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Introduction

The generalizations of the canonical slit mapping theorems for a planar
Riemann surface to open Riemann surfaces with finite genus were studied, at
first, by Kusunoki [7] and, afterwards, along his method by many authors, for
example, Watanabe [15] [16], Mizumoto [12], Shiba [14] and Matsui [11].
All of these conformal mappings can be classified to the same type in the sense
that the image of each boundary component of R is, roughly speaking, a
line segment. In this paper we shall consider somewhat different type of
conformal mappings of R such that the image of each boundary component of
R is, roughly speaking, exactly two segments with only one common point.
Such a mapping will be called here a conformal mapping of X-type (concern-
ing the strict definition, see Definition 2). This paper consists of two parts.
The aim of the first part (§2) is to show that on a finite Riemann surface R
with genus g there exists a meromorphic function f of Kusunoki’s type which
satisfies the following conditions (cf. Theorem 1): (i) the image of each bounda-
ry component of R is exactly two segments with only one common point and
each segment of the image has an arbitrary prescribed direction, (ii) the divisor
of f is a multiple of (P,P,---P,,,)"! where P,, P,...., P, are suitable points
of R, (iii) residue of f at P, is equal to | (or i), (iv) f(R), the image of R
under f, is of at most g+1 sheets over the extended plane C. Further, we
shall show a sufficient condition for the existence of a function of Schwarz-
Christoffel’s type on R (cf. Theorem 2).

The aim of the second part is to extend above mapping theorem to an
open surface. For this purpose, in §3 we will introduce the notion of a
Kuramochi’s boundary point of border type and show several convergence theo-
rems for real harmonic differentials on an open Riemann surface R. Next, in
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§4 we shall show the existence theorems of the behavior spaces A, of X-type
and the (Shiba’s) Riemann-Roch theorem for A, on R (cf. Theorem 3). From
these results we can show that there exists, on an arbitrary open Riemann
surface with finite genus, the meromorphic function of Kusunoki’s type which
has A, behavior and satisfies the conditions (ii), (iii) and (iv) as stated above
(cf. Theorem 4).
The content of this paper is as follows:
§1 Fundamental results on the behavior spaces.
§2 A conformal mapping of X-type of a finitely bordered Riemann sur-
face and the functions of Schwarz-Christoffel’s type.
§3 Orthogonal decompositions on open Riemann surfaces and convergence
theorems for real harmonic differentials.
§4 Convergence theorems for the behavior spaces of X-type and its appli-
cations to conformal mappings.
The author wishes to express his hearty thanks to Professor Y. Kusunoki
for his ceaseless encouragement and kind remarks in this research.

§1. Fundamental results of the behavior spaces

1.1. Behavior space. Let R be an arbitrary Riemann surface. The totality
of square integrable complex (resp. real) differentials on R forms a real
Hilbert space A=A(R) (resp. I'=I(R)) over the real number field with the
inner product defined by

<, 22>=ReSS (a,d,+b,b,)dxdy
R

where A;=a;(z)dx+bj(z)dy for a local parameter z=x+iy. It should be noticed
that the meanings of the letters A and I' are different from those in Ahlfors
and Sario [2]. With these exceptions, we inherit the terminologies and the no-
tations of [2] and [11], if not mentioned further.

Suppose R is an open Riemann surface of genus g (may be infinity) and
{R,} is a canonical exhaustion of R, then we can choose a canonical homology
basis {A;, B;}4-; of R modulo dividing curves such that {4;, B;} n D% is also
a canonical homology basis of D*¥ modulo dD¥ for each k and n, where Dk
denotes a component of R,,,—R, (cf. [2]). Further, suppose ¥ ={L;}_, is
a family of lines on the complex plane each of which passes through the origin.
We consider a linear space A, of A,, which satisfies the following conditions:

(a) there exists a subspace A, of A,,(R) such that A,+iA¥' <A, where

A, +iA%t means the vector sum of A, and iA%}+,

(b) <4, iA*>=0 for any A€ A,

©) S leLj,S AeL; for any led, and j=1,2,...,9.
Ay By
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Such a space Ay=Ao(L, A;, R) is called the behavior space on R associated
with % and A,, and Ay={1: 1e A, where 1 denotes the complex conjugate of
A} the dual behavior space of A, (cf. Shiba [14]). Here we note that the
definition of the behavior spaces is simplified as follows:

Lemma 1.1. A behavior space Ay=A4(&, A, R) satisfies always the fol-
lowing conditions:

(a) Ag=iA§* (therefore, A, with which A, associates reduces to Ay),

(b) S AeL;  for any AeA, and j=1,2,..,4.

Conversely/:h?ize subspace A, of A, satisfying (a), (b) is a behavior space
associated with &% (and A,=A,).

Proof. Since <A +A,, iA¥+id3>=0 for any pair of 1, A,eAd, we can
get <Ay, iA3> =0, hence Aycid¥t. On the other hand, from A,=A4, we have
iA§tciA¥ Lt c A, +id¥+ <A, hence we have A;=A,=iA%L. The converse is
evident.

From Lemma 1.1 we denote a behavior space associated with ¥ and A,
simply by A,=4,(%, R).

Lemma 1.2. If a subspace Ay of A, satisfies the conditions:
(@) Ap=idAgH,
(b) S AelL; for any ‘Aedy, and j=1,2,...,9,

A;Bj

(c) AonA,={0}, Ao n A,={0} where A, denotes the subspace of all ana-
Iytic differentials,
then Ay is a behavior space associated with %, and the converse is also true.

Proof. From (a) we have Ay=iAgtt+A5niAg*, and from (¢) Apnidg
=AoNA,+A4yn A,={0}. Therefore, Ay=iAg*L. g.e.d.

Corollary. A behavior space Ay(#, R) and its dual behavior space always
exist for any #.

Proof. Cf. Lemma 1.2 and Theorem 2 in Matsui [11].

Now we consider the following linear subspaces of functions and differ-
entials on R:

S(Ag, 1/0)={f: (i) f is a meromorphic function which has A, behavior,

(ii) the divisor of f is a multiple of 1/6},
D(Ao, 8) = {¢: (i) ¢ is a meromorphic differentials which has A, be-

havior, (ii) the divisor of ¢ is a multiple of J}.
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Then the following proposition is well known (cf. Shiba [14]).

Proposition 1. Suppose 6=0p/0g (6pNo={0}) is a finite divisor on R,
then the following Riemann-Roch theorem for A, holds:

dim S(4o, 1/6)=2[ord 6p+ 1 —min(ord dy, 1)]—dim [D(A,, 1/34)/D(Ag, 6)].

1.2. Convergence theorems for the behavior spaces. Let {G,} be an
exhaustion of R by regions which may be G,=R for all n. We assume the
existence of a canonical homology basis {4;, B;} of R modulo dividing curves
on R such that, for each n, {4}, B;}%2, is also a canonical homology basis of
G, modulo dividing curves on G, where g, denotes the genus of G, which may
be infinity. Let A,=4,(%, G, be a behavior space on G, associated with &,.
We consider the following subspaces of the differentials:

Ap=A5(R)={A: there exists a sequence {A,} with A,eA, such that

[A=2.llg, — 0 as n — o0},

Ao=Ao(R)=iAG(R)* .

Lemma 1.3. [If {i,} with A,eA, is a sequence such that sup|2,|¢, <o,

n
the limit of each locally uniformly convergent subsequence {A,} belongs to
Ay.

Proof. For each o'e Ay and ¢>0 we can find a regular region D on R
such that |lo'[|g_p<e& and a sequence {o,} with ¢,€ 4, such that ||¢'—a,|s —0
as n—o. Let K=sup|4,ls,. For the limit A of a locally uniformly con-

n

vergent subsequence {4, } (which we write simply {4;}) we have

N
| <A, ioc’*>|Z| <A, ig"™*>pl+]<4, ia’*>R_D|§|’}i_{g <A i6"*>p|+ Ke

Silim <4,, io}* >, |+2Ke=2Ke,

k=

hence we can conclude Aeidgtt=A,. q.e.d.

In section 4, we shall consider some metric conditions for Ay=iAgtt
(cf. Lemmta 4.2 and 4.3).

Definition 1. Suppose ¥ ={L;}%_, and £,={L;:j such that A; B;=G,}.
We say that a sequence {A}(ZL,, G}, of behavior spaces converges to A(R)

n=1

(a subspace of Ay(R)) if the following condition * is fulfilled:
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x if {4,} with A, e A3(%,, G,) is a sequence such sup ||4,]lg, <o, then the

limit of each locally uniformly convergent subsequence {4, } belongs
to A(R).
In this case we write AB(ZL,, G,)=A(R).
Note. Since A(R)c Ay(R), there exists, for any e A(R), a sequence

{A,} with A,e Ay(L,, G,) such that ||A—4,];,—0 as n— 0.

N

Lemma 1.4. Suppose AY(Z,, G,)=A¢(R), then Ay(R) is a behavior space
associated with . Moreover, there exists a sequence T={n,} of positive
integers such that the sequence {P,(A; A, Gler (resp. {dy(B;, Ab, G)lier
and {0, A%, G)jyer) converges locally uniformly on R 1o ¢,(A; Ao, R)
(resp. ¢q(B;, Ag, R) and ¢(0, Ay, R)).

For the definition of ¢,(4;, 4, R) etc., see [14] or [11] p. 81.

Proof. See Lemmata 3.1 and 3.3 in [11].

1.3. Extremal length. Suppose @ is a compact bordered Riemann surface
such that each component of dQ is a closed analytic curve or may be a
piecewise analytic Jordan curve. We call hereafter such a surface Q a finitely
bordered Riemann surface, and an endpoint of an analytic arc on 0Q a vertex
of Q. Let Q be the double of € with respect to 02— {vertex}. For a point
P of 0Q, we consider the following family {C}, of curves on Q:

{C}p={C: (i) there exists a ncighbourhood U, on @ of P such that

C=0Up—0Q, (ii)) U ndQ2—U,) is smooth, where U’ is a region
(on Q) that contains the closure of U,, (iii)) CcQ—K where K is
a (fixed) compact region on Q}.

Proposition 2. (Kusunoki [6]). (i) The extremal length of {C}p, is zero,
independent of K.

(i) Let ¢, ¢, be any two non-negative covariants square integrable over
Q-QnK, then there exists a sequence of curves y,€{C}p (y,N R={0}) tending
to P such that S ¢,ldz| + ¢p,ldz| >0 as n—oco.

Yn
Further, we shall use frequently the following results:

Proposition 3. (Ohtsuka [13]). Every Dirichlet function f on an open
Riemann surface has finite limits along almost all curves tending to the ideal
boundary.

Proposition 4. (Fuji-i-c [4]). Let {f,} be a scquence of Dirichlet functions
converging to a Dirichlet function f in Dirichlet norm such that f,=f on a
compact region K, for all n, and L be the family of all curves which start
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from points of K, and tend to the ideal boundary. Then, there exists a sub-
sequence {f,} of {f,} such that the limit [, =limf, along a curve ceL con-
c

verges to I=limf for n,— oo, for almost all curves of L.
c

§2. Conformal mappings of X-type of a finitely bordered Riemann surface
and the meromorphic functions of Schwarz-Christofell’s type

In order to use the Green formula for the harmonic differentials, we shall
study in 2.1 the properties of differentials in some subspaces and certain or-
thogonal decompositions. In 2.2, the notion of the behavior spaces of X-type
is introduced. Under this notion, we shall consider, in 2.3, the conformal map-
pings of X-type of a finitely bordered Riemann surface. In 2.4, after defining
the meromorphic functions of Schwarz-Christoffel’s, type, we shall show a suffi-
cient condition for the existence of such functions.

2.1. The properties of I',, and the orthpgonal decompositions. Suppose

— K

R is the interior of a finitely bordered Riemann surface R and dR=\U 4, where

k=1
each 4, is a boundary component of R. We set

I, (R)={dferl,(R): f is harmonic on R—{vertex} and continuous on R).

The following lemma was suggested by Y. Kusunoki and F. Maitani.
Lemma 2.1. I, (R)=CIl{I,(R)}, where Cl stands for the closure in I'(R).

Proof. At first we prove that dueCIl{I,(G,)} for duel,(R) where G
denotes an end towards 4, (cf. [11], p. 76) which is conformally equivalent
to a ring domain r<|z|<l. We write

—auidut— (] ar)d
gdz=du+idu g 7du L

where y denotes an analytic closed curve on G, homologous to 6G,NR. The
o0

function g being analytic in r<|z|<l1, g has the Laurent expansion g= 3 a,z*.
-

Next, we set
n .
gp= 2. a,z*, a=& du*,
= v

duf‘,:Re(g,,dz+ ,;’7{ d;) )

We normalize so that u’(Q,)=u(Q,) for a fixed point Q, on G,, then we have
dut eI, (G,) and |du—duk|z—0 as n—oo, hence dueCHTI,(Gy}. Now we
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show CHI,(R)}=T,(R). Let G, be another end towards 4, which is con-
formally equivalent to a domain 1>|z|>r (>r), and ¥, a functione C®(R)
such that Y,=1 on G}, y,=0 on R—G,. We write for duel,(R)

K K
Jm= Z l//ku:;n f= Z lpku’
k=1 k=1
K K
G=U G, G'= G,.
k=1 k=1

The function f,, (resp. f) on R has the Royden decomposition of the form f,,
=0, +fom (resp. f=u+f,) where v,e HD(R) and f,,, f, are Dirichlet potentials.
Since f,,, is harmonic on G’, we can set f,,=0 on OR from the regularity of

each point on OR and Lemma 3 in Ohtsuka [13]. Consequently, we have
dv, €T, (R) and

dv,,—dull? £ | dv,—dul|? + | dfom—dfoll > = | df,,— df II?
S(Xldup—dul +3 Max |up —ul-dy[)?.
k k G-G’
Therefore, |dv,,—du||—0 as m—o0, hence due CI{I,(R)}. q.e.d.

We consider the following spaces of differentials on R:
I'(R)={wel,(R): (a) w is harmonic on R— {vertex}, (b) u is continuous

at each vertex P, where w=du near P},

rhse(R)=rhse(R) n FI:(R) s

rlra(R)=rllo(R) n rh(R) .

Corollary. [,(R)=CIHT,(R)}, I'(R)=CHT,(R)}, I'(R)=CHT(R)}.

Proof. From Lemma 3 in Accola [1] we have w=0 along OR—{vertex}
for werl,(R) and from Proposition 2 u is continuous at each vertex P where
w=du near P, hence I, (R)cT,(R). On the other hand, it holds TI,,(R)L
I (R)* from Lemma 2.1 and Proposition 2, hence CI{I,,(R)}<T,,(R), so we
have I',(R)=CI{I',(R)}. The other are evident by Lemma 2.1. q.e.d.

Now we introduce some subspaces of I'y(R). We divide each 4, into a
union of «, and B, where o, B, are open sets on A4,, f,=closure of B, on 4,
and o,=4,—p,. Let a= \’ij o B= k'i/ Bi. Further, we set

It (@ R)={dfe Fg,(R)k:_lthere exiks_tsl a neighbourhood of & on R which

is disjoint with the support of f},

Fco(&, R)=Cl{r¢]’o(o_(, R)}, rhco(&, R)=rh(R) n reo(&’ R) )
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I'yeo(®@, Ry={df€rl, (R): f=0on &},
Ty,(B, Ry=T,,,(& R)** nrl,,
(B, R)={werl,(R): =0 along f— {vertex}},
Dy =the family of Dirichlet potentials on R.

We shall identify hereafter all constant functions with zero.
Lemma 2’2° rhcv(&w R)=Cl{rlu'o(°_(~ R)}’ rlm(/i* R)=Cl{r/m(/i’ R)} .

Proof. The proof consists of the following four steps:

(@) Thoo(@ RY* LCHT,(f, R)}

(b) CHrI,.(& R)}=T,. (& R), i.e. CI{T, (. R)}<I,(f, R),

(©) [(By RYS CHT, (B, R},

(d) (B, R)=CHT,(B, B)} and I (& R)=ClH{I & R)}.
(a) This is evident from Proposition 2 and the Green formula.
(b) We show at first that we may set f=0 on a—{vertex} for dferl,, (& R).
From the definition of I'.(& R) there exists a sequence {df,} with df,el}! (& R)
and neighbourhoods U, of & on R such that f,=0 on U, and |df,—df|—-0
as n—oo. Let f,=u,+f, be the Royden decomposition of f, where f,, €D,
and u,e HD(R). Because f,=0 on U,, we have u,=—f,=HY} —on U, From
the regularity of each point on « and Lemma 3 in Ohtsuka [13] we can set
u,=0 on «. Consequently, if we put i,(p)=u,(p) for pe R and u,(p)=—u,jp)
for pe R,—R where R, denotes the double of R with respect to o— {vertex}
and j is the involutory mapping of R,, then {dii,} is a Cauchy sequence on
R, and 4,=0 on a. Accordingly, there exists a subsequence {n,}, f,e D, and
ue HD(R) such that |df,, —dfol—0 and |du,—du|—-0 as n—oo, where u=0
on a—{vertex}. Therefore, f=u+f,+const., while f,=0 as dferl,(R), hence
f=0 on o—{vertex}. Next, we show I, {& R)=Cl{T,.(& R)}. For dferl, (&,
R) we set F(p)=f(p) for pe RUa—{vertex} and F(p)=—f(jp) for peR,—R,
then dF is odd for j and (IFeI“,,(,(li). Therefore, from Lemma 2.1 there
exists a sequence {dF,} with dF,erl,(R,—{vertex}) such that |dF,—dF|R,—0.

Denote %—{F,,(p)—F,,( jp)} by G,p), then dG,|gel,. (& R). Further, we can

get ||dG,,—cIF||R1§—é—lldF—dF,,ll+ I dEj) = dF, -0 as nsw. Consequently,

we have df=dF|ge CliI,. (@ R)}. By the same way as in (b) we can prove
(c) easily and so (d) is cvident. q.c.d.

Corollary. If a differential wel(R) is in I',(f, R), v=0 dalong p—
{vertex}, and the converse is also true. If a harmonic Dirichlet function f
can be written in a form f=H% where f'=0 on a, then dfel, (& R).
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For a harmonic Dirichlet function f there exists a function f' on R such
that f=H#% (cf. Constantinescu und Cornea [3]). Hercafter, f will be called
the resolution of f.

Lemma 2.3. [(R)=T*4T,,(a, R)+T},(B, R),

reu(&’ R)=rheo(as R)+rcu .
Proof. Omitted.

Lemma 2.4. CUHI%(a, R)}=ClT! (&, R)}=TI_(a, R),

where T (& R)={df:(a) f is a continuous Dirichlet function, (b) there exists
on R a neighbourhood U of & which is disjoint with the support of f}.

Proof. Let f=u+f, be the Royden decomposition of f where ue HD(R)
and f,€D,. Analogously as in Lemma 2.2, u has a resolution f’ such that f’
=0 on «. Therefore, by Corollary of Lemma 2.2 we have duel, (& R) and
so dferl, (& R)+I,,=CII! (& R)}. CHI'l(& R)}cCHI (& R)} is evident.

q.e.d.

Corollary. If df, and df, arc in I, (& R), then d{Max(f,, fo)} el (& R)
and d{Min(f, )} €l (& R). If dferl. (& R), then d[Max{Min(f, k), —k}]
el (&, R), provided k is a positive constant.

2.2. Behavior spaces of X-type on a finitely bordered Riemann surface
K
Let dR=\U 4, (resp. .#) be the same as in 2.1 (resp. §1). We divide each
k=1
boundary component 4, into a union of «, and f, where each of «, f, is an
open arc on A, and o N pB,=0. The set S={a,, B, o3, Ba,..., ag, Px} Wwill be
called hereafter a partition of OR. Next, we associate each o, (resp. f5,) with a
complex number z, (resp. z;) such that |z,|=|z[;=1 and denote the set

{z\, 24, 23, Z%+.n Zx» 2k} by Z. For S and Z we consider the following
subspace of differentials:

AR)=A(ZL, R, S, Z)={Le Ay (i)S AeL; for any LeA, and each
A, Bj
J» (i) Im(Z,A) e I'yo(o, R), 1111(2;().1)61",,,,(/},(, R) for each k}.

Lemma 2.5. Assume that arg z,—arg z;,x%0 (mod n) and ¢ e A, satisfies
the conditions: Im (Z,p) el (2, R) and Im(zA) e, (fi. R) for each k. Then
there exists a sequence of arcs {af}%, (resp. {Bp},) such that

(@) of (resp. B}) is an arc on o (resp. f,) and o 1 o, (resp. fi 1 B,
(b) lim S =0 (resp. lim Sﬂ"</)=0).

n—oo J%, n—o0
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Proof. Let P, O, be the endpoints of B, and {c}}2, (resp. {c;"}%%,)
sequence of arcs in Proposition 2 that separates P, (resp. Qk) from a compact
region on R—{P,, Q,}K_,. Then there exists for each ¢} (resp. c;") a neigh-
bourhood U} (resp. U}") of P, (resp. @) on R such that c!=2aU{nR (resp.

m

¢'=0U;"NR). Next we write
=, — U U U, Bi=P— UL U, li=aj+ i+ ci+ci.

Note that each af (or f}) is an arc. From Proposition 2 and the semiexactness

of ¢ we have S =0 and S qﬁ+8 .¢—0 as n—oo, hence S ,.¢+S,,..¢"’0 as
n—oo. On the other hand, from the condmons on ¢ we can get

0=Sa"lm (Zk(ﬁ):Sa"(w*cOSO_wsin0)’
=S,,..[m(2k¢) S (w*cos0' —wsin0'),

k

where Re(¢p)=w, z;=¢"? and z;=e!’". Consequently, we can conclude that

S ¢ and S ¢ converge to 0 as n—oo. q.e.d.
ap By

In order to prove that A, (R) is a behavior space, we consider the following
auxiliary subspaces:
A'(R)=the space spanned by the set {({;0(A4)), {;0(B;)}%=, where {;e L,
{;#0 for each j, y means the genus of R and o(y) is the y-re-
producer in r,,

AH(R) = rhm(R) 4‘ irhm(R) ’
A"(R)=CH F (2T e A=t R+ ST e A=y RV}

A (R)=CIH{A'(R)+ A"(R)+ A" (R)},

where z,I', denotes the subspace {z,df:dfel,} and A+B (resp. ZA,) means
the vector sum of 4 and B (resp. {4,}).

Lemma 2.6. A,(R) is a bchavior space, i.e. A,(R)=iA,(R)*L.

Proof. By the same method as in Lemmata 4.1 and 4.2 in Matsui [11]
we can get easily the relations iA(R)*L=A(R)cid(R)**=A,(R). Therefore,
we have only to prove that iA*n A, nA,={0} and i4*n A, n A,={0} (cf. Lemma
1.2). Let P,,Q, be the endpoints of B, From Lemma 2.5 there exists on
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R {2y, {Brr,, {Urt=., and {U;"}*, such that each ofg ¢, Sﬂn(pg . ¢ and

k

S ,» ¢ converges to 0 as n—oo, where ¢f=0UrNR, ¢;"=0U"NR, a}=0,—UsU
U," and By=B,—UpuU,". On the other hand, from the semiexactness of ¢ we
can take a functnon fk separately near each A4, such that df,=¢. Now we
denote V,= U Up and V= U U,", then we have by the Green formula

> ="li12 <@, idp*>pr_y,-v,

- _,ZRe<SA, ¢SB,~IT$_ SBJ ¢S l¢>— }.l—»nolo Re[Z(Sa:fki—(ﬁ * gﬁlfk E)} '

While from ¢e A, we know Im(z,¢)=0 along «f and Im(Z.f,)=const. on af.
Consequently, from Lemma 2.5 we obtain

Re(],/i78)= | . [Re Gufo)- Im(zi9)
+Im(z, f}) -Re(Z,¢)] — O0asn — ©.

Similarly we know Re(gﬂ"fki(ﬁ)—»O as n—oo, hence A . niA¥nA,={0}. By the
same way, we can provekAxniAi‘n/ia={O} and A, =iA¥L, q.e.d.

Hereafter, such a space A (R) will be called a behavior space of X-type
associated with (S, Z).

2.3. Conformal mappings X-type. At first we show the existence of a
meromorphic function with A, behavior. Let S={a;, B,, a3, Bs...., %k, Bx} and
Z=A{z,, z\,..., zx, zx} be the same as in 2.2. From Lemma 2.6 and Proposition
| the Riemann-Roch theorem holds for A%, R,S,Z), hence by the same
method as in Kusunoki [7] or Matsui [11] we can prove the following lemma:

Lemma 2.7. For each pair (S, Z), there exists a meromorphic function
f on a finitely bordered Riemann surface R such that (i) f has A, behavior,
(ii) the divisor of f is a multiple of (P\P,---P,,\)"" where P, is an arbitrary
point and P,, Ps,..., P ., are suitably chosen g points of R, (iii) residue of
f at P, is equal to 1 (or i).

Lemma 2.8. The meromorphic function f in Lemma 2.7 is continuous on
OR.

Proof. We have only to prove the continuity of f at the point P belonging
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to the set {vertex of R} U {endpoint of «}. At first we prove it in case P
e {vertex of R}n{endpoint of «}. Let U be a neighbourhood of P on R
which is mapped homeomorphically by ¢=h(Q) onto D,={¢: [¢|<], ImE=0}
such that h(P)=0 and U-—P is conformally equivalent to D.—{0}. Further,

suppose D, is the image of U under the function F(Q)={f(Q)}ge‘“ where
0=0,=argz,—argz,, 0<0<2n and y is a suitably chosen real constant. Then
G(&)=F(h=")=u(&)+iv(¢) is finite Dirichlet integrable over D, and v({)=0 on
real axis. Therefore, if we set G(&)=G(&), then G(&) is analytic in {&: 0<|¢|
<1}. Consequently, the Laurent expansion of G(¢) in 0<|£|<1 has the singular
part with finite terms and G({) may have a pole at ¢=0. But, from Propo-

sition 2 there exists a sequence {y,} of curves on R tending to P such that
S dG—0 as n—oo where s,=h(y,). Accordingly, G(£) has no singularities at

Sn

£=0, hence f is continuous at P. By the same way, we can prove the con-

tinuity of f at each point belonging to the set {vertex of R} U {endpoint of a,}.
qg.e.d.

At last, we show the existence of a special kind of conformal mappings of
R. Suppose R is the interior of a finitely bordered Riemann surface with genus

g and OR= U A, where each 4, is a component of dR. Let S={u, B, K, be
k=1

a partition of R where each of o, B, is an open arc on 4, and «,=4,—p,.
Further, let Z={z,, z},..., zx, zx} be a set of complex numbers.

Definition 2. A conformal mapping f of R into a Riemann sphere C
is said to be of X-type if f is a meromorphic function with A (R) behavior.
According to Lemmata 2.6 and 2.8, we can get the following theorem.

Theorem 1. For each pair (S, Z), there exists a meromorphic function
f on R uniquely except additive constants such that:

(i) f is a conformal mapping of X-type, that is, each image of A, under
f is exactly two segments with only one common point. Moreover, the direc-
tion of each segment on f(4,) is arbitrarily prescribed,

(ii) the divisor of f is a multiple of (P{P,---P,.,)”! where P, is an arbi-
trary point of R and P,,..., P, are suitably chosen g points of R,

(iii) residue of f at P, is equal to 1 (or i),

(iv) f(R), the image of R under f, is at most g+1 sheeted over C.

Proof. From Lemma 2.7 we have only to prove (iv). For we& f(OR) we
have by the argument principle
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! S ar __ 1 f g darg (f—w)=0 (cf. Lemma 2.8) .
2ni Jor f—w 21 =1 ) ax
Consequently, we obtain N(f, w, R)=N(f, w0, R)<g+1. q.e.d.

Remark. Suppose R is plamar and f is a conformal mapping in Theorem
1, then f(4,) is a figure like Roman capital letter V or T.

2.4. The meromorphic function of Schwarz-Christoffel’s type. Let R be
the interior of a compact bordered Riemann surface with genus g and JOR

K . i —_ .
=\U 4, where each 4, is a contour. Suppose 4,= \U &} where each af is
k=1 P

an open arc such that of nap={0} for r&m. The set {al, a?,..., ai',..., al¥}
is denoted by S;. Next, we associate each o} with a complex number zj
such that |z{|=1 and denote the set {z!,..., zgx} by Z;.

Definition 3. We say that a meromorphic function f on R is of Schwarz-
Christoffel’s type associated with (Sg, Zg) if Im(ZLdf)=0 along o, 1<k<ZK,
1<r<n,. Hereafter, we call such a function simply a G.S.C. function as-
sociated with (Sg, Zg).

Now our next problem is whether we can construct a G.S.C. function
associated with given (Sg;, Z;) or not. In order to study this problem, we con-
sider the following subspace of differentials:

A= A(R)=A(Z, R, Sq. ZG)={/1€A,,N:(:|)S leL, for each led,

Aj,Bj

and j=1, 2,...., g, (b) Im(z{A)e I', (%, R) for each pair (k, r)}.
Lemma 2.9. A >iA¥L.

Proof. This is proved analogously as in [11], hence omitted.

If A;=iA¥L for a pair (Sg, Zg), we can construct a G.S.C. function as-
sociated with (Sg, Zg) according to the Riemann-Roch theorem for A, (cf. [7]
or [11]). However, the next example shows that there exists a pair (Sg, Zg)
such that iA¥L+ A,

Example. Let R={|z|<1} and R’ be the interior of triangle A,;A4,A4;.
Then there exists an analytic function f (classical Schwarz-Christoffel’s function)
which maps R conformally onto R’. Now we set Sg={o, a,, a3} with o;=f"1!
(segment A;A;,,) where A,=A,, and Z;={z|, z,, z3} with z;=A;4;,,. The
existence of above stated function f means A ,NiA¥n A, +{0}. Therefore, we
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can conclude A #iA¥L (cf. Lemma 1.2).

This example shows that so long as we restrict our method to the behavior
space’s theory only, it is difficult to construct a G.S.C. function.

Next, we show a sufficient condition on (S4, Z;) for the existence of a
G.S.C. function. We divide each component 4, of dR into a union of con-
secutive arcs aj, Bi,..., @px, By« so that each of of, f; is an open arc and
amnar=prn p,={0}, akﬂﬁk—{O} for each k, r, m, r&m (& is the closure of
of on 4, as in 2.1). Next, we set Uak—a and Uﬂk—ﬁ Let R be the
interior of the double of R with respect to p. Then R is a finitely bordered
Riemann surface and each component A% of R can be written by A, =a; U ja
where j is the involutory mapping of R. Further, we associate each o with
a complex number z§ and denote the set {z!, zi,..., zgx, Zgx} (resp. {ai, jal,...,
anx, japx}) by Zo (resp. §p). From Lemma 2.6, A(Z,R, 8¢, Z,) is a behavior
space of X-type on R and so by Theorem 1 there exists a meromorphic function
fon R such that, for each pair (k, r), Im(Z;df)=0 along of, Im(z}df)=0 along
joi and the divisor of f is a multiple of (Py...., Pyy+x)~! where Py,..., Py g
are suitably chosen 2g+K points on R (not on R). Denote Re(df) by w,
then, for each (k, r), we can get

Im[Z(w—w™)+iZi(w—w~)*]=0 along o,
Im[z{(w—w~)+izi(w—w~)*]=0 along jaf,
Im[i(w—ow~)+ (0~ —w)*]=0 along f}.

Now we write y=(w—o~)+i(w—ow™)*, then Y is a differential of a function f
on R whose divisor is a multiple of (P,Py---P,, g jPy-++jPy,+¢)”'. By the argu-
ment principle we have for we& f(9R)

1 df _ a _o= . R)— : R
i o =2 gL =O=N L B =N (0, B,

N(f, w, R)<2(2g +K).
Thus we obtain the next theorem.
Theorem 2. Let R be the interior of a compact bordered Riemann sur-

K
face with genus g and OR= Z A, where each A, is a contour. Suppose A,

= Z (CiAN9) (k-l 2,..., K) where each of, B is an open arc and @ Nay=

B’ B {0} ok N {O} for each k, r, r£m. Let 2z}, be complex numbers and
So={a}, p1.. 'ﬁk, By Zo={zl, i, z3, i,..., zi', i}, then there exists a G.S.C.
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function f associated with (Sy, Zo) on R such that
(i) Im(ZLdf)=0 along o} and Im(idf)=0 along B for each pair (k, r),
(ii) the divisor of f is a multiple of (P Py+-Py,,¢)™" where P,...., Py, g
are suitably chosen 2g+ K points of R,
(iii) the residue of f at P, is equal to 1 (or i),
(iv) f(R), the image of R under f, is at most 2(2g+ K) sheeted over C.

§3. Orthogonal decompositions on open Riemann surfaces and convergence
theorems for real harmonic differentials

In this section we consider some orthogonal decompositions of I',(R) and
the convergence theorems of a sequence {w,} with w,el'’(R,) where {R,} is a
properly given exhaustion of R (R, is not necessarily relative compact) and
(R, is a subspace of I'(R,). The results of this section is very useful when
we consider the existence theorem of a meromorphic function with A, (R) be-
havior in §4.

3.1 Elementary convergence theorems. Let I'.(R) and I',,(R), n=1,2,... be
subspaces of I',(R) and I'+ the orthogonal complement in I', of I',.

Lemma 3.1. Suppose the following conditions are fulfilled:
(a) T'(R)orl,, (R)>T,,(R) for each m and n (m>n),

o0
(6) N MR =T (R
Then for any o el (R) there exists a sequence {a,} with o,eTl,,(R) such that

lo—0,—0 as n—oo. The same conclusion as above holds, if I'(R)cT,(R)
for each n.

Proof. A differential e I'o(R) has a decomposition of the form oc=0,+w,
where ¢,€T,(R) and w,el,,(R)*. For m>n, we get g,—0,=w,—w, €l (R)*,
hence |6, — 0,2 = <0, —0,, 6,,>=|0,l?—llo,|? that is, |o,| < |o,|<|ol. There-
fore, we have |lo,—0,|—>0 as m>n—oco, hence by the triangle inequality we
have a harmonic differential 6, such that ||6,—0,]|—0 as n—o00. On the other
hand, for each wel(R)! (=T,,(R)') we have <oy, o>=Ilim <o,, ©>=0, so

n—w

oo,€'(R). Consequently, we have o=0y,+w, where [wyo—w,]|—>0 as n—oo,

while w,, eI, (R)* for each m>n, hence w,e ;% {I(R)*}=T(R)*. Therefore,
n=1

c—06o=wo ' (R)NT(R)*={0}, so o=0,. The last statement is evident if
we set g,=o0. q.e.d.

Lemma 3.2. The limit of each locally uniformly convergent subsequence
of {6,} with o,€T,,(R) and sup|a,|<oco belongs to I',(R) if the following con-
ditions (i) or (ii) holds:
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(i) I'(R)=I'(R)  for any n,
(i) there exists, for any wel(R)', a sequence {w,} with w,el,,(R)*
such that |o—w,|—0 as n—oo.

Proof. Suppose (i) holds. For £¢>0 and each wel (R): there exists a
regular region D such that ||w|gz_p<é&. Suppose g, is the limit of a locally
uniformly convergent subsequence {g,,}, then we have

|<o, 0>|Z|<0, 0>p|+|<0, w>R_D|§K£+|,!in°1o <0, 0> p|
<Ke+|lim <o, 0>|+]|lim <0,,, ©>g_p|
k—© k—o0

w>|<2Ke,

ny?

<2Ke+|lim <o
k=00

where K is a constant>sup |o,lg,. Therefore, <o, w> =0, hence el (R).
n

The case (ii) is evident. qg.e.d.

Suppose, for each n, I'’(R,) is a subspace of I'(R,). By the same way as
in Lemmata 3.1 and 3.2 we can prove simply the following Lemmata:

Lemma 3.3. Assume the following conditions are fulfilled:
(@) PR |r,STHRE, T(R) g, =TUR,) for m and n (m>n),
(b) if {w,} with w,el'%(R,)* is a sequence such that |w—w,|g,—0 as n
—00, then we ' (R),
then, for any o el (R), there exists a sequence {o,} with 6,eI'"(R,) such that
le—0,llg,—0 as n—>oo. The same conclusion as above holds if I' (R)|g,<TI'*(R))
for each n.

Lemma 3.4. The limit of each locally uniformly convergent subsequence
of {o,} with o,eI'(R,) and sup|o,llz, <o belongs to I' (R), if there exists,

for each weTl (R), a sequence {w,} with w,eT'*(R,)* such that |w,—w|g,—0
as n—oo.

Definition 4. We say that a sequence {I'*(R)}>-, (resp. {I(R)}%,)
converges to TI',(R) if the following conditions are fulfilled:
(i) for each w,elI'(R) there exists a sequence {w,} with w,el'"(R,)
(resp. w,el',,(R)) such that |w,—w|g,—0 (resp. |w,—w|—0) as n—co,
@) if {w,} with w,el'%(R,) (resp. w,el',,(R)) is a sequence such that
sup ||w,liz,<oco (resp. sup|w,|| <o), then the limit of each locally
uniformly convergent subsequence {w,,} belongs to I',(R).
In this case we write simply I''(R,)=I(R) (resp. I .,(R)=TI,(R)).
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From Lemmata 3.1 and 3.2 we can prove I',(R)=I'(R) if I' (R)<=T,,(R)

cTI'(R) for each m, n (m>n) and N {I,(R)*}=T(R)t. Further, from Lem-
n=1

mata 3.3 and 3.4, we can obtain I'’(R,)=I,(R) if the following conditions are
fulfilled: (a) I''(R)t>TI'™(R, )|k, and T'Y(R)*> T (R)t|g, for each m, n (m>n),
(b) if {w,} with w,eT'%(R,) satisfies |w—w,|lz,—0 as n—oo, then weI'(R).

In the following, we shall consider, for specific spaces I',(R), the conditions
in order that I'’(R,)=TI,(R) or I',,(R)=TI",(R).

3.2. Orthogonal decompositions on an open Riemann surface. Let R be
an open Riemann surface and R* (resp. A=R*—R) its Kuramochi com-
pactification (resp. Kuramochi ideal boundary). Suppose Q is a region on R
whose relative boundary 0Q consists of at most countable number of analytic
arc clustering nowhere on R. Note that the topology on Q (closure of Q)
is the relative topology induced by the topology on R*. We set

Ao={Qn4}udQ.

Let « be non-empty open set on A, and B=4,—a+{0} where & denotes the
closure of a on 4, We consider the following linear subspaces of differ-
entials:
ro,(a, Q)={dfer(Q): (a) f is continuous on €, (b) there exists on Q@ a
neighbourhood U, of & which is disjoint with the support of

I

Fo(@, Q)=CHI2(@, 2)}, Theo@, Q)=T(2) N T,(&, Q),
Fen(&’ Q)*l=rco(ﬂ, Q)* rho(ﬂ* Q)=rh(g) n rco(:B’ Q)

Hereafter we identify all constant functions with zero.

Lemma 3.5. (i) I(Q)=T ()% + I'oo(@ @)+T,(8, )
(ii) If a’>&, then we have

Fheo(&9 Q)Drheo(&l’ Q)’ rho(a9 Q)Drha(a,s Q)’
(iii) Tpeo(@, Q)T (a, Q).

Proof. (i) and (ii) are evident and so omitted. To prove the case (iii),
we have only to prove I'S, (&, Q)LI% (B, 2)*. Let {Q,} be a canonical exhaus-
tion of Q. For any dfel?,(a, Q) and any dgel?,(B, Q) there exists a large
number n such that 0Q,cU,u U,. Consequently, it holds

<df, dg*> = <df, dg*>q, + <df, dg*>,_o, = <df, dg*>,, .
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On the other hand, the restriction of f (resp. g) to @, has the Royden decom-
position of the form

fl!),,=un +fon (resp. glﬂ,.=vn+gan);

where f,, (resp. ¢,,) is a Dirichlet potential on , and du,, dv,el,(Q,).

But, from Lemma 2.4 and Corollary of Lemma 2.2 we can get du,el,.[(d,
Q,) and dv, el (B, 2,) where &,=closure of {0Q,nU,} on @ and B,=
closure of {0Q,nU,} on Q. By Green formula we have <du,, dv%>, =0,
hence <df, dg*>=li12 <df, dg*>g,,=0. Therefore Il (&, Q)L (B, Q)* which

implies I'y,(&, Q)<=TI ' (a, Q). q.e.d.

3.3. Kuramochi’s local capacity and the boundary point of beorder type.
Let P be a point of A4=R*—R and W a region on R such that W is a com-
pact neighbourhood on R* of P and the relative boundary 0W of W consists
of at most a countable number of analytic arcs clustering nowhere on R.

Suppose F,,,={Q: Q e R*, d(P, Q)§%} where d(P, Q) denotes the distance

between P and Q (note R* is a metric space, cf. Constantinescu und Cornea
[3]) and {R,} is a canonical exhaustion of R. We consider a function
on R, such that w’=1 on F,, 0%=0 on R,—W, ! is harmonic in R, N
(W—F,) and the inner normal derivative of w} on {0R,n(W—F,)} is zero. If
Dy g (@wi)<K for any n, there exists a function w, on R such that Dy . (wp,
—-w,)—0 as n—oo, and moreover there exists a function w on R such that
Dy(w,,—w)—>0 as m—oo. Such a function w is called the local capacitary
potential of P with respect to W and Dy(w)=Cy(P) is called the local ca-

pacity of P with respect to W (cf. Kuramochi [8]). Hereafter, we express simply
the boundary behavior on 4 of a function f like above w,, as %IAn(W—F",)=O-

Let A4’ be a component of A. If there exists a connected neighbourhood
U of 4’ such that Un(4—4')={0}, then 4’ is called an isolated boundary
component of A.

Definition 5. We say that a point P of an isolated boundary component
is a boundary point of border type if the following condition (x) is fulfilled:
(*) there exists a sequence {W,} of regions on R such that
(a) each W, is a compact neighbourhood of P on R* and W,| P as n—
o0,
(b) Cw (P)=0 for each n.
For a boundary point P of border type, there exists a sequence {W,} of

regions on R which satisfies W,,,,<F,cW,. Let w,, be a harmonic function on

W, — W,, such that w,,=1 on W,, w,,=0 on oW, and further, 630]'\';" | anwa=wmy
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=0. Then, by Dirichlet principle, we have easily lim D(w,,)=0. We call the

function w,,, a local capacitary potential of W, with respect to W,.

Lemma 3.6. Assume A' is an isolated component of A and o is an open
connected set on A’ such that the set d—a is exactly two points of border
type, then we have

[e) 0
N rheo(&m R)=Fheo(‘-i, R)=C1{ Ul rheo(‘_’n’ R)} >
n=1 n=

for any sequence {a,} (resp. {v,}) of open sets on A’ such that o,? o (resp.
Yud @) as n—oco.

Proof. We have only to prove dferl,.(& R), if dfe;o\ (&, R) for any
fixed {a,} (cf. Lemma 3.5). At first, we may assume |fT<1K on R. Let the
set a—a be {P, 0} and {W,}, {W,} be the sequences of regions satisfying the
conditions (*) of Definition 5 such that W,—»P (resp. W,—Q) as n—o. Next,
denote by w,, (resp. w,,,) the local capacitary potential of W, (resp. W) with
respect to W, (resp. W,). Suppose {g,} is a sequence of positive numbers such
that ¢, 0 as n—>o. Then, we can choose a sequence {m,} of positive integers
such that |dw,, [+ lldw;,, .| <e, (therefore, m,>n) and m,t oo as n—oo. Fur-
ther, we can choose another sequence {k,} of positive integers which satisfies
o, 20—W, —W, ,k,>m, and k,1 o as n—-oo. While, from the condition

df e /?F,,e.,(&,,, R), we can find a sequence {dg,} with dg,eI'% (&, R) such that
=1

|df—dg,ll <€, For simplicity, we denote k,=k and m,=m. Next, denote (I
— W) (=g, by f, where g,=Min[Max(g,, —2K), 2K], then we have
df,er%,(a, R) and moreover

ldf —dfull* <lldf —dgi|i> + ldfl & ow,, + ldf = dfu | % - wm + | df = df 7w,
<25|ldf—dgil? + 4l df % uw; + 12K2 (| dwy, ]| > + | dwp,|12) -

Thus we have a sequence {df,} with df,eI'% (& R) such that |df—df,|—0 as
n—c0, hence dfe (@ R), 50 Tyol@ R)= M [yool@y R). q.e.d.
n=1

Now we consider an example of a Riemann surface with a boundary point
of border type which has arbitrary small neighbourhoods of infinite genus.

Example. Suppose G, (resp. G,) be a disk |z|<l (resp. 1>]|z|>r), and
maps G, one to one conformally onto a region G, on w-plane by the function

w(z)=u(z)+ iv(z)
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|z]

=lo
Tz =p11z=1/p]

+i[Arg z— Arg(z—p) —Arg(z—1/p) +2n],

where Argz denotes the principal value (i.e. 0<Argz<2n) and O<p<r. (cf.

Ishida [5]). G, consists of a Jordan curve and a horizontal slit {(u, v):
]og(l_*_¢p)2 §u§logﬁ_ppﬁ, v=n} which is the image of |z|=1 under w(z).

The point z=i is mapped to the point w0=log[—#}+ni which lies on the
lower side of above slit. Suppose {a,} be a sequence of positive numbers such

that a,,,= and a, is a suitable positive number. Let {J,} be a se-

a"
1+1/n
quence of horizontal segments on G, satisfying the following conditions:

(i) each of J,, and J,,,, lies in a domain {w:%n<Arg (w—w0)<% ,

a2n+l<|w_w0| <aZn} >

(ii) J,u J2s+ 1 have the same projection to the real axies.
Denote the inverse image w~!(J,) of J, by I,, and cut G, (resp. G,) along each
J, (resp. I,). Denoting the lower side of J, (resp. I,) by J, (resp. I;) and the
upper side of J, (resp. I,) by J} (resp. I{), we identify J%, (resp. I},) with
J2n+1 (resp. I3,.,) and J3, (resp. I3,) with J%, ., (resp. I3,+,). This gives
a surface D, (resp. D,). A surface D,U{|z|=r} is denoted by R. Further, let

g be a functione C*(R) such that g=1 on D,, g=0 on |z|< r-Iz-p. Then, the

function U,(P)=g(P)u(P) belongs to the family N of functions where N=
{F e CD(R): F has continuous extension on 4 and points of A are separated by
the above extended functions}, that is to say, N-compactification of R is equiva-
lent to R* (cf. [3]). Let R be the double of R with respect to {z:|z|=1,
z=i}. Then, ReOg, hence from Proposition 7 in Kusunoki [7], 4 is a quo-
tient space of {z:|z|=1}. On the other hand, we know the class No=
{U,.""Yoso<r separates the points on {z:|z|=1} and so 4 is equivalent to {z:
|z|=1}. Thus we know the boundary point z=i is of border type and has
arbitrary small neighbourhoods of infinite genus.

3.4. Region D* of 2*-type and normalized exhaustion associated with D*,
Let 4, be an isolated boundary component and d,=4—4,.

Definition 6. A region D* on R* is called to be 2%-type associated with
4, or simply @%-type if the following conditions are fulfilled:
(i) each of D*nA, and A,—D* is connected nonempty and D*n 4,
={0}.
(ii) D*NR=D is connected on R and 0D is an analytic curve,
(iliy D*nAd=D*n 4.
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For D* of 2@%-type, we call D=D*NR a region (on R) of 2-type.
Some example of regions of 2%-type (resp. non 2%-type) are shown in
Fig. 1-3.

B STHK) D*
Fig. 1 g — D*n 4 _—1
! -
i D*n 4 !
, I
A= 4
D*
R R
(D*: D¥-type) (D*: non D¥-type) (D*: non D¥-type)

Lemma 3.7. Suppose D* is of 2@%-type. Then we have (i) aDn(R—R,,)

D* N 4 for each regular exhaustion {R,} of R, and (ii) if D* satisfies D* — D*
=0D, it holds (R—D—0D)nA=A—D*nA. Here bar stands for the closure in
R*.

Proof. Case (ii). R*—D*cR—DcR*—D* is evident. On the other hand,
from 0DcR—D we have R*—D*=R*—-D*+0DcR-D, hence R—D=R*-D*
Consequently, we have

R—D—-0D=R*—D*—90D=R*—D*+ D*— D*— 9D =R* — D*,

and so we obtain (R—D—0D)n4d=4—D*n 4. The proof of (i) is omitted.

Let D be of 2,-type. Then 0D is weakly homologous zero on R which
we write D~0 on R. Recall that 0D~ 0 if, for any regular region G on R,
we have CU j(—C)~0 on G where G denotes the double of G, C=(dD)nG
and j the involutory mapping of G (cf. Marden [9]). From the assumption of
D we have

Lemma 3.8. For a given D of 2,-type, there exists a canonical exhaus-
tion {R,} of R such that (i) OR, is piecewise analytic, (ii) Dn(0R,) is an arc
which divides D into two regions of D.

Proof. Denote by D (resp. Q) the double of DUdD (resp. @=R—D)
with respect to dD, and {D,} (resp. {@,}) a regular canonical exhaustion of D
(resp. Q). We set D,=D,u jD, (resp. Q,=Q,u jQ,) where j means the in-
volutory mapping of D (resp. 9), then {D,} (resp. {Q.}) is an exhaustion of
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D (resp. Q) by relative compact regions. Further, by setting G,=(D,nD)U
(Q,n Q), we get an exhaustion {G,} of R. Next, by suitable method, we can
take three sets {S,}, {S,} and {S.} of strips on R such that, (a) each com-
ponent of {S,} contains a subarc on 0D, (b) {S,} (resp. {S;}) is contained in
D (resp. Q), so that the set R,=(D,nD—{S,}—{S:Hu(Q,nQ—{S,}—{S"})
is a canonical region on R. Thus we can obtain the exhaustion {R,} of R
satisfying the conditions of this Lemma (cf. Ahlfors, L. and Sario, L. [2],
p. 61-63).

Hereafter, we call such a canonical exhaustion {R,} a normalized exhaus-
tion associated with D* of 2%-type.

3.5. Convergence theorcms of harmonic differentials 1. Let R, D be the
same as in 3.4. We set Q=R—DUJD and 4,=0-—Q where bar stands for
the closure in R*, and consider the following sets:

o =a relative compact (on R) open arc on 09,

% = {the boundary component of 4, including 0Q}—.<.

Lemma 3.9. (i) For dfel, (4do— %, Q) (resp. I, (4dgo—, Q)) we may
set, on o (resp. 02N A), f=0. (ii)) For wel,(, Q) (resp. ', (B, Q)) it
holds that w=0 along & (resp. BN 0Q).

Proof. Omitted (cf. Lemma 2.2 and its Corollary).

At first, we consider convergence theorems of real harmonic differentials
in case where R,NQ2=0,-Q. Suppose {R,} is a normalized exhaustion as-
sociated with D* of 2%-type, and we set

I,={the boundary component of dQ, including &} -7,
A0n=aQn_'J u Iu’
and show the following lemma.

Lemma 3.10. (i) I,.,(0Q,~, Q=T (do—o, Q), I',(Z, Q,)=T,
(«, Q),

(1) Theol0Qy =2 0y Q)= heo(da— R, Q), ['o(4 4, Q)=10(Z, Q),

(i) Theo(0Q, = Aou Q)= heo(dg~ 40, @), Tho(Aons 2a)=1,(4o, Q).

Proof. We must show only that for wel'(Q) there exists {w,}r-; with
w,e(Q) such that |lw—w,|o,—0 as n—oo, where I'(Q) (resp. I''(Q,) means
Theoldo— 2, Q) etc., (resp. I, (0Q,—=, 2,) etc.,) (cf. Lemmata 3.3 and 3.4).
Concerning the case (iii), cf. Lemma 2.5 in [11].
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Case (). From Lemma 3.9 and Lemma 2.2, it holds that I,(&, Q)l, <
I(«, 2,), hence we get the conclusion in case I' (s, *) by Lemma 3.3. Next,
we prove the case I, (*—., ). From Corollary of Lemma 2.2 we have, for
m>n, the relations: Iy (o, Q,)>T,(, @), and (&, Q)lg =T (, Q,).
While, suppose that {w,} with w,el, (%, Q,) is a sequence such that |w,—
0| g,—0 as n—o. For each dgell,(4,—, Q), the restriction of dg to Q,
has a decomposition of the form dgl|, =du,+dg,, where dg,,el. (R, and
du, el (09,—«, Q) for sufficiently large n. Consequently, we get <w,
dg*>qo=lim <w,, du,>, =0. Hence, wel,(«, ) and from Lemma 3.3 we

n—oo

have the conclusion.
The case (ii). At first, we prove the case of I, (x— &, *). Let y be an ana-
lytic closed curve on @, which separates the component of A4, including &
from 4,. We write Q,—y=Q; U Q;, where &/ <0Q,. For a function g with
dg el (do— %, Q) we set f,=g on Q, and f,=HZ™" where g'=g on y and
g'=0 on 0Q,—y. Then df, has a decomposition of the form df,=du,+df,,
where du,el,,(0Q,—7/,, Q,) (cf. Corollary of Lemma 2.2) and df,,erl,.(Q,).
Thus we have a sequence {du,} with du,el,,(0Q,—7/,, Q,) such that |du,
—df o, = df—df,llo,—0. Next, we show the case I',(#, 2). In order to use
Lemma 3.3, we consider a special exhaustion. Let G be an end towards A—4,.
We set G,=Q,UG and 4,=0G,U(4—4,), then for each m, n (m>n), we have
rheo(zrm_/nn Gm)[G,.Crheo(LTn_/m Gn) and rhca(A.Q_'@7 Q)lG,.Crheo(th_/lr’ Gn) (Cf-
Lemma 3.9). The restriction of w to G, with werl,,(#, Q) has a decomposi-
tion of the form w=o,+w, where o*erl,,(4,— 7, G,) and w,el, (7, G,).
From this form we know o¥=0 along /,NndQ, hence ¢,=df*erl,(/,Nn 02, G,).
By the same way as in Lemma 3.3, we have w=w,+df* where wy,el, (2, Q)
and |df-df,ls,—0 as n—oo. From df¥el,(/,n0R2, G,) we have dferl,. (4,
—%,Q), 50 w=w,. Writing w,=w,|, we can get {w,} with w,el,(/, Q,)
so that [|w—w,]lp,—0 as n—»o. Thus from Lemma 3.3 we have the conclusion.
q.e.d.

3.6. Convergence theorems of harmonic differentials II. We consider the
convergence theorems of real harmonic differentials on R,U Q where n is fixed.
Let R, D* and {R,} be the same as in 3.5. We set W,=R,UQ, 4,=W,—W,
and

a=D* n A’ "d"=al4/"’ MHIII=R"! n 'M”
p={the component of 4 including «,}—.,,
#,,={the component of 4, including «,}—,,.

Lemma 311. Assume that d&—a consists of exactly two boundary points
of border type and is equal to dD N4, then we have the following relations
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for m—oo (n: fixed):
(1) Fheo(A;t_‘Mnm’ VVn)=>Fheo(A ;x _"dn* VVH)’ Fho(dnm’ v‘/vt):rlro(‘dn’ VVn)’
(") Fheo(A;x_gnm’ Wn):rheo(A/n_B9 Wn)’ rho(gnm’ Wn):rho(ﬂ’ VVn) .

Proof. This lemma can be proved by the analogous method as in Lemma
3.13 and so omitted (cf. Lemma 3.6 and 3.7).

Lemma 3.12. (i) Suppose L, is the family of all curves on W, (n: fixed)
which start from a parametric disk and tend to B, then we may set, for each
dgerl, (4,—,, W), limg=0 for almost all ¢ of L, where limg means the
limit g along c. ‘ ‘

(ii) Assume that &—o consists of exactly two points of border type. If
{dfu ey with df, el (4,—L,, W,) is a sequence such that |df—df,|w,—0 as
n—oo, then dfel,,(4—a, R).

Proof. Case (i). By use of Propositions 3, 4 and Lemma 1 in Yamaguchi
[17] we can prove (i) easily and so omitted.
Case (ii). Because dDcQ, we have W,nd=4nQ=A4n(R—D)>(R*-D*)n 4,
hence from the definition of D* of 2%*-type we have f=W,n4,—oW,n4,>
4, —a—(@—a)=A4,—&, and so we have aUpf=4,. Next, we may set |f|<K,
|fl<2K and ,}IT, S(P)=f(P) for fixed PeR. From Lemma 3.6 we have only

to prove dfel.(y,U g, R) where y,={Qe€d:d(Q,o0)=1/m} and d,=4-—4,.
Denote the set {Qe R*:d(Q, D*)<1/m} by Sk Then there exists a Dirichlet
function ¢,, on R which is continuous on R* and y,=1 on S%,, ¥,,=0 on
R*-S3%, and 0<y,<1. From Lemma 1 in [I17], the differential dG,, =

d[(1—v,)-fi] belongs to I',(R) because &Up=4, and limG,,=0 for almost

all ceL (concerning L, see Proposition 4), and we havce dlfy,+ (1 =y,)f]
=dFm,k € reu('y"x u AO’ R) because & n Ym= {0} and d(f‘pm) € r«?e(?m u AO’ R) While
we have

NdFy = df | 20dfx— df llw, + Max | f,—f] | di ]| +2Ke,

where S denotes a compact set on R such that ||dy,|lg-s<e. Note m is fixed.
Therefore, from |f,—f|->0 on S as k—oo, we get ||dF, ,—df|—0 as k—oo,
we obtain df I'y,,(y, U 4g, R). g.e.d.

From now on, we consider the convergence theorems of real harmonic dif-
ferentials in case W,=R,U Q—R. Note A4,=W,—W,.

Lemma 3.13. Assume that &—o consists of exactly two boundary points
of border type and is equal to dD N A, then we have the following relations:
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(l) rho(ﬁ’ u/n)=>rho(ﬁ’ R)’ rheo(A;z_ﬁ’ [/Vu)=>rheo(A _ﬂ’ R)’
(”) rho("dn’ VV")=>F,,0(O(, R)’ rheo(A;x_dm Wn):rheo(‘d —a, R) .

Proof. Case (i). At first we show the case I,,(B, R). We can extend
dfer9,(4,—B, W,) to R such that dfel'%(4—p, R) since f=4—a (cf. Lemma
3.7). Therefore, for each wel, (B, R) we have <w, df*>y, =0 where dfel?,
(4,—B, W,), hence w,=wl|y, €l (B, W, and from Lemma 3.3, we have the
conclusion. Next, we prove the case I, (4—pf, R). We have already known
that I'y(B, R) 2 (B, W)lw, (m>n). While, suppose {w,} with w,el,(B, W,)
is a sequence such that |w,—w|y,—0 as n—oo, then by Lemma 3.7 we have,
for each dfel%(4—p, R), <w, df*> =lim <df*, w,>y, =0. Hence, we have

weTl,, (B, R) and from Lemma 3.3 we can get the result of this lemma since

dfero,(4,—p, w,) for sufficiently large n (cf. Lemma 3.4).

Case (ii). For the case I, (4—a, R), we have df|y, =df, €. (4,—Ln W,)
with each dferl,.,(4—a, R) (cf. Lemma 3.7), hence from Lemma 3.3 we get
the result. For the case I,,(x, R), we already know that I (4—o R)lw,
ey — Ly W), Theodiy— L 1y Wlw, S o4y, — L, W,) for m>n. On the
other hand, if {df,} with df,eTl,,(4,—«,, W,) is a sequence such that |df,—df
w,—0 as n—oo, then from Lemma 3.12 we have dfel,(4—a, R), hence we
can get the conclusion. q.e.d.

§4. Convergence theorems of behavior spaces of X-type and its applications
to conformal mappings

Let R be an open Riemann surface of genus g (§<o0) and R* (resp. 4)
its Kuramochi’s compactification (resp. Kuramochi ideal boundary). Suppose D*
(resp. D=D*nNR) is a region of D¥-(resp. 2,-)type and {R,} is a normalized
exhaustion associated with D*. As in §3, we set Q=R—-D, 4,=0-Q, Q,=
R,NQ and W,=R,UQ, then there exists a canonical homology basis {4;,
Bj}7-; of R (modd4) such that (i) {4;, B;} with 4;, B;=Q, is also a canonical
homology basis of Q, (mod dividing curves on ,) for each n, (ii) {A4; B;}
with A4;, B;c W, is also a canonical homology basis of W, (mod dividing curves
on W,) (cf. Ahlfors and Sario [2]). Further, as in §3, we set

#={L;,j=1,2,...,9: each L; is a straight line on the complex plane

which passes through the origin},

.(!Q={szf for AJ, BJCQ},
& =a relative compact (on R) open arc on dD,
& = {the component of 4, including éD}—.7,

/ ,={the component of dQ, including &/} —.o,



370 Kunihiko Matsui

A0n=aQn_‘¢ U /n'

Besides these sets we consider a set of complex numbers and spaces of differ-
entials on R and Q, such that

Z={z9, zy, Zy:|zo| =z, | =z, =1},

Ax(Q) = Ax(-g.(b Q’ Z)

— (AeCHA,,(2)+4,.(2)} :(i)g ,, AeLy for j with 4;, B, @, (i)

Aj,

Im(Z,A)el,, (&, Q), Im(Z ) el,, (B, Q) and Im(ZyA)el,,(40, Q)},

ANQ) = A=A Lg . ), Z)={ie Ay (Q,): (i)S JeL; with 4,, B,
Aj, By

CQ’ (ii)lm(zli)erho(d9 Qn)’ lm (zlll)erho (/n’ Qn) and
Im(zol)erho(AOan)} .

Then we can get the following lemma:
Lemma 4.1. AYQ,)=A(Q), hence A(Q)=iA(2)**.

Proof. At first, we consider the following auxiliary subspaces:
A’ =the space spanned over the real number field by {{;04(4;), {;04(B)):
Aj, Bj=Q} where oo(y) denotes the reproducing differentials in

r(Q) associated with y and {; is a complex number such that
{;jeL; and |{;|=1,

A"=Clz,I', (Adg—t, Q)+ 2T} (dog— B, D)+ 2o e (da— A0, 2)},

A" = A,(Q) N A,,(Q), A=CI{A'+A"+A"}.

Then from Lemma 2.6 we have Af=iAl*t,

Next, from Lemma 3.10 we can
get iA¥=A ciA*=A,.

Since iA*1>A, can be proved analogously as

in Lemma 4.3 in [11] (cf. added in proof this paper), we can conclude A%(£2,)
=A1,(Q). q.e.d.

Next, we set 4,=W,— W, (where W,=R, U Q as above) and
du=aVVm "dnmz‘ﬂn n R"l‘ a=A n D* ’

#,={the component of 4, including «,}—Z,,
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B,,={the component of 4, including «,,}—,, .

Note that dg=A4—A4,=A4,—/,U B, and D* is D*-type. Further, we consider
the following subspaces of differentials on W,:

/T,Q:/T;(Wn)=;fx(gwn* Wlu WZ)_ {}'GCI{A'!D(W")-‘-A"?(W")}: (i) l
Aj,B
ELJ‘ fOI' Aja Bjc Wns (il) Im(Z]l)EF;,D(J{”, Wn)’ Im(z'll)erho(gm Wn) and’ i,m
(Zoh) € (4o, Wi},

Aby=A2 (Lw, ., W, Z)=A%,(W,)=the spaces which are defined analogously
by replacing &, and &%, with &, and £,, respectively, where m>n. Then,
analogously as in Lemma 4.1, we have

Lemma 4.2. Assume that the set d—a consists of exactly two boundary
points of border type and is equal to dDN A, then we have AR, (W,)=AnW,),
hence we obtain A (W,)=iA(W,)*L.

At last, we write a=D*N4 and f=4—&, and consider the following spaces
of differentials:

A(L, R, Z)=A,(R)=A,={AeCl{A,,(R)+ A,,,(R)}: (i) SA AELI, =1,

2,..., g, (i) Im (@,4) el (a, R), Im(z4)eTl,,(B, R) and lm(zol)el‘ha(do, R)}.
Then, by the same way as in Lemma 4.1, we have the following lemma:

Lemma 4.3. Assume that A, has a planar neighbourhood in Stoilow’s sense
and D a region of 9 -type, then we have A"(W,)=>A(R), hence we obtain
AR =iA(R)**.

Hereafter, we call such a behavior space A(R) the behavior space of
X-type associated with ¥, D* and Z.

Consequently, by use of Lemmata 4.1, 4.2 and 4.3, we obtain the following
theorems:

Theorem 3. Assume that A, has a planarneighbourhood in Stoilow’s sense
and D* is a region on R* of @%-type. Then we have following (i), (ii) and
(iii).

(i) There exists the behavior space A, of X-type associated with £,

D* and Z.

(ii) There exists a sequence T={n.} (n,—>o0 as k—>0) of posmve integers
such that the sequence {¢,(A;, A%, Wolker (resp. {@,(Bj, A%, Whier
and {0, A, Wk)}ksr) converges Iocally uniformly on R to ¢,(A;
Ao R) (resp. ¢, (B;, A, R) and $(0, A, R).

(iii) Riemann-Roch’s theorem for A, holds.
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Proof. Case (i). Cf. Lemma 4.3. Case (ii). Cf. Lemmata 1.4 and 4.3. Case
(iii). Since A, is a behavior space, we have this conclusion by Theorem 4 in
Shiba [14].

Theorem 4. Let R be an open Riemann surface with finite genus g and
4, an isolated boundary component which consists of more than one point.
Suppose D* is a region of D*-type, and that A(R) is a behavior space of
X-type associated with ¥, D* and Z. Then, for suitable choice of g+1
points Py, P,,..., Py, on R, there exists a meromorphic function f which satis-
fies the following conditions: (i) f has A(R) behavior and the residue of f at
P, is equal to 1 (or i), (ii) the divisor of f is a multiple of (PyPy--P,.;)7",
(iii) f(R), the image of R under f, is at most g+1 sheeted over the Riemann
sphere.

K
Let D*= N Df be a open set where D¥ denotes a region of 2*-type,
i=1

Z={zy, z;, 2j, 1Si<k and o;=AnND¥, f;,=A4;,—a;. Generally speaking, the
same conclusion as above holds for A,, where A,={AeCl{A,,+A,.};: (i)

S A€ L, for each j, (i) 1ImZA€T,,(a; R), ImZA€l,,(B; R), i=1,2,.... K and
Aj,B;

K
ImzAeT,,(4,) where 45)=A4— U 4,
i=1

Proof. Since Kuramochi's compactification has a boundary property, 4,
can be considered as a unit circle. Therefore, the conditions in Theorem 3
are satisfied because R is of finite genus, hence by the same way as in Matsui
[11] we can prove this theorem.
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Added in Proof

1. Correction in ‘‘Convergence theorems of Abelian differentials with ap-
plications to conformal mappings. 17 This Journal, Vol. 15, No. 1, (1975),
pp. 73-100.

We replace the proof of Theorem 2 with the following (concerning
the precise proof, cf. next paper). At first, we note ,A>4,,NA,, hence
AcCl{A,,+A,,}, therefore, ,A=CI{,A;+ A5+ A3} where ,A;=the space spanned

K
by {{;jo(4)), {jo(Bp}jz, (here (;eL;jcg &), A=A, and /13=C’{k§1 2, heo(4
—BJ)}. Consequently, we have CI{A1+A’2+A3}C9[=;\ CI(%O:,,A)={AGCI(Al
n=1 k=n

+A’2+A3):S AeL;c ¥} where A, =the space spanned by {{;0(A)), {;6(B;)}Z,,

A;B .
(here Cjechj.sﬂj), Ay=A,,NA,. Therefore, we have iA*L1>A, hence we can
conclude iM*+=A and , A= in the sense of Definition 1 of this paper

2. Supplement of this paper. In the proof of Lemma 4.1 (or Lemma
4.2), the fact iA*:>A, can be proved as follows (I found that it is not so
analogously as in Lemma 2.6). At first, from Theorem 2 in [11] we can as-
sume ZLo={L;: Ljeizy for A;, BjcU, and L;eiz} for A;, BjcU, where U,
(resp. U,) denotes a neighbourhood of 4, (resp. do—A4o=4,5)}. For ¢=
A+id* with AeA,.niA¥, Z'¢=df+ic=df+i*df on U; where *df=ce
Fo(B, DN T @ N T @*. Thus we have [p2<g, i¢*>=—ReSA (Srﬁ)?ﬁ

12
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(see p. 93 in [11]). Concerning the meanings of S o, see [11] p. 77. From

419

0=S d<fga>, we get ||¢||2=—2S fo. But, sinceg d):O:S ¢, we have
AUB AU 4 B

S fa=constantg d(f?)=0 in case argz’—argz:f:%,g fa=constantg =0 in
A A A A

s

case argz’—argz=7, hence ’S fa‘ = ’S fa‘=lim Sf6’<8 where B—y<0
B b n—o | Jr

and 6,€l,,(/, 2,) N e With |lo,—0]p,—0 as n—>co. Therefore, we have ¢=0,
hence A,ciA*L (cf. Lemma 1.3 in this paper). Concerning the relation A%(W,)
ciAnW,)*L, see Lemma 4.5 in [11] and Theorem 2 in [11]. At last, the re-
lation A,ciA*! in Lemma 4.3 is evident since 4, has a planar neighbourhood.




