
J. Math. Kyoto U n iv . ( JMKYAZ)
18-1 (1978) 121-130

Cardinals, isols, and the growth
of functions

By

Erik ELLENTUCK

(C om m unicated by P rof. H . Yoshizawa, M arch 30, 1977)

1. Introduction

Let w be the non-negative integers and let A, be the cosimple isols.
To each  XEA, we can associate a unique degree o f  unsolvability
(c. f .  [ 3 ] ) .  This is the degree o f any co-r. e. eE X .  Throughout this
paper d  is a non-recursive r. e. degree and Ad is the set tX e Ai l zlx <d}
In  this paper we are concerned with th e  first order theory o f  (.4„ + )
where +  is isolic addition. W e study th is  structure by m eans o f a
first order language L  containing individual variables uo , u„ vo,
v „  . . . ,  a  binary functo r ±  denoting addition, and a binary predicate

denoting equality. L  is interpreted in  co o r  Ad  in  th e  usual way.
Because w and A ,, are commutative semigroups we take the liberty of
putting o f L  in the normal form E , <„  a,u, where E  denotes summation,
a,ew, and a y ; is  the term consisting o f  u, summed with itself a i times.
An A E  special Horn sentence is a sentence of L  having the form

( 1 ) ( V u ,  . . . ,  u -1 ) (a - * ( y, u„-.1),8)

where a(u o , u,”_,) has the form

( 2 ) A i< g  Ek<.aikuk E K .a ;k u k )

and g u o, u„,_„ y 0 , v„_,) has the form

(3 ) A .K r(E h< m bikuk+  E h < n C  jkV  k

E k < m b 'ik U k +  E k < n C j k V h ) •

n  [6 ]  it is shown that
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Proposition A :  I f  go is an AE special Horn sentence and ço then

In  order to  get a converse to  th is  re su lt w e  d e fin e  an  A E  special
sentence to  b e  a sentence of L  having the form

( 4 ) ( u o . u.-1) ( a — >  ( v o  •  v n - i)V i< p iS i)

w here a  has the fo rm  ( 2 )  an d  each P i h a s  fo rm  ( 3 ) .  A  H orn  reduct
of th is  sentence is  an y  one of the A E  special Horn sentences

( 5 ) (\duo, u.-1) ( v o  •  • v„--1) A) •

From Proposition A  it readily fo llow s that i f  go i s  an A E  special sen-
tence having a Horn reduct Iff such that co t h e n  /1 y). A  degree
d is  ca lled  h ig h  i f  d ' =0" where prim e denotes ju m p .  In  [ 6 ]  it i s
shown that i f  d is  a  h igh  d eg ree  and go i s  a n  A E  s p e c ia l  sentence
such that A  g o  th e n  go h a s  a Horn r e d u c t  tr s u c h  t h a t  w  T .  The
proof o f th is resu lt uses in fin ite indecom posab le iso ls, and it is know n
from  [ 6 ]  that A  con ta in s such  is o ls  i f  a n d  o n ly  i f  d is high. T h i s
accounts for the high requirem ent on d .  W e relax this w ith

Theorem 1. I f  go is an AE special sentence then A , i f  a n d  only
i f  go has a Horn reduct Yf such that

Our proof o f Theorem  1  involves a le m m a  w h ic h  is  in te re s t in g  in
it s  o w n  r ig h t . I t  a s s e r ts  th a t  a  reg re ss iv e  isol is 3 - m e a g e r  if and
only i f  i t  is  multiple-free (c. f .  Section 3  fo r definitions).

L e t (A :, -E ) b e the difference group formed from A .  A s  a n  appli-
cation o f Theorem 1 w e  show

Theorem 2. The f irst order theory  o f  (A :, + )  is independent of  d(and
in f ac t  is  the sam e as th at  of A*).

The sign ificance o f th is  re su lt fo llo w s fro m  [ 6 ]  w h e r e  w e  show
th a t th ere  is  an EAE sentence w hich holds in  A ,  i f  a n d  o n ly  if  d  is
a  h igh  degree . T hus w e can  describe p roperties o f d by m eans o f A„
but w e cannot do so by m eans of A .

The methods developed so fa r  ap p ly  eq u a lly  w e ll to  the Dedekind
c a rd in a ls . Let ZF  be Zermelo-Fraenkel set th eo ry (w ithou t the axiom
o f choice) and let 4  b e  the Dede kind card inals, i .  e . ,  those cardinals x
such that x # x + 1 .*  i n  [ 2 ]  it is m entioned in passing that

*  From now on we tacitly assume that Z F  is  consisten t (particularly a s  a  hypothesis in
Theorem 3).
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Proposition B. If 99 is  an AE special Horn sentence and (1)99. then
ZFH [ 4 ço].

It follows as a corollary that i f  go is an A E  special sentence having a
H o rn  r e d u c t  g r  s u c h  th a t  (ii q f  th e n  Z F  [ 4  ç o ] .  U sing  in fin ite
indecom posable card inals (necessarily Dedekind) w e  g o t  the following
converse in [5]. I f  go i s  a n  A E  sp ec ia l sentence and Z.F1-- [ 4 g o ]
then go has a Horn re d u c t q f  such that g r .  W e  o b t a in  i n t e r e s t i n g
modifications of th is  resu lt b y  ge ttin g  r id  o f th e  in fin ite  indecomposa-
b l e s .  This can  be done in tw o  w a y s .  F ir s t ,  w e  c a n  w o r k  i n  ZFO
(= Z F H -an  axiom  w hich  asserts that every set can be linearly ordered).
W e  can  th en  p ro v e  in  Z F O  t h a t  e v e r y  indecom posable  cardinal is
finite. Second, w e can  still w o rk  in  Z F ,  b u t re str ic t o u rse lv es  to  zIR

( = cardinals of D e d e in d  sets of reals). S in c e  th e  r e a ls  a r e  linearly
ordered w e can prove in Z F  that every indecom posable in  zIR  is  f in ite .
B y using a  growth rate analysis o f combinatorial functions we obtained
the follow ing result in  [ 5 ] .  I f  go is an  A E  sp ec ia l sentence th en  ZFO

[ 4  9 o ]  if and only i f  go has a Horn re d u c t  T  su ch  th a t cu 'Vf. The
m ethods used to obtain th is result fail fo r  zIR ;  however we can m odify
the proof o f Theorem  1 so as to get

Theorem 3. I f  99 is  an AE  special sentence then  Z F I- [ 4 „ g o ]  if and
o n ly  if  99 h as  Horn reduct T su c h  th at w i-T.

At no added expense w e also obtain the main r e s u lt  o f  [5] (but
w ith  a  different proof).

Theorem 3  (second part). If 99 is an  A E  special sentence then ZFO
[4 T ] if a n d  o n ly  if 99 has a Horn reduct T su c h  th at 99 T.

T h e  key notion u sed  in the proofs o f Theorems 1  and 3  is  th a t  of
an infinite m ultip le-free object. A lth o u gh  th is  notion is  m u c h  le s s
restrictive th an  th a t o f a n  in f in ite  indecom posab le  ob ject, it i s  s t i l l
sufficiently pathological to provide interesting counter-examples.

2. Main reduction

W e start w ith  a  resu lt due to Bradford.

Lemma 1  ( [ 1 ] ) .  I f  x ,  y E w  th e n -- (x = lA y = 0 ) i f  and on ly  i f  ( EZ
E  (2 z < x ± y A x  < 3 z ) .

P ro o f . Assume , ( x # 1 A y = 0 ) .  I f  x  is  e v e n  ta k e  z - = x / 2 .  Clearly
2 z = x < x + y  and x < 3 x / 2 .  I f  x # 1  and x  is odd take z #  ( x - 1 ) / 2 .  Then
2 z # x -1 < x + y .  I f  3 z < x  th en  (3x /2) —  (1 /2 )< x  so x < 1  and x  is even.
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I f  x = 1  and y * 0  ta k e  z = 1 .  T h e n  2 z = 2 < x + y  a n d  x= 1< 3= 3z.
This proves th e  le ft  to  r ig h t  implication. Conversely, assume x=1
A Y = 0. Then 2z< x-F y implies z = 0  so that x 3 z .

=Corollary. I f  p > 1  and x ; E a)  f o r  j < p  th en -- (x, 1 AA1<frxi=o)
if and on ly  i f  ( zEco) (2z E x p x .,A x i _<_3z).

Let 99 be an AE special sentence of the fo rm  ( 4 )  (having p  dis-
juncts) and let 0 , be

(6 ) ( V u o ,  •  •  U p - i )  V i< p ( v )  (2 v  E i< P U jA U ;  3 V ) .

Lemma 2. I f  ç9 is  an AE special sentence su c h  th at p > 1  and
but no Horn r e d u c t  o f ço is  tru e  in  co, then A d O .

P ro o f .  Since no Horn reduct o f ç5, is  true in co, fo r each i < p  there
are x(„),E ct) such that

( 7) co a(x0,, • •

( 8) w ( Vv,, • • *3 ( x 0 i )  •  •  • )  
•

( m - - 1 ) i )  
V

O )  •  •  • )  
V

n - 1 )  •

Let a '(u o, u ,_ ,)  be

a(Expx0;up • • E i< p x (-0 .,1 0

and let P:(u o, u,_„ v„ v„_,) be

Ri(Expsoiu„, • • •, Ei<px(,.--1);11.0 vo, • • vn_,)•

Since a (u o, u„,_,) is a  conjunction o f linear homogeneous equations,
and any linear combination of solutions of such a  system is itself a  so-
lution, ( 7 )  implies that

( 9 ) w  ( e u o, u 1,_,) a'

It also follows from (8 )  that

(10) w  ( V  u0,u , _ „
— (u i= 1 A A ,< p u ,= 0 ) )

fo r each i < p .
Applying Lemma 1 we get

(11) co ( Vito, •  •  • ,  u p - 1 )  V 0 ,  •  •  • ,  v
n - 1 )  (1 -

( Ev) (2v< .G3v))

fo r each i < p .  Proposition A applies directly to (9 )  and by eliminating
uo < u , w ith  ( Ev) (u o + v = u ,) , we may also apply it to ( 1 1 ) .  Thus
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(12) A d  ( Vuo, • • up , )  a' ,

(13) Ad( V u , ,  • • •, y o ,  •  •  • ,  
v

n — i )  (19;-->
( Dv )  ( 2 v  E x plid \ u , .3 v ) )

fo r each  i < p .  Now by hypothesis Aa ço so  be recalling the definitions
o f a ', 19: we obtain

(14) Ad ( V u , ,  • • up-i)(a' — >(Evo, • • Vi<,,,SD •

Com bining (12), (13), and (14) gives A d
0 ,,. q. e. d.

3. Applications to  isols

Denote the domain, range of a function f  b y  of , p f respectively and
let Req($) b e  the recursive equivalence type of L e t  t be a retraceable
function w ith  p t = r  a n d  T = R e q (r ) .  T h e n  t  h a s  a  special retracing
function p, i. e., a partial recursive function p  such that

( i  ) Pt gs3.13 ,

( i i )  p ( t 0) = t, and ( e n )p (t„ , i ) = t n ,
(iii) pP gap, and
(iv) ( V  xEap)p(x) <x.

Let p° (x) =x and ( V n)P"' (x) = P (P" (x)) • Then p* (x) = (least n) (x )
=pn ( x ) ]  a n d  f i(x ) .=  tp "  (x )in ,< p*  (x )i. I t fo llo w s fro m  (i) — ( i v )  that
OP* =O ôP  an d  p*, p are partial recursive, th e  la tte r  in  an  extended
sense. W e say  th at t  is  3 -m eager if fo r  e v e ry  partia l recursive func-
tion h , i f  p tcah  and h (pt) Cpt then  h ( t )  < t.  fo r  a l l  but finitely m any
n .  I f  th is occurs then r  and T  are also  called 3-m eager and the latter
is  necessarily  in  A. A  fundam ental resu lt o f  [ 6 ]  is t h a t  e a c h  Ad
contains at least one 3-m eager T .  Considerably stronger results along
these lines have been obtained by M cLaughlin  [ 9 ] .  I f  a, c c i ,  th en  a
is  separated from f i  i f  th e re  e x is t  disjoint r. e. sets ao , po su ch  th a t
a ca o a n d  fi cfi o . A n  iso l Y  i s  m u ltip le -free  if 2 X < Y  im p lies th at
XEco, i. e ., X  is finite. T h e s e  notions are connected by

Lemma 3. A  regressive isol is  3 -m eager if  and o n ly  i f  it is m ultiple-
free.

Proof . (— > ) Let t  b e  a  3 -m eag e r  fu n c tio n  w ith  sp ec ia l re trac in g
function p ,  pt =z- and T  =  R e q (r ). I f  2X< T  th en  w e  can  fin d  pairwise
disjoint r. e. sets 72„ i< 3 , such  that i f  ei=72, FIT then r = e ,U  C I U e2 and
Req($0) =X=Req(C i ). T h u s  th e r e  is  a  o n e - o n e  partial recursive
function f  such that C,Çôf and f(E0) C , .  B y standard methods we may
also assume that 5f=v o and  pf=i7 i . W e are go ing to  describe a certain
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function g  w ith  ag=)70 U 721 U )72 . I f  xE ri o th e n  g (x )=,f (x ) , i f  x e rh  then
g (x )= f - 1 (x ) , and if xe)2 2 th en  g ( x ) = x .  Clearly g  is a one-one partial
recursive function, rc 5 g ,  g ( r) =r,  and g  i s  e q u a l  t o  i t s  o w n  inverse.
B y 3-m eagerness there is an in te g e r  no such  th at  g ( t )  <t o fo r  a l l  n >
no . By one-oneness there is an in teger n ,>n o s u c h  t h a t  P*(g(t o ) ) > n o

for a ll n > n „  Consequently g(g(t„)) _<g(t) fo r  a ll n > n „  But g(g(t„))
=t„ since g  i s  selfinverse and th u s  g (t„) = t„ f o r  a l l  n > n , .  T h is  can
only happen if e , is finite.

(<--) Now suppose th at t  is  re traceab le  b u t  n o t 3 -m e a g e r . T h e n
th ere  is  a partial recursive function  h  s u c h  th a t  rc5h , h (r) Cr, and
h(t„)>t„ fo r  infinitely m any n. B y  u s in g  th e  sp ec ia l re trac in g  fu n c-
tion p  (of t )  w e  m a y  a lso  assume th a t  f o r  a l l  n  e ith e r  h (t„)=t,, or
h (t„) = t 1. L e t  C-= [TEO/ I h  ( x ) >x  and p (h  (x ))  .  T h e n  n7 is
separated from r— a . It follows from [4 ]  th a t  Cfly  is  re traceab le , enu -
m erated say, b y the retraceable function s. Let a o = fs,„In<w } and let
a,= fx  Er I p (x) E a 01 . To com plete our proof we show that

(a) a, n  =
(b) there ex ist pairwise disjoint r. e. sets 0 „ i<3 , su c h  th a t a0 00 0 ,
01, and r— (a, U G192,

(c ) 0 .0  is recursively equivalent to a„
Then S =R eq(a o )  is  in fin ite  and 2 S <T  w hich  im p lies that T  is not

multiple-free.
R e . ( a ) .  I f  x e a ,  th en  P (x )e a 0 C C  and h en ce  th e re  a re  integers
n  such that s2 =t n = p ( x ) .  Then s2 c:: an d  so  s2 .<h ( s 2 .) , ---x=h(t„)

=t„_„<s,_„<s 2 ( „,, .  This im plies that x e u o .
R e . (b). Suppose that y r .  W e  d e s c r ib e  an effective process by

w h ich  w e can  dec ide w hether yea ° o r  y E a , o r  neither. F i r s t ,  i t  i s
clear that w e can  decide w hether yEa o . I f  y e a ,  s e e  if t h e r e  i s  an
x (y) na, such that y = h ( x ) .  I f  th ere  is  such  an x  then y  goes into
a„ otherwise into r —  (Cro a1)•

R e . (c). a o OEC and the restriction of h  to i s  a one-one partial
recursive function m apping 6 0 onto  ai• q. e. d.

A  regressive iso l X  is called  strongly  univ ersal if fo r every R Ea, X a),
the graph of a function r ,  ( A Y R A ( X ,  Y )  im p lie s  th a t r  i s  almost
recursive increasing.

Corollary (B arb ack ). E v e ry  m ultip le -f ree  regressiv e iso l is strongly
universal.

P ro o f .  Use Lemma 3 and the f a c t  ( c .  f .  [ 6 ] )  that every 3-m eager
isol is  strongly  univ ersal (w ith  th an k s to  Barback fo r  having provided
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u s w ith his own unpublished proof o f this corollary), q . e . d.

A n iso l Y  is  highly  decom posable if  Y  is infin ite and for every infinite
X< Y  there a r e  U , V, both  infin ite, such  that X = U-F V .  I n  [ 4 ]  it i s
shown that every infinite regressive isol is highly decom posable.

Proof  of T heorem  1. Let ço be AE specia l sen tence o f the form  (4)
having Horn reducts  V  o f the fo rm  (5 ). It fo llow s from  Proposition A
th at i f  (1) Yr fo r  some T .  th e n  A d  ÇO. F o r  th e  c o n v e rse  a s su m e  that
Ad  Ç O  but no P  is  t r u e  in  w, I f  p = 1  th en  th is  am o u n ts  to  ce) ,---ço.
Thus there a r e  integers x o , x , E w  such that both

VO) • • • 3 vs  _ 1 ) ( x 0 3  •  •  . )  •  m - 1 )  
V 01 •  •  • 1  

V
n - 1 )

and
a (x o ,  

a re  tru e  in  w .  B y  Proposition A they a r e  b o th  tru e  i n  A d  a n d  hence
(x 0 ,  . . . ,  x _ 1 )  is  a  counterexam ple to yo i n  Ad i . e . ,  Ad w h ich  is
a  c o n tra d ic t io n . S in c e  t h e  sam e argum en t w ill w o rk  for D edekind
card inals (via Proposition B  and la te r  Proposition C ) w e  s h a l l  assume
throughout the rest of this paper that p > 1 .  By Lemma 2 we have il d Op

w here 0 , i s  g iv e n  b y  (6 ) .  L e t T  be a  3-m eager iso l in  Ad . T hen T  is
highly decomposable an d  b y  L em m a 3  it is  multiple-free. L e t  Xo ,
X , ,  be in fin ite iso ls w h ich  sum  to  T .  Each X,EA d an d  fo r an y  VEA„
if 2V < E , < p X1 = T  th en  V  is  fin ite  an d  w e can n o t have X ., < 3 V . Thus
each  d isjunct o f 0 , fa ils  an d  71, - - , 0„. Contradiction. q . e . d .

W e  k n o w  th a t  A , is  a  co m m utative  sem igro up  (w ith  resp ec t to
ad d itio n  an d  0  as th e  identity). M oreover it a lso  satisfies th e  universal
closures of

(15) X±Z=Y+Z--->X=Y,

(16) nX = nY -4X = Y ,

for 0 < n< co , w here n X  h a s  it s  u s u a l inductive defin ition . F rom  (15)
an d  (1 6 ) w e  can  eas ily  show th a t  A ,  c a n  b e  e x te n d e d  to  a  to rs io n
free  A belian  group (TFAG) w h ich  w e  c a ll A :(= th e  iso lic  in teg e rs  of
degree <d, a  typical m em ber having the form  X— Y  w here X , YEA,i ).
One possible w ay  to  show that the theory o f  a  TFA G  is  d e c id a b le  is
to  g ive  a  complete set of axiom s f o r  it w h ic h  i s  r e c u r s iv e .  S u c h  a
m ethod was devised in  [1 1 ] .  L e t  (G , + )  b e  a  T F A G , m , n E w , and
x o , x o ,  x ,  a re  said to be strongly  linearly  independent
(m o d  n ) if  fo r each sequence a o , a„,_,Eco and
im p lie s  th a t e a c h  a. congruent t o  0  ( m o d  n )  i n  t h e  ordinary
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arithm etical s e n se . W ithout loss o f  g e n e ra lity  w e  m a y  assum e that
0< a ,< n  for each  i< m .  Let S  b e the set of a ll seq u en ces o f  integers
a= (a o , a „ )  such that 0< a 1< n  fo r i< m , b u t n o t a ll a ,= 0 . T h u s
x05 • • •3 are  strongly linearly independent (m od n )  if for each aES
they satisfy

(17) (VY) Ei<>.ci,x,*nY

in  (G , + ) .  C learly th is can  be expressed  in  our language L .  Let
b e  a sentence of L  w hich  asserts that there ex ist m  elem ents strongly
linearly independent m od n.

Important fact (c. f .  [ 1 1 ] ) .  An extension of the th eo ry  o f  TFAGs
is com plete if and  on ly i f  i t  i s  consistent and contains fo r  an y  tw o
num bers m > 0, ri> 1 either T. _  or its negation.

In  [1 0 ]  it  is  s h o w n  th a t  TFAGu { W .,»  m > 0 , n > 1 ) is  a  complete
set of axioms fo r the is o lic  in tegers ( A * ,  ± ) .  W e  d o  th e  sa m e  for
(A :, + ) ; how ever our proof must necessarily be different because [10]
uses infinite indecomposables (which are  not availab le in  o u r  context).
Theorem 1 does th e  tr ic k . W e start w ith

Lemma 4. I f  X E A :, 0<n<o), and nXEA, then XeAd.

Proof. (1 6 ) is  a  special case of the more general

(18) n X < n y --›X < Y

for 0<n<a) w hich Ad a lso  sa tisf ie s . T h u s suppose th at X=Z— Y where
Y, Z e il a  an d  nX=nZ—nYEA d . Then nY<nZ and hence by (18) Y<Z,
j .  e ., X = Z —  Y A d . q . e . d.

Proof o f Theorem 2. Suppose that Ad This can be expressed
b y  the fact that

(19) ( Vuo, u.--i) V .Es(v)(E ,<„,a ,u ,=nv)

holds in A .  B y restricting the u. Ad an d  u s in g  L em m a 4  w e  see
that (19) a lso  ho lds in  A d .  But clearly no Horn reduct of (19) holds in
w . T h u s A: ?P  TFA G U  {W I m > 0, n> 1} is a  complete axioma-
tization  o f  (A :, - F )  b y  th e  im p o rtan t fac t. S in c e  o u r  argum ent is
independent of d, Theorem 2 follows,  q .  e .  d.

W e conclude th is section w ith  a  f in a l  w ord  about L em m a 3 . 3 -
m eagerness is clearly an assertion about the growth ra te  o f retraceable
fu n ctio n s. On the other hand, m ultiple-freeness appears to be an  alge-
b ra ic  p ro p erty . It is  su rp ris in g  th at th ey  are  equivalent.
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4. Applications to cardinals

Throughout this section w e assume Proposition B as well as

Proposition C. I f  9  is an AE special Horn sentence and  w  9 then
ZF H [JR  9 ] .

W e shall no t p rove th is here b u t  o n ly  m ention  th a t  i t  c a n  b e
proved using Bradford's method [1] ; however because all the cardinals
involved are linearly ordered, an  even  easier proof (along th e  lines of
[7 ] )  is available.

Now suppose that w is  a n  A E  spec ia l sen ten ce  o f  th e  fo rm  (4)
having Horn reducts T. o f  th e  form  (5 ) .  It follows from Propositions
B and C that if co gf' fo r some qf then ZFOF [ J  9 ] and  ZF H 9],
Thus our rem aining task is to obtain converses. Assume that p  o f (4)
is>1.

Lemma 5. I f  ço i s  an AE special sentence then
(i) I f  Z F O H [4 9 ]  but no Horn reduct o f  9  i s  t ru e  i n  w  then

Z F O H [4 0 ,1 .
(ii) I f  ZFH [ 4 „  yo] bu t no  H orn  reduct o f  9  i s  t ru e  in  w  then

ZF 1--

Pro o f . I f  we follow the proof of Lemma 2 we see that our hypothe-
ses guarantee (9 ) an d  (11 ). If we apply Propositions B and C instead
of A  we obtain analogues o f (12 ), (13 ), a n d  (14 ), being different
only in the fact that Ad ;- is  rep laced  b y  e ith e r  Z F O H [4 r ]  o r  Z F
H [ 4 R 7-]. q. e. d.

Proof  of  Theorem  3 .  Ju st a s  in  th e  p roo f o f  T heo rem  1 it w i l l
suffice to show that

(20) is not a  theorem of ZFO,

(21) 4R 0, is  n o t a  theorem of ZF.

Now we can prove in ZF that if x, yeJ R  then x ± y e J R  an d  if x < y E J R

th en  xEJ R . Consequently Z F H [ (4 0 , , )  ( 4 R 0 ,,)] so  th at b o th  (20)
and  (21) will follow from

(22) J R  0, is not a  theorem of ZFO.

W e can prove in  Z F  that every infinite x E J ,  is highly decomposable.
Then just a s  in  th e  proof o f  Theorem 1, (22) will follows i f  we can
find a  model M  o f  ZFO  such that
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(23) ( x  is in fin ite and multiple-free).

To our language of set theory add a n  ind iv idual constant K  and a
functor o . T h e n  it  is  s t a te d  in  [8 ]  th a t i f  Z F i s  consistent th en  ZFO
has a model M  which satisfies

( i ) every  set can linearly ordered,
( ii) K  is  a set of rea ls w h ich  is  dense in the canonical ordering

of the reals,
(iii) ( e x )  ( x )  i s  a finite subset o f K  and if z  i s  a  finite subset

o f K  th en  g (x ) =x,
( iv) i f  ço(zo, x _ „ y )  a n d  ( !z )ç o  (x„, „  x „  z )  then  a (y)

U ; < „0. (x i ).
N ow working entirely in M , w e  c la im  th a t  the card inal of K  i s  an
in fin ite  multiple-free elem ent of

 R .
 B y  ( i i )  K  i s  a n  in fin ite  set of

reals, and i t  is  c le a r  th a t  K  i s  D ed ek in d  if it i s  multiple-free. To
prove the latter assume that x, y are disjoint subsets o f  K  and that f
is  a one-one function m apping x  onto y .  I f  x  is in fin ite choose uG z
such that f  (u) e ( f ) . B y  ( i i i )  w e  have tul = a tul , ( f  ( u ) )  =  {f(u )}  ,

and b y  ( iv )  w e have (7  f  (2 )1  C  0 ' (Lc} . T h u s  f (u ) = u w hich  contrad icts
x ny= çb. Therefore z  must b e a  fin ite  set. q . e . d.
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