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Introduction

In this paper we shall consider the exterior boundary-value problem for the
Schrodinger equation ' o

0.1) Lu=—Au+V(x)u=Au+f(x) in Q,

where 4 is the n-dimensional Laplacian and 4 is contained in the continuous spectrum
of L. Q is a domain of R" exterior to some smooth compact boundary 092, on
which we require the homogeneous Dirichlet or Robin boundary condition. The
potential V(x) is a real-valued function and is assumed to be decomposed as

V(x)=Vi(x)+Va(x)+ V3(x),
where V5(x) represents short-range potentials:
0.2) V3(x)=0(r"1"%) (r=|x|) at infinity for some >0,
V,(x) represents long-range potentials without oscillation at infinity:
(0.3) Vy(x)=0(r=%) and 0,;V,(x)=0(r"1"?) (0;=0/0x;)

and V;(x) represents ‘‘oscillating” long-range potentials which satisfy the following
conditions:

(0.4) Vi(x)=0(1), 6,V (x)=0(r"1) (6,=0/or) and
02V, (x)+aV (x)=0(r"19) for some a>0.

We require some more conditions on the angular derivatives of V;(x) (the precise
conditions on V(x) will be given in §8).
The main purpose of this paper is to derive the unique existence of solutions of
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(0.1) by means of the limiting absorption method. Of course we have to seek
solutions in a class which contains L2(Q), whereas f(x) should be chosen from
a class contained in L%(Q). These classes will be characterized by a radiation con-
dition at infinity. In this sense, to find the radiation condition attached to equation
(0.1) is a most important problem of this paper.

As a consequence, we can show that there exists some real constant A such that
(A, 00) is contained in the absolutely continuous spectrum of the selfadjoint operator
Lin L¥Q). A;depends on the value E(y), 0<y<min {49, 2}, defined by

(0.5) E(y)=Ilim sup—)l)—{r(?,V,(x)+yV1(x)} .

As we see by an example of von Neumann and Wigner (see Example 1I-3 of §9).
we can not in general expect that (0, co) becomes the continuous spectrum of L even
if V,(x) itself behaves like O(r~') at infinity. In our previous work [11]. we have
proved that if we put

(0.6) E,= inf E(y).
0<y<2

then in (E,, o0) is not contained the point spectrum of L. In general A;>E, (see
(8.2)). :

The principle of 11m1tmg absorption can also be applied to elgenfunctlon ex-
pansions (or spectral representatlons) and scattering theory for the operator L,
which will be studied in a forthcoming paper.

We note here that our results can be extended to a more general second order
elliptic operators including the term of the Zeeman effect (see § 10).

The first rigorous proof of the principle of limiting absorption is due to Eidus
[2] who dealt with equation (0.1) with V(x) behaving like O(r~("+1+2)/2) (6> 0)
at infinity. In these few years, Eidus’ results have been generalized to short-range
potentials by Jiger [5], Saito [12], Agmon [1], Kuroda [7] and Mochizuki [9],
and to ‘‘non-oscillating™ long-range potentials by lkebe-Saito [4] and Lavine [8].

Here we give some simple examples which satisfy (0.4) and are not covered by
any previous result.

= . ¢
©.7) V)= -
(0.8) I7(x) =sin (log r) ,
(0.9) Vix)= ‘_““i“l

where b, ¢ are real constants. We have A;=Eo=0 for (0.7) and A;=Eq= \/5/2
for (0.8). However, A;=Ey+ b2/4, where E,=|bc|(2, for (0.9). Note that for the
first two examples we have a=0 in (0.4). On the other hand, for the last example
a=>h2. Thus, oscillation at infinity of the potential may have bad influence on the
continuous spectrum.
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The principle of limiting absorption is based on the selfadjointness of the
operator L and some uniqueness results for equation (0.1). It is not difficult to show
that L= — A4+ V(x) and the boundary condition determine a selfadjoint operator in
L2(Q) if we restrict the near singularity behavior of V(x). On the other hand, the
desired uniqueness theorem has been proved as a growth property of solutions
in our previous papers (Uchiyama [13], Mochizuki [10] and Mochizuki-Uchiyama
[11]). The radiation condition will bridge the uniqueness theorem and the existence
theorem (cf., Eidus [2]), and will be defined for solutions u of (0.1) as follows:

(0.10) ueL2_, (@) and du+k,(x, l)ueLf_lg_ﬁ(Q)
2
for some >0 and >0, where L%(Q) (—oo<v<o0) is the weighted L2-space given

in §1 and k,(x, /) is a complex-valued function which solves the equation

n—1

0.11)  V(x)—i+0,ky(x, A)+ ky(x, )=k, (x. )2=0(r"1-%

for r=|x| large. Once the radiation condition (0.10) is defined well, we can follow
almost the same line of proof given in Mochizuki [9] for short-range potentials.

The remainder of this paper will be organized as follows: The first 7 sections
will develop a semi-abstract theory under assuming the existence of the solution
k.(x, A) of (0.11). 1In §1 we first summarize the required properties of k.(x, X) as
assumptions, and then state the main results (Theorems 1~ 5) without proof. These
theorems are proved in §3~§7. §2 is devoted to prove some propositions which
will be used to show the theorems. The concrete form of the conditions on V(x)
is given in §8. The existence and required properties of k,(x, 1) are proved there.
In §9 we give several examples. As is noted above, our results can be generalized
to a more general second order elliptic operators if we give a slight modification of
the radiation condition. We discuss them in §10. Finally, in Appendix, we ex-
plain how we get to equation (0.11) to generalize the original Sommerfeld radiation
condition, and how we find the ‘special’ solution k.(x, 4).

§1. Notation and Results

1. 1. Notation. First we shall list the notation which will be used freely in
the sequel.
R is all real numbers; C is all complex numbers. Rex and Imx denote the
real part and imaginary part of x e C. respectively; \/x denotes the branch of the
square root of x € C with Im \/k>0; i= /—1.

fg= % g for [=(fnfy) and g=(gie g0).

Ifl=/f-J for f=(f\,.... f,) € €", where f; is the complex conjugate of f; and f=(f,,
v o).

x=(xy,.... x, ) e R", r=|x| and X=x/|x|.
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S(R)={x; |x|=R} for R>0.
B(R, R)={x; R<|x|<R’} for O<R<R'.
B(R)={x; |x|>R} for R>0.
QR)={x€eQ; |x|<R} for R>0.
0;=0/0x;, ¥ =(0y,...,0,) and d,=%-7.

For G=Q and ve R, L%(G) denotes the Hilbert space of all functions f(x) such that
(1+7r)f(x) is square integrable in G; the innerproduct and norm of L2(G) are de-
noted by

(f; Dro=| (1402 1(3Gx and o= T v

respectively; in case v=0 or G=L, we shall omit the subscript 0 or Q as L*G),
Il g II Iy, || I etc. HI(G) (j=1, 2) denotes the class of L2-functions in G such
that all distribution derivatives up to j belong to L%G). H{,. denotes the class of
locally Hi-functions in Q=QU dQ. C/(G) is all j-times continuously differentiable
functions in G; C§(G) is all C*-functions with support in G. Q, denotes the class
of functions V(x) satisfying the ‘‘Stummel-condition™, that is, for some >0 = .

supg| VO Rlxmy ey <o (Gifnz4)
x—y|<1

xefl

supg [V(y)|2dy< oo (if n<3).
xef Jlx—-y|<1

1.2. Radiation condition. We consider the Schrodinger operator — A4+ V(x)
in an infinite domain Q in R" with smooth compact boundary 0Q lying inside
some sphere S(R,) of radius R,. We do not exclude the case that Q2 is empty and
Q=R". Throughout this paper, we assume that V(x) is a real-valued function
belonging to Q, for some p>0. The differential operator — 4+ V(x) is regarded
as acting on functions in H?, satisfying the Dirichlet or Robin boundary condition

u or
(1.1) Bu=

]=O on 0Q
v-Pu+d(x)u

in the distribution sense in 0, where v=(v,,..., v,) is the outer unit normal to the
boundary Q2 and d(x) is a real-valued smooth function on 0. .
We define the operator L acting in the Hilbert space L%() as follows:
[ 2(L)={ue HY(Q): Bu=0 on 0Q}
(1.2)
Lu=—Au+V(x)u for ue2(L).

Then it is known (cf., e.g., Ikebe-Kato [3] and Mochizuki [9]) that the operator L
is selfadjoint and lower semi-bounded in L*(Q).
In the following, we consider the boundary-value problem
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—du+V(x)u—L{u=f(x) in Q
(1.3)

Bu=0 on 0Q
for suitably chosen { € C and f(x) e L*(Q). The selfadjointness of L shows that if
{eC\R, (1.3) has a unique LZ2-solution for given any f(x)e L%(2). To extend the
unique existence theorem to real { contained in the continuous spectrum of L, it is
necessary to consider the operator — A4+ V(x) in a wider class of functions in H%,,
whereas f(x) should be chosen from a more restricted class. The domain of —4
+ V(x) will be characterized by means of a radiation condition at infinity.

The Sommerfeld radiation condition is used in Eidus [2] to determine the
domain of —A4+ V(x) with V(x) tending sufficiently rapidly to zero as |x|—>c0. We
shall improve this radiation condition so as to be able to apply to a wider class of
potentials V(x). For this purpose, the essential point is in obtaining a complex-
valued function k(x, {) which solves the following ‘‘Riccati type equation” for r=|x|
large:

(1.4) V) =040k, O+ 2Lk (x, 0 —kix, D2=0¢"19),

where Re( is in the continuous spectrum of L and & is a positive constant. The
function k(x, {) will be used to define a modified radiation condition. In Appendix,
we shall explain how we get to the ‘‘Riccati type equation” (1.4).

To make clear the role of the function k(x, {), we assume first the existence and
some properties of k(x, {), and construct a semi-abstract theory. After proving all
the theorems, we give in § 8 the explicit form of conditions on V(x) under which all
the assumptions stated below are satisfied.

Assumption 1. There exist real constants >0, A, and a real function y(1)
of A> A, such that

(L.5) 0<y(A) <min {44, 2}
and the following growth property holds: Let u € H%,, satisfy the equation

(1.6) —du+V(xX)u—Alu=0 in Q

with real 1> 4,. If we have the inequality
(1.7) S (1+r)" " u|2dx <o for some ﬂ>Ly(}.),
B(Ro) 2

then u must identically vanish in Q.
Assumption 2. We put
Ny={{eC; Re{>A; and Im{>0}
-8 {n;={cec; Re{>A4, and Im(<O0},

where 6>0 and A, real are constants given in Assumption 1, and let K* be any
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compact set in IT¥. Then there exists an R, =R, (K*)>R, and a complex-valued
continuous function k(x, {)=k(x, {) defined for (x, {) e B(R,)x K* which satisfies
equation (1.4), namely, if we put

(L9 galx D=V = {40k (. O+ =L kG, D=k (5, 07,

then there exists a constant C, =C;(K*)>0 such that
(A2-1) ge(x, DI<C1=¢  forany (x, {)e B(R,)x K.,

Further, we assume that there exist constants C;=C{(K*)>0(j=2~5)and f=p(K?*)
>0 such that k,(x, {) satisfies the following inequalities for any (x, {) e B(R;)x K#*:

(A2—2) Iki(x’ C)I SCZ’

(A2_3) ilm ki(x9 C)Z C3,

(A2-4) Re k4 (x, () — i’# >Cyrt,
(A2-5) [Pk s(x, {)—%0,ks(x, )| <Csrm'72,

Finally, we assume that # in (A2-4) can be chosen as follows:
(A2-6) %y(Re {)<pP<26 forany (e K*, and <.
Now we fix any compact set K* in [T, and consider equation (1.3) with { e K*
and f(x) € L35 (Q).
2

Definition 1.1. A solution u of (1.3) with {e K* is said to satisfy the (out-
going [or incoming]) radiation condition if we have

(1.10) uel?i—,(Q) and du+ky(x, Ou EL2—|2+/J (B(R,)),
2
where R, and B are as in Assumption 2 and « is a positive constant satisfying

(1.11) o+ pB<min{24, 2} and oa<pf.

Definition 1.2. A solution u of (1.3) with {e K* is called an outgoing [or
incoming] solution if it also satisfies the radiation condition (1.10).

Remark 1.1. The restriction <1 is not essential, and we can weaken the
conditions on « and B in (1.10) as follows:

(1.12) a+pf<min {26, 2}, O<a<p and
%y(Re {)<B<min {26, 2} for any {€ K*.

Thus, the apriori inequalities (Theorem 2 stated below) for outgoing [incoming]
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solutions of (1.3) can be slightly generalized in case 6> 1/2. In this paper, however,
we do not enter into this problem since (A2-4) on k.(x, {) has to be replaced by a
rather complicated condition.

1.3. Theorems. The main results of this paper are summarized in the following
theorems.

Theorem 1 (uniqueness). Forany({e K* [K™]and fe Lzl_ﬂg (Q), the boundary-

2
value problem (1.3) has at most one outgoing [incoming] solution.

Theorem 2 (apriori estimates). There exists a constant C=C(K*)>0 such
that for any outgoing [incoming] solution u=u(-, {) of (1.3) with {e K* and
G L}_+_ﬁ(§2), we have

2

(1.13) (Ol SER sy SCR™*2||f] 14p Jorany R=R,,
(1.14) 17 u(€)+ %k +(x, Ou(O)l ,—1_2+I’;.B(R.)3C”f|| 48
(1.15) lu(O) iz SCIIfII%ﬂ_-

Theorem 3 (principle of limiting absorption). (a) For any non-real { € K*
and feLf_+£(Q), there exists a unique outgoing [incoming] solution of (1.3),
)

which coincides with the L?-solution.

(b) Let {{;})=,,2,. be a non-real sequence in K* such that {;—{,eK?* as
l->c0, let {f,} be a sequence in L% (Q) such that f—f, strongly in Litp_ Q)
as |- 00, and let {u,} be the correspfmding sequence of outgoing [incoming]2 solu-
tions of (1.3) with {={, and f=f,. Then {u,} converges in L%_, (Q) to a function
uy as l-oo, and uy, becomes an outgoing [incoming] solutionzof (1.3) with {={,

and f=f,.
As a corollary of the above theorems, we have the following
Theorem 4 (existence and property). For any {€ K* and fe LLL(Q), there
. 2
exists a unique outgoing [incoming] solution u=u(-, {, ) of (1.3). Moreover, if
we define the operator #,: K* x Lzﬂ ()3 f)-u(-, ¢, f) e L2 -, (Q) by
2 2

(116) [.Q?Cf](x)=u(x, C’f)’

then A, f depends continuously on ({, f)e K* x Li%ﬂ (Q).

Finally, we return to the selfadjoint operator L defined by (1.2). For the
spectrum of L, we have the following results.

Theorem 5. (a) Let {£(); 4 € R} denote the spectral measure of L, and for
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any Borel set ec (A, ) choose o, B and #; depending on K*={A+ie; Aee,
0<e<1} as above. Then for any fe Li_&(ﬂ) and g eLzlﬂ (Q), we have
2 2

(L17) (6@, 0) = 50 | Paviof ~Ricio ),

where the integrand of the right side means the duality between Lzll_zz_,_ (Q) and
Lﬁ# (Q):

(1.18) Risiof, 9)=_[Bisiof 100G dx.

(b) The part of L in &((A5, 0))LA(RQ) is absolutely continuous, i.e., (&(A)f, f)
for fe LX(Q) is absolutely continuous with respect to the Lebesgue measure in
A€ (A4, 00).

§2. Some estimating propositions

In this section, we prepare some estimating inequalities related to the outgoing
[incoming] solutions of (1.3).

Proposition 2.1. Let ueL¥Q), veR, be a solution of (1.3) with {eK*
and fe L3(Q). Then we have for some C4=Cg(K%)>0

(2.1 I7ull, <Ce{llul,+ 1.}

Proof. In the case where u satisfies the Dirichlet boundary condition, (2.1)
can be proved by the same argument as in the proof of Lemma 1 of Mochizuki-
Uchiyama [11]. For u satisfying the Robin boundary condition, we can also follow
the same line of proof if we have the following: for any >0 there exists a constant
C(e)>0 such that

2.2) S |d(x)||u|?dS < S (e|Pu|?+Ce) | u|?} dx
n R(Ro+1)

and

@.3) § Vo) ul2dxs {e|Pu|2+C(e) |u|2}dx.
2(Ro) 2(Ro+1)

Inequality (2.2) is well known, and inequality (2.3) can be proved by use of near-
singularity behaviors of the elementary solution of 4 and the fact that V(x)eQ,
(cf., e.g., Mochizuki [9]). q.e.d.

Proposition 2.2. Let u be an outgoing [incoming] solution of (1.3) with
{eK* and fe Lz,_;i(g). If Im{+#0, then we have u e L%Q) and

(2.4) Im } lul <If1 -



2-body Schriédinger operators 385

Proof. By the Green formula, we have

ImS fﬁdx=ImS {—du+V(x)u—{u}udx
2(R) Q(R)
- —Img (6,u)ﬁdS—ImCS lu|2dx.
S(R) Q2(R)

Thus, it follows that

.5) ImCS lu de-g Imk (x, {)|u|2dS
Q(R) S(R)

=—lmS (0,u+ky(x, C)u}ﬁdS—]mg fadsx.
S(R) Q2(R)

As we see in (A2-3), for {e K* [K™] both Im{ and —Imk (x, ) [-Imk_(x, {)]
are non-negative [non-positive] for |[x] > R,. Thus, we have from (2.5)

(2.6) IIm{ |S |u|2dx
Q(R)

<. utkatx Oullulds+( 17]luldx
S(R) Q(R)

for R>R;. From the radiation condition (1.10) (since we have chosen a<p) it
follows that

lim inf )’ 10,u+k £ (x, Ol [uldS=0.
R—® S(R)

Thus, letting R—o0 in (2.6) and then dividing both sides by [u|, we obtain

(2.4). q.e.d.

Proposition 2.3. Let u be an outgoing [incoming] solution of (1.3) with
{eK* and feLitg (). Then there exists a C;=C,(K*)>0 such that for any
2
R>R,

@7 Il Z1ze piay SCr1+ R0, +ks(x, Oull Lits ewy

FlulZize + 11 3a} -
2 2

Proof. By (2.5) and (A2-3)

2.8) C3S |u|2dSSS lmk s (x, 0) | |u]2dS
S(R) S(R)

<[, 1ourkac Dullulas+ (| i7luldx
S(R) Q(R)

for R=R,;. Multiplying by (14+R)~!~* on both sides of (2.8) and integrating over
(R’, o) with respect to R, where R’ >R, we have



386 Kiyoshi Mochizuki and Jun Uchiyama

2
Csllull ‘—1211.8(1{')

ss (+7)"1"%0,u +ky(x, Oul|uldx
B(R’)

+a ' (14 R)*ull z1=a | /1] 122 -

2 2
Since
S (47175 0,u+ k4 (x, Ou| |u|dx
B(R')
—a—B —2—a+p
= SW) A4+9 T A4+ dutke(x, Oul |uldx
<L (14 R (JouthaCe, Oull 2iss aery +lulZima}
=2 ’ ’ =4 B antdi
noting that a<B and choosing C,=(1+a"!)C3!, we obtain (2.7). q.e.d.

Proposition 2.4. Let u be an outgoing [incoming] solution of (1.3) with
{eK* and fe Li1s (Q). Then there exist a constant Cg=Cg(K*)>0 such that
2

(2.9 17 u+Xky(x, Oul ;l;_ﬁ'B(RI)SCB{”“" —toa H /01 }

Remark 2.1. The assumption that <1 (cf., (A2-6)) is essentially used only
to prove this proposition.

Proof. For the sake of simplicity, we put
(2.10) 0=0(x, )=Fu+xk.(x, Ou.

Then it follows from the first equation of (1.3) that

@.11) V-0=kii~9+{Au—kziu+(6,ki)u+ n_l kiu}

=ks%-0+q+(x, Du—f(x).
Multiply by X -8 on both sides of (2.11) and take the real part. Then we have
(2.12) —Re{F-0(%-0)} +Rek | X-0|2+Re{(gsu—f)%-0}=0.
Here
—Re{F-0(x-0)} = —ReF -{0(%-0)} +Re{0-F (%-0)}
= —Re?-{6(z-0)- 4 21017} +(Rekes = 2211012

—Reky | %0124 L (1012|5012} +Re {(Ph y —%0,k)-Du} ,
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since we have

P (%0)=P(%-Fii+kou)

I
~ |-

(Pa—-xx-Fa)y+(x-P)Pu+k Fu+Fky)u

I

% (I—%E-B))+GEP)I—3FThku—3ks 70 +k 0+ Tkp)u,

where XV =4,. Thus it follows from (2.12) that

(2.13) ReV'{e(f'G)—%iI9|2}=(Reki— n;rl >|9|2
+ L (1612 1%.012) +Re {(Pk s — %0,k.) -Ou)

+Re{(g+u—/)%-0}.

Let ¢(r)>0 be a C*-, monotone increasing function of r € [0, o) such that ¢(r)=0C
for r<R; and ¢(r)=1 for r>R;+1. Multiply by ¢(r)rf on both sides of (2.13)
and integrate over B(R,, R), where R>R,+1. Then integration by parts gives

S {15012 1 161%}ds
S(R)

p )| (Reks = =1L Y0124+ 1L (1612 15012

SB(RHR)

+Re {(Pky — %0,ky)-Bu} +Re {(quu— f)£~9}:|dx
{ ¢ ()r{1%:012 = 5 1017 dx.
B(Ry,R1+1)
Note that 0<a<p and a+ f<min {24, 2} by (1.11), and that (1—p){|6]>—|%-6|%}
>0. Then it follows from (A2-1), (A2-3), (A2-4) and (A2-5) that

2.14) (, 71701252 P{Cyr10]2
S(R) R)

B(Ri+1,
—Csr 720 |u| =Cyr 720 lul — | f116]}dx
1

2 gB(R;.Rﬁl) ¢'(Nr’161%dx.
By the Schwartz inequality, we have for any é>0
—{Csr 2 u| +Cyr 10 ul + | f1}106]
> —er1|0|2—Cqo(K%, e)(r~ 1722 |u|2+r| f1?).

Thus, noting the radiation condition



388 Kiyoshi Mochizuki and Jun Uchiyama
£0=0u+ky(x, Quel 2_12+a (B(Ry)),

we can let R— o0 in (2.14) to obtain

(2.15) (C4—e)g Fo148| 9 2dx
B(R;+1)
<cf (r 172048 |y |24 18| £ 2} dx
B(Ry+1)
+ 5 Cuof 1612dx,
B(Ry,Ry+1)
where ¢ is chosen so small that C,—e¢>C,/2 and C;,= max ¢'(r)rf. Since

xeB(Ry,R1+1)

[0]12<2|Pu|?+2C3lu|? by (2.10) and (A2-2), it follows from Proposition 2.1 that

1012dx<Cyy {llull Liza +11 £l 21z } .

(2.16) S
B(R;,R1+1) 2 2

Moreover, we have by (1.11)
—1-26+p<—-1-a.
Thus, (2.9) follows from (2.15) and (2.16). The proof is completed. q.e.d.

Corollary 2.1. Suppose that 6>1/2 in Assumptions 1 and 2, and let f(x)
€ L3(Q). Then for any outgoing [incoming] solution of (1.3) with { € K%, we have
Pu+xky(x, Oue LA(B(R,)) and

(2.17) 17 u+%ky(x, Oullper,)< Co{llull SE +I1£14}
where a <min {24, 2} —1.
Proof. 1If 6>1/2, we can choose f=1 in (2.9). g.e.d.

§3. Proof of Theorem 1

In the case where Im {+#0, the uniqueness theorem easily follows from Propo-
sition 2.2. Thus, to complete the proof of Theorem 1, we have only to show the
uniqueness for real {=A+i0€ K*. For this aim we use the growth property of
solutions of the homogeneous equation (1.6) (Assumption 1).

Let u be an outgoing [incoming] solution of (1.6) with real { =1+ i0€ K* which
also satisfies the boundary condition (1.1). Applying the Green formula, we have
for s> R,

0= —ImS {— Au+V(x)u—Au}iidx
Q(s)

=lmS (0,u)17dS=Iis( {8,u+Re ky(x, Au}iadS
) s)

S(s
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| i o A e
- Ssm e 7y Re[0u+Reky(x, Hu} Timk, v, Hulds

_ 1 D S 2
-1 Ssm TGy {18+ s (x, Dl

— |8, u+Reky(x, Dul?>—|[Imky(x, A)|?|u|?}dS.

Thus, it follows from (A2-3) and the radiation condition (1.10) that

S (l+r)"+”lu|2dx£C§2S (L+r) 8|0, u+ky(x, Du|2dx
B(R) B(R)
< 00

for R>R,. Since B satisfies (A2-6), this shows that u satisfies condition (1.7) of
Assumption 1. Hence u=0 in @, and the proof is complete.

§4. Proof of Theorem 2

We prepare two lemmas which follow from Propositions 2.1, 2.3 and 2.4.

Lemma 4.1. Let {¢} be a bounded sequence in K=, let {f;} be a bounded
seque'nce in Lf_;g (Q) and let {u,} be the corresponding sequence of outgoing
[incoming] solutions of (1.3) with {=(, and f=f,. Then {u;} is precompact in
Lf__lzlg (Q) if it is bounded in the same space.

Proof. Suppose that {u,;} is bounded in L%,_.(Q). Then by Proposition 2.1
2

1

with v= _—7_@ and the Rellich compactness criterion, we see that for any R>0

4.1) {u;} is precompact in L*(Q(R)).

On the other hand, Propositions 2.3 and 2.4 assert that for any ¢>0, if we choose
R >R, sufficiently large, then

(4.2) sup llae, SN <e.
The precompactness of {u,} in L%,_, () then follows from (4.1) and (4.2). q.e.d.
2

Lemma 4.2. Let {u,} be as in Lemma 4.1. Suppose that {,—{, and u,—u,

in LZ:%__Q(Q) as l»oo. Then u, satisfies the radiation condition (1.10) with {={,.

Proof. Since {u,} is bounded in L%,_, (), we see from Proposition 2.4 that

{0,u;+ k4 (x, {)u,} is also bounded in L2;.+s(B(R)) for some R=R(K*)>R,, and
2

hence there exists a convergent subsequence, which we also write as {d,u,+k.(x,

¢)u;}, in the weak topology of L% +s (B(R)). We denote by w the limit function.
2
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Then for any ¢ € C¥(B(R))

4.3) SB(R)wfﬁdx:lim Sm) (0,4, 4Ky (x, L)u) Bdx

-0

=_SB u{0,8+ =L F—ko(x, Lo) Fldx,
(R)

r

where to obtain the last equality, we have used the condition that {u;} converges to
u, in Lz_lz_, (Q). (4.3) implies that

w=0,ug+k+(x, {o)uo.

Since we L 145 (B(R)), we conclude that u, satisfies the radiation condition (1.10).
g.e.d.

Proof of Theorem 2. Note that (1.14) follows from Proposition 2.4 and (1.15),

and (1.13) follows from Proposition 2.3, (1.14) and (1.15). Thus, we have only to

prove inequality (1.15).
We shall prove (1.15) by contradiction. If we assume contrary, we can choose

a sequence {{;} in K* and sequences {f;} in L f_;ig (2) and {u,} of outgoing [incoming]
solutions of (1.3) with {={,; and f=f, as follows:

(4.4) lulzze =1 and [l 132 < -

Since {f;} is bounded in L i%g (Q), it follows from Lemma 4.1 that {u,} is precompact

in L2,-, (Q). Let {u,} be a convergent subsequence and denote the limit function
2
by uy. Then

(4.5) luoll z1= =1
z

and u, satisfies the equation
(4.6) _Allo+ V(x)uo—COu():O ill Q

in the distribution sense. The ellipticity of —A4+V(x) implies that uye H,..
Moreover, u, satisfies the boundary condition (1.1) since it is satisfied by each u,.
Lemma 4.2 asserts that u, satisfies the radiation condition. Hence, by the unique-
ness theorem (Theorem 1), u, must identically vanish in Q. This contradicts to
(4.5) and the proof is complete.

§5. Proof of Theorem 3

(a) By (A2-2) and Proposition 2.1 with v= —12+ﬂ <0, we see that for any
teK* and fe Li+s(2)cL*Q), the L*-solution of (1.3) satisfies the radiation con-
2
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dition (1.10). Since we have the uniqueness theorem, this proves assertion (a).
(b) It follows from Lemma 4.1 and (1.15) that {u,} is precompact in L%—. ().

Let {u,} be a convergent subsequence and let u, be the limit function. Then by the
same reasoning as in the proof of Theorem 2, u,, satisfies the boundary-value problem
(1.3) and the radiation condition (1.10) with {={, and f=f,. The uniqueness
theorem shows that this u, is a unique accumulation point of {u;}. Hence, {u;}
itself converges to the outgoing [incoming] solution u,.

The proof of Theorem 3 is complete.

§6. Proof of Theorem 4

The first assertion of Theorem 4 is obvious from Theorems 1 and 3. Let
{¢;} and {f,} be convergent sequences in K* and Lzli (Q), respectively. Assume that
(=, and fi—f, as [-00. Then as is proved in 2Theorem 3, {u(-, {;, f1)} becomes
a Cauchy sequence in Li_lz__g () which converges to u(-, {o, fo) as l—oo. This

proves the continuity of #,f, and hence Theorem 4 is proved.

§7. Proof of Theorem 5

(a) We have only to show (1.17) in the case where e is an interval: e=(4,,
A,), where A;<1, <A, <oo. Note that if £>0, #,,,, coincides with the resolvent
(L—ZAFie)~! of the selfadjoint operator L. Since L has no eigenvalues in (4, 00),
by the Stieltjes inversion formula we have for any f, g € L%(Q)

Az
(.1 8@, 9) = lim | (@rrinf = Brcie, ).

Let feLzl# (@) and gelfl_;f_g (Q). Then Theorem 4 shows that (#,4,.f, g) is

continuous in 2€e and converges to (£ ,4,0f, g) (cf., (1.18)) uniformly in Aee as
el 0. Hence we have (1.17).

(b) Since Liis(2)cLi+q (2) by (1.11), and is dense in L%(Q), assertion (b)
2 2

easily follows from assertion (a).
The proof of Theorem 5 is complete.

§8. Applications: Sufficient conditions on V(x)

In this section we shall show that Assumptions 1 and 2 hold for potentials V(x)
which satisfy the following conditions.
(V1) V(x) is a real-valued function which belongs to the ‘‘Stummel class” Q,
for some p>0.
(V2) There exists an Rq>0 such that B(Ry)=Q and V(x) is decomposed in B(R,)
as
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V(x)=V(x)+ Vy(x)+ Vi(x),
where V;(x) is a short-range potential:
(V2-1) Vi(x)=0(@r"179) for some 6>0
and V,(x) is a non-oscillating long-range potential:
(V2-2) Vo(x)=0(@r"%) and FV,y(x)=0(r"179).

V,(x) is a oscillating long-range potential, and we require the following
(V2-3) and (V2-4):

(V2-3) Vi(x)=0(1), 8,Vi(x)=0(r"1) and
02V (x)+aV(x)=0(r"1-%) for some a>0,
(V2-4) PVi(x)—%0,V(x)=0(r"1=% and
Va,Vi(x)— X0V, (x)=0(r"1-9).

Hereafter we assume that 0<§ <1 which does not restrict the generality.
(V3) For the operator — A4+ V(x), the unique continuation property holds.

Remark 8.1. If a<0 in the condition 02V, +aV,=0(r"17%), then by a
straightforward calculation (cf., Lemma 8.1), we have V,=0(r"1"%). Namely,
V,(x) becomes a short-range potential.

Remark 8.2. (V3) can be verified for V(x) satisfying a Holder condition
except at a finite number of singularities.

To show that Assumptions 1 and 2 hold for the above potential, we put
8.1) E(y) =lim suply {ro,V () + V1 (%)}
for y>0, and define A, as follows:

(8.2) Ady=infE(p)+ % ; I';=(0, min {46, 2}) .

’
yels 4

By condition (V2-3), we see E(y)<oo for any y>0. Moreover, as is proved in
Lemma 2 of Mochizuki-Uchiyama [11], we have

(8.3) E,= inf E()> —oo.
. 0<y<2

Proposition 8.1. Let 6 and A; be as given above. Then there exists a non-
increasing function y(2) of A> Az which satisfies the following inequalities:

(8.4) 0<y(1) <min {43, 2},

(8.5) E(G()+ 4 <4+ L G-A)<i.
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Moreover, Assumption 1 with this y(1) holds.

Proof. The existence of y(A) satisfying (8.4) and (8.5) follows from (8.2). Since
a>0 in (8.5), we have 0<y(1)<2 and E,<E(y(A))<A. Then as is proved in
Mochizuki [10] (cf., also Uchiyama [13] and Mochizuki-Uchiyama [11]), u

satisfying (1.6) and (1.7) must identically vanish in . Thus, Assumption 1 holds
and the proposition is proved. q.e.d.

To proceed into verifying Assumption 2, we need some lemmas.

Lemma 8.1. Ifa>0 in (V2-3), then we have
(8.6) Vi(x)=0(r"") at infinity.

Proof. 1If a=b2>0 (b>0), noting the equality

0,(e "0,V ) —bd, (e”tV ) =e b (0}V,—2b0,V+ b*V )
=e {0 ") +0(r ")},
we have
—Ce b r=1<0,(e7t0,V,) — b, (e bV,) < Ce brr~!

for any r>R, where the constants C>0 and R>R, have been chosen sufficiently
large. Integrating this with respect to r from r to oo and noting the inequality

® % e br
S e"”r_‘drSr"S e"trdr= ,
" r br
we obtain
c C
0,Vi(x)— v <bV(x)<0,V,(x) + =
This shows (8.6) and the proof is completed. q.e.d.

Lemma 8.2. The following inequalities hold :

(8.7) As—ald>Ey>limsup V (x).
r—x

Proof. We have only to show that Ej>limsup V,(x). Assume the contrary.

Then there exists a constant C such that

(%) E(y) < C<limsup V,(x) for some ye(0, 2).
r=o

It follows from (8.1) and the first inequality of () that
—;—rl'ya,(r”Vl(ri)) <C

for r large. Multiplying both sides by yr~!*? and integrating over (r,, s), where

ro is chosen sufficiently large, we have
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STV (sX) — r§Vi(roX) < C(s” — 1)
Hence,
Vi(sX) < C+s7{r§V (roX)—Cr}}

for any s>r,. This contradicts to the second inequality of (%), and the lemma is
proved. q.e.d.

Lemma 8.3. E(y) is a non-increasing, continuous function of ye(0, 2].

Proof. For any pair y, 9" in (0, 2], we have from (8.1)
Em~E6< YL (EG) 1+ sup (v, (01,
Y xeB(Ro)
This implies the continuity of E(y). Moreover, if 0<y’ <y<2, we have
E() = E() < = T (BG) ~limsup ¥, (0} <0
since E(y')>limsup V,(x) by Lemma 8.2. Thus, E(y) is non-increasing in y € (0, 2].
r—=o

q.e.d.

Now we define the domain I7§ by (1.8) and (8.2). Let K* be any compact set
of IT#, and let

(8.8) d=d(K*)=inf(Re{—A4,).

feK+

To determine the constant = B(K?) satisfying (A2-6), we put

(8.9) v(K*)=gel;gv(Re OD=y(As+4d),

where y(1) is the non-increasing function given in Proposition 8.1. Then by (8.4)
and (8.5) we have

(8.10) 0<y(K*)<min {43, 2},

(8.11) E(y(l(i))+% <A+ %

Taking account of these inequalities, we can choose positive constants f=p(K*)
and a=a(K?) as follows:

(8.12) —%y(](-’f)<ﬁ<26 and B<I:

(8.13) O<a<26—p and a<p.

Remark 8.3. If V,(x) satisfies (V2-3) with d>1/2, as is seen in (8.12), we can
choose B=1 for any K=.

Remark 8.4, If 4,V,(x)=o0(r"") in (V2-3) (see §9; Examples I-1 and I-2),
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we have from (8.1) E(y)=Ilimsup V,(x) for any y>0, and hence E(y) is independent
of y. In this case, B can be any constant satisfying

(8.14) 0<f<25 and p<I.

In fact, if we put y(4)=y (constant), where 0 <y<2p, then (8.4), (8.5) and (8.12) are
satisfied with this y(1)=1y.

Next we define k. (x, {) as follows (cf., Appendix):

(8.15) ki(x, )= —iy{—nVi(x) - V() + n2_rl
—10,Vi(x) +
+ 4{C—nV,(x)1—V2(x,)} for CGHJ,
where
(8.16) n= X -

It follows from (8.16) that

V. — V)= ﬂl__}
Im({ —nV, Vz)—ImC{l+ FierTE
and
14
Re ({—nV,—V;)=Re!—V,—Re 4‘2_10 —V,.

For any { € ITf we have from Lemma 8.2
Re {>limsup V,(x) if a=0,
and from Lemmas 8.1 and 8.2
Vi(x)=0(r"") and Re(>a/4 if a>0.

Moreover, we have V,(x)=0(r"?) by (A2-2). Thus, it follows that there exist con-
stants R, =R, ((K*)>R, and C=C(K*)>1 such that

(8.17) 0< +Im{{—nVi(x)— Vo(x)} < C:
(8.18) C'<Re{{—nV(x)=Vy(x)}<C
for any (x, {)e B(Ry) x K *.
Proposition 8.2, For f and k.(x, {) given as above, Assumption 2 holds.

Proof. The continuity of k.(x, {) easily follows from (8.15), (8.17) and (8.18).
Further, we have (A2-2) for |x|>R,, sufficiently large. (A2-6) is obvious from
(8.12). Note that
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Imk.(x, ()= -Re\/mﬁm[m__%],

Here

Re/T=nV; —V;> JReQ—nV, = V3)>C12[< — JRe(C—nV; — V;)< — C~1/2]

if {e K* [K™] and |x| is sufficiently large. Thus, (A2-3) follows if we note that
0,Vi(x)=0(r"1) at infinity. Note that

Vi, —50k, = NI Vi=X0,V\) +i(F Vy=%0,V5)

: * 2\/C_’1V] - Vz

—n(Fo,V,—Xxotv,) _ no, V. {in(PV,—%0,V)+(FV,—%0,V,)}
4C—nV—V>) 4(C=nV,—V,)? .

+

Then (A2-5) follows from (V2-2) and (V2-4).
Next we prove (A2-4).

For y=9(K%*) given by (8.9), we put

(= Lo vty -, }

oV Ty oy
I =Re[—'7'—1_]+ Y _ —Re[
s {—nV =V,

(—nV =V, r r
Since {/n={—a/4, it follows that
y{ReC—i—Vl—Re—l Vz} {Re{——a— — LYoo+ —Re—l—Vz}
I.= 4 n 4 Y n
é 1 ‘2

rIC"%_Vl_"",,'VZ

2
y(lm{—lm%%)

’ rle-4-vi- Ly
4 oy t?

N

Here we choose R> R, so large that A;— % - Vi(x)>— f;’ (cf., (8.7)), — Re—’l7 V,(x)

> — 3£ (cf., (V2-2)) and E(y)— % (ro,V, +9V,) > — f3‘1 (cf., (8.1)) for |x|>R, where
d>0is as given in (8.8). Then

l 1 d

and

ReC—%——yI—(ré,V,+yV,) —Re%V2=ReC—A,,+A‘,—<E(y)+ %)

FE(y) — ~;—(r0,.V1 + yVI)—ReJ;V2>O
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for |x| >R, and hence we have I,>0. If we note that
Im \/Cv—nVl —V,>0 (see Notation given in §1),

it then follows that

This proves (A2-4) since we have 23>y by (8.12).
Finally, we prove (A2-1). It follows from (1.9) and (8.15) that

—(1_ —noiv, (n—l)(n 3)
qi(x9 C)—(' ")V1+ 4(C_’7V|_V2) 4’,
_ 59%(0,V1)*+4no,.V,0,V, iV, v
16(C—nV,—V>)? 2/T=nV, = >

If a=0 in (V2-3), then n=1 and (A2-1) follows from (V2). If a>0 in (V2-3), then
we have

—nozv n(0V,+aV,)

-V nod; v, =(1_ )V _noyVy+av,)

A=Vt J =, =7 n+ (g e
+ anV,(nV,+V,) =0(17%),

4=V =V>3)

since 1—-n+ aig =0 by (8.16) and V,=0(r"!) by Lemma 8.1. Thus, (A2-1) also

holds in this case. Proposition 8.2 is proved. g.e.d.

By means of the above two propositions, we see that for the potential V(x)
satisfying (V1), (V2) and (V3) all the results (Theorems 1~ 5) stated in § 1 hold.

Remark 8.5. We can replace (V2-3) by the following more general conditions
(cf., Lemma 8.1):

(v2-3)’ Vi(x)=0(r"1*"), 6,Vi(x)=0(r"!') and
oV (x)+a(nVy(x)=0(r""7%),

where v is a constant such that
(8.19) 0<v<1

and a(r) is a real function of r> R, such that
(8.20) a(ry=0(r"2*), a'(r)=0(r—>"%) and a"(r)=0@"""9%).

In fact, if we replace A, by

(8.21) Az=max {yisnrde(y), 75_1; E(y)+ liI}l_'S;lp a(r)/4}

and k:l:(xa C) by
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(8.22) Fe(x, D= —i/T=10OV D=V, + 2

+ =0,[n(NV,(x)] :
4L —n(nV(x)=V,y(x)} °

(8.23) n(r)=Tjim,

then Propositions 8.1 and 8.2 can be proved for these A; and k. (x, {) by the same
argument as given above.

§9. Examples

I. First we consider potentials V,(x) of the form
9.1 Vi(x)=V,(r)=¢(logr) at infinity,
where ¢(f) is a real function of >0 satisfying the following conditions:
(9.2) o(1), ¢'(f) and ¢"(t) are bounded at infinity.

This type of potentials satisfies (V2-3) with a=0 and (V2—4) for any 0<6<1, since
we have

Vi(r)=0(1), Vi(r)=0(r") and Vi(r)=0("?).
Let 6>0 be as given in conditions (V2-1) on V;(x) and (V2-2) on V,(x). Then, by
8.2)
©.3) Ay=inf E(y) = inf [lim sup- {$'(log r) + y(log )} 1
rel s vels r—o

I'y=(0, min {45, 2}),

and it follows from Theorem 5 that the spectrum of L=—A4+V(x) (V(x)=V,(r)
+ V,(x) + V3(x)) contained in (A4;, o0) is absolutely continuous.

I-1. Let ¢(t)=0. Then V;(x)=0 and
9.4) V(x)=V,(x)+ V3(x).
In this case, we have from (9.3)
As=E(y)=0 forany 6>0 and 9y>0,

and hence the continuous spectrum (0, c0) of L is absolutely continuous (this result
is already obtained by Ikebe-Saito [4] and Lavine [8]).

I-2. Let
9.5) ¢(®)=o0(1) and ¢'(H)=o(1) at infinity.

Then we also have from (9.3)
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A;=E(y)=0 forany 6>0 and y>0.

The potentials

, __ ¢ -
(9.6) V)= Tog (c: real constant),
= ¢
(9-7) Vl(r) - log (log I‘) ’
__sin (logr)
(9.8) Vir)= ‘W‘

are typical examples which satisfy not only (9.2) but also (9.5).
I-3. Let ¢(t)=sint, i.e.,
9.9) Vi(r)=sin(logr).

Then, as we see in Mochizuki-Uchiyama [11], L has no eigenvalues in (\/§/2, 0).
From (9.3) it follows that

As= Inf [lim sup 71; {cos (log r) + ysin (logr)}]

yels r—o0

. = 1 1
=inf /1+9y72= x/l-+-n1ax {‘IE;SE', 2{}'

yels

Thus, in general A;> \/3/2 However, if 6>1/2 in conditions on V,(x) and V;(x),
we have A,= \/5/2.

II. Next we give examples which satisfy (V2-3) with a>0. Let V;(x) be an
oscillating long-range potential of the form

(9.10) Vix)=y(x) s—in;éi (b; real constant),

where Y(x) is a real function satisfying the following conditions at infinity:

9.11) Y(x)=0(1), PY(x)=0(r"?) and F2Y(x)=0(r"?).
Then V (x) satisfies (V2-3) with a=5b2 and (V2-4). By (8.2)
9.12) A,=inrfE(y)+ b%/4

1€l g

=|b| max {1/49, 1/2} lim sup {Y(x) cos br} + b2/4,
and (A4, oo) becomes the absolutely continuous spectrum of L. Note that, in this
case, the essential spectrum of L consists of [0, o) since V(x) tends to zero at infinity.

Moreover, as we have proved in [11], there exist no eigenvalues in (E,, 00), where

9.13) E, =, inf 2E (y)= L:I lim sup {y(x)cos br} ,
<y< “~ r—o
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i.e., (Eq, o0) is the continuous spectrum of L. In this sense, our above result is in-
complete, and it remains as an open problem to study a more precise structure of
the spectrum of L in (0, 4,].

II-1. Let y(x)=c (real constant), i.e.,
919 Vix)= €807

and assume that 6>1/2 in conditions on V,(x) and V;(x). Then it follows from
(9.12) that Az=A4b)=|bc|/2+ b%/4, whereas E,=|bc|/2. Note that A;,—0 as
b—0. This is reasonable since V(x) tends as b—0 to the Coulomb potential c/r
(in some sense) for which the absolutely continuous spectrum consists of (0, o0).

I1-2. Let y(x)=cx,/r, ie.,
(9.15) Vi(x)= Q‘%“b—’ .

Since Y(x) satisfies (9.11) with =1, in this case, we also have A;=|bc|/2+ b?/4 if
6>1/2 in conditions on V,(x) and V;(x).

II-3. The potential

—32sinr[g(r)3cos r—3g(r)?sin3r+ g(r) cos r+sin’r]
[I+g(r)?]?

in R3, where g(r)=2r—sin 2r, is given by von Neumann and Wigner as an example
which has the eigenvalue +1 with eigenfunction

(9.16) V(x)=

sinr

“X)= T (0

V(x) can be decomposed as

V=-S5 4y (),
where V;(x)=0(r"2) as r—o00. Thus, by II-1, we see that (8, o) is the continuous
spectrum of L and (9, o0) is the absolutely continuous spectrum.

1I-4. The potential

—32 k22 sin kr[(kr+ 1/2a) cos kr —sin kr]

9.17) V(x)= [[+ah()]?

in R3, where k, « are non-zero real constants and h(r)=2kr—sin2kr, is given by
Moses and Tuan as an example which has the eigenvalue + k2 with eigenfunction

()= sin kr
WX = T +eh(n]

The above V(x) has the following property:
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Vix)= — 4k srm 2kr

+ V3 (x) )

where V3(x)=0(r"2) as r—»oo. Thus we see that (4k2, c0) is the continuous spec-
trum of L and (5k2, o) is the absolutely continuous spectrum.

II-5. Generalizing the above two examples, Kato [6] gave the potential

N AP S S _ (=D@®=3)
(9.18) V(x)= 7 +2 72 2k cot kr 7 a2
in R», where
f=f(r)=r“—as' re~tcos2krdr (x>0).
0
Here we assume a>1/2 and consider the operator L= — A+ V(x) defined for func-

tions in Q={x; |x|>n/k} satisfying the Dirichlet boundary condition. Then + k2
is the eigenvalue with eigenfunction

sin kr r—(n—l)/l.

Q]
In fact, f(r)=r*{14+0(r~1)} at infinity. Since we have

u(x)=

Vix)=—

4kas;n2kr +00~?) as r ©,

it follows that (4ak?, o) is the continuous spectrum of L and (4ak2?+ k2, c0) is the
absolutely continuous spectrum.

III. Finally, we give an example for which condition (V2-3)’ of Remark 8.5
is applicable. Let

(9.19) Vi) =V,(r) = Sif,,"‘ O<p<l).

This potential behaves like
[ Vi(r)=0(r=#);

©.20) Vi) =L o1 =00

— 1241
(= =L58 +0(-2) =0(1-1w).

Namely, if we put a(r)=pu2r=20-»), V,(r) satisfies (V2-3)' with v=1—y and é=1.
We assume that 6> 1/2 in conditions on V,(x) and V,(x). Then by (8.21) we have

~ ~ 2
Ay=A,,= g + %lim 20w,

r=+»00

and (A, o0) becomes the absolutely continuous spectrum of L. If O<u<l1, we
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have A;=p/2, and if u=1, we have A;=3/4, which coincides with the result obtained
in II-1.

As we see in (9.20), the potential (9.19) satisfies also (V2-3) with a=0 and
o=1—pif O<p<l1. However, in this situation, the result becomes bad especially
for u>1/2. In fact, we have from (8.2)

= = i = _—l—l—— .il—
Ag=A4,_, y;lrllf_”E(y) max{4(l_#) 5 }
Hence, if u>1/2, we have A;= 4—(]1‘:?)- , which tends to co as u—1.

§10. Extension of the results to more general second order.elliptic equations

In this section, we shall show that all the previous results (Theorems 1~5) can
be extended to the exterior boundary-value problem

(10.1) P(x, D)u=— ; ki‘ (0;+ibj(x))aj(x) (O + iby(x))u + V(x)u

={u+f(x) in Q;

or

u
(10.2) Bu={ " }=0 on 40Q,
> va(x) (0 +iby(x))u+d(x)u

Jk=1
where V(x) satisfies conditions (V1) and (V2) in §8, and the unique continuation
property (V3) is assumed to the operator P(x, D). aj(x) and bj(x) are required
further to satisfy the following conditions.

(AB1) a;(x) and bj(x) are real-valued smooth functions in Q=QU0Q; ay(x)
=ay,(x) and there exists a constant C,>1 such that

Cllélr< 2, ()¢;E<Col €2

Jk=1
for any £ € R" and x e Q.

(AB2) Asr— ©

(AB2-1) ap(x)—6;=0(r"% and Fau(x)=0(r""1"9),

(AB2-2) 9;b(x)— 8 (x)=0(r"1-%),

where 6, is the Kronecker delta and J is a positive constant as given in
(V2).
For the sake of simplicity, we put D;=0;+ib;(x), D=(D;,..., D,) and A= A(x)
=(a;(x)); that is P(x, D)= —D-AD+V(x).
We define the operator L in L*(2) by
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2(L)={u; ue L¥(Q)n H},., D- ADu € L*(Q), Bu|,o=0}
(10.3)
Lu=P(x, D)u for ue2(L).

Then L is selfadjoint and lower semi-bounded in L%(Q) (see, e.g., Mochizuki [9]).
Moreover, the growth property (Assumption 1) holds for solutions of the
equation

(10.4) P(x, Dyu—Au=0 in Q
with real 1> A, (Mochizuki [10]).

Let IT#, o, B and k. (x, {) be as in §8. For solutions of (10.1), (10.2) with ¢
in a compact set K* of II¥ and fe L_zl%ﬁ (Q), the radiation condition has to be

modified as follows:
(10.5) ue Lz_lz_a (Q) and X-A{Du+3xk.(x, u}e Lz_l;ﬂ (B(R,))

for some R, =R,(K*)>R,, where
(10.6) ki(x, =ks(x, O)(%- AR)12,

Outgoing [incoming] solutions are defined by means of (10.5) as in Definition 1.2.

We know that Theorems 1~5 can easily be proved if one can establish Propo-
sitions 2.1~2.4, where in all assertions Pu+%k.(x, {)u should be replaced by
A{Du+%k.(x, Qu}. Propositions 2.1~2.3 can be proved without any essential
change of arguments. Thus, Proposition 2.4 remains as the only one assertion
which has to be carefully checked. It should be noted that in the proof of Propo-
sitions 2.1~2.3 we never make use of (AB2), which will be used to prove Proposition
24.

We put
(10.7) 0=Du+5%k,(x, Ou.
Then it follows from equation (10.1) that
(10.8) —D-A0+k(x, D% A0+ 4 4 (x, Ou—f(x)=0;
(109 4a0n D=gu(x, O +{7-UsE a9 - 2k, 0

+{(R-AR) V2% AV =% Pk y(x, 0).
By (AB2-1)

P (Ax(x-AD) ) — 2oL (5. ap) (3o an)12

+ (R AR) V2P - AF) — ”:‘ =0(17%)

and
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(R-AX) 125 AV —%- VP =0(r"%)-F.

Hence, we see that there exist constants R, =R,;(K¥)>R, and C, =C,(K*)>0 such
that

(10.10) 1§+(x, OI<Cyr 178 for any (x,{)e B(R,)x K%,

This corresponds to (A2-1) in Assumption 2. Using again (AB2-1), we have the
inequalities corresponding to (A2-2)~(A2-5):

(10.11) 1k+(x, DI<C,,

(10.12) FImk.y(x, 0)=C;,

(10.13) Re Ky (x, {)— ”;zlr‘_ﬂ- >Cot,

(10.14) (R AR k4 (x, ) —%(%- APk L (x, IS Csr12

for any (x, {) € B(R,) x K*.
Now, we multiply by X - A8 on both sides of (10.8) and take the real parts. Then
we have

(10.15) Re? - {Ao(x - AD)— %AX(B-AB)}

= {Re ki (V-Ai)} ©0- 40)+ L {14012~ |- 46]2)

+Re[{(R- AR ky —X(%- APk .} ADu]
+ Re [j Z ajp(ajam)f,opak]

Wkolop
—Im[ :;k(AJ”c)k(a iby— 0,b ;) (A6);id]
+Re[(q:u—1)%-0].

This corresponds to equation (2.13). Making use of this equation and applying
(10.10)~(10.14), (AB1) and (AB2), we can follow the same line of proof of Propo-
sition 2.4 to get inequality (2.9) with Fu+Xk;(x, {)u replaced by Du+%k.(x, Ou.
Hence, Proposition 2.4 holds true for outgoing [incoming] solutions of (10.1),
(10.2).

Remark 10.1. If we assume a;(x)—0;=0(r"1"%) in (AB2-1), then as the
radiation condition we can use the following

(10.5)" ue Lz_,z_a (@) and %-ADu+ky(x,ue L2-12+p (B(RY)).
For if we put 0= Du+ Xk +(x, {)u, then 0 satisfies

(10.8)’ —D-A0+ky(x, )%+ A0+g+(x, Du—f=0,
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where

(10.9)’ as0x O =gu(x, D+{7- 43— e Y NER)

+{X- AP =% VYo (x, D—ky(x, OH(X-AX)—1},

and by assumptions we have §.(x, {)=0("179%).

Appendix

Let us explain how we found the radiation condition (8.15).
For solutions u of the Helmholtz equation

(n —Au—Lu=f(x) in Q,
the Sommerfeld radiation condition is given in the form
2 u=0(r~""0/2) and du—ifLu=0("+V/2)

at infinity. This condition is used in Eidus’ classical paper [2] to prove the principle
of limiting absorption for the boundary-value problem (1.3) with V(x) behaving like
O(r~(n+1+8)/2) at infinity. Note that (2) can be written as

3) ue Lz_,T_, (Q) and

du—iJlu=etroeiViru)e sz_z-i (@) forany &>0.

In order to generalize Eidus’ results to more general potentials, (3) should be
modified in the form

“4) uel’, ,(Q) and e &g (er=Du)e L5 (D),
2 2

where a, B are positive constants satisfying « + f<min {26, 2}. Suppose that p(x, {)
depends only on r and {. Then eu satisfies the equation

&) {=4+2p'0,+4q(x, ()} (ePu)=e*f(x);

6 q(x, O=V(x)—{+p"(r, {

D-p%r, ).

In this equation we hope to make g(x, {)=0(r"17?) at mﬁnlty This implies the
‘‘Riccati” equation (1.4). Namely, if we put

M p'(r, O=k(r, §),

then we have

® Ve —+k+ 2L k—ie=0¢-1-).
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Let V(x) be a short-range potential: V(x)=0(r"17%). Then (8) has a special
solution

©) kr, O=—iyT+ 2L

Making use of this k(r, {), we can represent (4) as follows:
(10) uelli, (@) and du+k(r, DueL’i.s(Q).
2 2

This is the radiation condition used in Mochizuki [9] (cf., also Ikebe-Saito [4],
where is used the same radiation condition for some long-range potentials).

In the present case, however, the function (9) does not satisfy equation (8) since
the behavior at infinity of the potential is not so simple. So we have to make a
modification of (9). For this purpose, we first assume that ¥;(x) depends only on
r and V,(x)=0. Put

(11 k(r, )= —iJ{=nV () +h(r, ),

where 7 is a complex number, h(r, {) is a complex function and Re{ and r should be
chosen sufficiently large. Then it follows from (6) and (7) that

(12) q=Vx+V3—C+k’+"—:lk—k2

=(1—:1)V,+V3+h'+"r;‘h-h.2

- _n=1 _ =¥ }
+2i/¢ nV,{h o N ETARE
Our aim is to find some n and h(r, {) which make g=0(r"1"%). We put

_ n—1 —nV;
(13) b, D=2 + Gy

and substitute this in (12). Then

—(1— -nVi  _ _ Sn*V{ (n—=1)(n—=3)

a=(=0Vit gy ~ - T 4 T
— V/I _

=(l=mV nri +0(r179),

since we have assumed that V| =0(r"1) and V3=0(r"1"%). Let a=0 in (V2-3).
Then since V= 0(r~1~%), choosing

(14) n=1,

we have g=0(r"17?). Next, let a>0in (V2-3). Then, as is proved in Lemma 8.3,
V,=0(r"1) and hence
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n{V’{— 4((1”—11) Vl}

- Vi __ 062
Thus, choosing
-4
(> "= qr—a-
we have ¢=0(r"17%). 1t follows from (11), (13), (14) and (15)
(16) ki, O =—iyT=aV(n+ 2L 4~V 4

r T H-, )T H—a
As is shown above this k(r, {) solves equation (8).

The function k,(x, {) defined by (8.15) comes from (16) if we replace nV,(r)
by nV,(x)+ V,(x) and V'(r) by ,V,(x) (note that we do not assume that V,(x) has
second order derivatives). Conditions (V2-4) on V,(x) and (V2-2) on V,(x) are
required in order to guarantee that this replacement causes no serious difficulties
(cf., Proposition 8.2).
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