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§1. Introduction

The I-connected irreducible symmetric spaces are classified by E. Cartan
[10], among them the symmetric spaces FII, EIII, EIV, and EVII are
torsion free and the ring structure of their integral cohomology is known [1],
[13], [14]. On the other hand the remaining symmetric spaces of exceptional
type have 2-torsions, in fact, these spaces are homogencous spaces G/U of
compact simply connected exceptional Lie groups G over subgroups U having
the fundamental group of order 2. Except the case G/U=EI, U is a maxi-
mal rank maximal subgroup of G and it is the identity component of the
centralizer of an element x [6]. Let C be the identity component of the
centralizer of a suitable onc dimensional torus containing x. By [7], both
G/C and U/C have torsion free cohomology of vanishing odd dimensional parts.

So, we have the following program to determine the cohomology ring of
the symmetric spaces G/U: (I) To determine H*(G/C). (II) To compute H*
(G/U) by the spectral sequence associated with the fibering U/C—G/C—G/U.
In the cases G/U=6G, FI, EII, EV the group C is torsion free and (I) may
be done by Theorem 2.1 of [12]. In the cases G/U=6G, FI, EII, EVI, EIX
we have that U/C is a 2-sphere S? and (II) may be done by use of the Gysin
exact sequence.

In §2, we shall fix the subgroups U, C and the homogencous spaces U/C.
In §3, we shall summarize general properties on the cohomology of homo-
geneous spaces G/H of G over a maximal rank subgroup H. In §4, we shall
apply our program to the symmetric space FI=F, U, where U=53.Sp(3),
C=T'Sp3) with S3nSp3)=T'nSp3)=Z,, and our results are stated as
follows:

H*(F,/T'"-Sp3)=2Z[t, u, v, wl/(1>=2u, u? =320 +2w, 302 — 12w, v3 —w?2)
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where degt=2, degu=06, degv=8 and degw=12 (Theorem 4.4);

H*FD)=Z[ 4, f5, [0 (f§ =12fufs+8 12 fuf 12— 3} f3—S 1)
(free part)

+Z, <y 1*>®4(fg, f12) (torsion part),
where degy=3 and degf,=i (i=4, 8, 12) (Theorem 4.11).

Here, A<x,,..., x,> indicates a free A-module with an A-base {x,..., x,}.

In §5, we shall prove that the cohomology groups of the 1-connected
irreducible symmetric spaces of exceptional type are odd torsion free (Theorem
5.1).

§2. Symmetric spaces of exceptional type

We discuss the symmetric spaces G/U=6G, FI, EII, EV, EVI EVIII and
EIX, where G is an appropriate compact l-connected exceptional Lie group and
U is a maximal rank subgroup of G. Denote by Z,(A4) the identity component
of the centralizer of a subset A of G. Let T be a maximal torus of U,
and let n: V- T be the universal covering.

By [6; Remark 1], U=2Z,(x) for an element xe T which is determined as
follows. We use the root system {x;} of [9]. Then x=n(X) is determined by

the equalities oc,‘(i)=% and o(X)=0 for i#k, where k takes the values in the

following table. Let L be a line in V given by the equalities off)=0 for
i#k and let T!'=n(L) and C=Z,(T"'). Then we have the following table [6]:

GlU= G FI EIl EV EVI EVIII EIX

G = G, F, Eq E; E, E, E,

k = 2 1 2 2 1 1 8
type of U: | Ay XA, A X C, Ay X A A, Ay X Dy Dy A X E,
type of C: T'x A, TiXCy TiX As T'X A T!'X Dy T1X D, T'*XE,

These groups U and C are described as follows.

Theorem 2.1. U, C and U/C are given as follows:

GlU=| G FI EIT EV EVI EVII EIX

U =| §5% | §2Sp@3) | S3-5U(6) | SU®)/Z, | S*-Spin(12) Ss(16) S%E,

C = | TS | TSp3) | TH-SU6) | T+-SU(T) | T*-Spin(12) | T*-Spin(14) T'E,

vc=| s I s PAC) s So(16) 50
N T SO(2) x SO(14)
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in which S3nH=T'nH=x=Z, if U=S3H, T'nSU(TN=Z,,
T'nSpin(14)=Z, and Spin(12)/(T' n Spin(12))=Ss(12),
where Ss(4m)=Spin(4m)/Z, denotes the semi-spinor group.

Proof. According to [5], each weight w of G is a linear map w: V-R!
such that w(Kern)=Z, it is identified with an element of H!(T)=Hom (H,(T),
Z) by the isomorphism Kernxn,(T)~H,(T), and H!(T) is a free abelian
group generated by the fundamental weights w,, w,,..., w, (I=rank G) which are
given by 2<w;, a;>/<aj, ;> =65

Since U is compact, connected and semi-simple, the universal covering
p: U>U is a finite covering. Then T=p '(T) is a maximal torus of U
since every maximal torus contains Ker pcthe center of U. The covering map
7 is factored through p#: V—T—T. Thus KericKern and every weight of
G is also a weight of U, and this gives p*: HY(T)-»H'(T).

Let &=m o, +-+ma, be the highest root. By [6], U(U) has a system of
the simple roots {a(i#k), —&}. Let {u(i#k), u} be the fundamental weights
with respect to this simple root system. It is directly verified that

(%) we=—n,-u and w,=u;—n;-u(i#k) for n;=mal?/|d|?.

Then (x) gives the induced homomorphism p*: HY(T)»HYT)=Z<u;, u>.
In our cases we see that

(%) n,=2 and n; is odd for some i#k.

It follows from (x) and (xx) that the index of Imp* is 2 and Kerpx~Z,,
that is, p is a double covering.

From the known type of U, we have the existence of a compact 1-con-
nected simple Lie group H such that U=H or U=53x H (S3=Sp(1)).

Consider the case that U=S3xH. We have that T=T,xT, for T,
=83nT and T,=HnT. Obviously p(T,)=T! and C=p Y (C)=T!'xH.
The inclusions i;: Tj—vT (j=1, 2) induce projections i* of H!(T) onto HY(T))
given by if(u)=0 (i#k) and i%¥(u)=0.

Now, (x) and (**) show that ifop* (j=1,2) are onto, thus that Kerp
cannot be contained in T; nor in T,. Thus the restrictions p|S3® and p|H
are injective, and by putting p(S3)=S3 and p(H)=H we have

U=S3H, C=T'"H, S3nH=T'nH~Z, and U/C=S83T'=8§2,

Next consider the case G/U=EV, then G=E, and U=SU(8). We may
assume that T=T%nSU(8) for the canonical maximal torus T8=U(l)x - x
U(1) of U(8) and that

al=t2—t3, a3=t3—t4,--., O(7=t7—t8 and “‘&—_-tl—tz
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for the canonical basis 1; of H'(T) with the relation ,4---4+13=0. Then T,
=p~'(T') consists of (z77,z,...,z2),zeU(l), and Kerpx~Z, is generated by
(=1, —1,..., =1). By taking U(HxUM<U®), SUMN=SUB)NU(T) and

p(SU(T)=SU(7), we have easily
C=p~(C)=T,-SU(T), T,nSUT=Z,,
U=SU®)/Z,, C=T"SU(T), T'nSUT=Z,

and UJC=U/C=SU®)/T,-SU(T)=U®)/(U(1) x U(T)) = P(C).

Consider the case G/U=EVIII, then G=E; and U=Spin(16). Let
p': Spin(16)—>S0(16) be the double covering. We may assume that T'=p'(T)
is a maximal torus SO(2) x --- x SO(2) of SO(16) and that

a2=t7+t8, O(3=t7-—1‘8,..., 0!3=12—t3 and —&=t]"t2

for the canonical basis t; of H'(T’). We have directly

I M

10-i
] t', l/3=u2_t8 and u.'= z t_[ (i=4, 5, 6, 7, 8)
Jj=1

u=t, u2=7' !
J

I

which gives the injection p*: HY(T')->H'(T). Thus Imp'* is spanned by the
elements

u, ug, Uq, Ug, Us, Uy, Uz—U; and 2u,.

On the other hand (ny,..., ng)=(m,,..., mg)=(2,3,4,6,5,4,3,2) and k=1 in
(*). Thus Imp* is spanned by the elements

2u, uy+u, Uz, Uy Us+u, Ug U,+u and ug,

and Imp*#Imp'*. This shows that U#SO(16) hence that U must be Ss(16)
and p'(Kerp)x~Z, coincides with the center of SO(16).

Next put T,=identity component of p~!(T!), C=p~'(C) and consider the
canonical inclusion SO(2)x SO(14)—S0(16), then we see that T,=p'~'(SO(2))
and p'(C)=S0(2)x SO(14). Put Spin(14)=p'~'(SO(14)), then p'|T, and p’|
Spin(14) are double coverings and Kerp'=T, nSpin(14)~Z,. Let z,eS0(2)
and z,eS0(14) be the diagonal matrices of the diagonal elements —1. Then
z, and z,z, (=(z,, z;)) generate the center of SO(14) and SO(16) respectively.
Choose elements x, € T, and x, € Spin(14) such that p(x;)=z; (i=1, 2), then they
are of order 4 and x?=x3 generates Kerp'. Since p'(x,x,)=z,z, generates the
center p'(Kerp) of SO(16), Kerpx~Z, is generated by x,x, or x,x3'. It fol-
lows that p|T, and p|Spin(14) are isomorphisms and, by putting p(Spin(14))
=Spin(14)=Ss(16)< Eg, we have
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C=p(C)=T"-Spin(14), T'nSpin(14)~Z,
and U/IC=U0|C=p0)/p(T)=S0(16)/(S0(2) x SO(14)).

Finally we consider the subgroup U=S3.Spin(12) of E,, the double cover-
ing p: U=S3xSpin(12)- U, the inclusion j,: Spin(12)» 0 and the projection
n: U-U[S3. Let p':Spin(12)-S0(12) be the double covering and choose
maximal tori T'=SO0(2)x---xSO(2) of SO(12) and T,=p'~Y(T') of Spin(12)
and put T=T,xT, T=p(T). T/T' is a maximal torus of U/S3=C/T"'.
Then we have the following commutative diagram:

T, -, T=T,xT, —*, T

| | /N

Spin(12) 2, U=83xSpin(12) 2> U  T|T!
\ lrrz \’: /
Spin(12) —7 , UIS?,

where i, and j, are injections to the second factors, p and p are double
coverings, n and 7w, are the projections and the other maps are the inclusions.

Put f=mpi,: T,»T|T', then it is easy to see that f=p|T, and this is a
double covering. As in the previous case, we compare p with p’, then the
image of p'*: HY(T')»H'(T,) is spanned by ({,=u=0 in H'(T}))

fy=Uq, t3=ug—lq,..., tg=uUz—t, and (,;=2u,—u,.

Since mop=fon,: Ty x To—>T[T"', Imf*=i4(Im (p*-n*))< i¥(Im p* n Imn%). We
have Imnd=<u,, us,...,u;> and Imp*=<—-2u, u;—nu (i=2,3,4,5,6,7)>
for (ny,...,ny)=(m,...,m;)=(2,2,3,4,3,2,1). Thus Imp*nImnz% is spanned
by

Uy, Uz+Uq, Uy Us+Uq, U and 2u,.

The same holds for its i¥-image. Since f is a double covering, Imf* has index
2. Thus Imf*=i3(Imp*nImn%)#Imp*, which implies that U/S3=C/T!
=Spin(12)/(T* n Spin(12))=Ss(12). q.e.d.

Corollary 2.2. The symmetric spaces in Theorem 2.1 are l-connected
and have the 2-dimensional homotopy group isomorphic to Z,.

The maximal subgroup of maximal rank in the exceptional Lie groups are
classified in [6], among them the followings are the cases that the quotient
spaces are not symmetric spaces:
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G= F, E; E, Eg Eg E,
k= 2 4 3ors 7 5 2
type of U: |  AyX A, |AsXAyxAy| AyxAs Ay} Eq Ay x A, Ag

Proposition 2.3. Corresponding to each case we put

H= SU@3) SUQB)xSU@B)| SU(®6) E; SU(S) {e}
n= 2 2 2 2 4 8

For the first five cases, U=SU(n+1)-H, SUn+1)NH=T'nH=Z,,,,
C=(SU(n)-T")-H, U/|C=P,(C) and SUMm)NT'x~Z, in which SUn+1)nH
is the intersection of the centers of SU(n+1) and H. For the second case,
SU@B) N H is not a subgroup of any factors of H=SU(3)xSU(3).

For the last case, U=SU9)/Z,, C=SU(Q8)-T!, U/C=PgC) and SU(8)
NT'=Z,.

Here, T! consists of the diagonal matrices of SU(n+1) of the diagonal
element (z,..., z, z7"). The proof of this proposition is similar to that of
Theorem 2.1, and omitted.

Corollary 2.4. The homogeneous space G|U is 1-connected and its
2-dimensional homotopy group is isomorphic to Z,, except the fifth case
where it is isomorphic to Zs.

§3. Cohomology of several homogeneous spaces

In this section we summarize some general properties of several homo-
geneous spaces. Throughout the section, G denotes a compact connected Lie
group and T a maximal torus of G. Zy(A) denotes the identity component of
the centralizer of a subset 4 in G.

At first we have the following proposition which is a slight generalization
of Theorem A of Bott [7].

Proposition 3.1. Let C=2Zy(S) for a torus ScT. Then H*(G/C) is torsion
free and H°%G/C)=0.

Proof. In the case that G is simply connected, the assertion is true by
Bott [7]. In the general case we have a finite covering p: G=T,x H-G,
where T, is a torus and H is a simply connected Lie group. Denote the
inverse images of T, S and C respectively by T, § and C. Then T=T,xT,,
where T, is a maximal torus of H. Let S, be the identity component of S
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and S,cH be the image of S, by the projection T—T,. We shall show that
C=Zy8,)=T, x Zy(S,), from which the assertion will follow since H is simply
connected, S, is a torus and G/C=G/C=H|Z\(S,). C is connected since
KerpcT<C. Then C=2ZyS,) since p:Zy(Sy)=»C=2Z,S) is a local iso-
morphism. Let x=(x,, x,) be a generating element of S,, then x, generates
S, and we have Zy(So)=2Zo(x)=Zo(x,) X Zo(x2)=T, X Zo(S,). g.e.d.

Note that C=T if S=T.

Let H be a subgroups of G containing T. Denote by ®(H)=Nyx(T)/T
the Weyl group of H. ®(H) is a subgroup of &(G) and it operates on G/T.
The projection p: G/T-G/H commutes with the operation of @(H) which
operates trivially on G/H. Thus we have that

(3.1) the image of p*: H¥(G/H; A)-»H*(G|T; A) is contained in the invariant
subalgebra H*(G|T; A)*UD, where Zc A<=Q or A=Z,

By Borel [4]
(3.2) p*: HXG/H; Q) — H*(G/T; Q)®*) is an isomorphism.

H°d9(G/H; A)=0 if p* of (3.1) is injective since H°(G/T)=0. Conversely
if Hedd(G/H; A)=0, then the spectral sequence with coefficient A4 associated
with the fibering H/T—G/T-G/H collapses since H°Y(H|/T; A)=0. Then p*
of (3.1) is a split monomorphism. H*(G/T; A)®) is a direct factor of H*(G/
T; A). Comparing the ranks by (3.2) we have

Proposition 3.2. p*: H*(G/H; A)»H*(G/T; A*" is an isomorphism if
and only if H¢G/H; A)=0. In particular, it is an isomorphism if
(@) H=ZyS) for a torus S and A is arbitrary,

or (fB) —11;6/1 for each prime p such that the p-torsion of H*(H) is non-

trivial.

The assertion for («) follows from Proposition 3.1. By Borel [2] the
assertion for (f) holds for A=Z, (q: prime to p), and then for general A.

Let U and C be the identity components of the centralizers which are
discussed in the previous section, that is, U is a maximal subgroup of maxi-
mal rank in G.

Proposition 3.3. In the case n,(U)=Z, (p: prime), the canonical projection
G/T-G/U induces an isomorphism

H*(G|U; Z[1/p]) = H*(G|T; Z[1/p])* V' =H*(G|T; Z[1/p]) n H*(G/T; Q)*".
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Proof. First consider the case that the type of U is classical. Let U
be the universal covering group of U. Then either H*(U) is torsion free or
H*(U) is odd torsion free and p=2. Since H*(U:Z[1/p])x~H*(U; Z[1/p]),
(B) of Proposition 3.2 is satisfied for H=U and A=Z[1/p]. Thus we have

H*(G/U: Z[1/p))=H*(G|T; Z([1/p])*"

It remains the cases (G, U)=(Eg, S3-E;)(p=2) and (G, U)=(Eg, SU(3)-Eg)
(p=3). We see that U/C=P,_,(C) in these cases. Consider the fibering

P,_,(€) —is G/C -4, G/U.

By the homotopy exact sequence, m,(G/U)=~n,(U)=Z, and by =,(G/C)x~Z,
we have that iy: n,(P,_(C))—n,(G/C) is of degree p, and the same is true
for H, and H?2. Thus i*: H*(G/C; Z[1/p])-H*(P,_,(C); Z[1/p]) is surjective
since H*(P,_,(C)) is multiplicatively generated by H?(P,_,(C)). This shows
that the spectral sequence associated with the above fibering collapses, g*:
H*(G|U; Z[1/p])>H*(G/C: Z[1]/p]) is injective and H°d9(G/U; Z[1/p])=0.
Then the proposition follows from Proposition 3.2. q.e.d.

Corollary 3.4. H°d4(G/U)cTor. H¥(G/U) and Tor. H¥(G/U) consists of only
the p-torsion part. The symmetric spaces of Theorem 2.1 have wvanishing odd
torsion part.

A general method to determine H*(G/H) for a torsion free maximal rank
subgroup H of G has been given in Theorem 2.1 of [12]. The followings are
the cases that this theorem can be applied.

Proposition 3.5. H*(C) is torsion free for C of the first four cases of
Theorem 2.1 and the cases except the fourth one of Proposition 2.3.

Proof. 1In the first four cases C contains the subgroup H such that C/H
=T!'/Z,. In the remaining cases C contains the subgroup SU(n)x H such
that C/(SUmn)xH)=T"'|Z,,,,, or =T'/Z, In all cases, C is a total space
of a principal bundle over a circle with a connected structure group. Thus C
is the product of the circle and the structure group which has torsion free
cohomology group, and the proposition follows. q.e.d.

Finally we consider the case that U/C=S? in Theorem 2.1. Then we have
the Gysin exact sequence which reduces to exact sequences

(3.3) 0 — H2-3(G|U; A) =% H?(G|U; A) <~ H?(G/C; A)
8, H2-2(G|U; A) =% H?*1(G|U; ) — 0,
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where ye H3(G/U; A), 2x=0 and A is a principal ring with unit.

Proposition 3.6. If U/C=S? then Tor. H¥G/U) =y.H*(G|U) is an ele-
mentary 2-group.

§4. Cohomology of the symmetric space FI

4.1. In the sequel to the last sentence in Proposition 4.1, the suffix of
each cohomology class indicates the degree of the class. The modp coho-
mology of F, is given as follows:

4.1) H*(F 45 Z,)=A(x3, Xs, X5, X23)®Z5[x6]/(x3),
xs=8q%x3, xg=Pxs=x};
H*(Fy; Z3)=A(X3, X7, X1y, X15)®Z5[x5]/(x3).
X;=P1x3, xg=Px;
and H*(Fy; Z,)=A(x3, X3, Xq5, X33) for p>5.

Since x3 is universally transgressive, xs;e H*(F,; Z,) and x,e H¥(F,:; Z,)
are transgressive with respect to the fibering

(4.2) F,—*sF,/C -, BC.

Let d5e€ H®(BC) and g€ H8(BC) be classes such that their modp (p=2
for 6 and p=3 for &g) reductions are the transgression images of xs5=Sq2x,
and x,=2'x; respectively. As is seen in the proof of Proposition 3.5, C
=T'.Sp(3) is homeomorphic to the product S!'xSp(3) of a circle S! and
Sp(3). Thus H*(C)=A(s,, s3, S7, 5;;). According to Borel [2], we have

H*(BC)=Z[1,, t4, tg, t,,]
and by putting t;=i*(t;) e Hi(F,/C)
H*(F4/T'-Sp(3); Q)=0Qlt,, t4, tg, 1,,1/(04, 012, 616, 624)
where g;€Z[1,, t4, tg, t;,] is an element of degree i and it is a transgression

image, in rational coefficient, of the generator x;_, of H*(F,; Q)=A(xs, X,,,
X5, X33). Now apply Theorem 2.1 of [12], then we have

Proposition 4.1. There exist generators ve, yg€ H*(F,/T'-Sp(3)) and rela-
tions p;, py€Z[t;, e, vg: i=2,4,8,12] (j=4, 12, 16, 24; k=6, 8) such that
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HY(Fo|T'-Sp(3)) =Z[1t5, ts, tg, 112: V6, 78)/(Pas P125 P16s P24s Pss PB)>
4.3) m*(76)=Xe (M0d2), 7*(yg)=x4 (mod 3),
Pe=2-y¢+0¢ and py=3-y5+0g,
where p; is determined by the maximality of the integer n in
4.4) n-p;=o; mod(p; ps, ps; i<j).

Remark. The situation is similar for (G, C)=(Eq, T'-SU(6)), and Propo-
sition 4.1 holds for H*(Eq/T!-SU(6)) by adding generators tg, t;, and rela-
tions pyo, P1s-

4.2. We shall determine the integral cohomology of F,/T!-Sp(3) and F,/
Sp(3).

At first H*(BT)=Z[w,, w,, wy, w,] for the fundamental weights {w;}.
Take new generators:

I=wy, y1=Wy—ws, Jyy=w3—w, and y;=w,.

Let R; (resp. R) be the reflection to the plane o;=0 (resp. &=0) in the
universal covering V of T(i=1, 2, 3,4). Then we have the following system of
the generators of Weyl groups:

&(F,)=<R,, R,, Ry, R,>, ®(U)=<R,, R;, R,, R>
and ¢(C)= <R2, R3, R4> .
The reflections satisfy

J
and R(w)=w;—nw, (n;=m;|o;|2/1d]?).

Then we have the following table of the action:

R, R, R, R, R
t —t+y1t+y:+ys —t
M1 1=y Y2 —t+y;
Vs M1 Vs —t+y,
Vs Y2 —t+y;
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where the blanks indicate the trivial action. It is easily seen that t is @(C)-
invariant, t2 and the set {y(t—y);i=1,2, 3} are @(U)-invariant and the set
S={ty;, (-, i_(t—yj'—yk)’ i‘()’j—)’k)} is ®(F,)-invariant.
Put z;=y(t—y) (i=1, 2, 3) and define q;e H*/(BT) and s, H"(BT) respec-
tively by
gqj=n(l+z,.) and Z"‘,s,,= IT(+x).

i xeS

Lemma 4.2. H*(BT)*©=Z[t, q,, q5, 951, H*BT)*V'=Z[¢2, q,, q,, q5]
and H*(BT; Q)®F9) =Q[sy, 512, S16: S24] -

Proof. By the above definition the elements in the lemma are invariant
for the corresponding Weyl group. In general H*(BG; Q)xH*(BT; Q)®9.
For G=C, H¥(BT; Q)®*© =Q[x,, x4, Xg, X;2]. Let p, be the i-th elementary
symmetric function of y2?, y3, y%, then ¢q;=(—1)'p;+tf; for some f. As is
well known, Z[p,, p,, p;] is a direct factor of Z[y,, y,, y3]. From these
facts it follows that Z[t, q,, g5, g5] is a direct factor of H*(BT)®(©) with
the same ranks for each dimension. Thus the first assertion is proved. The
second assertion is proved similarly. The last assertion is essentially proved
in Lemma 5.1 of [13], or it follows also from the following lemma. g.e.d.

Lemma 4.3. s5,/6=—1t24¢q,, s,,/3=—1%+412q,—8q; mod (s,),
$16/10=312q3—q3 mod(sy, 5(2) and 5,4/10=—¢3+2793 mod(ss, 5,3, Sy46)-

Proof. In the following computations, (i, j, k) runs the cyclic permutation
of (1, 2, 3). From the definitions

§Sn=ﬂ(l =A==y ==y U =(t—y;— )P

=TT =24+ 2z;+22) (1 =12+ 2(z ;4 z,) +(z;— 2,)?).

Thus s,=6(—t*+q,), and by putting > z,=q,=t2 we have

an;—l—[(l+2(‘12_3ij:¢)+(“‘6+4t2¢h—8‘13)+ziz(2’j-zk)2)
and  s5,,=3(—1%+41t2q,—8q;) mod(s,). And, modulo (s4, s;,)
>5,=1+10(—q%+3t%q3)+ 10293 — 9t2q,q5+27q%) + higher terms,

from which the last two formulas of the lemma follows. g.e.d.

The canonical map BT—BC induces an isomorphism
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H*(BC)=H*(BT)*© =2[1, q,, 93, q3].
So, in Proposition 4.1, we may use the following identification:
1=t q;=14(i=1,2,3) and o;=s5;(j=4, 12, 16, 24).

Then we have the following description of H*(F,/C).

Theorem 4.4. There exist elements ue H® and ve H® such that 2u=t3
and 3v=gq,. Rewriting q; with we H'2, we have

H*(F,|T'-Sp(3))=2Z[t, u, v, w]/(t3 —2u, u?—3t2v+2w, 302 — 12w, v3 —w?).

Proof. Obviously we can take p,=s,/6=—1t2+¢, which must be the trans-
gression image t(x;)=p, of a generator x; of H3(F,)~Z. We have

©(x5)=8q%1(x3)=8Sq%(1* +¢,)=2Sq2(yit +y )= y:it(y; + ) =1tq,
and (x)=2'1(x3) =2 (=12 +q,)= -2+ TP (yit— y})
=t Yyt yhH =t +12q, g3 44,

So, we can choose Jg=1!q,=t3 and dg=t*+12q,+q}+q,=3t*+q, mod(p,).
Then by putting u=—y, and v=—ys—t* and by using the relations p,=pj
=p5 =0, it follows from Proposition 4.1 that

f]*(F4/TISp(3))=Z[l, u, v, w]/(t3—2u, P12 Pres P24),

where 3v=g,, w=¢; and the relations p; (j=12, 16, 24) are determined by the
maximality of the integer n in n-p;=s; mod (3 —2u, p;; i<j). It is easily com-
puted that p,,=—u?+3t2v-2w (n=12), p,e=1?>w—230% (n=30) and py,=w2—03
(n=270). q.e.d.

Corollary 4.5. The following elements form an additive base of H¥(F,/T*.
Sp(3)).

deg=| 0| 2| 4| 6| 8|10 12 14 16 18 20 22 | 24|26|28|30

1 t | 12w | tu | t2u| 2y uv tuv | tiuv | vw tvw |y | z |tz |tz
v |ty w tw v X tx tix

where x=uw—1tv2, y=5w2 —tuv? and z=uvw—4ty.

Proof. Note that dim.F,/C=30. By simple computations it is seen that
these elements span H*(F,/C). Then their independence will follow from the
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Poincaré polynomial P(F,/C, x)=(1—x*)(1—x'?)(1 —x!®)(1—x24)(1—x2)"1.
A=x")"1A=x®) 11 —x12) T =1 +xB) (1 +x2+x*+x8 +--- +x22). q.e.d.

Corollary 4.6. For ueH® veH8, we H'? and se H?3 we have
H*(F,/Sp(3))=Z[u, v, w, s1/QQu, u?+2w, 3v2, v3 —w?, us, ws, s2),

that is, Tor. H¥(F,/Sp3))=Z,<u, uv, uw, uvw> +Z,<w, vw> +2Zy<v?> and
H*(F,/Sp(3))/Tor. = A(v, s).

Proof. The Gysin exact sequence associated with the fibering S'—F,/Sp(3)
—F,/C is reduced to

0 — H?"\(F,/Sp(3)) -4 H?"2(F,/C)
— H2H(F4[C) 2 H?H(F4[Sp(3)) — 0,

where h is the multiplication with some ce H?(F,/C). Since F,/Sp(3) is 2-
connected, we have h(1)=+t and h(ax)= +ta. Then, by Corollary 4.5,

Heven(F,/Sp(3))~Coker h=Z[u, v, w]/Qu, u?+2w, 302, v3 —w?)
and H°d4(F,[Sp(3))=Ker h=Z < 14tvw —uv?, t2z>.

Putting s=0"'(14tow—9uv?) we have O(p*(v)s)=v0(s)=t?z. Then the corollary
follows immediately. q.e.d.

4.3. Next we shall determine the cohomology of BU, U=S3.Sp(3). Consider
the fibering

U/C=S8? — BC 2, BU
and the associated Gysin sequence

4.5), 0— H2""3(BU) —X, H*"(BU) £, H?"(BC)
—0, H2=2(BU) —L, H*"*1(BU) — 0,

where 2y =0 and 0(p*(x)B)=0a-6(p).

Proposition 4.7. H*(BU)=Z[y, t,, ua, ug, u;,1/(2x) where p*(t,)=t* and
p¥(ug)=gq; (i=1, 2, 3).

Proof. H°(BU)=Z<1> and H'(BU)=0 since BU is l-connected. Since
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n,(BU)=n(U)=Z,, H3(BU)#0, and by (4.5),, H}(BU)=Z,<y>, 0(t)=+2
and H2?(BU)=0. Then by (4.5),, H5(BU)=0 and p*: H4(BU)~H*(BC)=
Z<t?q,>. Thus H*BU)=Z<t,, u,> for t,=p*1(t2) and u,=p* 1(q,).
Here we remark that

(4.6),, if p*: H¥*"(BU) — H*"(BC) is surjective, then 0: H*"*2(BC) — H*"(BU)
is injective and ImO=2H*"(BU). Thus -x: H*"2(BU)~ H*"*1(BU), -yx: H4m1
(BU)xH4m*2(BU), yx: H*"(BU)®Z,~H*"*3(BU) and the sequence 0— H4*m3
(BU)—£, H*™(BU) -2, H*"(BC)—0 is exact.

This follows from the exactness of (4.5),, and (4.5),,., and the fact that
t: H¥"(BC)~ H*"*2(BC) (as free modules) and 6(p*(a)t)=2a.

By (4.6);, HS(BU)=Z,<y?>> and H"(BU)=Z,<t,x, uyx>. The follow-
ing lemma (4.7) will be proved later.

4.7) 13#0 in H°(BU) and <tux3 u*>=Z,+Z, in H'3(BU).

Then -y: HS(BU)—H®°(BU) is injective. By the exactness of (4.5),, p*:
H8(BU)-HB8(BC) is surjective, and ug=p*~!(qg,) exists. By (4.6),, H1°(BU)
=Z,<tyx? uzy®>>. Again using the second part of (4.7) and (4.5)s, we have
the existence of u,,=p* 1(q;).

Since > H*"(BC) is multiplicatively generated by t2=p*(t,) and g¢;=p*(uy)
(i=1,2, 3), p*: H*"(BU)>H*"(BC) is surjective for each m. Therefore the
proposition is proved by applying (4.6), inductively. q.e.d.

Proof of (4.7). Let K be the kernel of the natural homomorphism S3 x
Sp(3)»U=S3.Sp(3). Imbed Sp(1) into Sp(3) by the diagonal map. Then
KcS3xSp(1), and (S3xSp(1))/K is isomorphic to SO(4). Thus we have natu-
ral maps SO(4)—»U and j: BSO(4)—»BU. 1t is easily seen that the imbedding of
Sp(1) into Sp(3) induces a homomorphism of degree 3 of =;. It follows that
H*(U/SO4); Z,)=H*(Sp(3)/Sp(1); Z,)=0 for degree <7. Thus j*: H*(BU;
Z,)~H*(BSO4); Z,) for degree <7. As is well known H*(BSO(4);Z,)
=Z,[w,, wy, w,]. From the results of H*(BU) in lower dimensions we see
that j*<y, ty, uy (mod2)>=<w;, wi, wy,>. Then (4.7) follows from w3#0
and <wiw}, wiw,>=~Z,+Z,.

Corollary 4.8. H*(BU; Z,)=2Z,[u,, us, ug, ug, u;,], u;=j*w; (i=2, 3).

4.4. We shall determine the cohomology of the symmetric space FI=F,/U,
U=S3.Sp(3). First consider the homomorphism

q*: H¥(FI; Z[1/2]) — H*(F,/C; Z[1/2])
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induced by the projection of the fibering (C=T"!-Sp(3))
U/C=S? — F,/C -4 FI=F,|U.

Theorem 4.4 implies H*(F,/C; Z[1/2])=Z [1/2][t, v, w]/(t® —12t2v+ 8w,
3v2—1t2w, v3—w?). By Lemmas 4.2 and 4.3, H*(F,/T; Q)*WY=H*(BT; Q)®WV)/
(H+(BT; Q)@(F4))=Q[t2’ 91> 92> Q3]/(S4, S12> S16s 524)—__0[’, b, w]/(slb S16s 524)-
Thus it follows from Proposition 3.3

(4.8) g* defines an isomorphism
H*(FI; Z[1/2]) = Z[1/2][¢?, v, w]/(#° — 12t20 + 8w, 302 —t2w, 03 —w?).
Recall the Gysin sequence (3.3) (A=Z or Z,)
4.9), 0 — H2"3(FI; A) —*, H2"(FI; A) -5 H2"(F,/C; A)
0, H2n-2(FT; 4) —%, H2"*\(FI; 4) —0,

where 2y=0, 0 satisfies 6(q*(a)f)=0o-0(B) and the sequence commutes with the
mod 2 reduction H¥( )—H*( ; Z,).

Lemma 4.9. (i) Changing 0 to —0 if it is necessary, we have 0(t)=2.
Put f,=0(u). Then q*(fy)=t?>, H' (FI)=H*(FI)=H*(FI)=0, H3(FI)=2Z,
<y> and HY(FI)=Z< f,>.

(ii) There exist elements foe H8(FI) and f,,e H'2(FI) such that q*(fg)
=v and q*(fi2))=w.

Proof. (i) H'(FI)=0 since FI is 1-connected. Since n,(FI)=n,(U)=Z,,
H3(FI)#0. By the exactness of (4.9),, (f)=2 (changing 0 by —0 if 0(f)=—2),
and H2*(FI)=0, H¥3(FI)=Z,<y>. By the exactness of (4.9),, H3(FI)=0
and g*: H*(FI) 2 H*(F,/C)=Z <t?>>. Put f=g* 1(t?), then 20(u)=02u)=0(t3)
=0(g*(N))=f-0(t)=2f. Since H*(FI) is free, fy=0(u)=f.

(ii) Consider the following commutative diagram of natural maps:

F,C 4, F,JU=FI

Jro |

BC £, BU.

By Proposition 4.7, q*(i*(ug))=i§(p*(us))=q,=3v and g*(i*(u,,))=i%(p*(u,2))
=q3=w. Thus g*(f,,)=w for f,=i*u,,;). 0(2v)=20(v)=0 since 2H¢(FI)=0.
So, there exists ae H®(FI) such that g*(x)=2v. By putting fg=i*(ug)—a, we
have g*(fg)=v. q.e.d.
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Now consider (4.9), for A=Z,. By Theorem 4.4 we have

(4.10) H*(F,/T'.Sp(3); Z,)=2Z,[¢t, u, v, w]/ (@3, u?—t*v, v2 —t*w, w2 —03)

=Z,[1]1/>)®A4(u, v,w).

Lemma 4.10. (i) Let y;=ymod2. There exists y,e€ H*(FI; Z,) such that
q*(y;)=t. Then we have y;=8q'y,, Sq2y;=y,ys, y3=fymod2, 6O(u)=y3,
¥3=y3% y3y3=0, y,y3=y3+#0 and y}=0.

(ii) Let yg=fgmod2 and y,,=f;, mod2, then

H*(FI; Z,)=2Z,[y,, y3)/(y3+Y3, y3y3)®4(ys, y12)-

Proof. (i) From Lemma 4.9, it follows H!(FI;Z,)=Z,<y;> fori=2,3, 4,
Sq'y,=y;, y3=yxmod2, y,=f,mod2 and O(u)=y, By (49);, ¢*(y2)=1t, ¢*(»3)
=12#0, thus y3=y,. By the exactness of (4.9), (n=2, 3,4), we have H3(FI;
Z,))=2Z,<y,y;>, HNFI; Z,)=Z,<y}>, H'(FI; Z,)=0and y,y3#0. Then y3y;
=0 and y3=ay} for some aeZ, Since Sq!'Sq2y;=Sq3y;=y%+#0, Sq?y;
=y,y3. By use of Cartan formula, 0=a(Sq'y;)?=Sq%(ay})=Sq2y3=y,(Sq'y,)?
+y38q2y,=(a+1)y,y3. Thus a=1, y3=y3}, y$=y,y} and y3=y3y;=0.

(i) Put F*=Z,[y,, y31/(y3+3} y3r3)®@4(ys, yi2)={L, ¥2, V3, V3, y2¥3 V3
=3, y4=1,y3}®4(yg, y,,), then we have the exactness of a sequence

0, F2n=3 _¥3 pan 9 HZ"(F4/C;Z2) 0, Fan-2 _¥3, p2ntl >0,

where the homomorphisms are given by the multiplication with y; (y3=0), by a
multiplicative ¢* which carries y,, y3, Vs, Y12 to t, 0, v, w respectively and by
O(tiviwk)=0, O(tiuviwk)=ysryiyk (i=0, 1,2; j, k=0, 1). Applying the five
lemma to the natural map of this sequence to (4.9), of A=Z,, we have the
assertion of (ii) by induction on n. q.e.d.

Theorem 4.11. Let r12=f2—12f4f8+8f12, r16=3f125—f4f12 and r24=fg‘—
f3,. Then we have

(i) HX(FI; Z[1/2])=2Z[1/2][f4: f5: f121](r125 F16 724)
(i) H*FI;Z)=Z3[y2, 53 78 712/ (03+13 305, v§+r3yi2, y3+r12)
and (iii) HXFD)=Z, fas f3 f120/Q20 1 fas 135 F125 Fr6s T20)

=Z[f4 fo, [120/(r12, P16, 124)  (Jree pari)

+Z,<y, 12> ®A4A(fs, f1,) (torsion part).
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Proof. (i) follows from (4.8) and Lemma 4.10. Since yj, yg, ¥, are inte-
gral classes, Sq!'(y3)=Sq'(ys)=Sq'(y,,)=0. Then it follows from Lemma
4.10 that Sq'H*(FI; Z,)=Z,<ys;, y3>®4(ys, ¥,,) and the derived group
of H*(FI; Z,) with respect to Sq' is Z,[y,1/(y3)®4(yg, y;2). By use of
Proposition 3.6, we have Tor. H¥(FI)=Z,<y, x*>>®4(fs, f12), L H*(FI) is
the free part, H*(FI)®Z,=~H*(FI; Z,) and that H*(FI)->H*(FI; Z[1/2])
is injective. From the last statement follow the relations r;,=r;s=r;,=0,
and then rig=y3+y3y,,=0, ryu=y3+y3,=0 in H*(FI;Z,). Thus (ii) is
proved by Lemma 4.10. Now, consider Z[f,, fg, f121/(f12> F16> F24). By tensoring
Z, and Z[1/2], we obtain Y H*(FI;Z,) and Y H*(FI;Z[1/2]) which
have the same rank over Z, and Z[1/2] respectively. This shows > H*(FI)
=Z[ fa f5» f121/(r12> 716> F24). The relations 2y=yf,=x3=0 are obvious. So,
(iii) is proved. q.e.d.

§5. Torsion in the cohomology of the irreducicle symmetric spaces of
exceptional type

The purpose of this section is to prove the following

Theorem 5.1. The cohomology groups of the irreducible symmetric
spaces of exceptional type are odd torsion free.

The symmetric spaces FII, EIIl and EVII are hermitian and their co-
homology groups are torsion free. Also H*(EIV)=A(xq, x,;) is torsion free
[1]. By Corollary 3.4, the cohomology groups of G, FI, EII, EV, EVI,
EVII and EIX are odd torsion free.

It remains the symmetric space EI=E,/PSp(4). The spaces EI, EIV
=E,/F, and FI=F,/S3-Sp(3) are related to each other by

PSpd)n F,=S53-Sp(3).
Let C=T!'Sp(3)cS3-Sp(3)cF,cEs and consider the fibering
5.1) F,/C -y E4|C — E|F,=EIV .
Proposition 5.2. H*(E,/C)~H*(F,/C)QH*(EIV) as algebras.
Proof. Since EIV is 8-connected,
0 — H"(E4[C) s H"(F,/C) ——» H"*\(EIV)

is exact for n<8. Thus ¢ and u are i"*-images. q,=3v and w=gq, are i*-
images for the map i: F,/C—>BC of (4.2). The map i can be extended over
Eg/C. Thus 3v and w are i'*-images. Since H®(EIV)x~Z, v is also an i'*-
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image. Since H*(F,/C) is multiplicatively generated by t, u, v and w, it follows
that F,/C is totally non-homologous to zero in E¢/C, and the spectral sequence
associated with (5.1) collapses. Then we obtain an additive isomorphism of
the proposition. This also shows that i'*: H2"(E.,/C)~H?2"(F,/C) for even 2n
<26, and that the relations in H*(E¢/C) which correspond to those in Theorem
4.4 hold. q.e.d.

Since Sp(4)/Sp(3)=S'3, PSp(4)/C=Sp4)/(S' x Sp(3))=P,(C) and we have
a fibering

(5.2) P,(C) s E/C -2 EI=E4[PSp(4) .

Proposition 5.3. q%: H*(EI; Z[1/2])>H*(E¢/C; Z[1/2]) is injective and
H*(Eq/C; Z[1/2])=H*(P4(C); Z[1/2])@H*(EI; Z[1/2]) (additively).

Proof. By concerning low dimensional homotopy groups, we see that i¥:
H*(Eq¢/C; Z[1/2])>H*(P,(C); Z(1/2]) is surjective for degree=2, and then
for all degrees since H*(P,(C)) is multiplicatively generated by H2(P,(C)).
Thus the spectral sequence associated to (5.2) with coefficient Z[1/2] collapses.
Then the proposition follows. q.e.d.

This proposition shows that H*(EI) is odd torsion free, and the proof of
Theorem 5.1 has been established.

Finally recall from [5], G=G,/SO(4),

(5.3) H*G6:;Z)=2Z,[y,.y;]/(y3+y3 rv}y3)
and  H*(G)=Z[y, f41/2xs xS 4 X35 fD=Z[f ]I (fD+Z, <y, x*>
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