man —  allp ,.--*0 a s  n-+cc. T herefore , w e  have q5 =0,
hence Ax c ii1: 1  ( c f .  Lemma 1.3 in  this p a p e r) . Concerning the re la tion ;1- (W„)
c W „ ) * 1 ,  see Lemma 4.5 in  [11] and  Theorem 2 in  [1 1 ]. A t la s t, th e  re-
la tion  /L c  iii-„*1  i n  Lemma 4.3 is evident since 4 1 h a s  a  planar neighbourhood.

CI = A uB
61(

f t r
)

' AUB A


