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§0. Introduction

The following problem is called a cancellation problem ([2]).
Let A and B be rings such that A[X,,..., X,]=B[Y,,.... Y,] with X,..., X,
and Y,.... Y, algebraically independent over A4 and B respectively. Is A iso-
morphic to B? Or, more strongly, does it follow that A=B? We say, fol-
lowing [1], A is invariant if for each B as above, there exists an isomorphism
between A and B; we say A is strongly invariant if it follows that 4=B.

The following question was raised in connection with the cancellation prob-

lem for Dedekind domains ([2]).

Question. Supposc V is a D.V.R. (rank one discrete valuation ring)
of a field K. Let u and w be algebraically independent elements over K and
let U be a D.V.R.-extension of V to K(u, w). Suppose that both V,=U n K(u)
and V,=Un K(w) are residually algebraic over V (i.e. residue class fields of V,
and V,, are algebraic over that of V). Is U residually algebraic over V?

In §1, we first prove that the question is affirmative if either [V, /m,:
Vim];<oo or [V, /m,: V/m];<oo (Theorem 1).

On the contrary let us assume that there exists a residually transcendental
element ZeU over V, then we have Z=f(u, w)/g(u, w) with f(X,Y), g(X,Y)
e V[X, Y]. Then, we can reduce the question to the case where V and U
have a common uniformizing parameter t (Proposition 1). Then, we can choose
n such that f(u, w)/t" and ("/g(u, w) are units and at least one of them is
residually transcendental over V. So we may assume that Z=f(u, w)/t". Our
Theorem 2 asserts that if Z can be chosen so that f(u, w) does not contain any
term of the form wiw/ with ij>0, that is, f(u, w)=f,(u)+f>(w) (f{X)eV[X]),
then both V,/tV, and V, /tV, must have infinite p-independent elements over
V/tV. This result plays an important role in §2.
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Finally we give an example which shows that the question is negative in
general.

In §2 we study a cancellation problem for Dedekind domains. The follow-
ing two results are well known.

Theorem 0.1 ([1], Th. 3.3) Suppose that A is an integral domain of
transcendence degree one over a subfield, then A is invariant. If furthermore
A is not a polynomial ring, then A is strongly invariant.

Proposition 0.2 ([1], (5.4), (5.5), (5.6), (5.7))

Let A be a Dedekind domain and suppose that A[X,,..., X,]=B[Y,,...,
Y,] and that AxB. Let K be the quotient field of AnB. Then:

1) If AnB=K, then A is a polynomial ring, say K[T], over K.

2) If AnBSK, then A=K[TInV,n--nV,(r=1) where T is a suitable
transcendental element over K and every V; is a D.V.R. of K(T) such that
Vi2 K and V; is residually algebraic over V;n K.

We prove that, in case 2) of Proposition 0.2, each Vj/n; has infinite p;-
independent elements over V;n K/(n;n K) with p;=ch(V;/n;)>0 (Theorem 3).

As a corollary, we see that a Dedekind domain A whose quotient field has
a finite transcendence degree over a ‘‘residually perfect” field is invariant.

On the other hand it has been an open question if the case 2) of Propo-
sition 0.2 exists really ([1] (5.6), [2] (5.8)), and we show it by constructing an
example.

The author wishes to express his thanks to Professor M. Nagata and to
Professor M. Miyanishi for their valuable suggestions and critical reading of
the manuscripts.

§1. Residually algebraic extensions

Theorem 1.1) Under the condition of the question, if either [V, /im,:
Vim];<oo or [V,/m,: V/m];<oo, then U is residually algebraic over V, where
m,, mn, and m are maximal ideals of V,, V, and V respectively and [ : 7],
stands for inseparable degree.

In order to prove this, we show a lemma.

Lemma 1. If U is a D.V.R.-extension of a D.V.R. V, then there exists
W such that
i) Wis a D.V.R. and is an unramified extension of U, and
iiy denoting by V the integral closure of V in W and by w the maximal

1) This theorem was suggested by Professor M. Nagata.
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ideal of W, we see that V[(mnV) is separably closed (in its ulgebraic clo-
sure).

Proof. Let K be the quotient field of U and L the algebraic closure of
K. Consider the set I of all pairs (U;, n;) which satisfy the condition;

i) U, is a D.V.R. which is an unramified extension of U, U,cL and n, is
the maximal ideal of U,.

Define an order in I' by the inclusion relation. It is easy to see that I
is an inductive set, and I' has a maximal element, say, U,. We show that
this U,, is the required one.

In fact i) is obvious. Suppose ii) does not hold for W=U,, then there
exists and element « in the separable closure of V/m and not in V, [(V,, N n,),
where m is the maximal ideal of V and V,, is the integral closure of V in U,,.
Let f'(X) be a monic minimal polynomial over V, [(V, N n,;) which has o as a
root. Lift f'(X) to a monic polynomial f(X) over V;,. Then U, [X]/f(X)U,[X]
is in general a semilocal ring, and if we localize it to Uj, at a maximal ideal,
it follows that U}, contains U,  properly and satisfies i), a contradiction.

q.e.d.

Proof of Theorem 1. Take W in Lemma 1 with respect to V<U, and let
U* be the completion of W. Take integral closures of V, V, and V, in U*
and let (V*, m*), (V¥ m¥) and (V¥, m¥) be their completions in U* respectively.
We may assume [V, /m,: V/m];<oo. Then, by our construction, we have
[V¥mk¥: V¥/m*¥]<oo. Since V¥ is a D.V.R., there exists an integer n such
that (m¥)"cm*V¥+£0 and we have [V¥/m*VE: V¥ m*]<n[Vi/m¥: V*/m*]<oco.
Since V* is complete, V¥ is a finite V*-module ([3] (30.6)). Therefore VE[V*]
is a finite V¥-module. Take derived normal ring of VX[V*] and denote by V’
its localization at the prime ideal lying under the maximal ideal of U*. Then
V'’ is a D.V.R. and, since V,, V,,cV'cU*, we have UcV’. Since V' is alge-
braic over the D.V.R. V¥ and since V* is residually algebraic over V, V’
and U are residually algebraic over V. g.e.d.

The following proposition shows that the question can be reduced to the
case where U and V have a common uniformizing parameter.

Proposition 1. Under the condition of the question, there exist L, V'
and U’ such that;
(1) L is a field extension of K and, u and w are algebraically independent
over L,
(2 V' is a D.V.R. of L and U’ is a D.V.R. extension of V' to L(u, w)
and they have a common uniformizing parameter,
(3) both V,=UnL(u) and V,=U'nLw) are residually algebraic over V'
and
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@) if U is residually algebraic (or transcendental) over V, then U’ is re-
sidually algebraic (or transcendental, respectively) over V',

Proof. Let X be an indeterminate over U, then, since K(X)(x)n U(X)
=V (X) with a=u or w, (1), (2), (3) and (4) hold for V'=V(X), U =U(X) and
L=K(X) except that V(X) and U(X) have a common uniformizing parameter.

Take uniformizing parameters g of V and t of U respectively, then we have
g=t"s with an integer r>0 and a unit s of U. Define U'=U(X)[F]/(F'—sX),
V=V(X)[1f1=V(X)[Y](Y"—gX) and L=Q V', then they are required ones.

In fact, since L is algebraic over K(X), (1) is obvious. Since U’[tU’
=k¥X)[FI)(Fr=5X) and V'[tfV'=V'|yV'=k(X) are fields and since V'[qV’
=k(X)[Y]/(Y") is local (where k and k* are residue fields of ¥ and U respectively
and § is the class of s in k*), U’ and V' are D.V.R.s which have a com-
K (u, w) (X)[F]

e ~ .  O-1[)—
mon uniformizing parameter y=tf. (2) holds becausc Q~'U (F = sX)

=K, w, )[F] _ K(u, w. XLY] _j, ) Finally (3) and (4) holds be-

"(Fr—sX) (Yr—gqX)
cause V', V,=La)n U’ and U’ are algebraic over V(X), V(X) and U(X)
respectively. g.e.d.

In order to prove Theorem 2, we show a lemma in fields theory and one
more lemma.

Lemma 2. Let k be ua separably closed field of positive characteristic
p and K an algebraic extension of k. Let {k,}.cq be a set of fields such that
kck.<K and K is finite over k, for cach zeA. If K has a finite p-base

over k, then K is a finite N k,-module.
zed

Proof. Let ay,...,a, be a finite p-base of K over k. Then there exists
an integer n such that a?"ek (i=1,...,r) because K is purely inseparable over
k. So we have

k(KP") =k(KP""") =k(KP""?) =

Since K is finite and purely inseparable over k,, there exists an integer m,
such that k,2 K?™2, Then we have

k.2 k(K"":) 2k(KP").

Therefore K is finite 7\ k-module because K=k(KP", ay,...,a,) is a finite
zed
k(KP")-module.

Lemma 3. Let (V,t) be a D.V.R. of a field K with separably closed
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residue class field k of positive characteristic p. Let x be a transcendental
element over K and assume that (V,, 1) is a residually algebraic D.V.R.-
extension of V to K(x) such that V. tV, has finite p-base over k. Then there
exists a transcendental element ye K[x] over K such that;

¥) if aeK[yInV,, a?*—a=tf with aeV and peV,, there exists yeV,
N K[B] such that x—yetV,.

Proof. 1f o is algebraic over K then ae KnV,=V and the assertion is
obvious. Therefore we assume that o is transcendental over K. Note that in
this case, f# is also transcendental over K. For each transcendental element
ze K[x] over K, we define V,=K(z)nV,. Then V,/tV, is finitc over V_/tV,
because K(x) is finitc over K(z) and V. is a D.V.R.-extension of V, to K(x).
So V tV, is finite k'= 1{[\] V/tV,-module by Lemma 2. Choose a trans-
cendental element yeK[)lcrj‘m(')/\fer K which makes [V,/tV,: k'] least with z=y
and we want to show that this y is the required one. To see this, it is suffi-
cient to show that V[tV ,=V,[tV, if aeK[y]nV,, a?*—a=1f with aeV and
BeV,. In fact, if we can take y' =f(B)/g(f) with f(X), g(X)e K[X] such that
a—7y etV,, then since V is residually algebraic over V, we can take g'(f)e K[f]
and heV such that y—y"etV, with y=f(B)g'(f)/h. Now [V,[tV,: K']=[V,[tV,:
Ve[tV 1 [V/tVy: k']. By our construction [V,/tV,: kK'J<[V,/tV,: k']. Therefore
it holds that [V,/tV,: V,[/tV,]=1 and V,[tV,=V,[tV,. q.e.d.

Theorem 2. Let V, K, U, u, w, V, and V, be the same as in the question
and t a uniformizing parameter for V,. Suppose that V, and V,, are residual-

ly algebraic over V and that there exists a residually transcendental element
Ze U over V such that

v=f(u)+1"Ze K(w) with f(X)e K(X),

then the characteristic p of V,[tV, is positive and V,[tV, has infinite p-in-
dependent elements over V[V, N V).

Proof. The first assertion is obvious by Theorem I. To see the last
assertion, we show a contradiction assuming that V,/tV, has finite p-base over
VIitV,n V). We may assume that ¢ is a uniformizing parameter for both V
and U by Proposition 1; note that the finiteness of p-base is preserved. By
Lemma 1, we may assume that k=V/(1V,n V) is separably closed. If f(u)eK,
then we have Ze K(w)nU=V,, contradicting that V, is residually algebraic
over V. So we use Lemma 3 in the case x=f(u), then there exists ye K[x]
which satisfies *). If y=g(x) with g(x)e K[x], then we have

9O =g(x+1"2)=g(x) +1"Z' = y + "2 € K(w)
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with a residually transcendental element Z'e U over V and with an integer m.
By multiplying ¢ if necessary, we may assume yeV,.

Now replacing y by u and y+1Z’ by w, we want to show a contradic-
tion (i.e. that V,, is residually transcendental over V) under the assumptions that
ueV,, w=u+t"Z and that ) of Lemma 3 holds for y=u.

If n<0,t"w=t""u+ZeV, is residually transcendental over V. So we
show the case of n>0 by induction on n. Since k is separably closed, u
satisfies a relation

ur*—aetV,, with aeVl.
We write u?*—a=1tu" with u'eV,. If e=0, then we have
w—a=u+1"Z—a=tu'+t""'Z)e K[w].

Therefore by our induction hypothesis applied to 4’ and w'=u'+1t""1Z, we see
that V,=V,. is residually transcendental. If e>0, we may assume that (a
modtV)&(V/[tV)?. By #) there exists ye K[u'lnV, such that u—yetV,. We
may assume that y=f'(u’) (f'(X)e K[X]) is the one whose degree is the least
in the polynomials that have these properties. Then (i) in the case where
ch.V=p

S=f"((wP*—a)[t) =f (uP* —a+1"P* Z?")[1)
=y+ZP°g'(u', ZP*)e K[w]
with ¢g'(X, Y)e K[X, Y] and (ii) in the case where c/. V=0
o=f ((wr* —a)[)=f"((u?"+p°uP”"'1"Z+ Z*h(u, Z) —a)/t)

=f'(u' +peul= "' Z+Z2h(u, Z)[t)=f"(u')+

e it Of , 1, pe—1 O
14n—1 2 — em—1,,pe=1
peuP 1 Z@u' + Z*h' (u, Z)y=y+pet" 'u E V4

+Z%h' (u, Z)e K[w]

with h(X, Y), h'(X, Y), e K[X, Y]. Note that in case (ii), if we choose integer

r such that b=¢ur°! g{:, is a unit in V,, then (bmodtV,)& V/tV, because
deg—gLu’,—<degf’ and t’c—gf;;sku modtV, for any ceV. Therefore, if we write

u—y=tu" with u”eV,, then in each case we have w—d0=tww"+1"Z e K[w]
with m<n and a residually transcendental element Z'eU over V. Then use
induction hypothesis applied to u” and w'=u"+t"" 17", q.c.d.
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Remark 1. We do not know whether the question is affirmative even if
we assume only the finiteness of p-base of V,[tV, (or V,/tV,) over k. On the
other hand, we see that finiteness of p-base does not imply [V, /m,: V/m];<o0
in the following case:

V=k(x) [y, K=0"'V,
W=k(x, x»™',..., x*"",..) [[11],

—n(n+1)
u=x?"'t+xP P24 xPT 2 4. and

V,=W n K(u)

where k is a field of positive characteristic p and x,t are algebraically in-
dependent over k.
Now we show that the question is negative in general.

Example 1. Let p be a prime integer and let ¢, Z, a,, a,,..., a,,... be alge-
braically independent elements over F,=Z/pZ. Define

K=Fy1, a,, a,,..., a,,...) V=Fy(a,, a,,..., a,...) [

_ V(Z)[ Xy, Xgvooy X,
(XT—a, —1X,;, X0—a,—1Xs,..., Xo—a,—tX,11,...)

w

S=W—tW and U=W, then

1) U is a D.V.R.
Since tU is a unique maximal ideal of U, it is sufficient to show that
Ne"U=0. Since W[tW is a field, tW is a maximal ideal of W and is a unique

prime ideal containing "W for any positive integer n. So it follows that "W,
nW=t"W and /\t"W (f\t"W)W Therefore it is sufficient to show Ne"W

=0. For gef\t"W take a representative G(X,,..., X,,) of g in V(Z)[an,...,

X,-..]. Since we may replace X7 in G(X) by a;+tX;,,, we may assume that
G is of the form

G(X],..., Xr)=ZbAM;' with b;'e V(Z), M1=Xel"“Xf"
0<Le;<p, i=1,2,..,7r).

On the other hand, denoting the class of X; in W by x;,, W is a free V(Z)-
module having basis
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{ITx¢10<e;<p and ¢;=0 except only for a finite number of i}.
i=1

Since g=G(x,,..., x)=2Xb,M,ent"W; where M, is the class of M, in W,
we have b;e Nt"V(Z). Therefore we have b,=0 and g=0, because V(Z) is a

D.V.R.

Now we define u=x, and w=x,+1Z, then
2) u and w are algebraically independent over K.

Let L be the quotient field of U. Then L=K(Z, x,) and Z is transcen-
dental over K. On the other hand, since [U/tU: V(Z)/tV(Z)]=o0, x, is tran-
scendental over K(Z). Therefore the assertion is obvious by our construction.

3) U is residually transcendental over V.

In fact, Z is residually transcendental over V.
4) V,=UnK(u) is residually algebraic over V.

. VIX,,..., X,,...
Since V"z{ (x§ —a, —t/\gz,.l.., Xf,’—a,,]—tX,,H,...)
each x, is residually algebraic over V, we see that V, is residually algebraic over
V.
5) V,=UnK(w) is residually algebraic over V.

To see this, it is sufficient to show the following.

} with §'=Sn K(u) and
N

Proposition 2. V,, is V-isomorphic to V,.

Proof. Let v be the valuation defined by U such that o(f)=1 and let ov*

be the valuation of K({X;};cn) defined by v*(g)=Minov(b,) if g=3Y b;M,
AeA AeA

€ K[{X;}icn] Where b, e K and each M, is a monomial of X,

In order to prove Proposition 2, it is sufficient to show vo(f(u))=uv(f(w))
for every f(X)eV[X], because the K-isomorphism ¢: K(u)—K(w) defined by
@(u)=w would give an V-isomorphism of V, onto V.

Now, if v(f(u))=00 then f(u)=0 and f(X)=0 because u is transcendental
over K, which implies v(f(w))= co.

Suppose that o(f(u))=neN. We define f,(X,), (X, X2)oos il X150 X3
with f(X,,..., X))e V[X,..., X;] (i=1,..., k) inductively as follows.

If v*(f(X,))=ro. then we define fi(X,)=t""f(X,)e V[X,]. When f(X,,...,
X)eV[X,,..., X;] is defined and if f(x;,....x;)&tU then we finish the pro-
cedure (i=k). If f(x4,..., x;))€tU, then since {(a;modtV)};,.n are p-independent
over (V/[tV)P, we have

f(X 5w X)e(XE—ay, X5—a,,...., XP—a;, YV[X,,..., X;].

Substituting xf—a; by tx;,, (1< j<i), we have
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JlXpaeear XD =FUX ey Xpp1) With fi(X o Xy D EVIX e Xigi ]

If v*(fi(X,...., X;4 1) =r; we define
Sl s X D=1 s Xy ).

Since ro+r; 4+ +r_=n with r>0(i=1,2,..,k=1), we finish these
procedure by at most (n+1)st step.

On the other hand, due to following Lemma 4, we have y;eU (i=2, 3,...,
k+1) such that we—a,=ty,, yh—a,=tys,..., Vi — @y =1y 4.

So by construction of f(X,...., X;), we have

fwWy=t"fi(yi,...n y) with filyy,..., ) §1U.

Therefore v(f(w))=n g.e.d.

Lemma 4. For w of Example 1, there exist y,eU (i=2,..., k+1) such that
WP—a,=ty,, Yo —da,=tys...., yE—a,=ty.+,. Moreover y,=x;+tc; wiyh c;e U.

Proof. We show the existence by induction on i. Since w=x,+tZ, we
may include the case of i=1, defining y,=w. Suppose we have y,=x;+1c;
with i>1 and ¢;eU. Then yl—a;=x8+tPcl—a;=tx; +1"cP=1(x;4 +1""1cP)
and it is sufficient to put y;.,=x;+t"""'cl, ¢;y=1""2ct. g.e.d.

Example 2. We have similar examples in unequal characteristic case too.
For example, let p be a prime integer and Z, a localization of Z at (p). Let
Z,a,...., a,,... be algebraically independent elements over Z, Define

K=Q(a,,...,a,,...) V=2, a,,...,a,...)

V(Z)[X)seoes Xppee]

W= (X’; —da, _I’X2*"‘w Xﬁ_an_pxlﬁ]’:j_

U=W,p.u=x, and w=x,+pZ.
The proof is same as that of Example 1.

§2. Application

In this section we give some sufficient conditions for a Dedekind domain to
be (strongly) invariant. For the purpose we define:

Definition. We say that a Dedekind domain 4 is a (D.C.P.) if A=K[T]
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nNVin--nV,(r>1) where K is a field, T is transcendental over K and each
(Viom) is a D.V.R. of K(T) such that Vj/n, is algebraic over k;=(V;nK)/
(n;NK) and has positive characteristic p; and has an infinitely many p;-inde-
pendent elements over k;.

Theorem 3. If a Dedekind domain A is not a (D.C.P.), then A is in-
variant. If furthermore A is not a polynomial ring, then A is strongly in-
variant.

Proof. Suppose that A is neither a (D.C.P.) nor a polynomial ring and
that A[X,,..., X,]=B[Y,,..., Y,]=R, A+B.

By Proposition 0.2, A=K[u]nV,n--nV,(r>1). Since 4 is not a (D.C.P.),
for at least one i(1<i<r), say I, either V,/n, has zero characteristic or V,/n,
has a positive characteristic p and V;/n, has finite p-base over V/(in, n V) where
V=V,nK, and n, is the maximal ideal of V,.

On the other hand by [3] (I11.11), AnNB=KnV,n---nV,=C is a semilocal
Dedekind domain. Take s#0 in the Jacobson radical of C. Then it holds
that A[—;—}=K[u] and B[%]=K[w] with algebraically independent elements u
and w over K by Theorem 0.1, by [1](1.11) and by our assumption A#B.
Now put p=m, N4, then since P=pR is a height one prime ideal of R, Ry
is a D.V.R. Define U=Rgn K(u, w), then V,=K(u)n U=V, is residually alge-
braic over V. B is also a Dedekind domain and we have B=K[w]nV,n---
NV, by Proposition 0.2. Since V,=UnK(w)=2B and V,$K, it follows that
Ve=V; for some i (1<i<r'). Therefore V,, is residually algebra ic over V,nK
=V. For seC above

R H—]:K[u, X, X,]=K[w, Y,,..., ¥,]

and we have w=f(u)+1"Z, where f(u)eK[u],ZeU and Z is a non-zero poly-
nomial of X; without constant term (with respect to X;) and with coefficients
in ¥V, such that at least one of the coefficients is a unit of V,. However since
the class of X; in the residue field of Ry is transcendental over A/p and over
VipnV), Z in U is residually transcendental over V, a contradiction to Theorem
2. q.e.d.

Corollary 1. ([1] Th. 6.5) If A is a Dedekind domain containing a field
of characteristic zero, then A is invariant. If furthermore A is not a poly-
nomial ring, then A is strongly invariant.

Corollary 2. If A is a Dedekind domain whose quotient field L has a
finite transcendence degree over either (i) some perfect subfield k of positive
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characteristic p or (i) the rational number subfield Q, then A is invariant.
If furthermore A is not a polynomial ring, then A is strongly invariant.

Proof. 1t suffices to show that A is not a (D.C.P.), which is obvious in
the case (ii). In the case (i), it is sufficient to show that A=k. Suppose that
V=A, does not contain k for same height one prime ideal p of 4. Then V' nk
is a D.V.R. (not a field). Take its uniformizing parameter t. Then t'/?eknV
because k is perfect and we have a contradiction.

Finally, we show that there exists a non-polynomial Dedekind domain which
is not strongly invariant.

Example 3. Let K,u,w,Z and U be the same as in Example 1. Put
A=K[ulnV, and B=K[w]nV,, then they are non-polynomial Dedekind
domains and ZeU is transcendental over both 4 and B. We want to show
in U that A[Z]=B[Z], which would imply that A is not strongly invariant
because 4#B.

We first show that A[Z]=K[u, Z]nU. In fact, it is obvious that A[Z]
<K[u, Z]nU. Conversely, if xeK[u, Z]nU, we can write x=oy+a,Z+---+
o,Z" with a;e K[u] (i=1, 2,...,n). Since Z is residually transcendental over V,,
it follows that a;e V,, that is o;e V,n K[u]l=A (i=1, 2,..., n). Therefore we have
x € A[Z]. Similar holds for B[Z] and we have

A[Z]=K[u, Z]nU=K[w, Z]nU=B[Z].
g.e.d.

By the way, we note that the restriction to A=K[u]nU, of K isomor-
phism ¢: K(u)—K(w) such that ¢@(u)=w, gives an isomorphism of A onto B
by Proposition 2.
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