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Introduction

After the classical works of G. Julia [19] and P. Fatou [9], [10]
on the iteration and composition theory for polynomials or rational
functions, I. N. Baker has investigated the theory in the case of
transcendental entire functions since 1955 and obtained many results.
In particular, he generalized the minimum modulus theorem concerning
entire functions of order less than 1/2 ([2] Theorem 3) and further
proved, using Fatou’s theory of iteration, interesting theorems concern-
ing the permutability of transcendental entire functions ([2], [3],
[4D). In 1968, F. Gross [13] and M. Ozawa [24] proved independently
that certain entire functions do not have any factorization (by compo-
sition) into trascendental entire factors. Since then, there have appea-
red many results in factorization theory, by applying Nevanlinna theory
etc. However, most of these recent results (except [21], [26]) concern
the impossibility of factorization, that is, the primeness, the pseudo-
primeness and so on.

In this paper, we shall treat certain composite functions of two or
three prime functions, which belong to certain special classes. For
the functions of these classes one can show the forms of their factors
(Theorems 1 and 2, proved first by S. Koont [21], except one of the
conclusions in Theorem 1). We shall give a simpler proof of these
two theorems in §2. Using these facts as key lemmas, we shall
proceed to prove our main Theorems 3, 4, 5, 6 and 7, which assert
that the factorization by composition of certain entire functions is
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unique up to linear polynomial factors. In the following, we shall
give more detailed contents to these theorems.

The function z+e* is a prime function which is fundamental in
factorization theory of transcendental entire functions, so it seems
important to ask whether or not the composite function F(z) = (z+e*)o
(2+e) is uniquely factorizable (see §1). One of the purposes of
this paper was to solve this question. At a glance, it seems difficult
to know into what factors (other than those of the above factorization
itself) F(2) are factorized, because the order of F(z) is not finite
and the function z+e* (considered as the left factor of F(2)) has
infinitely many zeros. However, F(z) may be written as z4+H(2),
where H(z) =e*(1+exp(e?)) is periodic with period 2zi, and this was
the clue to solve the above problem. Indeed, letting any non-trivial
factorization of F be F(2)=fog(2) =f(g(2)), we can conclude that f
and g have the same form as F (Theorem 2). Using this fact, we
can prove Theorem 3, which includes the affirmative answer to our
question above. In Theorems 4,5 and 6, we consider the same problem
for certain entire functions which are reduced to (ze*)o(z+e*) in the
simplest case. In Theorem 7, we consider the factorization of the
functions of the form; F(2)=(2+ H,(2))-exp [H,(z)], where entire
functions H, and exp[H,] have period 27i. Under the condition that
the order of H,(2) is finite, we shall prove that this function F(2) 1is
uniquely factorizable. Further if there exists an entire function H,(2)
satisfying the identical relation H,(2)=H,(2+H,(2)), then F(2)=(z-
exp[H,(2)])o(2+H,(2)) 1is the only factorization up to equivalent
factorizations. While, if there is no such an identical relation, then
F(z) is prime.

In addition to the above mentioned theorems, we shall give several
results concerning the primeness of certain entire functions as well as
generalizations of certain known results.

Here the author wishes to express his deepest gratitudes to Professor
Y. Kusunoki for his encouragement and guidance. The author also
wishes to express his hearty thanks to Professors M. Ozawa, I. N.
Baker, F. Gross and C.-C. Yang for their valuable suggestions.

§1. Definitions and Preliminaries

A meromorphic function F(z)=fog(z)=f(g(2)) is said to have
f(2) and g(z) as left and right factors, respectively, provided that f
is meromorphic and g is entire (g may be meromorphic when f is
rational). F(2) is said to be prime (pseudo-prime, left-prime, right-
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prime) if every factorization of the above form into factors implies
that either f is linear or g is linear (either f is rational or g is a
polynomial, f is linear whenever g is transcendental, g is linear whene-
ver f is transcendental, resp.). When factors are restricted to entire
functions, the factorization is called to be in entire sense (prime in
entire sense, etc.). If F is a non-periodic entire function, then it is
known that F is prime if F is prime in entire sense (cf. [15]).

Now it is well-known that F(z) =z+e* is prime. The primeness of
this function was stated by P. Rosenbloom [29] without proof and
‘proved for the first time by Gross [13]. The function =z-+e* has
special properties such that it has no fixed points and no multiple
zeros, it is periodic mod a non-constant polynomial and it is of smaller
growth in some angular sector. Therefore the primeness of this F(z)
can be proved by several ways, and the proofs have suggested the
extensions of factorization theory into several directions (cf. [6], [12],
[13], [25]). By these facts the function z-+4e* has occupied the signifi-
cant position in factorization theory.

Assume that a non-constant entire function F(z) has two factoriza-
tions fiof,o ... of,(2) and gog,c ... og,(2) into non-linear entire
factors. If m=n and if with suitable linear polynomials T,(j=1, ...,
n—1) the relations f,(2) =g,0T,71(2), f,(2) =T\og,o T;'(2), ..., f,(&)=T,_,
og,(2) hold, then the two factorizations are called equivalent (in entire
sense). If every factorization of F(z) into non-linear, prime, entire
factors is equivalent, then we say that F(z2) is uniquely factorizable.
Of course, prime functions are considered to be uniquely factorizable.

So far, the following two classes of entire functions have yielded
numerous types of prime functions (cf. [6], [16], [25] etc.). For a
non-zero constant b, following Koont [21], we define

J(b)={F(2)=H(z) +cz; H is entire, periodic with period b
(H(z+b)=H(z)) and ¢ is a non-zero constant.}

L(®)={F(2)=H,(2) +2.¢%2®; H and e¥: are entire,
periodic with period b.}

Evidently, J(b) CL(b). In fact, the function in L(b) such that H,(z)
is constant belongs to J(b). Note that, for example, z+e=cJ(2r7)
and the primeness of this function was proved by Gross [16] (cf.
[25]).

Using results of C.-C. Yang [35], S. Koont [21] recently proved
two fundamental theorems concerning factors of functions in J(b)
and L(b). We shall prove these theorems (Theorem 1 has become
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sharper) in §2 by the simpler arguments. (The first proof of a special
case of Theorem 3 essentially gave this. The author then used Baker-
Gross’ theorem ([6] Theorem 1, cf. also the argument in [34]).) Next,
applying these theorems, we want to prove in §3 that certain functions
in J(277) or L(2ni) are uniquely factorizable. Note that (2+e*)o(z+
e’y eJ(2ri) and (ze*)o(2+¢) € L(2x0).

We denote by M(r, f) the maximum modulus of (an entire function)
f(2) for |z|=r. And we shall use Nevanlinna’s notations such as 7T
(ry )y m(r, f), N(r, a, f) and S(r, f) without recalling the definitions
([23]). If f(2) is entire, it is clear T'(r, f) =m(r, ). For a meromorphic
function f(z), we denote by p(f) the order of f, by p(f) the lower
orderof f and by p*(f) the exponent of convergence of the zeros of
f(2). (About these notions, see for example [17] p. 16-25.). In the
following, we shall use these notions only for entire functions.

For the factorization theory of entire functions, the following Pélya’s
lemma will be crucial.

Lemma 1 (Pblya [27]) Suppose f(2), g(z) and h(z) are non-constant
entire functions such that f(z)=g(h(2)). If h(0) =0, then there exists
a constant ¢ with 0<c<1 such that

M(cM(r/2, h), 8 <M(r, [) (rzr).»

(Here the condition 2(0) =0 is not essential which means that if we
add the condition r>7, then the condition 2(0) =0 can be removed.
Note that the inequality M (r, f) <M (M(r, h), g) is clearly valid.)

Let F(2) be a transcendental entire function of finite order (finite
lower order) and assume that F(z) can be written as F(2)=f(g(2))
with transcendental entire functions f and g, then from Lemma 1, we
can conclude (as Pélya showed) that the order p(f) =0 and p(g) <pF)
(the lower order p(f)=0 and p(g) <p(F), resp.).

About the relation between M(r, f) and T(r, f) for an entire
function f(2), the following lemma 1s fundamental.

Lemma 2 (c¢f. [17] p.18) Let f(2) be entire, then we have
T(r, f)<log M(r, f)£3-T(2r, ) (r=r,).

Lemma 3 (c¢f. [21]) If f(z) eL(b) (b=0) and f is non-linear, then
we have log M(r, f)=T(r, f)=ky(r=r,) for some constant k,>0, hence

e(frzl

*) In the case where some assertion (*) is valid for sufficiently large values of 7, we write
simply that (¥) is valid for 7==r, (7 is not same in all cases).
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For completeness, we prove Lemma 3. Let f(2) =H,(2) +z-exp[H,(2)].
Assume that H,(2) is not constant. Then the function f(z+5&) —f(2)
=b.exp[H,(2)] satisfies log M(r, f(z+b) —f(2)) =k,r(r=r,), as is easily
seen by Lemma 1. Hence we can conclude log M(r, f)=kir (r=r,).
Next assume that H, is constant and write f(2) =H(2) +cz with H(z+
b)=H(z). It will be sufficient to prove that log M(r, H)=kr (r=r,)
for some k£, >0. As we can assume without loss of generality that the
value 0 is taken by H(z), we have n(r, 0, H) = (2%k,/log 2).r (r=r,) for
some k, whence we obtain

N, 0, H) ZS: /Qﬁi‘t?ifldtg(log 9)en(r/2, 0, H) =kr(r=r,).
Since log M(r, H)=T(r, H)=N(r, 0, H), we have the conclusion.
We note also the following well-known fact.

Lemma 4 Let H(z) =h(e*) be a non-constant entire function which is
periodic with period 2ri (h(z) is holomorphic in 0<|z|< co and has the

Laurent expansion i a2*). If H(z) is of exponential type (order 1

and mean type M(r, H)=0 (exp [Kr]), as r—co, for some constant
K), then the number of coefficients a, which are not zero is finite.

The proof of this lemma can be done, using Lemma 1, as follows.
Since H(z) =h(e?) =h,(e*) +h,(e~*), where h,(2) =3 a,2* and h,(2)=
Yir a_24 it is enough to prove that 2, and h, are both polynomials,
under the hypothesis that H(2) =h(e*) is of exponential type. But if
h(e®) is of exponential type, then h,(e?) and h,(e~*) are both so. In
fact, noting M(r, h,(e)) =max{|h,(e?) |; |z|=7r, —=n/2<arg 2<n/2} +O
(1) (r=r,), We have M(r, h,(e)) <M(r, H)+0O(l). Hence h,(¢?) must
be exponential type. Then by Lemma 1,

M(ce”, h) =M[cM(r/2, e), h1<M(r, h,(e7)) <e* (r=1,)

for some positive constants ¢ (0<c<{l) and K. Hence we have M(r,
h,) =r¥(r=r,) for some positive integer N, which means that A, is a
polynomial. Similarly %, is a polynomial. Thus we have done.

§2. Two Fundamental Theorems

We shall prove here the following two theorems concerning the

factors for functions in J(b) and L(b). These are used subsequently
as key lemmas.

Theorem 1 Let F(2)eL(b) (bx0) and F(2)=f(g(z)) with non-
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linear entire functions f and g, then we have f(z)&L(b’) for some b %0
and g(z)eJOb).

Theorem 2 Let F(2)eJ(b) (bx0) and F(2)=f(g(z)) with non-
linear entire functions f and g, then we have f(2)&J(b’) for some b =
0 and g(2)eJ(b).

These striking theorems were proved for the first time by Koont
[21], except the conclusion f(2)&L(b’) in Theorem 1. But his proof
seems complicated. Here we wish to prove these theorems by the
simpler argument, which is due to Gross [14]. (About this argument,
also cf. Baker-Gross [6].) Formerly in [33], the author used this
argument and obtained a result concerning a problem of Gross on the
periodicity of entire functions (cf. §5).

In the following, we shall use symbols H, H; (j: a natural number)
for periodic entire functions with some periods.

Proof of Theorem 1. Let F(z)=H,(2)+z-exp[H,(2)]=f(g(2)), where
entire functions H, and exp(H,) are periodic with period &0, f and
g are non-linear entire functions. Then we have

(1)  flg(z+nb)) —f(g(2)) =nb.e¥** (n: any integer).

From this relation, one sees that the functions [g(z+nb) —g(2)] can-
not vanish if n is a non-zero integer. Hence we obtain

(2) g(z+0b) —g(2) =e*™® and g(z+2b) —g(z) =e'®
for some entire functions p(2) and ¢(z). From (2), we deduce
(3) erGHh) Lot =1 for all 2.

Hence we have that p(2+b) —p(2) =const. =c¢, by Picard’s theorem.
(In fact, on accout of the relation (3) exp[p(z+b)—p(z)] cannot
assume three values 0, —1 and c.) Thus we obtain

(4) P& =H(x)+5 z=cz+H,(2),

where H,(z+b)=H,(z) and ¢,=c/b. By (2) and (4), we have
(5) g(z+b) —g(z) =es+Hs,

Taking an entire function A(z) satisfying [(exp(c,6))h(z+b) —h(2)]
=1, we have that g has the form; g(2) =H,(2)+h(2)exp[c,z+H,(2)],
with H,(z+b)=H,(2). If exp[c,b]x1, we may take #A(2)=const.=c,
with ¢,=1/(exp[c,b]—1). If expl[c,b]=1, we may take h(2)=az, with
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a=1/b. Hence we may write
(6) g(2) =H,(2) +erv+#:® |if etx], or
(7) g(2) =H,(z) 4z et |f eb=],

We can rule out the possibility (6) as follows. We may assume
that the n-th power of exp[c,p] i1s not equal to 1 for any non-zero
integer n, since otherwise g(z) becomes periodic (with period nb),
which means that F(2) =f(g(2)) is periodic, contrary to the non-per-
iodicity of F(2). Since g(z+nb)=g(z)+ (exp[nc,b]—Dexplcz+H,(2)],
we have from (1)

(8)  f(g(2)+ (explne,b] — e+ =f(g(2)) +nb- e

for any integer n. If |exp(c,b)|=1, then the left hand side of (8) is
bounded for all n. If |exp(c,6)|>1(<1), it is bounded when n moves
negative (positive resp.) integers, while the right hand side of (8) is
unbounded with respect to n. This contradiction shows that the case
(6) does not occur.

Consider the case (7). We prove that ¢,z+H,(2) must be constant.
Since g(z+nb)=g(z) +nb-explc,z+H,(2)], from (1) we have

(9)  flg(@ +nb-exple,z+H,(2)]) =f(g(2)) +nb.e.f2®

When z moves some compact set K,, the value taken by the function
H,(z) =explc,z+H,(2)] moves some compact set K, whose interior
covers the full unit circle (say). This is evident. In fact, for open
disks D,={|z|<m} (m=1, 2, ...), then the union of the sets H,(D,)
(m=1) covers the unit circle (a compact set) by Picard’s theorem,
and H,(D,) is open by the fact that the holomorphic function is an
open mapping, hence there exists a positive integer m such that H,(D,)
covers the unit circle. Then K, may be taken as the closure of D,.
Note that the compact set K,=H,(K,) has a positive distance from
the origin, since H,(z) does not vanish.

From this fact and (9), we obtain for some positive constants A
and B,

(10)  M(An, f)<Bn+0O(1), (nzn,).

To prove this inequality, we must verify that, letting K,(n)=(g(=)+
nbH (2)) (K,) the image-set of K, by the function g(z)+nb.H, (),
the complement of K,(n) has a relatively compact connected component
including the origin for each n>=n, For this purpose, we may assume
(choosing a suitable circle near the unit circle if necessary) that for
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any 2z with |2|=1, there exists an open disk U, with center at z such
that some connected component of H,='(dU,) is a simple closed curve
in K,. Take a finite open covering of the unit circle by such disks
U, then noting that g(z) is bounded (w, r. t. n) on K, and that nb.H,
(z) becomes large for large n, we can conclude that the complement
of K,(n) has a relatively compact component incluning the origin.
Then the inequality (10) follows from (9) by a simple estimate, noting
the maximum modulus principle.

From (10), we have lim inf . (log M(r, f)/log r) <1. By Liouville’s
theorem, we conclude that f(2) is a linear polynomial, which is cont-
rary to hypothesis. Thus we have proved that c¢,2z+H,(2) is constant.
Hence by (7) we obtain

(11) g(2) =H,(2) +c,2, for some ¢,*0,

that is, g(2) €J(b). Further we shall prove f(z)=L(’) for some b
%0.

Since g(z+nb) =g(z) +nbc,, the relation (1) becomes f(g(z)+nbc,)
—f(g(2)) =nb.exp(H,(2)). Because g(z) takes every values®, we can
conclude from the above relation that the functions (f(z+bc,) —f(2))
and (f(z+2bc,) —f(2)) have no zeros. Repeating the argument at
the beginning of this proof (cf. (2), (8), (4), (5)), we obtain that
f(2) can be written as

(60 f(2) =H,(2) +e+1®, if evax] or
( 7/) f(z) =H6(z) +z,ecaz+H7(:), if ec3bez — 1,

where H, is entire with H,(z+bc,) =H;(z) (j=6, 7). In the case (6),
the relation F(2+nb) —F(z) =nb-exp(H,(z)) reduces to

(eresbez— 1) e +H1) =pnh. 2™ (n: any integer)

which is clearly impossible. Hence only the case (7)) is possible.
Thus we have proved f(2) €L(b’) with &' =bc,%0, which completes the
proof of Theorem 1.

Proof of Theorem 2. Let F(z)=H(z)+cz=f(g(z)) with non-linear

*) In fact, if g(z) =¢’ has no roots for some ¢’, then by (11), we have cz+H,(z) —c’=exp
(a(z)] for some entire function a(z). By the upper conclusion (note J(5)CL(8)), a(z)
€J(b) so that a’(z) is periodic with period b. Since also the derivative of exp(a(z)] has
period b, we deduce that exp(a(z)] itself has period b, which is impossible. Thus g(2)
takes every values. Further we can prove that there exists no identical relation such as
z+H(z) =h(z)expla(z)), where H, k and a are entire with H(z+8) =H(z) and p(B)<1 (cf.
proof of Theorem 7),
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entire functions f and g. Since FeJ(b) and J(b) CL(b), by Theorem
1 we have geJ(b). Now g(z) can be written as in (11). In this
case, g'(2) =H, (2) +c, is periodic with period b. As F’'(z)=f"(g(2))
g'(2) =H’'(2) +c is also periodic with period b, f'(g(2)) must be so,
that is, f'(g(2+b))=f"(g(2)). Since g(z+b)=g(2)+cb, we obtain
f'(z+c,b)=f"(2), whence we have that f(z+c¢,b)—f(2)=const.=c".
Here ¢'%x0, otherwise F(z) becomes periodic, which is impossible.
Therefore we obtain

’

12 fa) =2 2+H, @),

where H,(2+¢,b) =H,(2). Thus f(2) €J(’) with b'=¢,b=x0.

Corollary 1 Let F(2) =H(2) +cz be a non-linear entire function in
J(b) (b=0) which is of finite lower order, then F(z) 1is prime. (cf.
Lemma 117,)

This follows directly from Theorem 2, Lemmas 1 and 3, since the
non-linear left and right factors of F(z) are both necessarily transce-
ndental and further the lower order of the left-factor is positive so
that, if F is not prime, then F(2) cannot be of finite lower order.

Further we have

Corollary 2 If F(2)=H(z)+ze*€L(b) (bx0), then F(2) is prime.

In fact, using Theorem 1, if F=f(g) and f is non-linear, then we
have that g(z) must be linear (cf. proof of Theorem 4, (20)).

Corollary 3 Let F(z)=ze#*eL(b) (bx0), then F(z) is prime.

In fact, let F=f(g) with non-linear entire functions f and g. Then
we may write f(2) =ze*® and g(2) =ze*®=cz+H, (2), where p(2), q(z)
and H,(z) are non-constant entire functions such that H,(z+b6)=H,
(2). The relation g(2+b) —g(2z) =cb becomes (z+b)er=+d —ge1® =cp,
This will be clearly impossible. Because, if exp[q(z+56) —qg(2)]1=l,
the left hand side of this relation has zeros, and if exp[q(z+56)—¢q(2)]
=1, then the left hand side becomes be™, which is non-constant.
(also cf . Lemma 9).

Corollary 4 Let F(2) be a non-linear function in L(b) (bx0)
which does not belong to J(b). Then no entire function f(z) can satisfy
the identical relation f(f(z))=F(z).

Proof. Assume that an entire function f(z) does satisfy the identity
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f(f(2))=F(z). By Theorem 1, f(2) must belong to both classes L(¥")
and J(b) for some & (%0). Hence f(2)=cz+H (2)=H,(2)+z -exp[H,
(2)] for all 2, where H, has period b, H, and exp(H,) have period &'
Considering the function f'(2+b')—f'(2) =b'H;(2)+-exp[H,(2)], this
entire function has periods b and 4. Using this fact and noting that
non-constant entire functions cannot be doubly periodic, anyway, we
can conclude that H,(2) =const. =¢, (say). Then we have f(f(z))
=eitcz+erH (2) + H,(cz+H,(2)). As b'=cb (cf. proof of Theorem 1),
f(f(2)) now belongs to J(b), contrary to hypothesis.

Corollary 5 Let F(z)eL(d) (bx0) and F=fo... of,(n=2) be
a non-trivial factorization of F(f,: non-linear) into entire factors. Then
we have fEL(b,) and f,€J(b;) for appropriate values b, and b,(2<j<
n) with b,=b. If F(z)&J(b), then for 1<j<n, we have f,cJ(b;,) with
b,=b. (The b's are not zero.)

Corollary 6 Let F(2)eL(b) (bx0) and F=fo ... of, be a non-
trivial factorization of F into entire factors. If for every ¢>0, M(r, F)
<e,(er) holds for a sequence of r's going to infinity, then we have n<m
—1. Here e,(z) =exple,_,(2)] and e (z) =e*(m=2). (Note that J(b)C
L(b).)

Corollary 5 follows from Theorems 1 and 2. Corollary 6 [follows
from Corollary 5, combined with Lemmas 1 and 3.

Note that e* and cos 2z (which are both of pseudo-prime) have an
infinite number of non-equivalent factorizations. (Also cf. [21], [26].)

§3. Uniqueness of Factorization

3. 1. J.F. Ritt [28] settled the factorization problem by composition
for polynomials, in which case, roughly speaking, the factorization is
unique unless it includes factors such as the following three cases;

£(8.(2)) =f,(g,(2)), where
(A) fi(x)=z", g,(2) =2" and f,(2) =2", g,(2) =2",
B) fix)=z"[A(x)]", g(2)==2" and f,(2) =2", g,(2) =2"h(z"),
(© fi()=P,(2), g&(2)=P,(2) and f,(2) =P,(2), g,(2) =P,(2),

where m and n are positive integers, £(2) is a polynomial and P, (2)
is the n-th cosine polynomial (degree n) defined by cos nz=P, (cos 2).
Here it will be noteworthy that in cases (A) and (C), f, and g, are
permutable : f,(g,(2)) =g,(f.(2)). (For the permutability, we shall refer
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to Jacobsthal [18] in case of polynomials, Julia [20] for rational
functions, and Baker [2], [3], [4] and Yang-Urabe [36] in the case of
transcendental entire functions.) The case (B) offers examples of
transcendental entire functions whose factorizations are not unique.
For instance, if we take F(2) =2?.exp(2?) with a prime number p(=2),
then F(z) has two non-equivalent factorizations (as noted by Ozawa) ;

F(2) =20 (ze#?) = (2€*) 022,

where 2?, z-exp[2?/p] and ze* are all prime, as is known and easily
proved.

However, we can prove (easily) that F(z) =zfe**=2%0(2e*) is uniqu-
ely factorizable if p is a prime number and further F(z)=P(z)ef®=
(2e7)oP(2) is so if P(z) is a non-linear polynomial which is prime
and has at least one simple zero or two zeros with coprime multiplici-
ties.

When both factors are transcendental, the entire function F(2)=
(ze*) o (ze?) may be the simplest example which is uniquely factorizable,
We can generalize this example, for instance, to the function (2e?®)o
(2¢9®), where P and Q are some non-constant polynomials. Also, let
F(z) = (ze*)o(h(2)e*), where h(z) is a non-constant entire function of
order less than 1 (p(h)<{1l) with at least one simple zero, then F(2) is
uniquely factorizable. We wish to put here an outline of the proof
of this last assertion. Let

F(z) = (ze)) o (h(2)e?) =f(g(2))

with non-linear entire functions f and g. Then by Borel-Nevanlinna’s
theorem (cf. [23] p.72) and the fact that A(2) has at least one simple
zero, f(z) must be transcendental. Further, noting Edrei-Fuch’s theorem
(Lemma 8), we have only to consider the following three cases: (i)
f(2) =h,(2)e*®, where A, (non-linear) and p(2) (= const.) are entire
functions with p(%,) =0, and g(2) is a transcendental entire function
with p(g)<1. (i) f(2) =2ze*® and g(2) =h(2)e’® with non-constant
entire functions p and ¢. (iil) f(2) =A,(2)e*™ and g(z) is a polynomial
with deg g=2, where i, and p are non-constant entire functions with
p(h,)<1/(deg g) and hence p(h,(g))<l (cf. [34] Lemma 6).

In case (i), from F=f(g), we obtain equations 72,(g(2)) =h(z)e!®
and p(g(2)) =2—d(2) +h(2)e’, where d(z) is an entire function with
0(d)<1l (Lemma 1). Then applying Goldstein’s theorem (Lemma 10),
it follows that p(z) must be a polynomial. But then we have p(g)=1,
which is a contradiction. In case (ii), we have a functional equation
q(2) +p(h(2)e’®) =2+h(2)e. From this relation, noting g(z) must be
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linear, we obtain equivalent factorizations. In case (iii), we have
equations £,(g(2)) =h(2) and p(g(z)) =2z+h(z)e’, whence we can derive
a contradiction as above. Hence it is seen that F(z)= (ze*)o(h(2)e?)
is uniquely factorizable. Thus the impossibility of certain functional
equations will be useful in the subsequent studies.

3.2. Main Theorems

Theorem 3 Let F(2)=(z+h(e))o(z+Q(e?)), where h(z) is a non-
constant entire function with the order p(h(e*))<oo and Q(z) is a non-
constant polynomial. Then F(z) is uniquely factorizable.

Remark. If % is entire, then p(h(e?))<<oo if h(z)€s (cf. [36]
Lemmas 1, 2).

Theorem 4 Let F(2)=(H(z)+z-exp[z+h(es)])o(z+P(e?)), where
H(2) and h(z) are entire functions with H(z+2ri) =H(z) and p(h(e*))
<0, and P(2) is a non-constant polynomial. Assume that the function
H(z) +=z-explz+h(e)] is prime, then F(z) is uniquely factorizable.

Corollary 7 Let F(2)=(H(2)+ze)o(z+h(er))o(2+P(e7)), where
H, h and P are as in Theorem 4. Then F(2) is uniquely factorizable.

Theorem 5 Let F(2) = (H,(2) +ze*)o(2+H,(2)), where entire functions
H,(j=1, 2) have period 2mi. Assume that z+H,(z) is prime, then F(z)
is uniquely factorizable.

Corollary 8 Let F(2)=(H(2)+=ze’)o(z+e,(2)), where H is entire
with H(z+2ri) =H(2) and e,(2) =exple,_,(2)], ¢, (2) =2(m=1). Then
F(2) is uniquely factorizable.

Theorem 6 Let F(2)=(H,(2)+ze,(2))o(2+H,(2)), where entire
functions H,(j=1, 2) have period 2ni with p(H,)<oo, and e,(z) is as in
Corollary 8(m=1). Then F(z) is uniquely factorizable.

Theorem 7 Let F(2)=(2+H, (2))e#2®, where entire functions H, and
ez have period 2rni with p(H,)<oco. Then F(z) is uniquely factorizable.

“ Remark. We shall show that, if H,(2)=H,(z+H,(2)) has an entire
solution H,(2), then F(2) is uniquely factorized as F(z)=(z-exp[H,
(2)Do(z+H,(2)), otherwise F(z) is prime. (Note Corollaries 1 and
3.)

3. 3. For the proof of Theorem 3, we use the following Lemmas 5
and 6.



Uniqueness of the factorization under composition 107

Lemma 5 Let F(2)=(2+H,(2))o(2+H,(2)), where H, and H,(x*
const.) are entire, periodic with period 2mi such that the order of H, is
finite and H,(z) is of exponential type. If F(z)=j(g(z)) with non-
linear entire functions, then g(z) must be of exponential type.

Lemma 6 Let p(2) and q(2) be holomorphic in 0< |z|<oo,and let
G(2) be entire. Assume that the relation

(13)  p(2) +q(zer®) =G(2)
holds for all zx0. Then both p(z) and q(z) must be entire functions.

Proof of Lemma 5. Since F(2)eJ(2ni), by Theorem 2 we have
F(z) eJ(b) for some bx0 and g(2) eJ(2ni). Now we have

(149) log M(r, F)<log M([M(r, 2+H,(2)), z+H,(2)])
<[M(r, z+H,(2))]*<em (r=r,)

for some positive integers m and &, since p(H,) is finite and H, is of
exponential type. Further, noting that M(r, f)=e"(r=r,) with some
positive constant 6 (Lemma 3), we have, using Lemma 1,

(15)  log M(r, f(g)) Zlog M[cM(r/2, g), f1=0 cM(r/2, g) (rz7o).

Since F'=f(g), we have from (14) and (15) that M(r, g) <(dc)™ exp
(2mkr) (r=r,), which, combined with Lemma 3, implies that g is
exponential type.

Proof of Lemma 6. Assume that p(2) =)=, a,2* and a_,=0 for some
k with 1<k<co, then can choose {z;}, 2,-0(j—>c0) such that

(16) |z;cexp(p(z))|=1, G=1, 2, ...).

Indeed, write p(2) =p,(2) +p,(1/2), where p,(2) consists of terms
of non-negative powers and p,(1/2) consists of terms of negative
powers. If (16) is not valid for any {2}, then |z.exp(p(2))|>1 (or
<1) in some neibourhood of 2=0. Since p,(2) is bounded near 2z=0,
from above inequality we have |exp[—p,(1/2)]1|<<A|z| (or |exp(p,(1/
2)) | <A/|z|) in some neibourhood of 2=0 for some positive constant
A. This means that |exp(—p,(2)) | <1/A|z]| (or |exp(p,(2))|<A|=zl|)
for sufficiently large values of |z|. From this we have that exp(—p,
(2)) 1s constant,=0, or exp(p,(2)) is at most a linear polynomial.
This contradicts to hypothesis. Hence (16) must be satisfied for some
{z;}, 2,0 as j—oo.

Let’s take z=z; satisfying (16) as 2z in (13). Since 2, tends to
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zero as j—oo and |z;.exp(p(z))| =1 (=1, 2, ...), we conclude that
|2(z;,)| =ZRe p(2;) >0 (j—>o0), whence we deduce that the left hand
side of (13) tends to oo as j—oo. While the right hand side of (13)
remains bounded. This is impossible. Hence we have proved that a_,
=0 for any positive integer 2, which shows that p(2) is entire.

From (13), it is clear that the origin cannot be a pole of g¢(2).
Further the origin cannot be an essential singular point of ¢(2), which
follows from a theorem of Weierstrass, since z2e?® (2x0) cover some
punctured neibourhood of origin by Rouche’s theorem. Thus ¢(2)
must be also an entire function.

Proof of Theorem 3. Let F=f(g) with non-linear entire functions
fand g Since F(2) eJ(2ri), by Theorem 2 (cf. (11) and (12)) we
have f(2) =cz/(2nic,) +H,(2) and g(2) =c,2+H ,(2), where H, (z+2ric,)
=H,(z), H,(2+2ri)=H,(2), ¢ and ¢, are some non-zero constants.
From F=f(g), we have ¢=2ri. Hence we have f(2)=2/c,+H,(2)=
z/c,+ H,(2/c,) and g(2)=c,(z+H,(2)), where H,(2+2mi)=H,(2) and
H,(2)=1/c,-H,(2z). Thus-we may assume that

f(2) =2z+H,(2) and g(2) =2+H,(2),

where H;(z+2mi) =H;(z) (j=1, 2). Now we can write that f(2)=2z+
p(e’) and g(z) =z+q(e*), where p(z) and q(z) are some holomorphic
functions in 0<|z|<{co. By Lemma 5, g(2) must be of exponential
type, whence by Lemma 4 we may write ¢(2)=3}", a,2 for some
constants a,(—m=<k<m) and some positive integer m. In the rela-
tion F=f(g), cancelling 2 and then putting w=e*, we obtain the relation
q(w) +p(w-explg(w)]) = Q(w) +h(w-exp[Q(w)]), (wx0). By Lemma
6, g(2) is a polynomial and p(z) is an entire function. Here p and ¢
are non-constant, since otherwise f or g becomes linear. The above

identical relation now can be written as
a7 p(zer®) =Q(2) —q(2) +h(2e9®), (2x0).

One finds that deg g=deg Q and the arguments of the leading coefficients
of ¢ and Q are equal. In fact, if deg g¥deg @, or deg g=deg Q and
the arguments of the leading coefficients of ¢ and Q are not equal, then
we can choose a suitable radial straight line L on which exp [¢(2)]
tends to zero while exp[Q(2)] tends to oo as z—oco. We shall show
that this state of affairs leads us to a contradiction. Since p(k) =0,
there exists a sequence {r,}, 7,>0 and 7,—>co as n—>oo0 such that #w (r,, &)
>M(r,, h)'-*, where m(r, ) is the minimum modulus of A(z) for |z|

*)  Boas R.P. : Entire functions (Academic Press, 1954), p.51.
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=r®, and since h(2) is not constant, M(r, h) =r-*(r=r,), hence we have
(18) m(r, h)=r2(n=n,),

here we take ¢ as 0<e<{1/4. Letting L: z=te* (¢>>0), the equation
r,=|z-exp[Q(2)]]| has a solution 2=z, =t say, (n=n,). In this case
we may assume that r,=exp(dt,) (n=n,) for some positive constant 0
so that we obtain from (18) |A(z,-exp[Q(z,)]) | =exp(dt,/2) =exp(d|z,|/
2), while we have that |p(z,-exp[q(z)]D) |+ |Q(z) |+ [g2(z) | =2 F (n
=n,) for some constant K>0 (noting 2e¢'®—-0 as 2—>c0 on L). These
inequalities and (17) mean that exp(d|z,|/2) < |z, [f(n=n,), which is
clearly impossible.

Then again by (17), we obtain that Q(2)—g¢(2) (polynomial) is
bounded on some radial straight line, hence @Q(z)—¢q(2)=const.=—d
(say). Then we have that ¢(2) =Q(2) +d and from (17), p(g)=h(e*
2) —d. Thus f(z)=z+p(e’)=2—d+h(e¢) and g(2)=2+q(e’)=2+Q
(e*) +d. Taking T(2) =2+d, we obtain that

f(2)=(z+h(e))oT'(z) and g(2) =T (2)o(z+Q(e?)),

which shows that two factorizations f(g(2)) = (z+h(e’))o(z+ Q(e*)) are
equivalent, which is to be proved.

3. 4. Proof of Theorem 4. Let F=f(g) with non-linear entire
functions f and g. Since FeL(2r7), by Theorem 1 we can write

(19)  f(x)=H,(2) +ze*® and g(2) =2z+H,(2),

where non-constant entire functions H;(j=1, 2) and e**® have period
2zi. Then

f(g(z)) =H, (2+H2 () + H,(2) - eXG+H2) {7, oK G+H2()
=H(z+P(e?)) + P(e?)ele+rle) ttplea)) 4 o, oltalen) e Gtplen),

Considering the function F(z+2%i) —F(2) and cancelling the periodic
parts, we have exp[K(z+H,(2))]=exp[(z+h(e*))o(2+P(e*))], hence

(20) K(z+H,(2))=(2z+h(e))o(z+P(e?)), (mod 2ri).

Now the right hand side of (20) is uniquely factorizable by Theorem
3. Hence we may write

(21) K(z) =2z+h(e*) and 2+ H,(2) =2+ P(e*), or
(22) K(2) =z and 2+ H,(2) =(z+h(e’))o(z+P(e?)).

In case (21), from (19) g(z2) =z+P(e*), so that we have H,(2)=H
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(2) and f(2) =H(z) +z-exp[z+h(e’)]. In case (22), we have from
F=f(g) and (19) that H(z)+=z.exp[z+h(e)]=f(z+h(e?)). By the
assumption the left hand side of this relation is prime. Since f 1is
non-linear, this is impossible. Hence we can rule out the case (22).
Thus we have done.

Proof of Corollary 7. We repeat the argument in the proof of Theorem
4. Letting F=f(g), we have (19). We shall study two cases (21)
and (22). In case (21), since g(=) =2+4+P(e*), we have f(z)=H,(2)+
zeexplz+h(er)]1=(H(2) +z2e*)o(24+h(e)). Assume that f(2)=f(g,(2))
with non-linear entire functions f; and g, then by Theorem 1 we
may write

(23) f.(2) =H,(2) +2e™* and g,(2) =2+H,(2).

From f=f,(g,), we conclude as in the proof of Theorem 4 that H,(z+
H,(2))=z+h(e’). The right hand side of this is of finite order, so
that, noting Lemmas 1 and 3, H,(2) must be linear. We may assume
that H,(2z) =2. Hence g,(2) =2+H,(2) =2+h(e*). Then from (23) and
f=f,(g), we have H,(2) =H(z) so that we obtain

fi(z) =H (2) +ze,, g,(2)=2+h(e) and g(z) =z+P(e?).

In case (22), noting g(2) =2+ H,(2) =(z+h(e))o(2+P(e*)), we have
from F=f(g), f(z) =H(2) +z2e*. Thus in any cases, the factorization
F(2)=(H(2)+=ze?)o(z+h(e?))o(2+P(e?)) is the only one into prime
factors up to equivalent factorizations, which is to be proved.

3. 5. The proof of Theorem 5 will become clear from that of Corollary
8. Hence we prove only Corollary 8. For this purpose we shall need
the following fact, which is a generalization of known results (cf. [16],

[25D).

Theorem 8 Let F(2)=e, (2+P(e?))+Q(z), where P and Q(x const.)
are polynomials and m=1. Then F(z) is prime.

Corollary 9 Let F(2)=z+e,(z) (m=1), then F(z) is prime.

Corollary 10 Let F(2)=P(e*)e=+ Q(2) with polynomials P(x0)
and Q(xconst.). Then F(2) is prime.

Corollary 9 follows directly from Theorem 8 if we take P(2)=0
and Q(2)=2. And the proof of Theorem 8 below essentially shows
Corollary 10, which is noted in [34] (remark after Theorem 3) witho-
ut proof. To prove Theorem 8, we use the following lemma due to
Ozawa.
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Lemma 7 ([25]) Let F(2) be an entire function satisfying the ineq-
uality N(r, 0, F')=km(r, F) (=T(r, F)) for all positive number r&E
with a set E of finite linear measure and for some k,>0. Assume that
the system of equations

(24) F(z)=c and F’'(2)=0

have only finitely many common roots for any constant ¢ (¥oo0). Then
F(2) is left-prime in entire sense.

Proof of Theorem 8. Consider N(r, 0, F'). Letting

G(z) = (1+P (e)er)e,(z+P(e’))..... e, (z+P(e?))
(I14+P (er)e’)e,(z+P(e?))...e,(z+P(e®)) + Q' (2)

we have, by the second main theorem of Nevanlinna,

T(r, G)SN(r, o0, G)+N(r, 0, G)+N(, 1, G)
+0Qog[rT(r, G) 1),

for r&gE, with a set E; of finite linear measure. Note that the deno-
minator of G(z) is equal to F'(z). Then using Clunie’s theorem (cf.
[17] p.54), we obtain N(r, 0, F)=(1—¢e)m(r, F) =k,m(r, F) for r&E,
with 2,=1—¢ (0<<e<{1) (cf. [25]). Thus the first condition in Lemma
7 is satisfied.

Next consider the equation (24). We may suppose, substituting
Q(2) by Q(2) —¢, that c¢=0. Then (24) can be written as

e, (z+P(e’)) +Q(2) =0

(25) e, (z+P(e?))..... e,(z+P(e’)) (14+P (en)e) + Q' (=) =0.

Assume that the equations (25) have an infinite number of com-
mon roots {z,}7*. Then from (25) we have

(26) %g))_ —e _ (2. 4P(e)). .. .e,(z,4P(em) (14+eP’ (e))
for n=1, 2, .... By the first equation of (25), e,(z,+P(e"))—>c0 as
n—oo. Hence we must have e, (2,+P(e")) 00 as n—»oo for k=1, ...,
m—1, and e*"—o0 as n—>oo. Then the right hand side of (26) tends
to co as n—oo, while the left hand side of (26) tends to zero as n—s oo,
This is a contradiction. Hence the equation (24) can have at most a
finite number of common roots for any ¢. Thus F(2) is left-prime
in entire sense by Lemma 7.

By the result of Baker-Gross ([6] Theorem 3), the right factor
of F(z) (which is periodic mod a polynomial) cannot be a polynomial
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of degree greater than 2. Let F(2)=f(R(2)) with a quadratic poly-
nomial R(z). In this case, substituting the variable, we may assume
that e, [ (z+2,) +P(exp(2+2,)) ]+ Q(2+2,) is an even function for some
2, But this is impossible. Thus F(z) is prime in entire sense. Since
F is non-periodic, F(z) is prime as is known and easily proved ([15]).

Proof of Corollary 8. Letting F=f(g) with non-linear entire func-
tions f and g, we can write as in (19) that f(2) =H,(2)+=z-exp(H,(z))
and g(2) =2z+H,(2), where H, exp(H,) and H, are entire, periodic
with period 27i. From F=f(g), similarly as in the proof of Theorem
4, we have

27) H,(z+H,(2)) =z+e¢,(z) +2kni

for some integer 2. Here the right hand side of (27) is prime by
Corollary 9, hence H,(z) is linear and we (may) have g(2)=2+H,(2)
=z+e,(2). Therefore we obtain f(z) =H(z)+=ze*. Thus we have proved
that two factorizations F'(z) = (H(2) +=ze*)o(z+e,(2)) =f(g(z)) are equiv-
alent, hence we have done.

3. 6. Proof of Theorm 6. Let F=f(g), where f and g are non-linear
entire functions. Since FE L (2rxi), we can write f and g as in (19).

(19) f(2)=H,(2) +z-¢¥® and g(2) =2+ H,(2).
Then as before we obtain exp[K(z+H,(2))]=e,(z+H,(2)). Hence
(28) K(z+H,(2)) =e,_,(z+H,(2)) +2kzi (k : an integer),

so that K(2) =2k 7i+exp[U,(2)] for some entire function U,(z), since
z+H,(2z) =c has roots for any constant ¢ (cf. footnote at p.102). There-
fore we have U,(2+H,(2)) =e,_,(z+H,(2)) +2k,i for some integer k,
This implies that U,(z) =2k,mi+exp[U,(2z)] for some entire function
U,(2). Thus we have U,(z+H,(2))=e,_,(z+H,(2))+2kni for some
integer k,. Repeating this process, we arrive at U,_,(2) =2k, 7i+exp
[U.-,(2)] and

(29)  U._.(2+H.(2)) =2+H,(2) +2k,7i,

where U,

m—=2

and U,_, are some non-constant entire functions, k,_, and
k, are some integers. Since the right hand side of (29) is prime by
Corollary 1 (cf. [6]), U,_,(z) must be linear. Putting U,_,(2) =az+b,
we have from (29) that a=1 and H,(2) =H,(2) +c with c¢=—b+2k ri
Then we have

(80) g(2)=2+H,(2)+c.
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From (28) we have K(2)=e,_,(z—c)+2k ni and further from F=f(g)
we have

30 f()=H,(z—¢c) + (z2—c)e, (z—c).

Taking T(z) =z+c, we obtain from (30) and (31) that f(2)=(H,(2)
+ze,(2))oT'(2) and g(2) =T(2)o(z+H,(2)). Therefore two factoriza-
tions F(2)=f(g(2)) = (H,(z) +ze,(2))o(z+H,(2)) are equivalent, which
is to be proved.

3. 7. For the proof of Theorem 7, we shall use the following lemmas,

Lemma 8 (Edrei-Fuchs [8]) Let f(2) and g(z) are two transcendental
entire functions. Lf p*(f) >0, then we have necessarily p*(f(g))=oo.

Lemma 9 (Borel’s unicity theorem cf. [23]) Let a;(z) (j=0,1, ...,
n) be entire functions of order no greater that p, let g,(z) (j=1, ..., n)
be also entire and let g,(z) —g,(2) (jxk) be transcendental entire func-
tions or polynomials of degree greater than p, then the identity

n
Y a;reri¥=a,(2)
i=1

holds only when a,(2)=a,(2z)=....=a,(z) =0 identicaly.

Proof of Theorem 7. Letting F=f(g) with non-linear entire func-
tions f and g, by the fact F(2) & L(2ri) we can write as before

(32) f(z) =H,(2) +2.¢% and g(z) =2+ H,(2),

where entire functions H,, exp(H,) and H, have period 2zi. Since
p*(F) is finite and g(z) is transcendental, by Lemma 8 p*(f) cannot
be positive. Hence

(33)  f(&)=H,(2) +z.e"D=h(2)e”

for some entire functions 2(z) and ¢(z) with p(2)=0. From (33) we
have

(34) h(z+42xi)est+) — h(2) e = 2mieHi®,

By Lemma 9, we obtain ¢(2+2n7) —q(2) =const.=c,, say. Then (34)
becomes [eth (24 27i) —h(2)]e' =2ni exp(H,(2)). Since p(h)=0, we
conclude that e*®=c, exp(H,(2)) for some ¢,%0. Going back to (33),
we have H,(2) = (c,h(2) —2)exp(H,(2)). This means that c,k(z) —2(x
0) is periodic, so ¢,h(2) =2+c¢, for some ¢, ’%0. Hence from (33) we
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have H,(z) =cexp (H,(2)) and f(2)=(z+4c,) exp(H,(z)) for some c,.
From F=f(g) and (32), considering F(z+2xi) —F(z), we obtain (as
before)

(35) H,(2) =H,(z+H,(2)) +2kai and H,(z) =H,(2) +c,
From (32) and (35) we have g(2) =2z+H,(2) —c, and hencé
F(2) = (z+H,(2))e"® = (24 H, (2) ) "1+
= ((z+¢)e"@)o (z+H,(2) —c,) =f(g(2)),

which is the only non-trivial factorization if F(2) is not prime. Thus
under the assumption that F(z) is not prime, from (35) we have
H,(2) =H,(z+H,(2)) for some entire function H,(z) such that exp(H,
(2)) has period 2ri. '

Remark- The functions z-l—Hl(v:‘z)—c3 and (z+car)oexp(H4(z)) are
known to be prime by Corollary 1 or 3. '
§4. Certain prime functions in J(2xi) or L(2xi)

We with to note here the following several results.

Theorem 9 Let F(z)=z+h (er) +h,(e’)e”, where h, and h,(x0)
are entire functions with p(h;)<l (=1, 2). Then F(z) 1is prime,
unless h, is a linear polynomial and h,(z) =cz", for some non-zero cons-
tant ¢ and some positive integer m.

Theorem 10 Let F(2) =2+ Q(e?) +h(e=), where h(= const.) is entire
with p(h(e?))<oo and Q is a polynomia.l, then F(2) is prime.

Theorem 11 Let F(2)=z+h(e’) + Q(e), where h is’ entire with p
(W) <1 and Q is a (non-constant) polynomial, then F(2) is prime.

Theorem 12 Let F(2) =Q(e*) +z-exp[z+P(e’)] with polynomials P
and Q. Then F(2) is prime.

Theorem 13 Let F(2) = (z+H,(2))e"*®, where H,(x const.) is entire,
periodic with period 2mi with p(H)<oo(j=1, 2), then F(z) is prime.

For the proof of Theorem 9, we shall need the following lemma.

Lemma 10 ([12]) Let F(2) =h,(2) +h,(2)e*, where h, and h,(x0)
are entire functions with p(h,)<1 (j=1, 2), then F(2) is right-prime.
Further if h, is non-constant, then F is prime.

Proof of Theorem 9. Let F=f(g) with non-linear entire fﬁnctions
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f and g. Then by Theorem 2, Lemma 6 and the proof of Lemma 5,
we may assume that f(2)=2+4q(e*) and g(2) =2+ Q(e*), where g¢(2)
(¥ const.) is entire and Q(2) (% const.) is a polynomial. ~ From the

relation F=f(g), we have (cf. proof of Theorem 3)
(36)  q(ze*@) =h,(2) — Q(2) +h,(2)e

Here the right hand side of (36) is right-prime by Lemma 10, hence
g(2) is a polynomial. Further if 2, — Q= const, then the right hand
side of (36) is prime by Lemma 10, so that ¢ must be linear. But in
this case, a special case of Lemma 9 leads to a contradiction. If A, —
Q=const. (=c¢,), noting that Q is a linear polynomial (which will be
clear from (36)), we have that A, is linear and, using Borel’s thcorem
(cf. [31] p.279), we obtain that ¢(2)=2"+4c, hence #5,(2)=c,2z", for
some constants ¢, and ¢,%0, and for some positive integer m. Thus,
if F is not prime, then A, is linear and #,(2) =c,2”, which is to be
proved.

The proof of Theorem 10 can be done, using Theorem 2 and the
following Lemma.

Lemma 11 ([34]) Let F(2)=h(e*’) +Q(2), where h(x const.) is
entire with p(h(e*))<oo and Q is a non-constant polynomial, then F(z)
is prime.

The proof of Lemma 11 (in [34]) shows essentially the following
fact, which is a conjecture of Gross ([16] Conjecture 2).

Lemma 11° Let F(2) =H(2)+ Q(2), where H(Xxconst.) is an entire
Sfunction of finile lower order which is periodic with period 2xi and
Q(2) is a non-constant polynomial. Then F(2) is left-prime. Further
if Q(2) has no quadratic right factor, then F(z) is prime.

Indeed, if F=f(g) with transcendental entire functions 2 and g,
then by Lemma 1 we have p(h) =0. Then for any ¢>0, there exists a
sequence {r}y, 7,>0 and 7,—>o00(n—>00) such that m(r,, h)=M(r,/2,
h)¥s=+(n=1) even in the case p(h) =0 (noting Lemma 2)*. Therefore
from the argument in [34] F(2) must be pseudo-prime and further
we can get the above conclusion.

Proof of Theorem 10. Let F=f(g) with non-linear entire functions

*)  cf. Ostrovskii I.V. : On defects of meromorphié functions with lower order less than one,
Soviet Math. Dokl. 4 (1963) 587-591.
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fand g. Then from FeJ(27i) we may write as before, f(2) =24q(e?)
and g(z) =2+ R(e*), where g(3const.) is entire and R(=const.) is a
polynomial.® From the relation F=f(g), we obtain the identical relation

(B7)  q(ze*9)=Q(2) — R(2) +h(e).

If Q(2)—R(z)*xconst., by Lemma 11’ the right hand side of (37)
is leftprime, so ¢(2) must be linear. Then we have from (37) that
the function (z+2ri)eR=+>) —2er® is a polynomial, which will be clearly
impossible (cf. Lemma 9).

Assume that Q(z) — R(z) =const. Then, noting p(q) =0 by Lemma
1, we can deduce a contradiction similarly as in the proof of Theorem
3. Since F is non-periodic, F(z) must be prime.

The proof of Theorem 11 can be done quite similarly as that of
Theorem 10, if we use the following lemma (hence omitted).

Lemma 12 ([34]) Let F(2) =h(2) + Q(e?),where h(2) is a non-consta-
nt entire function with p(h)<l and Q(z) is a non-constant polynomial.
Then F(z) is prime.

Proof of Theorem 12. Letting F=f(g) with non-linear entire func-
tions f and g, since Fe[L(2ri), by Theorem 2 we can write f(2)=
H,(2) +z-exp(H,(2)) and g(z)=z+H,(2z), where entire functions H,
exp(H,) and H; have period 27i. From F=f(g) we can conclude as
before that z+P(e*) =H,(2+H,(2)). Since the left hand side of this
is prime (Corollary 1), we may have H,(2) =z and H,(2z) =P(e*). Hence
we obtain again from F=f(g) that H,(z+P(e?)) +P(e)exp[z+P(e’)]=
Q(e*). Writing H,(2z) =h(e*) for some holomorphic function A(2) in
0<|z|<oo, then the above relation reduces to

(38) h(zeP®) = —2P(2)er@+ Q(2) (2x0).

By the proof of Lemma 6, we conclude for (38) that A(2z) is entire.
By Lemma 1, p(h) =0. Further we conclude from (38) that A(z) must
be a polynomial, using the argument in the proof of Theorem 3. (Note
also that the right hand side of (38) is known to be pseudo-prime by
Goldstein’s theorem, [12] Theorem 1.) Then by Lemma 9 we can
deduce a contradiction.

Proof of Theorem 13. Let F(2)=f(g(z)), where f and g are non-
linear entire functions. Since F&[L (2zi) and p*(F)<oco, f(z) and
g(z) can be written as f(2) =z.exp[H,(2)] and g(z) =2z+H,(2), where
entire functions exp(H,) and H, have period 27i. From F=f(g), we

*) Note that Lemmas 4 and 5 hold under certain weaker conditions,
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have H,(z+H,(z))=H,(2z). Since p(H,)<oco and g(2)=z+H,(2) is
necessarily transcendental, by Lemmas 1 and 3 this identity is possible
only when H,(2) is linear, but in this case H,(2) =H,(z+H,(2)) cannot
be periodic. This contradiction shows that F(z) is prime in entire
sense. As F(z) is not periodic, F(z) is prime.

§5. Certain Results on the Periodicity

Inspired by the question of Gross [13]: Whether or not a non-
constant entire function f(z) is periodic when f(f(2)) is so, the author
studied the periodicity of entire functions and obtained several results
in [33], using the method which is closely connected with the argument
in the proof of Theorem 1. Then we had to put the assumption that
f(2) is of finite order for getting a result from some moderate condi-
tion ([33] Theorem 2). In this section, we shall show that we can
prove the same conclusion as Theorem 2 in [33], even when the order
of f(z) is not necessarily finite. The result is stated as follows.

Theorem 14 Let f(2) be a transcendental entire function. If there
exists a sequence of positive integers (k)Y (N : finite or infinite) such
that for each z, at least one of f»(z) (k,—th derivative of f(z)) is not
zero, and % (f(2)) has the common period (1<n<N), then f(z) or
f'(2) is necessarily periodic. (f®(2)=f(2)). In fact, f(z) can be written
as f(2) =cz+H(z), where ¢ is a constant and H(z) is a periodic entire
Sfunction.

Remark 1. The assumption that for each, z, at least one of the %,
-th derivative of f(z) (n=1, 2, ...) is not zero, is always valid when
{k,}¥ is taken as the set {m; integer=m, for some positive integer
M

Remark 2. Take f(2) =2+e¢,(2) (m=1, integer), where e,(z) =exp
[e...(2)], e,(2) =2. Then f®(f(2)) is periodic with period 2ni for
any integer £=1. In this case, f(2) is not periodic while f'(2) is
periodic. Thus Theorem 14 is best possible in this formulation.

We shall give here an outline of the proof of Theorem 14, which
will be sufficient. We can assume that the common period is equal
to b. Further by the assumption that for each =z, at least one of f®»
(2) is not zero and f*~V(f(2)) is periodic with period b (n=1, ...,
N), we may assume that the functions [f(z+b) —f(2)] and [f(z+2b)
—f(2)] have no zeros, otherwise by the unicity theorem for holomor-
phic functions f(z) becomes periodic with period & or 2b. Hence by



118 Hironobu Urabe

the argument in the proof of Theorem 1, we have only to consider
the following two cases.

(6")  f(2)=H,(2) +efe@+es jif ebex],
( 7») f(z) =H1 (z) +z.eH2(z)+:x’ if etc= 1,

where entire functions H,(z) (j=1, 2) have period b.

In case (6"), we can proceed to rule out this case qulte similarly
as in [33] (cf. the first step of the proof of Theorem 1). In fact, we
have the identity ‘

&(f(2) + (exp[ncb] — 1) -explcz+H,(2)]) =g(f(2))
(n=0, +1, ...),

for some transcendental entire function g(z). From the sequence {exp
(ncb) 5 n is any integer} (exp(nch)%1), taking a subsequence which
converges, we conclude by the unicity theorem that g(z) is a constant,
which is clearly impossible.

In case (7"), f(z+nb)=f(z) +nb-exp[cz+H,(2)]. By the assump-
tion we have the identity, for some transcendental entire function g(z),

g(f(2) +nbee=+10) =g (f(2)) (n: any integer).

In this case, if cz+H,(2) is not constant, applying the argument in
the proof of Theorem 1 (cf. the second step), we can conclude that
M(r, g) =0(1), hence g(z) must be constant, contrary to the transcen-
dency of g(z). This contradiction shows that cz+H,(z) is a constant.
Hence f(2) =c,2+H,(2) for some constant ¢, so that f'(2)=c,+H (z)
is periodic with period b.

Remark. Let f(2)=cos 2, then f(f(2)) has period z, but f(z) has
period 27,

Finally, we note the following result of Gross [14] as a Gorollary.

Corollary 11 Let f(2) be a transcendental entire function such that
f’'(z) does not vanish. Assume f(f(z)) is periodic, then f(z) is necessarily
SO‘ . . - ,. ; - . . -

- Proof. Assume f(f(2)) has period b (%0). Since f’'(2) does not
vanish, the conditions in Theorem 14 are satisfied when N=1 and
k,=1. Then from Theorem 14 it is enough to consider the case: f(z)
=cz+H(z), where ¢ is a constant and H(z) is entire with H(z+b) =
H(z). We have to show ¢=0. By the periodicity of f(f(z)) and f’
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(2) =c+H'(2), f'(f(2)) is also periodic with period b, hence H’(cz+
H(z)) is so. Since non-constant entire functions cannot be doubly
periodic, we conclude that ¢ is a rational number. Now f(f(2))=
ctz+cH(z) +H(cz+H(2)), and note here that cH(z) +H(cz+H(z))
periodic (with period mb for some non-zero integer m, since ¢ is a
rational number and H(z) has period ). This shows that, if ¢=0,
f(f(2)) cannot be periodic. Hence c¢=0, which means that f(2) is
periodic. Thus we have done. '

KyoTto UNIV. OF EDUCATION
Fusuimi-ku, KyoTo, 612
JAPAN

References

[1] Baker I.N. : The iteration of entire transcendental functions and the solution of the
functional equation f{f(z)}=F(z), Math. Ann. 129 (1955) 174-180.

[2]. Baker:I. N. : Zusammensetzungen ganzer Funktionen, -Math. Z. 69 (1958) 121~ 163

[3] Baker I.N.: Permutable entire functions, Ibid. 79 (1962) 243-249.

[4] Baker L. N. : Repulsive - fixpoints of entire functions, Ibid. 104 (1968) 252~ 256 .

[5] Baker I.N. : The value distribution of composite entire functions, Acta Sci. Math.
(Szeged) 32 (1971) 87-90. :

[6] Baker I. N, and Gross F.: Further results on factorization of entire functlons, Proc.
Symposia Pure Math. (Amer. Math. Soc. Providence R.1.) 11 (1968) 30-35.

[7] Clunie J.: The composition of entire and meromorphic functions, Memorial Vol. for A.
J. Macintyre (Ohio Univ. Press, Athens Ohio) (1970) 75-92.

[8] Edrei A. and Fuchs W.H. J.: On the zeros of f(g(z)) where f and g are entire func-
tions, J. d’analyse Math. 12 (1964) 243-255.

[91 Fatou P.: Sur les équations fonctionelles, Bull. Soc. Math. France 47 (1919) 161-271, 48
(1920) 33-94, 208-314.

[10] Fatou P. : Sur litération des fonctions transcendents entiéres, Acta Math. 47 (1926)
337-370.

[11] Goldstein R. : On factorization of certain entire functions, J. London Math. Soc. (2) 2
(1970) 221-224.

[12] Goldstein R. : On factorization of certain entire functions JI, Proc. London Math. Soc.
(3) 22 (1971) 483-506.

[13] Gross F. : On factorization of meromorphic functions, Trans. Amer. Math. Soc. 131
(1968) 215-222.

[14] Gross F.: On the periodicity of compositions of entire functions II, Canad. J. Math. 20
(1968) 1265-1268.

[15] Gross F. : Factorization of entire functions which are periodic mod g, Indian J. Pure
Appl. Math. 2 (1971) 561-571.

[16] Gross F. : Prime entire functions, Trans. Amer. Math. Soc. 161 (1971) 219-233.

[17] Hayman W.K. : Meromorphic functions, (Oxford, 1964).

[18] Jacobsthal E. : Uber vertauschbare Polynome, Math. Z. 63 (1955) 243-276.

[19] Julia G. : Mémoires sur l'itération des fonctions rationelles, J. Math. (7) 4 (renumbered
(8) 1) (1918) 47-245.

[20] Julia G. : Mémoires sur la permutabilité des fractions rationelles, Ann. Sci. de IEcole



120

(21]

[22]
(23]

[24]
[25]
[26]
[27]

(28]
(29]

[30]
[31]
[32]
[33]
(34]

[35]
[36]

Hironobu Urabe

Normale Supérieure (3) 39 (1922) 131-215.

Koont S.: On factorization in certain classes of entire functions, Math. Research Report
No. 76-5 Univ. Maryland (1976, March) 19pp.

Kuczma M. : Functional equations in a single variable, (Warszawa, 1968).

Nevanlinna R.: Le théoréme de Picard-Borel et la théorie des fonctions méromorphes,
(Gauthier Villars, Paris, 1929).

Ozawa M. : On the solution of the functional equation fo g(z)=F(z) I, II, III,1V and V,
Kodai Math. Sem. Rep. 20 (1968) 159-162, 163-169, 257-263, 272-278 and 305-313, resp.
Ozawa M. : On certain criterion for left-primeness of entire functions, Ibid. 26 (1975)
304-317.

Ozawa M : On a characterization of the exponential function and the cosine function
by factorization, to appear.

Pélya G. : On an integral function of an integral funciton, J. London Math. Soc. 1
(1926) 12-15.

Ritt J.F. : Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922) 51-66.
Rosembloom P. : The fixpoints of entire functions, Medd Lunds Univ. mat. Sem. Suppl.
Bd. M. Riesz (1952) 186-192.

Thron W.]. : Entire solutions of a functional equation, Canad. J. Math. 8 (1956) 47-48.
Titchmarsh E.C. : The theorey of functions, 2”4 ed. (Oxford, 1939).

Tepfer H, : Uber die Iteration der ganzen transzendenten Funktionen, insbesondere von
sin z und cos z, Math, Ann 117 (1940) 65-84.

Urabe H. : On the periodicity of entire functions, Bull. Kyoto Univ. Education Ser. B
No. 43 (1973) 21-28.

Urabe H and Yang C.-C. : On certain entire functions which together with their
derivatives are prime, Kodai Math Sem. Rep. 29 (1977) 167-178.

Yang C. -C. : On the factorization of entire functions, to appear in Illinoi Math J.
Yang C. -C. and Urabe H. : On permutability of certain entire functions, J. London
Math. Soc. (2) 14 (1976) 153-159.



