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1. Introduction

Let w be the non-negative integers and let 4, be the cosimple isols.
To each Xe4, we can associate a unique degree of unsolvability 4,
(c. f. [3]). This is the degree of any co-r. e. §& X. Throughout this
paper d is a non-recursive r. e. degree and 4, is the set {Xe4,|4,<d}.
In this paper we are concerned with the first order theory of (4,, +)
where + is isolic addition. We study this structure by means of a
first order language L containing individual variables %, u, ..., v,
v, ..., a binary functor + denoting addition, and a binary predicate
= denoting equality. L is interpreted in @ or 4, in the usual way.
Because w and 4, are commutative semigroups we take the liberty of
putting of L in the normal form }.., a,u, where }; denotes summation,
a,€Ew, and a,u, is the term consisting of u, summed with itself a; times.
An AE special Horn sentence is a sentence of L having the form

(1) (Vs ooy Upy) (@ (3, -y v,21)B)
where a (%, ..., %,_,) has the form
(2) A< Zica®@ph = Zica@inths)
and B(Uy «.vy Up_yy Uy ooy U,_,) has the form

(3) Ni<:( Zl(mbihuk + 2icaCii
= Zk(mb:‘kui + ZK,.C;L'UA)-

In [6] it is shown that
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Proposition A: If ¢ is an AE special Horn sentence and wk ¢ then
AiE .

In order to get a converse to this result we define an AE special
sentence to be a sentence of L having the form

( 4' ) (vuor L] um—l) (a_’ ( 3'00, L] vn—l) \/x’<m‘9i)

where a has the form (2) and each §; has form (3). A Horn reduct
of this sentence is any one of the AE special Horn sentences

(5) (Vs ovv, Upy) (@—> (T, .y vn—l)ﬂi)'

From Proposition A it readily follows that if ¢ is an AE special sen-
tence having a Horn reduct ¥ such that w=¥ then 4,F¢. A degree
d is called high if d'=0" where prime denotes jump. In [6] it is
shown that if d is a high degree and ¢ is an AE special sentence
such that 4 F ¢ then ¢ has a Horn reduct ¥ such that wE¥. The
proof of this result uses infinite indecomposable isols, and it is known
from [6] that 4 contains such isols if and only if dis high. This
accounts for the high requirement on d. We relax this with

Theorem 1. If ¢ is an AE special sentence then A, =¢ if and only
if ¢ has a Horn reduct ¥ such that oV,

Our proof of Theorem 1 involves a lemma which is interesting in
its own right. It asserts that a regressive isol is 3-meager if and
only if it is multiple-free (c. f. Section 3 for definitions).

Let (4F, +) be the difference group formed from 4. As an appli-
cation of Theorem 1 we show

Theorem 2. The first order theory of (A¥, +) is independent of d (and
in fact is the same as that of A*).

The significance of this result follows from [6] where we show
that there is an EAE sentence which holds in 4, if and only if d is
a high degree. Thus we can describe properties of d by means of 4,,
but we cannot do so by means of 4}.

The methods developed so far apply equally well to the Dedekind
cardinals. Let ZF be Zermelo-Fraenkel set theory (without the axiom
of choice) and let 4 be the Dedekind cardinals, i. e., those cardinals z
such that z#z+1.* In [2] it is mentioned in passing that

* From now on we tacitly assume that ZF is consistent (particularly as a hypothesis in
Theorem 3).
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Proposition B. If ¢ is an AE special Horn sentence and ok ¢ then
ZF\-[4E ¢l

It follows as a corollary that if ¢ is an AE special sentence having a
Horn reduct ¥ such that oE¥ then ZF|[4dE¢]. Using infinite
indecomposable cardinals (necessarily Dedekind) we got the following
converse in [5]. If ¢ is an AE special sentence and ZF|-[4E¢]
then ¢ has a Horn reduct ¥ such that oF¥. We obtain interesting
modifications of this result by getting rid of the infinite indecomposa-
bles. This can be done in two ways. First, we can work in ZFO
(=ZF+an axiom which asserts that every set can be linearly ordered).
We can then prove in ZFO that every indecomposable cardinal is
finite. Second, we can still work in ZF, but restrict ourselves to 4,
(=cardinals of Dedeind sets of reals). Since the reals are linearly
ordered we can prove in ZF that every indecomposable in 4, is finite.
By using a growth rate analysis of combinatorial functions we obtained
the following result in [5]. If ¢ is an AE special sentence then ZFO
F[4E¢] if and only if ¢ has a Horn reduct ¥ such that o =¥. The
methods used to obtain this result fail for 4,; however we can modify
the proof of Theorem 1 so as to get

Theorem 3. If ¢ is an AE special sentence then ZF\- [4dzE ¢] if and
only if ¢ has Horn reduct ¥ such that ot 7.

At no added expense we also obtain the main result of [5] (but
with a different proof).

Theorem 3 (second part). If ¢ is an AE special sentence then ZFO
F[4E=Y] if and only if ¢ has a Horn reduct ¥ such that o V.

The key notion used in the proofs of Theorems 1 and 3 is that of
an infinite multiple-free object. Although this notion is much less
restrictive than that of an infinite indecomposable object, it is still
sufficiently pathological to provide interesting counter-examples.

2. Main reduction
We start with a result due to Bradford.

Lemma 1 ([1]). If z, yeo then~(x=1Ay=0) if and only if (=
cow) (2<Lzs+yN\x<32).

Proof. Assume~(x=1Ay=0). If z is even take 2=zx/2. Clearly
2z=z<x+y and x<3zx/2. If x+#1 and x is odd take 2= (x—1)/2. Then
2z=x—1<x+y. If 3z<lx then (8z/2) — (1/2)<x so x<1 and z is even.
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If =1 and y+#0 take z=1. Then 22=2<zr+4+y and zxz=1<3=3z.
This proves the left to right implication. Conversely, assume z=1
/Ay=0. Then 22<x+y implies 2=0 so that z ¥ 3z.

Corollary. If p>1 and z;€w0 for j<p then~ (z,=1A\/Nigjc,z;=0)
if and only if (F2€w0) (22< 1 ,x;/\x;<32).

Let ¢ be an AE special sentence of the form (4) (having p dis-
juncts) and let 6, be

( 6 ) (vuo’ L] u,—l)\/.'<p( 3'0) (2‘0S Zj(pu]/\uig3‘v)‘

Lemma 2. If ¢ is an AE special sentence such that p>1 and A,F ¢,
but no Horn reduct of ¢ is true in o, then A,;F0,.

Proof. Since no Horn reduct of ¢ is true in o, for each i<{p there
are Zy, « .. Lmon:E@ such that

(7) OFEa(ZTosy ooy Timoyyi)s
(8) OF (Vs «vvs Vol ~Bi(Tois ooy Timoryis s ooy Uny)e
Let &' (¢4 «.. U,_,) be
a(Li<sToithis vy Li<sTim-nit;)
and let Bi(Uy ooy Up_yy Yy «.vy V,,) be
Bi(ZLi<sTothis + ooy 2icsTim-niis Yoy o5 Vomy)e

Since a(uy, ..., u,_,) is a conjunction of linear homogeneous equations,
and any linear combination of solutions of such a system is itself a so-
lution, (7) implies that

(9) oFE (Vi ... up—x)al-
It also follows from (8) that

(10)  0E (VU eow Uypyy Vo vvsy U,ny) (B
~ (U, =1\ Nirjc,;=0))
for each i<p.
Applying Lemma 1 we get

(11) oE (\V/uoy coey Uy 1y gy oevy vn—l) (ﬁ:"’
(37)) (2‘US Zj(puj/\ui ng))

for each i<p. Proposition A applies directly to (9) and by eliminating
u,<u, with (3v) (w,+v=wu,), we may also apply it to (11). Thus
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(12) A E (Ve onoy 4,)0

(13) A (Vg ooy Uy Uy wnsy 0,) (Bi
() (2v< Xy, /A%, <30))

for each i<p. Now by hypothesis 4,F¢ so be recalling the definitions
of &, B; we obtain

(14) AJF (vuo’ AR ] up—l) (a/—’(avo, L vn—l)\/l’(?lg:)‘
Combining (12), (13), and (14) gives 4,E46,. q. e. d.

3. Applications to isols

Denote the domain, range of a function f by df, of respectively and
let Req (&) be the recursive equivalence type of & Let ¢ be a retraccable
function with pt=7 and T=Req(r). Then ¢ has a special retracing
function p, i. e., a partial recursive function p such that

(1) ptSop,

(ii) p(t) =t, and (Vn)p(t,.,) =t,

(ii)) ppSdp, and

(iv) (VzeEp)p(z)<z.

Let p*(z) =z and (Vn)p+'(z) =p(p"(x)). Then p*(z) = (least n) [p"*'(x)
=p"(x)] and p(x)={p"(x)|n<p*(x)}. It follows from (i)—(iv) that
0p*=0p=0dp and p*, p are partial recursive, the latter in an extended
sense. We say that ¢ is 3-meager if for every partial recursive func-
tion &, if ptCéh and h(pt) Cpt then h(t,) <t, for all but finitely many
n. If this occurs then ¢ and T are also called 3-meager and the latter
is necessarily in 4. A fundamental result of [6] is that each 4,
contains at least one 3-meager 7. Considerably stronger results along
these lines have been obtained by McLaughlin [9]. If a, fCw then «
is separated from B if there exist disjoint r. e. sets a, B, such that
aCa, and BCH,. An isol Y is multiple-free if 2X<Y implies that
X€Ew, 1. e, X is finite. These notions are connected by

Lemma 3. A regressive isol is 3-meager if and only if it is multiple-
free.

Proof. (—) Let t be a 3-meager function with special retracing
function p, pt=7 and T=Req(r). If 2X<T then we can find pairwise
disjoint r. e. sets ¥, {< 3, such that if §&=» Nt then t=§U&UE, and
Req (§,) = X=Req(¢). Thus there is a one-one partial recursive
function f such that &Cdf and f(&)=&,. By standard methods we may
also assume that df=7, and pf=7. We are going to describe a certain
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function g with dg=nUnU». If x€y, then g(x)=f(x), if xEy, then
g(x)=f"'(x), and if xE7, then g(x) =z. Clearly g is a one-one partial
recursive function, ¢ £dg, g(r) =t, and & is equal to its own inverse.
By 3-meagerness there is an integer 7, such that g(¢,) <t, for all n>
n,. By one-oneness there is an integer 7, >n, such that p*(g(¢,)) >n,
for all n>n,. Consequently g(g(¢,)) <g(¢,) for all n>n,, But g(g(t,))
=t, since g is selfinverse and thus g(¢,) =t, for all n>n,. This can
only happen if &, is finite.

(<) Now suppose that t is retraceable but not 3-meager. Then
there is a partial recursive function 2 such that tCdh, h(z) Cr, and
h(t,) >t, for infinitely many n. By using the special retracing func-
tion p (of t) we may also assume that for all n either A(¢,)=¢, or
h(t,)=t,,,. Let {={zx€dh|h(z)>x and p(h(x))=z}. Then {N7 is
separated from v—{. It follows from [4] that {Nr is retraceable, enu-
merated say, by the retraceable function s. Let o,= {s,,|7<{0} and let
o,={zxE7|p(x)Eo,}. To complete our proof we show that

@ ons=4,

(b) there exist pairwise disjoint r.e. sets ¢,, 1< 3, such that ¢,C8,
0,C0,, and t— (o,U 0,) Cb,,

(c) g, is recursively equivalent to o,

Then S=Req(o,) is infinite and 2S<T which implies that T is not
multiple-free.

Re. (a). If z€0, then p(x)€E0,CL and hence there are integers
m, n such that s,,=¢,=p(x). Then s,,€{ and so s,,<h(s,,) =x=h(2)
=141 <511 S2msny» Ihis implies that x&a,.

Re. (b). Suppose that yEr. We describe an effective process by
which we can decide whether yEo, or yEg, or neither. First, it is
clear that we can decide whether yEo, If ye&o, see if there 1is an
z€p(¥) No, such that y=h(x). If there is such an z then ¥ goes into
g,, otherwise into =— (o,Ua,).

Re. (¢). 0,C( and the restriction of & to { is a one-one partial
recursive function mapping ¢, onto a,. q. e. d.

A regressive isol X is called strongly universal if for every RCw X o,
the graph of a function r, (3YEA) R, (X, Y) implies that 7 is almost
recursive increasing.

Corollary (Barback). Every multiple-free regressive isol is strongly
universal.

Proof. Use Lemma 3 and the fact (c. f. [6]) that every 3-meager
isol is strongly universal (with thanks to Barback for having provided
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us with his own unpublished proof of this corollary). g. e. d.

An isol Y is highly decomposable if Y is infinite and for every infinite
X<Y there are U, V, both infinite, such that X=U+V. In [4] it is
shown that every infinite regressive isol is highly decomposable.

Proof of Theorem 1. Let ¢ be AE special sentence of the form (4)
having Horn reducts ¥ of the form (5). It follows from Proposition A
that if o ¥ for some ¥ then 4,E¢. For the converse assume that
A;E¢ but no ¥ is true in . If p=1 then this amounts to wkE ~¢.
Thus there are integers Z,, ..., Z,_,€o such that both

(V‘vo’ MRS ] vn—l) '\’ﬁ(xm ey xm—l’ vO’ AR ] vn—l)
and

a'(xo’ ] xm—l)

are true in w. By Proposition A they are both true in 4, and hence
(% «+w Z,-,) is a counterexample to ¢ in 4, i. e, 4;F~¢, which is
a contradiction. Since the same argument will work for Dedekind
cardinals (via Proposition B and later Proposition C) we shall assume
throughout the rest of this paper that p>>1. By Lemma 2 we have 4,0,
where 6, is given by (6). Let T be a 3-meager isol in 4,, Then T is
highly decomposable and by Lemma 3 it is multiple-free. Let X, ...,
X,_, be infinite isols which sum to 7. Each X,E4, and for any V&4,
if 2V<3..,X,=T then V is finite and we cannot have X,<3V. Thus
each disjunct of 6, fails and 4, ~#6,. Contradiction. q. e. d.

We know that 4, is a commutative semigroup (with respect to
addition and 0 as the identity). Moreover it also satisfies the universal
closures of

(15) X+Z=Y+Z->X=Y,
(16) nX=nY->X=Y,

for 0<n<w, where nX has its usual inductive definition. From (15)
and (16) we can easily show that 4; can be extended to a torsion
free Abelian group (TFAG) which we call 4*(=the isolic integers of
degree <d, a typical member having the form X—Y where X, YE4,).
One possible way to show that the theory of a TFAG is decidable is
to give a complete set of axioms for it which is recursive. Such a
method was devised in [11]. Let (G, +) be a TFAG, m, nEw, and
Zpy ooy 2, EG. x4y ..., x,_, are said to be strongly linearly independent
(mod n) if for each sequence a,, ..., a,_,Sw and yEG, 3,.a.x,=ny
implies that each a, is congruent to 0 (mod 7) in the ordinary
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arithmetical sense. Without loss of generality we may assume that
0<a,<n for each i<m. Let S be the set of all sequences of integers
a= (@, ... a,_,) such that 0<a,<n for i<<m, but not all a,=0. Thus
Zy .o Z,_, are strongly linearly independent (mod 7) if for each aesS
they satisfy

a7 (V) D8 X #Eny

in (G, +). Clearly this can be expressed in our language L. Let ¥,
be a sentence of L which asserts that there exist m elements strongly
linearly independent mod 7.

Important fact (c. f. [11]). An extension of the theory of TFAGs
is complete if and only if it is consistent and contains for any two
numbers m >0, n>1 either ¥, or its negation.

In [10] it is shown that TFAGU {¥,,|m>0, n>1} is a complete
set of axioms for the isolic integers (4*, +). We do the same for
(4¥, +) ; however our proof must necessarily be different because [10]
uses infinite indecomposables (which are not available in our context).
Theorem 1 does the trick. We start with

Lemma 4. If Xe 4}, 0<n<w, and nX< A, then X< A,.
Proof. (16) is a special case of the more general
(18) nX<ny->X<Y

for 0<n<<w which 4, also satisfies. Thus suppose that X=Z—Y where
Y, Ze4, and nX=nZ—nYeE4,, Then nY<nZ and hence by (18) Y<Z,
i e, X=Z2—-YeU4,. q. e. d.

Proof of Theorem 2. Suppose that 4,=~¥,,. This can be expressed
by the fact that

19) (Vo vvis %) Vaes(F0) (Lica@ith;=nv)

holds in 4}. By restricting the %; to 4, and using Lemma 4 we see
that (19) also holds in 4,. But clearly no Horn reduct of (19) holds in
o. Thus A4 E?,, and TFAGU {¥,,|m>0, n>1} is a complete axioma-
tization of (4, +) by the important fact. Since our argument is
independent of d, Theorem 2 follows. g. e. d.

We conclude this section with a final word about Lemma 3. 3-
meagerness is clearly an assertion about the growth rate of retraceable
functions. On the other hand, multiple-freeness appears to be an alge-
braic property. It is surprising that they are equivalent.
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4. Applications to cardinals
Throughout this section we assume Proposition B as well as

Proposition C. If ¢ is an AE special Horn sentence and wk ¢ then
ZF - [4rF o]

We shall not prove this here but only mention that it can be
proved using Bradford’s method [1]; however because all the cardinals
involved are linearly ordered, an even easier proof (along the lines of
[71) is available.

Now suppose that ¢ is an AE special sentence of the form (4)
having Horn reducts ¥ of the form (5). It follows from Propositions
B and C that if oY for some ¥ then ZFO} [dE¢] and ZF}\[4yE ¢].
Thus our remaining task is to obtain converses. Assume that p of (4)

is>1.

Lemma 5. If ¢ is an AE special sentence then

(1) If ZFOV\ [dE¢] but no Horn reduct of ¢ is true in w then
ZFO|-[4E46,].

(i1) If ZF\ [4xE¢] but no Horn reduct of ¢ is true in o then
ZF V- [4,10,].

Proof. If we follow the proof of Lemma 2 we see that our hypothe-
ses guarantee (9) and (11). If we apply Propositions B and C instead
of A we obtain analogues of (12), (13), and (14), being different
only in the fact that 4,7 is replaced by either ZFO| [4dEy] or ZF
FL4:E7] q. e. d.

Proof of Theorem 3. Just as in the proof of Theorem 1 it will
suffice to show that

(20) 4E86, is not a theorem of ZFO,
@2n 4zE06, is not a theorem of ZF.

Now we can prove in ZF that if z, yE4, then z+yE 4, and if 2<yE 4,
then z&€4,. Consequently ZF}|-[(4k0,) = (dxE6,)] so that both (20)
and (21) will follow from

(22) 4zE0, is not a theorem of ZFO.

We can prove in ZF that every infinite £&4, is highly decomposable.
Then just as in the proof of Theorem 1, (22) will follows if we can
find a model M of ZFO such that
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(23) ME (3x€4,) (x is infinite and multiple-free).

To our language of set theory add an individual constant K and a
functor ¢. Then it is stated in [8] that if ZF is consistent then ZFO
has a model M which satisfies

(i) every set can linearly ordered,

(11) K is a set of reals which is dense in the canonical ordering
of the reals,

(iif) (V) e(x) is a finite subset of K and if x is a finite subset
of K then o (x)=x,

(iv) if (&4 ooy T,y ¥) and (Fl2)e(xy ..., T,_,, 2) then a(¥)

QUK»U('T.')-
Now working entirely in M, we claim that the cardinal of K is an
infinite multiple-free element of 4. By (ii) K is an infinite set of
reals, and it is clear that K is Dedekind if it is multiple-free. To
prove the latter assume that x, y are disjoint subsets of K and that f
is a one-one function mapping « onto y. If z is infinite choose uEx
such that f(u) & (f). By (iii) we have {4} =o{u}, {f(w)}=a{f(w)},
and by (iv) we have a{f(#)} Co{u}. Thus f(u)=u which contradicts
zNy=¢. Therefore £ must be a finite set. q. e. d.
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