
J . Math. Kyoto Univ. (JMKYAZ)
17-2 (1977) 309-318

A refinement of explosion condition
for branching Levy processes

By

Michio SHIMURA

(Communicated by Prof. S . Watanabe, June 1, 1976)

§1. Preliminary and results

T he purpose o f  th e  present article is to  refine the explosion conditions for
branching Lévy processes which were obtained in [6] 1 ).

L e t X = 42 , Xt , P O  be branching M arkov process o n  t h e  sta te  space  R,
where th e  b ase  process X =(W, X„ Px )  i s  a  L é v y  process o n  th e  rea l line  R,
R  i s  th e  topological sum o f  product spaces R", n=0, 1,..., c o , o f  R  w ith  R°
={0} and ROE)={.4}, and the branching law is the delta m easu re  ( ,,x ) (dy) (x e R,
d y c R ) o n  R  having a  u n it m ass  only on (x, x) e R 2 . Follow ing [6] w e call
th e  branching M arkov process ((X , k(x), et ( x ,x ) (d y ) ) - )  branching Lévy process.
Throughout this article we consider branching Lévy processes which satisfy the
conditions (X-1) and (X-2).

(X-1) T he base process X  satisfies P (  s u p  X  +  c o )= 1 2 ).
ost<+.

(X-2) T h e  k illin g  ra te  k (x ) is non-negativ e continuous function o n  R  such
t h a t  lim k(x)= + oo.

Let us prepare the  several sequences o f real numbers.

(S-1) H„, n=1, 2 ,..., such that H„/ + oo a s  n / o o .  h„=H + i - H ,  n=1, 2,....

(S-2) /„.- 0, n=1, 2 ,..., such that lim(1„11-1„)=0.
n

(S-3) t„>  0, n =1, 2,..., su c h  th a t E t„< + oo.
n?_ 1

1) Notations and terminologies related to our explosion problem are taken from [5 ] and [6].
For general theory of branching Markov processes we refer, e.g., [2].

2) For abbreviation we denote P0 ( . )  and EA.) related to a  Lévy process by P O  and E (.),
respectively.
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(S-4) M„, N „, n=1, 2,..., positive integers such that lim M „= + co, lim N „= +co.
n—co

First w e consider branching Lévy process whose base process is  a  sub-
ordinator, that is , a  Lévy process with non-decreasing sample functions almost
su re ly . For such a  process define the next two quantities 1 2  and 1 3 by

= E N„ exp (— k n t„), 13=  E{P(X(1.0.-- hn)I N "

where k „= inf k(x). and the summations E  are taken over all suffciently large n.
Then we have

Proposition 1. Consider branching L év y  process w hose base  process is  a
subordinator. I f  w e can f ind H„, t„ an d  N „ in  (S—I), (S-3) and  (S -4) so that
both 1 2  and  1 3  are  f inite, then the process is explosive w ith probability  one.

Next we consider branching Lévy process whose base process may not be
a  subordinator. For such a  process define the next three quantities J 1 , J 2  and
J 3  by

.11 = EP( inf X 1 < — ln iM n ), J 2 =  E exP ( — kntnl MO,n t t,,/M ,,

+co
J3 =  E t { P (s, up x s <21„+ h„)}Am "dt,

where k n =  i n f  k(x) and A  is any constant such that 1 <A  < 2 .  Then we have

Proposition 2 .  Consider branching L év y  process w hose base process m ay
not be  a  subordinator. I f  w e can f ind H„, I n , t„ and M „ in (S -1)— (S-4) so that
a l l  of .1 1 , J 2  an d  J 3  are  f in ite , then  the  process is explosive w ith probability
one.

N ow  let us apply the Propositions t o  the branching stable processes and
the branching Poisson processes which were defined and considered in  [6]. In
o rde r to  s im p lify  the situation, w e  m a k e  the following additional condition
(X -3 ) on branching Lévy processes to be considered.

(X -3 ) T he  k illing  rate  k (x )  is bounded f o r x < 0 if  th e  b ase  process is not
a  subordinator.

Theorem 1. C o n s id e r b ran c h in g  s tab le  process o f  in d ic e s  {cc, 13} w ith
oce(0, 1)u (1, 2) a n d  — 1<fl_1  o r o f  in d ic e s  { 1 , 0}. L e t  t h e  k illin g  rate
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k(x)›---(log x)Y as  x —  0 9 3 ) . T h e n  th e  process is ex plosiv e w ith probability
one or non-explosive according as the constant y >1 or 1 , 1, respectively.

Theorem 2. ([6; Theorem 2 ] )  Consider branching stable process of  indices
f a, — 1}  w ith  1 <a<2, an d  le t  th e  k illin g  rate k (x ).---=:xY a s  x-3-Foo. Then
the  process is ex plosiv e w ith probability  one o r non-explosive according as  tile
constant y>Œ/(—  1) or yŒ/(Œ—  1), respectively.

Theorem  3. Consider branching Poisson  process, and  le t the  k illing  rate
xy + co. T hen the  process is explosive w ith probability  one

o r non-explosive according as the constant  y > 2  o r y <1 , respectively.

Acknowledgement. The author w ishes to express hearty thanks to Professor
M . Motoo for his valuable suggestion and discussion.

§ 2 .  Proof o f results

1. Proof of Proposition 1. First define the  sequence of events A n , n=1, 2,..., of
branching Lévy process X  b y  A„ = — jH.> 2 0 , w here j H  (H E R ) i s  the
Markov t im e  o f  X  defined by L I = inf {t; ,m(X,)= 01 4 ) . H e re  1 E  (E cR )
i s  the  indicator function o n  th e  se t  E ,  th a t  is ,  / E (x)— 1 i f  x e E  and /E (x) =
if XER\E, and for each real valued function f  o n  R  1  is  a  function on  R  such
that f (a) = , 1(4)=0 a n d  f  (x ) f (x ,)• • 1 (x„) i f  x =(x,,..., x„) e R", n = 1, 2,....

B y  t h e  Borel-Cantelli le m m a  a n d  [6; Corollary 1 ] ,  t h e  finiteness of
E P .,(A„) fo r each x e R  im plies that X  is  explosive with probability one . L e t
u s  estim ate Px (A „), u sin g  t h e  s t ro n g  Markov property  a n d  t h e  branching
property.

(1) Px(A„).. Ex(11„..y„=.1)(X(

H„, 1 ; P(Z (t„)_ N ,)+E y „(j i l „,>t„, Z (t„)>N „;

Px0„)(.1 H.+ i > tn))) •

w here  0(x) = max tx x „ }  i f  x =(x,,..., x„) e R n , n=1, 2,..., a n d  Z ( t )  is the
number o f  particles at 0, th a t  is , Z ( t)=n  i f  X i  E  R", n =0, 1,..., co. Let us
estimate th e  integrands o f  th e  right hand side o f  (1 ).  F o r  th e  first term , con-
sider the sim ple G alton-W atson process {2(t); t 0, P }  s u c h  th a t  /-5 (i > /12(0)
= 1) = e— k t a n d  is(2(i)= i + 112(0)— 0 =1 (i= 1, 2,...), w h e re  k  is a positive
constant and is  the  first branching tim e , th a t  is, = inf { t; 2(t)k 2(0)}. It is

3) f(x) g(x) as x-- c 0 < l i m  fA xIg(x)} { f(x) I g(x)} < + co.

4) The infimum of an empty set is taken to be-Ho.



312 M ichio Shimura

easy to see

(2) P(2(t) 1\112(0)= 1)= 1 —(1 — c")".

Let us apply (2) for the estimate, noting that sample paths of the base process
is non-decreasing. Then

(3) Py ”(Z(t„) N „) 1 —(1 — e- " 0 -)N-

where k =  inf k(x). For an estimate of the remainder part, [5; Lemma 11]
x2 H,,

i s  applicable. Then

(4) Z(t„)> N ; Px(r„)(i tn))

5- {P(i h„› tn)} 1‘1" =  {P (X (in ).- h ) I N

where j h (h E R )  is  the Markov tim e  of the base process defined by j h =inf{t;
X ,>1)} . By (1), (3) and (4), the finiteness o f E P (A ) follows from the finite-
ness of / 2  and 1 3. This completes the proof. n

2. Proof of Proposition 2. Let us begin with the following comment. Noting
[6; Theorem 4 ]  and the definition o f  .1,  J 2 a n d  J 3 ,  w e see  that w e m ay
prove, w ithout loss o f  generality, Proposition 2 under the auxiliary condition
th a t the killing rate is non-decreasing function. Hence we adopt the condition
throughout our proof.

Our p roo f is  d iv ided  in to  th ree  s tep s. In the f irs t and second steps we
assume th a t the branching Lévy process is non-explosive, th a t  is, .13 „(e4 = + c )
=1 for all x e R, where e , is  the explosion tim e  o f X  defined by e4 = in f It;

First s te p . W e g iv e  sev e ra l d e fin itio n s  re la ted  to  th e  branching  Lévy
p ro c e ss  X . L et t b e  a Markov tim e  o f X .  For an  co e S2 w ith  t(w)< + oo
and e4 (0))= +c o , consider the Lévy partic le  w hich  is a  component o f  co at
t(w), and let the position a t  t(w) be  1. Let 3  b e  the tim e of creation of the
first descendant of the Lévy particle scaling from «co), and let 9 b e  the place
of the crea tion . W e ca ll E„ occurs for the Lévy particle, when the following
circum stance occurs: " T h e  Lévy partic le  w anders i n  t h e  h a l f  l in e  [x-4,1
M„, +oo) throughout th e  tim e  in te rv al Et, t+ 3 ), w here  3<t„IM„ tak es place.
E ach o f  th e  tw o Lévy particles, the orig inal particle  and  the  f irs t  descendant,
w anders in  th e  h alf  l in e  [1)—IIM„, +co) throughout t h e  tim e interv al [t+3,
t+t n /M „ ] . "  If En occurs, then

(5) 9  x —  in/114„-
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Let n 0 b e  the num ber of occurrence of c „ for the Lévy particle o f to
w hich enters into ( H  ±  co) for the first time, w h ere  w e  tak e  t =  j,,, and x
= 0(X( j l l ,,)). Further n„,„, and n „ ,  (m =1, M „) are the random  variables
defined as f o l lo w s  :  u ,  i s  the num ber o f  Lévy particles o f  to  w hich  are in
the h a lf  lin e  (LI, —  2m/„/M„, + co) at time i m t  /Ma„ • --n, — n • rt 'n ,rtt i s  the number
o f occurrences o f c„ for the n„,,„ Lévy particles, where we t a k e = . ,  i -  /M
for each in.

n„ n

Choose a constant a  such that 1/2 < a < 1  and take p„ by

(6) pn= {1 — P (  inf X <  — 1 ./ Mn)} 3{1 — exp (— ku(„/M„)}
t 5_t„/M„

Define the sequence of events A n , n= 1, 2,..., by

A n = { e4  = + co and i n „ < +  cc} n {lf„, t) = 1 and n;,,,n

m = 1, M„— } .

Then by the branching law of X  we have

def.

(7) nn(W)=11,A n ((0) (2a pn )m f o r  to e

Second step. In  o rder to  estim ate  P x (A n )  fro m  b e lo w  w e  n eed  the next
two estimates.

The first estimate. For any  x, y E R,

(8) P x (E„ occurs for the L év y  particle w ith x> y )

—  in /MX {  —  exp ( — k(y .y ) { 1 ) (  o int„ X  t ?'

T o  p r o v e  ( 8 )  set 9(0 = t k(X  s ) d s  and C= inf ft Q(9(t))= 11, w here  Q(t);
t 0 (Q(0)= 0) is a Poisson process o f step  one and parameter one, and is in-
dependent o f X .  T hen using  the strong M arkov property and the branching
property o f X , an d  using the fa c t  th a t  the non-branching part o f X  in  R
is equivalent to the e ( t ) s u b p r o c e s s  o f X , we obtain

the left hand side of (8)

x (X >y : E ,( C tn 1 111,,,z — i n / M „  ;

{ Px ( )(i n f X t — i,,/ M ) I r;---ix()1 2)1z=x)o t„int„-s

the right hand side of (8) .
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The second estim ate. L et X 1, i = 1, N , be mutually  independent random
v ariables such that X  i =1  w ith  p ro b ab ility  p i a n d  X  i = 0  w ith probability
1— pi . Suppose that p >0 , i= 1, N , a n d  0 <a  <1 .  Then

(9)
1— p P  ( iX i apN ) 1 —

— — (1 a )2p 2 N

Using the  Chebyshev's inequality, we have a proof o f (9) as follows.

P ( iX i apN )=1— P(i(X i — pi )<apN  —  p i)

iE ( X i —p1) 2

1 > 1—  1 —  p 

( a p N —  p  — (1 — a ) 2 P 2 N  •
1

Estimate of P x (A„).

(10) Px (A n)=E x (if i„+41iil In<ee, ;n = 19 11 ;1, m  aPnlinon for

m =1,..., M„— 2 ; Py ((the num ber o f occu rrences o f E.)

ap n s, where we take

where y  i s  th e  random  vector i n  R" ''' M  I  obtained from  X(j,, -1-
M ;  1  t„)

by omitting the components which take the values in  ( —cia, H„—  2
( t: 1 )  41.

W e can apply (9) t o  th e  integrand o f  th e  righ t hand  side  o f  (10) i f  we mind
th e  branching property and (8). Then

M „ -1  
x ( jH  + t„< e = 1, 11 'n,. - aP,,11,„„, for

— 1 — P .  
(1 — a) 2 P„(2aP„)m n- 1 1m = l , ..., — 2 ; 1 —

13.(./H„ +
M 1 

 tn < e  Ten, o = 1 , 1.1;,,m-aPn11,,,.
—

Repeating the similar estimates, we obtain

1 — P.
( 1 — 0 2Ppinn,m„-1

f o r  m= M„ — 2).
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M . - 1

Px(An) n„<e A )  FI -
itt O (1 - a) 2 P(2aP„)"`}

m=o (1 -  a) 2 P,i( 2 aPn) f l t( 1 - a ) 2 p ( 2 a p  -  1) (1  p '

fo r  a ll  rz. N , where N  is  tak en  su ch  th a t 1 
( 1

> 0  a n d  p„„p>112a- a) 2 p
for all V. In  the  above estimate we used the fact;

(11) Px (ju„<ei= + co)= 1 f o r  x e R.

I n  conjunction w ith [6 ; Lemma 1, (i)], (11) follow s from  th e  assumption of
non-explosion and the condition (X-1) on  X.

Now set B„={e4 = +co, j + oo for a ll n=1, 2,...}\A .  Since

Px(B„)--Px (i „< e A  = + 00)- = 1 - P(A )

2a { 3 P(  inf < -/„/Mn ) +exp(- k„t„/M„)},-  (1  -a) 2 p(2ap - 1) t „Im „

th e  finiteness o f  J 1 a n d  1 2  im plies E Px (Bn) <  co. H e n c e  b y  t h e  Borel-
Cantelli lemma we have the following assertion: There exists a  random variable
n  taking fin ite  values su c h  th a t  f o r  a l l  n_tz , n'n, 0 — 9 lin,rn apnnnm , M  

= 1
,• • •

M„ - 1, a. s. (P i ) o n  {e4 = + oo, L i n < + oo f o r  a l l  n=1, 2,... }. T his , combined
with (7), implies

(12) Px ({e = + oo , j + co for a ll n =1, 2,...}\ (2a p)m -1)= 0,
m = N  n= m

f o r  a l l  x E R.

Third s te p . F ir s t  w e  sh o w  th a t  t h e  assum ption of non-explosion leads
t o  the  con trad ic tion . (R efer th e  d isc u ss io n  in  [6; P ro o f  of Proposition 1].)
Choose the  sequences in  (S-1)-(S-4) so  tha t a ll o f  J 1 , 1 2  a n d  J 3  are finite. B y
[6; Corollary 1]

(13) E(in„,i-.in„)=-- +Go a. s. (Px )  on {e j = + oo} .

Suppose that P x (e 4 = + co) = 1 for all x e R , then

co
Px ({e4 =- + co, j„,,<+ co for a ll n} n (2a p)m nI)> 0

11-=111

>  2 a

for some in  by (12). Hence by (13)
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(14) E x (fe A = + co, j H „< + cc for all n1 n
{ n

n } ;  E
n=in n=m

On the other hand, by  a  similar estimate to that of [6 ;  Lemma 3] and by  the
finiteness of J3 , we obtain

the left hand side of (14)
00  5+00E {P(sup X s < 21„ + 11 ) } ( 2 a P ) ' f l d t <  + co.

n = m  0 s_<t

This contradicts (14). Hence we conclude that there exists an  x , n R such that
P,(e = + co) <1.

Next we prove "explosive with probability one - . N o t in g  the spatial homo-
geneity o f  Lévy processes and the monotone non-decreasing property of the
killing rate, we obtain from [6; Theorem 4] the next inequality

(15) P ( e 4 =+c i) P ( e 4 =+c o ) f o r  x  y .

On the other hand if x..5_ y, we obtain by [6; Lemma 1, (i)]
P(e 4 = + co)=Px ( j <  + ,  e 4 =  + ) .  A pplying t h e  strong M arkov property
on the right hand side, we obtain

(16) Px(ej = -F co) = E .x( j y <e 4 ; Px ( i x ) (e4 =  Go))

E x ( j y <e i i ; P ( , 0 0 ) (e4 = + co))<Py (ei = + co).

Combining (15) and (16), we obtain

Px (e,= + oo)= c; constant for all x E R.

B y a  similar discussion as in [5 ; L em m a 6] w e obtain  c= 0 o r  1. Since
P ( e 4 = + co) <1, c =  0 , th a t  is , th e  process is  explosive w ith  probability  one.
This completes the proof.

3. B y [3 ] stable processes except those of indices fa, —  11 with 0< < I satisfy
(X -1 ) . H e n c e  Proposition 2  i s  applicable for proof of the explosive part of
Theorems 1 and 2.

Proof of Theorem 1. F o r  p ro o f  o f th e  exp lo sive  p art se t fi n = exp (0),
in = exp (0 / 2 ), t„ = an d  M„= [nr] 5 ) i n  (S-1)—(S-4), where 5, i  a n d  v  are
constants satisfying

5) [a ] is th e  greatest integer not exceeding a.
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(17) I , y > 1 a n d  v > O.

Then by a  similar estimate a s  in  [6; Lemma 6] the  finiteness o f J 1 automatical-
ly  h o ld s . F o r  th e  finiteness o f  J 2  it is  su f f ic ie n t  th a t  E exp( — cnY6 - A- v ) is

finite, where c  i s  a  p o s it iv e  c o n s ta n t. F o r  a n  estimate o f  J 3  w e ap p ly  [6;
Lemma 11 ]. T h e n  f o r  t h e  finiteness o f  J 3  it is  s u f f ic ie n t  th a t  E exp (2ana

— nv log A ) is finite . H ence i f  w e can  find  6, y  a n d  v  satisfying (1";) and the
next inequalities

(18) y6— p—v> 0  a n d  6<v ,

then the process is explosive with probability o n e .  It has a solution if  y>  1.
Proof of the non-explosive part is given in  [6; Theorem 1].

Proof of Theorem 2 .  F o r  proof o f  th e  e x p lo s iv e  p a r t se t 11,=0,1„=h„
=H„ + , — H„, tn =n - A and  M„= [nv ], where 6, p  and  v are constants satisfying

(19) 0>0, y > 1  a n d  v > O.

The rest o f proof is sim ilar to that o f Theorem 1, so w e omit it.

Proof of Theorem 3 .  F o r  proof o f the  exp losive  part we apply Proposi-
tion  1 a s  fo llo w s . S e t  H„= n', t„=n - '(logn) -1 1  a n d  N„-= [exp Tog n)v}],
where 6, p  and  v are constants satisfying

(20) > 1  and y > l .

For the  finiteness o f 12 it is sufficient that E exp (n 6 -  {(log n ) v  cj (log n)Y - A})
is finite, where c ,  is  a positive constant.

Next le t us estimate 1 3 .

P (X ( t„)  h „)= — 1[h„] ! 'ne-xx[h]dx
o

1)
n

ah,,11+1)!

Applying the Stirling's formula on the right hand side, we have for all sufficiently
large n

P(X (t„) . __h„)._ 1— exp  —t„ + [k ] + (Ehd +1) log t„

—( [ h„] + -3
2-) log [M I  ..„<. l —c 2  exp ( — c3 n6 -  lo g  n),
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where c2 a n d  c3 a r e  son-le  positive constants. Then

{ P(X (t„):1)).N -_exp ( — c2 exp {n''((log n)v —  c 3 log n)}).

Hence if  we can find 6, y  and  v  satisfying (20) and the next inequalities

(21) y — y >v  a n d  v > 1,

then the process is explosive with probability o n e .  It has a solution if y > 2.
Proof of the non-explosive part is  qu ite  s im ila r to  tha t of Proposition of

[5 ] , so we omit it.

R em ark . W h e n  w e  a p p ly  Proposition 2  to  b ra n c h in g  P o isson  process
instead of Proposition 1 , w e ob ta in  th e  follow ing w eaker result than that of
Theorem 3: " L e t  t h e  k illin g  rate  k(x)----1.- x(log x)Y as  x--+ + co , then  the process
is explosive w ith probability  one if  y> 3."

D EPA RTM EN T O E M A TH EM A TICS,

U N IV E R SIT Y  O F  TSUKUBA
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