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Introduction. In this paper we shall investigate the Riemann surfaces of
infinite genus, in particular, the surface of the class O H D - O G ,  that is hyperbolic but
has no non-constant harmonic functions with finite Dirichlet integrals. I t  is  w e ll
known that these surfaces have many complicated properties. The compactification
theory, it is true, have made them clear to some extent (cf. Constantinescu-Cornea
[2], Sario-Nakai [9]). It seems, however, that they are not sufficiently clarified.

First we consider the regular Green lines on a hyperbolic Riemann surface R
issuing from a point z , e R .  Let K , be a parametric disk containing the point z o

and /3.(ct, fl) be the extremal distance in R — K o between two regular Green lines with
angles a, fl. Now we shall define b(z o , R ) by the integral mean of /1(oc, 14  Intui-
tively speaking, it will represent the mean diameter of the ideal boundary of the
Riemann surface R  (for the precise definition, see p. 4 1 2 ) .  B y  u s in g  the potential
theory on the Kuramochi compactification, w e get then a theorem; a R iem ann
surface R  belongs to the class O H D - O G  if  and only if  b(z 0 , R ) vanishes f o r some
(any) zo (section I).

Next we deform a regular hyperbolic Riemann surface R  by squeezing along
Green lines. M ore precisely, we cut R  along some Green lines to obtain a planar
subregion that is mapped conformally onto the unit disk with radial or incised radial
slits clustering only to the circumference. By a natural conformal sewing of those
slits, we obtain a Riemann surface which is conformally equivalent to R .  We deform
the slits radially according to a real parameter t. For each t we obtain a Riemann
surface R(t) by the conformal sewing of the disk with so deformed slits. W e can
consider, for each R (t), the extremal distances 4 t ; a, fi) and the quantity SW=
(5(z0 , R(t)). Then it w ill be shown that b(t) moves upper semicontinuously  (sec-
tion 2).

Finally, we shall give examples of deformations, for which 6 (0  moves con-
tinuously or discontinuously (section 3).

The author expresses his hearty thanks to Professor Y. Kusunoki for his valuable
suggestions in the research.

1. Let R  be a hyperbolic Riemann surface. Fix a point z ,  in R  and denote
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by g(z, z 0 )  the Green function o f R  with pole a t  zo . Consider the single-valued
function r(z )=exp(— g(z , z )) a n d  th e  differential (10(z)= —*dg(z, zo). Clearly

r(z)< 1 for z e R .  Set for 0<p <1

Gp = {z e R ; r(z )<p} , Cp .= aGp .

Although 0(z) is not single-valued in  R—{z 0 } , it is harmonic locally o n  R—{z 0 }.
An open arc y is called a Green arc if 0 4 0  on y and a branch of 0 is constant on y.
The totality of Green arcs is partially ordered by inclusion. In this sense a maximal
Green arc is called a  G reen line . Denote by

G=G(R, zo )

the set of Green lines L issueing from zo ; then z o  e L.
For a sufficiently small p, Gp is regular and relatively compact in R and 6 ,  is

m apped  conformally o n t o  {1w1_1} b y  t h e  single-valued function w =f(z)
= —

1
r(z )ex p(i0(z )). Hereafter we fix such a p and use the notation K0 = 6 p . Each

p o in t  z  o n  aKo = cp  is re p re se n te d  b y  th e  coordinate 0 e [0, 27r) w here z
= f - 1 (ex p(i0)). Using this we designate L e G(R, z o ) by

L= L o

where 0 is the coordinate of the point L n K o . We may write

G(R, z 0 )= {L 0 ; O6[0, 2x)}.

For L7 , L p  eG(R, zo ), we denote

T(L7 ,

by the set of locally rectifiable curves

c={ z(t); 0<t<1}

in R— K0  which join L7 and Lfl ; that is, c is relatively compact,

z(t) ER—K o — LOE— 1, 0<t <1,

{z(t); 0 <t <e} n (R — ,
e> 0

{z(t); t — E<t<- 1— } 1,fi n (R— K 0 ).
e> 0

Of course, R— Ko — L7 — LI, may have two components.
Let {R „ } ,  be a regular exhaustion of R with R ,DK o . For L „  G

L (
7") = L7 n (R,,—K 0 )

is composed of a finite number of analytic a r c s .  We denote

T(L411) , L (
p n) )

by the curve family joining L („n) and V »  in  R— K , in the same w a y . F o r  a  curve
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family F in R— K o , A(F) means the extremal length of the family F (cf. Sario-Oikawa
[8]).

Lemma 1. (Continuity  lem m a, S uita [10]). Let F, T 2 , . . .  be curve fami-
lies in a R iem ann surface. If  F i C  r 2 and  u  F,,=F, then

n=1

11m 4 F„)=;(r) .
n  c0

Lemma 2 . lim A (F(4"), 14 1 ) ))=A (T(L„, L e )).
n  o c

Pro o f . We denote r n (LŒ, Lp )  by the set of curves in  r(L , L f i)  contained in
R„— Ko . Then,

ri(L „, L e )c r 2 (L„, L e ) c•••,

and

By Lemma 1,

Since

we obtain that

"X,

F„(1,8 , L e ) =F(L „, L e ).
u=i

limyl(F„(4, A(F(L„. Le )).
n  c 0

F„(L,„ L e )cF(LI," ) , L (e ") ),

1(F„(L , L e )) /1(F(1.4" ) ,

W hile, fo r  a n y  c n F(I4" ) , 1., (p ") ) ,  there exists c' e F(L„, Ls )  w ith  c  e '.  T h u s ,

.1(F(L" ) , L (e n) )) . A(F(LŒ, L e )),

and

lim 2(f(L", 14,")))=A(r(L„, L f i )).„— .

We call the normalized Lebesgue measure

1 dm ())= ..) 7 7  dO

on 3x 0 =  [0, 27r) a Green measure. For each L o e G(R, z0 ) we write

do = sup {r(z); Z E Lo} .

Clearly If d„, < I then we call L o a  singular Green line, otherwise regular.
We know that E=E(R , z 0 ) = {O; L o is  singular} is an F,7-set in  [0, 27r) and m(E)= 0
(Brelot-Choquet [1]). Hereafter we use an abbrebiation
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A (F(L, L e ))=1.(1, 13).

Let Rt be the Royden compact ification of R, and LID  be the harmonic boundary
(cf. [2], [9]).

Lemma 3. (N ak ai [5 ]) . For every open set U in Rt —R

m{0; ( -1-4 — { z ,} )c  U 1  /AU),

where in is the inner m easure induced by  in, p is the harmonic measure of — R
with respect to z , and AD  m eans the closure of A  in R .

Let dm x dm be the product measure o n  [0, 2m) x [0, 2m) induced by in, and
I=  (0 e [0, 2n); La is regular} .
The set T is a  Ga-set and in(I)=1.

Theorem  1. The function ),(a, 13) of (a, 13) is upper-semi-continuous on Ix  I.

Pro o f . For a E LOE(r)= LOE n {z; (p<r <1) is a compact set in R,
and j  L2 (r) = int Ko . Fix such a n  r. There exist planar neighbourhoods

r>p
U 2 , V 2  of L2 (r) with UOE U t‘c  1 /  and a sufficiently small ricc > 0 such that L 0(r) c U„
fo r  10—al < n„, 0 e I. Similarly fo r /3 E I  ( a  f3) there exist U0 ,  Vfl , lip  and  L 9 (r)
c  U  for 10' --A <14, 0' e I. We may assume tha t V„ n V0 =4. It is  no t d ifficu lt
to construct a  quasi-conformal mapping 00 ,0 ,(z) o f R — K, onto itself such that

is the identity m apping. 08 ,0, maps L OE(r), L e (r) onto L0 (r), L A O
respectively, and the maximal dilatation of 0 0 ,0 , converges to  1 for (0 , 0)-0, f 3),
and moreover 0 0,0 ,(T(L 8(r), L e (r)))= r(L 0(r), L 0 .(r)). Thus

lirn .1(r(L 0(r), L 0 ,(r))).= /1(F(L 8(r), L e (r))) (a, )0)e /".
(0,0.)-(8,p)(o,r)./x /

As in Lemma 2, for (0, 0') c ./x

.1.(F(L 0(r), L 0 ,(r)))V (F(L 0 , L 0 .)) (r /1 ) .

Theorem  2. The Junction ),(a, 13) is non-negalive an d  bounded on [0, 2m)
x [0, 2n).

P ro o f . Since we have set K 0 ={ r(z) p} , for an appropriate p '>p  a  planar
annulus { p <r(z )<p '}  is  m apped conformally o n to  D  {I< lwl < O p }  b y  the

function w=f ( z ) = -
1

r(z )ex p(i0(z )). Then LOE n { p<r(z )<p '}  is represented in  D

as a radial cross cut, and

),(x, /3)_2n/log  1 3 ' .

Thus A(a, 13) is an integrable function on [0, 2m) x [0, 2n), and

51A(a, 13)dm(a)din(13)=S(R, z 0 , K 0 )=(5(R, z 0 )
[0,22)2
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exists.

Theorem 3 .  A  hy perbolic R iem ann surface R  be longs to  th e  c lass 0 , ,
if and only if d(R, z 0 , K 0 ) =0.

Proof  (S uf f iciency ). I f  R IS OH D ,  then AD has at least tw o p o in ts . Since kt
is supported on AD, there are mutually disjoint open sets (.11 , U 2  of R i— R  with
1i(U1)>0  (i =1, 2). By Lemma 3 , there exist m utually disjoint measurable sets
F 1 , F 2  [0, 2m) s u c h  th a t  m(F i)> 0 (i = 1, 2) a n d  Lf, n Lg-K 0 = 0  fo r  (a , (3)
eF, x F 2 .
Hence there is a C'-class Dirichlet function f  on R — K0  such that f on L'2 n
(Rt — KO and f  1 o n  L3 n (R t— K 0 ) (cf. [8 ]) . Consider the linear density /Adz]
= Igradfildzi o n  R — K 0 ,  then  fo r  a n y  c e F(L a , L p ) p lc iz  I > 1  and p2 dx dy

=D R _K o (f )< c o .  Thus 2(a, fi)> 0  for (a, ,6) E F, X  F 2  with m2 (F 1 x F 2 ) > O.
This is a contradiction.

To prove necessity we need some preparations. We use the following notations
and notions according to Constantinescu-Cornea [2]; the Kuramochi compactifica-
tion Rit of R, the minimal points set LI 1 o f  Rt— R, the Kuramochi capacity C(- ),
thin (diinn) sets, the Kuramochi kernel w i t h  pole a t  a  and potentials p. The
set .e10  means Rt — R— d i .

If R  OD D — O G , then there is only one point {a} in R'it — R with positive harmonic
measure and Rt —R— {a}  has zero harm onic m easure. W e know that C({a})>0
follows. Moreover almost all (with respect to the Green measure m) L, e G(R, z o )
terminates at {a} in Rit, i.e.

m(10; Lf—L0 —{z0 }={a}})=1,

where A K  means the closure of A  in Rit ([4]).
Following conditions for a set  A .=R  a r e  mutually equivalent (cf. [2]);

(1) A  is thin at {a}
(2) If A na  t h e n  ({a} )= 0. I f  A — (4 0  U {a})k 9 a  then there is a  potential

p such that p(a)< cc, lim fi(b)= cc.
beA— (40U(a))

Lemma 4 .  If  R e O H D — O G , then alm ost all Lo e G is not thin at {a}.

Pro o f . Assume tha t 1,1— Lo  — {z0 } = {a} and  Lo  is  n o t th in  a t { a } . Clearly
L9 —(.110 U {a})K =Lf n a. T hus the re  is  a  potential p such  tha t 13(a)<or and

lim p(b)= co. H ence lim P(b)= co and vs —(4 0  u {a})" L  a a.
b—■es

b e L 8 — (4 0 {a }) b e a — (4o U (a))

By (1), (2), Ltz is thin at {a}, but C({ a} )=0. This is a contradiction.

Lemma 5 . Let R eO H D —OG . A  Green line L8  is not thin at { a}  if  and only
if L AD .

P ro o f . I f  R e O H D — O G , then 4D consists o f  only one point {cif ) }  (cf. [9]).



414 Hisashi Ishida

Let a) be the harmonic measure of the ideal boundary of R  with respect to  R— K o .
Set

= {u; Dirichlet function on R— K 0 , u = co on  alco U (L 7 —K 0 )}, then g  co.
W e know that L„ is  n o t th in  a t {a} if and only if  DR _K o (co)—min {DR _ K 0 (u); u
e g } (cf. [2], [11]).
Assume that L o, is thin at {a}, then there is an HD-function a)L . on R— K 0 — LOE with
minimum Dirichlet integral among g  such that coL . = co. The function co—w
is a non-constant HD-function on D=R— K 0 - 4  with zero boundary value on ap.
Hence, D EE S O " .  And a n { a}  =0 (cf. [9]).

Conversely, assume L7  n {up } = 0, then D Er SOH D  i.e. there exists a non-constant
HD-function u on D with null boundary value on D .  T h i s  function u is uniquely
determined under u(a 0 ) = 1 .  Then, co— cu e ,,- (c: real), and

(w—cu, co— cu)-=(0), (0+ c 2 (u, u)-2c(co, u).

By the Royden decomposition of u on R— K o , it is follows that

u = w +(u — (o).

Hence, (a), u — co) =0 and (co, u)=(a), w)>0.
Thus for an appropriate c> 0,

(a)—cu, cu)<(co, co).

That is, L„ is thin at {a}.
Here, ( , ) means the inner product by Dirichlet integrals on R— K o .

(Proof o f  th e  necessity) L et R E OHD— OG and  6(R, z o , K0 )> 0 .  By Lem-
mata 4, 5, there are a, fi E Ï  (a =fl) such that LT n Lp 3 ap and A(a, 13)> 0. We can
prove the existence of a bounded continuous Dirichlet function u  on R  such that
u =1 on L 7 —K0 and u =0 on L fl —K 0 . W h ile , u is extendable continuously on R .
This is a contradiction. (Existence of u.) Let un b e  an HBD-function on R— K 0

— L" ) — L(e) such  tha t u„= 1 o n  A " ) , u1 =0  o n  4 " ) , bun lav=0 o n  aKo(normal
derivatives) and u„ has Y o — behaviour near the ideal boundary, where Y o is a princi-
pal operator (cf. [7]). Then,

2(r(ao, 13)>0.

For rn > n,

DR  _ R n (u,„, u„)= u„,*dur,= *du„= 1  *du „= DR _
U "' )

and

D  R— rn — 1,1 D R_ R o (U ,,) —  D R_ R o ( l i n ) •

While,

D R— K0 0 4D  R —  K o (U,n ) - -  /1.(a, fl) - ' <cc.
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Thus, DR _ K 0 (um —u„)—>0 (m, n—> co).
Hence, {un } converges to  an HBD-function u compact-uniformly on R— K, and
u=1 on L  n (R— K0 ), u on L f l n (R— K0 ).

2 .  Hereafter, we assume that R is a  regular R iem ann surf ace. The critical
points of g(z, z 0 )  are at most countable and isolated in R .  We consider a defor-
mation of R  such that the critical points move continuously along Green lines.

First, cut R according to the cutting process of Sario (Sario [7]) along Green
lines issueing from some critical points to obtain a planar subregion G, then f (z )
=r(z)exp(i0(z)) is single-valued on G and maps G onto the unit disk without radial
and incised radial slits clustering nowhere in the unit disk, say D .  The function
f(z ) is a homeomorphism between G u OG and D U No in the sense of the prime ends.
The prime ends of G are identified in R as points of 3G. W e  o b ta in  a surface S(D)
conformally equivalent to R by sewing the sides of the slits of D according to the cor-
respondence between the prime ends of G and D by 1(z). In  th is sew ing, the sides
identified have same r-coordinates in the sense of the polar coordinate system in the
unit disk, and the minus sides correspond to  the plus sides, where we say plus or
minus with respect to the argument. Clearly the end points of the slits correspond
to  the critical points of g .  The converse is not true and in each slit there are a
finite number of points corresponding to the critical points.

We move radially the points of the slits corresponding to the critical points
instead of deforming the holes representing genus of R= S(D) along Green lines.
In this case the classes of slits identified deform by the sam e param eters. For
instance, consider two slits / i = {r o . r , ,  9 = 0 ; } ( i= l, 2 )  and sew /1-  s id e  on
and /1- side on 1f side, and consider a pair of continuous functions f o (t), f 1(t) (t. 0)
such that f0 (0)= r„, f,(0)= r,, f0 ( t )< f 1 (t). At time t, l i is deform ed to 11( t )= { f0 (t)

M t ) ,  =  i } and /JO+, 11 (0 -  are sewn on 12 (0 - , 12 (0+ respectively. Let D(t)
be the slit region at time t. Then we get a Riemann surface R(t) by the conformal
sewing of the slit region D (t ) .  At t =0, R(0)=R =S(D). For the simplicity of the
description, we assume th a t the critical points of  the Green function correspond
to the end points of the slits.

t= 0 t--=t

Here we treat the case tha t the slits are  contracted, tha t is, in the example
above, f o (t) increases and f 1 (t) decreases monotonously as time passes.

Thus, for each class of slits identified, we give a pair of functions {fo,n(t), f1 ,(t)}
such that;
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(1) f o ,„(t), f a t )  are continuous on
(2)

f 0 2 ( t ) , n ( t ) ,
(3) f 0 2 (t) monotonously increases,  f 1 2 (t) monotonously decreases,
(4) {f 0 ,2 (0), f 1 ,2(0)}2 represents the r-coordinates of the end points of the slits

in D(0) or R(0),
(5 )  f i ,„(t)-z--_- 1 for incised slits.

Since the Riemann surface R(t) is obtained from D(t) the unit disk without radial
slits and incised radial slits by the conformal sewing, the function —log r  is the
Green function of R(t) with pole at O . Thus a radious which doesn't cross the slits
is a regular Green line in R(t) and vice versa. Hence, we may assume that regular
Green line L a w hich is represented by { 0<r <1, 0=a}  is com m on to each R (t).
Moreover we may assume that the neighbourhood K o o f  z o  =0 is common to each
R ( t ) .  Even when R  is not regular, we can obtain S(D) and also deform R .  We,
however, need additional conditions for these deformations (cf. [3]).

Let T(t; L a , 4 )  be the family of curves joining L„ and Lfi i n  R(t)—K o  then
F(0; L„, L p )=F(L „, L a ). Define 2(t; a, )6)=2(F(t; L a , L e )), then 40 ; a, /3)=2(a, 13).
Let {rn } be a sequence such that r, < r,< •• • rn /l(n—*cc) and set R 2 = { z ; r(z )<r2 }.
We assume that R ,  Ko . Note that regular exhaustion {R„} is common to each
R ( t ) .  We denote R n n R(t). We can consider the curve families T(t; L (0") , L (p ") ),
1 2 (t; L a , L p ) in each R(t) as in sec. 1. Thus for fixed t,

lim 2(F(t ; L ,  Von )) = ,1(F„(t; L a , L ))= )(t; a, 13) a ,  f i  E L
„- ..

The sequence A(Tn (t; L a , L a )) is monotonously decreasing.

Theorem 5. For cc, /3 e A (t; a, fl) is an  upper-semi-continuous function of t.

P ro o f . We see the continuity of 2(1 2(t; L a , L e )) with respect to t.
If the end points of the slits don't cross ER,, at t = t0 , then the finite Riemann sur-

faces R n n R(t) ( i t —  t0  <3) a r e  quasi-conformally equivalent fo r  a  suitable 6. As
in  theorem 1, consider th e  neighbourhoods LI, (i=1, k ( n ) )  o f  slits in  D(t)
a n d  construct quasi-conform al mappings0 t : Rn n R(t)—*R2 n R(t o ) such  tha t
OtIR„nR,,,-uu,-- -  id e n tity  a n d  0,(F2 (t; L a , L p ))= T at () ; L a , L p )  and the maximal
dilatation of Or converges to  I  as 1—> to . T h e n  the continuity of 2(1„(t; L„, L e )) at
t = t o  is easily proved.

When the end points of the slits cross aR„ at t = t o , we consider, representively,
the slit which is in  R n  f o r  to <t<t o -i-e and crosses R n for to . It is clear that

lim  )(T at; La , L p ))=A (T n (t o ; L a , L a)).t--to-o
For simplicity we assume that only two slits are sewn and these slits cross eR n .

Let li ={ f o (t o ) r.... f a t o ), 0 =O i l ( i=1 , 2) be slits at t = to and  be deformed to /i(t)
= { f0 (t):5_r_ f,(t), 0 =O i l. Then f o (to ) :  f o (t), f i (to )=  r „  M t ) .  W e m ay assume
that rn > f ,( t ) .  Denote slits /'„(t) ={ f i (t) r_ r n , 0 =O i}. Divide Tat)
=T„(t; La , L p ) into two classes

T (t)={ c  e Fat); c does not cross qt) i =  1, 2}
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ri,x0= {c E c crosses 4(0 or P(t)}

Then

41-„(0)-1 + /1.(rat)) -
1. ( 0 ) - 1 ;M r' •

It is not difficult to show that

A(r,,(0) 2(r„(t0 )) f o r  t to +0,

and

).(T1 (0)-* oo (t -+ t 0 +0).

Thus
)(F(1; L x, L a p -+ A(r.(t o ; L Œ, Le)) t to .

Similarly we can prove other cases.

Clearly .1,(t; a, /3) being uniformly bounded with respect to  t, a, fl, and upper-
semi-continuous with respect to  (a, /3) e 1x1  fo r  fixed t ,  there exists a  quantity

A(t; a, 13)dm(a)dm(13)=S(t).
[0,270 2

Theorem 6. The function (5(t) i s  a n  upper-sem i-continuous function of
t (t

5

Pro o f . Let ft„} , be a  sequence converging to t o , then  Lebesgue's theorem
gives,

lim 5(t)= 11mA ( t „ ;  a, fl)dm(œ)dm(13)
ro-400 n—.00

[0 .2 n ) 2

5511m A(t„; a, fl)dm(a)dm(13)5 A(to; c, 13)dm(a)dm(fl)= 6 (to) •h4.01.1 (0,2n)2

Corollary. I f  (5(t0 ) = 0  (or, equivalently R(to ) e OH D -  0 o ) ,  then  b(t) is con-
tinuous at t =to•

3 .  In  this section we concern the Riemann surface R =R(0) obtained by the
conformal sewing of a radial slit region whose slits are distributed in  a  sequence
of annuli. Let {r.} be a sequence such that;

0 < r o < r i <•••<r n _ i <r„<•••

and r„/1 (n->oo).
We assume that the slit region D in the former section has slits on

0 = 0
1 ,  ° 2 , • • • ,  

0
k(n )

 n=0, 1,...,(k (n)<oo).



418 Hisashi Ishida

We classify the slits such that the members in each class are on the same annulus,
and identify the sides of slits as in the former section. Then the natural conformal
structure makes a Riemann surface (cf. [ 1 2 ] ) .  Moreover we assume that the slits
being on the annuli r 2 „-_ _ r .r 2 „ 1 are deformed according to the same parameters
tio,n(t), f i n

(t) (t .0 )) n  -= 0 , 1 ,.... For sim plicity , w e fix  fo,„(t) as the identity
functions and decrease f 1  ,,(t) s o  as to  contruct the slits. W e  reparameterize this
deformation as follows." Let 1„= r

271 -1 - 1  —  r2 „ be the length of slits at t = 0 (n=0 , 1,...,
and b„= r 2 n  +  2 —  

r 2 , ,+
 1 

be  the width o f planar annuli r2 „.„
1
<1.7.1 <r2 „, 2 a t  t= 0.

At tim e t, these quantities reduce to 9„(t)• 1„=r 2 ,,+ ,(t)— r,„ and ti,„(t)• b„=r2n+2
r2n+1(t) respectively, where r 2 „+ 1(t) is the r-coordinate of the point where r„ has

gone at time t. The function (pn (t) (resp. fr„(t)) is defined on

1 9n (t)> 0 (resp. 1)

and monotonously decreasing (increasing) and

cp„(0•1„+11J„(t)- b„= 1.
2 n +  2  —  r 2 n

are independent of t. Clearly,

Lem m a 6. Let 0 __t i < t 2 . If there is an with

M -4 9n(ti)/9.(t2), tP„(t1)/t1n(t2)__A4 - 1 ,

then R(t i ) and R(t 2 )  are mutually quasi-conformally equivalent.

An estimation of the maximal dilatation of the quasi-conformal mapping
gives easily;

Lemma 7. I f  9„(t)19„(t0 ) - 0  and 1//„(t)/iP„(t0 )-4 1  uniformly with respect to
n for t—+t0 , then S(t)—)6(t 0 ).

Now we concern the case that the types of Riemann surfaces change a t  t = to

and the behaviour of 6(t) at the point. We assume that,

R (t )E  0 „ ( -0 G ) and SW =0 t <t o ,

R(t) OH D  a n d  6(t)>0 t> to .

There are two cases;
(1) R(t o ) E O H D  i.e. 5(t0)= 0,
(2) R(to) (E O H D  i.e. (5(t,)> O.

In case (1), SW  is continuous at t= to ,  in case (2) S(t) is not continuous at  t = t .
I f  w e assume th a t  r 2 „, 2 — r,„+  , 

=  r 2 n +  1  —  r2 „ (n=0, 1 ,...)  a t  t = 0 , then the con-
ditions for iii„ in lemmata 6, 7 can be omitted. Even under this additional con-
dition, according as T a i [1 2 ] , a sufficient number of slits and the ingenious sewings
of the slit region give R(0) e O H B — O G = O H D — O G . While, if we contruct the slits
sufficiently, then R(2)Er OH D  (cf. [ 3 ] ) .  W e assume, in the case, tha t the length
I, of slits in R(0) reduce to m„ in R(2) a t t= 2, and the type changes at t=1.
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Example for (1).

0 S t< 1

(1),(0= (m„11„-1)•n•(t— l)+ I I <t< 1+ 1/n

nz„11„ 1+  lln< t

The function b(t) is continuous on t>0.
Example f or (2).

(m,s11,, — .t+ o
q ( t ) = 

1

The function (5(t) is not continuous only  at t= 1.
In this case, R(0) is quasi-conformally equivalent to R(t) for t <1, but not to R(1).

We don't know yet whether R(1) is a boundary point of the Teichmtiller space con-
taining R(0) as an interior point.

KYOTO SANGYO UNIVERSITY
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