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§1. Preliminary and results

The purpose of the present article is to refine the explosion conditions for
branching Lévy processes which were obtained in [6]V).

Let X=(Q, X,, Px) be branching Markov process on the state space R,
where the base process X =(W, X,, P,) is a Lévy process on the real line R,
R is the topological sum of product spaces R", n=0, 1,..., 0, of R with R°
={0} and R*={4}, and the branching law is the delta measure J, ,,(dy) (x€R,
dycR) on R having a unit mass only on (x, x)e R2. Following [6] we call
the branching Markov process ((X, k(x), 6,x(dy))—) branching Lévy process.
Throughout this article we consider branching Lévy processes which satisfy the
conditions (X-1) and (X-2).

(X-1) The base process X satisfies P( sup X,=+o00)=12),
0st<+o

(X-2) The killing rate k(x) is non-negative continuous function on R such
that lim k(x)= + co.

x—>+0©

Let us prepare the several sequences of real numbers.
(8-1) H,n=1,2,.., such that H, /4o as n/"c. h,=H,,,—H, n=1,2,....
(S-2) 1,=20,n=1, 2,..., such that lim(l,/H,)=0.

(S-3) t,>0,n=1, 2,..., such that Y #,<+o0.
nz1

1) Notations and terminologies related to our explosion problem are taken from [5] and [6].
For general theory of branching Markov processes we refer, e.g., [2].

2) For abbreviation we denote Py(-) and Ey(-) related to a Lévy process by P(-) and E(-),
respectively.
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(S-4) M,, N,, n=1,2,..., positive integers such that lim M,= + oo, lim N,= + co.

n—>0

First we consider branching Lévy process whose base process is a sub-
ordinator, that is, a Lévy process with non-decreasing sample functions almost
surely. For such a process define the next two quantities I, and I, by

L=2Nyexp(=kyt,), Iy=2{P(X(t,)Sh)}""

n

where k,= inf k(x). and the summations > are taken over all suffciently large ».

x2H

Then we have

n

Proposition 1. Consider branching Lévy process whose base process is a
subordinator. If we can find H,, t, and N, in (S-1), (S-3) and (S-4) so that
both I, and I; are finite, then the process is explosive with probability one.

Next we consider branching Lévy process whose base process may not be
a subordinator. For such a process define the next three quantities J,, J, and
Js by

J1=ZP( inf XI<_In/Mn)’ J2=ZCXP(—k”t,,/M"),

n tStu/M,
+o0
J3=ZSO (P (sup X,<2l,+h,)}4*"dt,
n sst

where k,= inf k(x) and A4 is any constant such that 1<A4<2. Then we have

x2H,—21,

Proposition 2. Consider branching Lévy process whose base process may
not be a subordinator. If we can find H,, I, t, and M, in (S-1)~(S-4) so that
all of Ji,J, and J; are finite, then the process is explosive with probability
one.

Now let us apply the Propositions to the branching stable processes and
the branching Poisson processes which were defined and considered in [6]. In
order to simplify the situation, we make the following additional condition
(X-3) on branching Lévy processes to be considered.

(X-3) The killing rate k(x) is bounded for x<O if the base process is not
a subordinator.

Theorem 1. Consider branching stable process of indices {a, B} with
ae(0, )U(1,2) and —1<B=1 or of indices {1, 0}. Let the killing rate
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k(x)=(logx)?" as x—+003. Then the process is explosive with probability
one or non-explosive according as the constant y>1 or y<1, respectively.

Theorem 2. ([6; Theorem 2]) Consider branching stable process of indices
{a, =1} with I<a<2, and let the killing rate k(x)=<x' as x—+oo. Then
the process is explosive with probability one or non-explosive according as the
constant y>af(a—1) or yZSaf(a—1), respectively.

Theorem 3. Consider branching Poisson process, and let the killing rate
k(x)=x(logx)? as x—+oo. Then the process is explosive with probability one
or non-explosive according as the constant y>2 or y<l, respectively.

Acknowledgement. The author wishes to express hearty thanks to Professor
M. Motoo for his valuable suggestion and discussion.

§2. Proof of results

1. Proof of Proposition 1. First define the sequence of events A4,, n=1, 2,..., of
branching Lévy process X by A,={jy, ., ,—ju,>2t,}, where j, (HeR) is the
Markov time of X defined by j,,=inf{t;i(_w,H](X,)=O}4). Here I (EcR)
is the indicator function on the set E, that is, [ (x)=1 if xeE and Igx)=0
if xeR\E, and for each real valued function f on R f is a function on R such
that f(0)=1, f(4)=0 and f(x)=f(x,)--f(x,) if x=(x,....,x,)€R", n=1, 2,....
By the Borel-Cantelli lemma and [6; Corollary 1], the finiteness of
>P(A,) for each xe R implies that X is explosive with probability one. Let
us estimate P.A,), using the strong Markov property and the branching

pl'OpCl‘ty.
(I ) PV(A'I) é Ex(I{n g Y= ¢(X(j"n)) é Hn+ 15 Pyn(j",. +1 > 2tn))
é EX(H" é Y é H""’ 1 P.V».(Z(tn) é Nn) + Ey,.(jll,.+1 > tm Z(tn) > Nn;
Px(tn)(an+ s tn))) .

where &(x)=max {x,,..., x,} if x=(xy,...,x,)eR", n=1,2,...;, and Z(1) is the
number of particles at t+=0, that is, Z(f)=n if X,eR", n=0,1,...,, 0. Let us
estimate the integrands of the right hand side of (1). For the first term, con-
sider the simple Galton-Watson process {Z(1); t=0, P} such that P(¥>1Z(0)
=1)=e* and P(Z(®)=i+1|Z(0)=i)=1(i=1,2,...), where k is a positive
constant and ¥ is the first branching time, that is, #=inf{t; Z(t)xZ(0)}. It is

3) f)<e(x) as x—e&0<lim {/(x/g(x)) <M (/(x)/g(x)} < +oo.
4) The infimum of an empty set is taken to be+ oco.
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easy to see
2 P(Z(HSNIZ©0)=1)=1—(1—e k)N,

Let us apply (2) for the estimate, noting that sample paths of the base process
is non-decreasing. Then

3) P, (Z(t)SN)S 1 —(1—e kntn)Nu <N, ekntn,

where k,= igf k(x). For an estimate of the remainder part, [5; Lemma 11]

is applicabl;._ Then
(4) Ey,.(jH,,+| > tm Z(tn) > Nn: Px(l,,)(jH,,+ 1 > tn))
S{PQjn, >tV ={P(X(t,) Sh)}"",

where j, (heR) is the Markov time of the base process defined by j,=inf{t;
X,>h}. By (1), (3) and (4), the finiteness of Y P.(A,) follows from the finite-

ness of I, and I;. This completes the proof.

2. Proof of Proposition 2. Let us begin with the following comment. Noting
[6; Theorem 4] and the definition of J,,J, and J;, we see that we may
prove, without loss of generality, Proposition 2 under the auxiliary condition
that the killing rate is non-decreasing function. Hence we adopt the condition
throughout our proof.

Our proof is divided into three steps. In the first and second steps we
assume that the branching Lévy process is non-explosive, that is, P(e,= + o)
=1 for all xeR, where e, is the explosion time of X defined by e,=inf {¢;
X,=4}.

First step. We give several definitions related to the branching Lévy
process X. Let t be a Markov time of X. For an weQ with tHw)<+ o
and e, (w)=+ o0, consider the Lévy particle which is a component of w at
t(w), and let the position at t(w) be x. Let 3 be the time of creation of the
first descendant of the Lévy particle scaling from f(w), and let 1 be the place
of the creation. We call ¢, occurs for the Lévy particle, when the following
circumstance occurs: ‘‘The Lévy particle wanders in the half line [x—1,/
M,, + ) throughout the time interval [t,t+3), where 3<t,/M, takes place.
Each of the two Lévy particles, the original particle and the first descendant,
wanders in the half line [vy—1,/M,, + ) throughout the time interval [t+3,
t+1,/M,].” If &, occurs, then

%) y2x—1/M,.
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Let n, o be the number of occurrence of ¢, for the Lévy particle of w
which enters into (H,, +o0) for the first time, where we take t=j, and «x
=®d(X(jy,)). Further n,, and n, ,(m=1,2,.,M,) are the random variables
defined as follows: mw,, is the number of Lévy particles of w which are in
the half line (H,—2ml,/M,, + o) at time j, +mt /M, n, is the number

n,m

of occurrences of ¢, for the n,, Lévy particles, where we take t=jj, +mt, /M,
for each m.
Choose a constant g such that 1/2<a<1 and take p, by

(6) pn={1_P( inf Xt<_ln/Mn)}3{]_exp(—kntn/Mn)}'

1<ta/M,
Define the sequence of events A4,, n=1, 2,..., by
A,={e,=+ and jy <+o}n{n,o=1 and n, ,Zapmn,,.
m=1,2,..., M,—1}.
Then by the branching law of X we have

def.
(7) Tl,,((l)) = nn.M,,(w)g (zapn)M" for we An'

Second step. In order to estimate PJ(A,) from below we need the next
two estimates.

The first estimate. For any x, yeR,

(8) P (¢, occurs for the Lévy particle with x>y)

2P (x>y){P( inf X, =—1/M)}3{1—exp(—k(y—1,/M,)}.
0StSt,/M,
To prove (8) set (p(t)=S:)k(Xs)ds and {=inf{t; Q(e())=1}, where Q(1);
=0 (Q(0)=0) is a Poisson process of step one and parameter one, and is in-
dependent of X. Then using the strong Markov property and the branching

property of X, and using the fact that the non-branching part of X in R
is equivalent to the e ?()-subprocess of X, we obtain

the left hand side of (8)

gEx(x>y;E5(Cgtn/Mm inf Xt;z_ln/Mn;
0=srsg

{PX(;)( inf thzl_ln/Mn)|§?£X(§)}2)|z=}!:‘)

0StSt,/Mu—s b

=the right hand side of (8).
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The second estimate. Let X, i=1,2,...,N, be mutually independent random
variables such that X;=1 with probability p, and X,=0 with probability
1—p;. Suppose that p;Zp>0,i=1,2,...,N, and O0<a<]1. Then

9) P(3X.ZapN)z1—— 1=P
R R Y P 5 Y

Using the Chebyshev’s inequality, we have a proof of (9) as follows.
N N N
P XizapN)=1-P(L(X;—p)<apN—23p)

N
i ;E(Xi_pi)z

___1=p
ST e e
1
Estimate of P(A4,).
. M _1 ’ ’
(10) Px(An) =Ex<JH,. +"Tt"<ezﬁ nn,O = 1’ nn.mgapn“n,m fOI'

m=1,..., M,—2; P ((the number of occurrences of ¢,

2ap,s, where we take t=0),-,, ,, _,>,

where y is the random vector in R"»M,-: obtained from X<j,,,_+M]'i4_1 t,,)

by omitting the components which take the values in (—oo, H,,——z%—_l)l,,]

We can apply (9) to the integrand of the right hand side of (10) if \;'ve mind
the branching property and (8). Then

Px(An)gEx(jH,,"'M]”‘l_ L tn<eAa n;n,0= 15 n;,mgapn“n.m fOI'
n

— BT, T I—Pn >>{ _ l_pn }
M=o Mo 23 Loy )2 T (T 2p2 Gapy it

P,‘(j,,,"+M}'il_l t,<ey m,o=1,n, ,Zapm, . for m=1,..., M,,—Z).
n

Repeating the similar estimates, we obtain
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AY>P.(7 Mot 1 l_[),,
Px( n) = x(JHn<eA) nLIO { - (1 _a)zp'zl(zap”)m}
& 1—p 2a
>1— n >1- - 1) s
= m§0 (1-a)?p}Qap,)™ = (l—a)zp(2ap—1)( Py
for all n=N, where N is taken such that l—(ll_—;pz'})z— >0 and p,=Zp>1/2a

for all n=N. In the above estimate we used the fact:
(1D P(jy,<es=+o)=1 for xeR.

In conjunction with [6; Lemma I, (i)], (I1) follows from the assumption of
non-explosion and the condition (X-1) on X.
Now set B,={e;=+0, jy, <+ for all n=1, 2,...}\4,. Since

Px(Bn)épx(jH,.<eA= + OO)_Px(An)= l _Px(An)

< 2a
= (I-a)?p2ap—

l) {3P( inf Xt< _lu/Mn)+cxp(_kntn/M1)}’

tSta/M,,

the finiteness of J; and J, implies ¥ P(B,)<+oo. Hence by the Borel-

n
Cantelli lemma we have the following assertion: There exists a random variable
n taking finite values such that for all nzmn,w, ,=1,n, ,Zapn,,, m=1,..,

M,—1,a.s. (P,) on {e,=+0,jy, <+ for all n=l, 2,..’.}. This, combined
with (7), implies

(12) Py{es=+0, ju <+ for all n=1,2,. ]\ A {1n,2Q2ap)})=0,
m=N n=m
for all xeR.

Third step. First we show that the assumption of non-explosion leads
to the contradiction. (Refer the discussion in [6; Proof of Proposition 1].)
Choose the sequences in (S-1)-(S-4) so that all of J,, J, and J; are finite. By
[6; Corollary 1]
(13) Z:,(j,,““—j,,”)=+oo a.s. (P,) on {e,=+0}.
Suppose that P(e,=+o0)=1 for all xeR, then

P({e,=+c0, jy,<+oo for all n}n A {n,2(2apy~})>0

for some m by (12). Hence by (13)
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(14) E{eg=+00,ju, <+ for all n} 0 A (1,2 Qap)}; 3 (o, —jn)
=+ 0.

On the other hand, by a similar estimate to that of [6; Lemma 3] and by the
finiteness of J;, we obtain

the left hand side of (14)

n=mJO

o (+ Iy
= ZS oo{P(§>;1PX5.<21,,+h,,)}<2“m ""df < + o0.

This contradicts (14). Hence we conclude that there exists an x,€R such that
P, (ey=+00)<l.

Next we prove ‘‘explosive with probability one”. Noting the spatial homo-
geneity of Lévy processes and the monotone non-decreasing property of the
killing rate, we obtain from [6; Theorem 4] the next inequality

(15) P(ey=+0)2Pes=+0) for x=y.

On the other hand if x<y, we obtain by [6; Lemma 1, (i)]
Pfey=+w0)=P(j, <+, e,=+00). Applying the strong Markov property
on the right hand side, we obtain

(16) Pe,=+0)=E(j,<es Py, (es=+0))
SE(j,<ess Pox(jy(€s=+0) S Pes=+ o).
Combining (15) and (16), we obtain
P (e,=+ 0)=c; constant for all xeR.

By a similar discussion as in [5; Lemma 6] we obtain ¢=0 or 1. Since
P, (es=+00)<I, c=0, that is, the process is explosive with probability one.
This completes the proof.

3. By [3] stable processes except those of indices {o, — 1} with O<a<1 satisfy
(X-1). Hence Proposition 2 is applicable for proof of the explosive part of
Theorems | and 2.

Proof of Theorem 1. For proof of the explosive part set H,=exp(n?),
I,=exp(n®?), t,=n"" and M,=[n"]" in (S-1)(S-4), where 6, u and v are
constants satisfying

5) [a] is the greatest integer not exceeding a.
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(17 o1, u>1 and v>0.

Then by a similar estimate as in [6; Lemma 6] the finiteness of J, automatical-
ly holds. For the finiteness of J, it is sufficient that Y exp(—cn?®7#7") is

finite, where c¢ is a positive constant. For an estimate of J, we apply [6;
Lemma 11]. Then for the finiteness of J; it is sufficient that Y exp(2an®

—nvlogA) is finite. Hence if we can find J, u and v satisfying (17") and the
next inequalities

(18) po—pu—v>0 and do<v,

then the process is explosive with probability one. It has a solution if y>1.
Proof of the non-explosive part is given in [6; Theorem 1].

Proof of Theorem 2. For proof of the explosive part set H,=n I,=h,
=H,,,—H, t,=n"* and M,=[n"], where 6, p and v are constants satisfying

(19) 6>0, u>1 and v>0.

The rest of proof is similar to that of Theorem 1, so we omit it.

Proof of Theorem 3. For proof of the explosive part we apply Proposi-
tion 1 as follows. Set H,=n t,=n"'(logn)™* and N,=[exp{n® '(logn)*}],
where §, u and v are constants satisfying

(20) 0>1 and pu>1.

For the finiteness of I, it is sufficient that 3 exp(n®~!{(logn)’—c,(logn)*~*})

is finite, where ¢, is a positive constant.
Next let us estimate I;.

P(X(t) Sh) == [pqy S;"e"‘x[""]dx

t;[h,.]+ 1)

"hIFD

Applying the Stirling’s formula on the right hand side, we have for all sufficiently
large n

<l—-e!

P(X(tn) éhn) é l _%CXP {—tn+ [hn] +([hn] + l) lOg t,

~(Lh1 +3 )log [hJ} S 1 =3 exp (—can®! log m),
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where ¢, and ¢y are some positive constants. Then

{P(X(1,) S h,)}"» sexp(—c exp {n®~'((logn)’ —c3logn)}).
Hence if we can find 6, u and v satisfying (20) and the next inequalities
2n y—u>v and v>1,

then the process is explosive with probability one. It has a solution if y>2.
Proof of the non-explosive part is quite similar to that of Proposition of
[51, so we omit it.

Remark. When we apply Proposition 2 to branching Poisson process
instead of Proposition 1, we obtain the following weaker result than that of
Theorem 3: ‘‘Let the killing rate k(x)y=x(logx)? as x— + oo, then the process
is explosive with probability one if y>3.”
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