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Introduction

In this paper we shall consider the exterior boundary-value problem for the
Schrödinger equation

(0.1) Lu = — du +  V(x)u =  +f(x ) i n  0,

where d is the n-dimensional Laplacian and A is contained in the continuous spectrum
of L . Q  is  a  domain of R n exterior to some smooth compact boundary ao, on
which we require the homogeneous Dirichlet or Robin boundary condition. The
potential V(x) is a real-valued function and is assumed to be decomposed as

V(x)= V,(x)+ V2 (x)+ V3 (x),

where V3 (x) represents short-range potentials:

(0.2) V3(x) O(r 6) (r =ixi) at infinity for some 5> O,

V2 (x) represents long-range potentials without oscillation at infinity:

(0.3) V2(x) = 0 (  a) a n d  Of  V2 (x) = 0(r - 1 - 6 ) (Di = a laxi )
and Vi (x) represents "oscillating" long-range potentials which satisfy the following
conditions:

(0.4) (x) = 0(1), 0,V1 (x) = (Nr - i) (a,=alar) and

8v 1(x)+a1/1(x)= 0(r - 1 - 6 ) for some O.

We require some more conditions on the angular derivatives o f  Vi (x) (the precise
conditions on V(x) will be given in § 8).

The main purpose of this paper is to derive the unique existence of solutions of
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(0.1) by means o f the  limiting absorption method. Of course w e have to seek
solutions in a class which contains L 2 (0), whereas f(x) should be chosen from
a class contained in L 2 ( Q ) .  These classes will be characterized by a  radiation con-
dition at infinity. I n  th is  sense, to find the radiation condition attached to equation
(0.1) is a most important problem of this paper.

As a consequence, we can show that there exists some real constant A , such that
(A6 , co) is contained in the absolutely continuous spectrum of the selfadjoint operator
L in L 2 (0). i t  d e p e n d s  on the value E(y), 0<y <m in {46, 2}, defined by

(0.5) E(y) = lim sup trar v i oo+ y V, (x)} .
r -P ,X) y

As we see by an example of von Neumann and Wigner (see Example H-3 of §9),
we can not in general expect that (0, oo) becomes the continuous spectrum of L even
if V 1(x) itself behaves like 0(r - ')  at infinity. In our previous work [11]. we have
proved that if we put

(0.6) =  in f E (y ),

then in (E 0 , co) is not contained the point spectrum of L .  In general A6> E0  (see
(8.2)).

The principle of limiting absorption can also be applied to eigenfunction ex-
pansions (or spectral representations) and  scattering theory fo r  th e  operator L,
which will be studied in a forthcoming paper.

We note here that our results can be extended to a more general second order
elliptic operators including the term of the Zeeman effect (see §10).

The first rigorous proof of the principle of limiting absorption is due to Eidus
[2] who dealt with equation (0.1) with V (x ) behaving like 0(c("+'+ 6 )1 2 ) (6>0)
at infinity. In these few years, Eidus' results have been generalized to short-range
potentials by Eiger [5], Saito [12], Agmon [I], Kuroda [7] and Mochizuki [9],
and to "non-oscillating" long-range potentials by lkebe-Saito [4] and Lavine [8].

Here we give some simple examples which satisfy (0.4) and are not covered by
any previous result.

c,(0.7) r ( x ) =  log r

(0.8) 17(x) =sin (log r) ,

c sin(0.9) V(x) —
br

,r

where b, c are real constan ts. We have A ,=E, =0 for (0.7) and A ,=E 0 = \ ./5/2
for (0.8). H ow ever, A.6= Eo + b2 14, where E0 =lbc1/2, for (0.9). N ote that for the
first two examples we have a =0 in (0.4). O n  th e  other hand, for the last example
a = b 2 . Thus, oscillation at infinity of the potential may have bad influence on the
continuous spectrum.
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The principle o f  limiting absorption is based on the selfadjointness of the
operator L and some uniqueness results for equation (0.1). It is not difficult to show
that L= — zI + V(x) and the boundary condition determine a selfadjoint operator in
L 2 (Q ) if we restrict the near singularity behavior of V (x). O n the  other hand, the
desired uniqueness theorem has been proved a s  a  growth property of solutions
in our previous papers (Uchiyama [13], Mochizuki [10] and Mochizuki-Uchiyama
[1 1 ]) . The radiation condition will bridge the uniqueness theorem and the existence
theorem (cf., Eidus [2]), and will be defined for solutions u of (0.1) as follows:

(0.10) u e L -21-„ ( Q )  a n d  Or ti + k + ( x , ). )t ie L _2 1±fl (Q)
2 - 2 -

for some a > 0 and fl > 0, where L(0) oo < y < co) is the weighted L 2 -space given
in §1 and k± (x, ).) is a complex-valued function which solves the equation

(0.11) V(x)---).+Ork + (x, n ;   k ± (x, — k (x, ,1) 2 =0(1- - " )

for r= 1x1 la r g e .  Once the radiation condition (0.10) is defined well, we can follow
almost the same line of proof given in Mochizuki [9] for short-range potentials.

The remainder of this paper will be organized as fo llow s: The first 7 sections
will develop a semi-abstract theory under assuming the existence o f the solution
k± (x, ).) of (0 .11). In §1 we first summarize the required properties of k± (x, ).) as
assumptions, and then state the main results (Theorems 1-5) without proof. These
theorems are proved in §3— §7. § 2 is devoted to prove some propositions which
will be used to show the theorem s. The concrete form of the conditions o n  V(x)
is given in § 8. The existence and required properties of k± (x, ).) are proved there.
In §9 we give several examples. As is noted above, our results can be generalized
to a more general second order elliptic operators if we give a  slight modification of
the radiation condition. W e discuss them in  §  1 0 . Finally, in  Appendix, we ex-
plain how we get to equation (0.11) to generalize the original Sommerfeld radiation
condition, and how we find the 'special' solution k± (x,

§ 1 .  Notation and Results

1. 1. N o ta tio n . First we shall list the notation which will be used freely in
the sequel.

R  is all real numbers; C  is all complex numbers. Re K  and lm i  d eno te  the
real part and imaginary part of K  C, respectively; \ ,/k- denotes the  branch of the
square root of K EC with Im  0-t: > 0 ;  i =

f.g = f 1g 1 f o r  .f= U " , , . . . ,L )  a n d  g =(g
•

If I = N/ f . f  for f= ( . f1 , • . • ,  f„ )eC ", where" ;  is the complex conjugate off. ; and f  = ( J ,
in )

x= x„)e •=1x1 and .R=x/Ixi .
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S(R)={x; lx1=R} f o r  R>0.

B(R , R ')= {x; R <Ixl<R 1 f o r  O<R<R '.

B(R)={x; jx1 >R }f o r  R >O.

S2(R)=fx E S2; ixi <RI f o r  R >0.

ai =010x i , I = (0 an) a n d  a,.= Se • V.

For G  S2 and V E R , 14(G) denotes the Hilbert space of all functions f(x )  such that
(1+ r)v f(x) is square integrable in G ; the innerproduct and norm of L (G ) are de-
noted by

( f , =  G O + 112 ' f (x)g(x)d x a n d  II f  Ilv,G= .\ / (f, A,G,

respectively; in case or G=S2, we shall omit the subscript 0 or 0 as L2 (G),
II IIG, II liv, II I I  e t c . H i(G )(j =1, 2) denotes the class o f L2-functions in  G  such
that all distribution derivatives up to j  belong to L 2 (G ). HI., denotes the class of
locally H1-functions in t=Q  U O Q . C i(G ) is all j-times continuously differentiable
functions in G; C (G ) is all C'-functions with support in G .  12, denotes the class
of functions V(x) satisfying the "Stummel condition", that is, for some ii > 0

1 1 1Sx1;) Ix_y 1 < 1  I V ( y )  I

sup I V( v) 2 dy < oo (if n_3) .
xeD

. 21x _ y  i --rt+4-pdy < c o (.f

1.2. Radiation condition. We consider the Schrödinger operator —21+ V(x)
in an infinite domain in  R" with smooth compact boundary aS2 lying inside
some sphere S(R 0 ) of radius Ro . We do not exclude the case that 00 is empty and
0 = R n . Throughout this paper, we assume that V (x ) i s  a  real-valued function
belonging to 124  for some ft > O . The differential operator —.4 + V(x) is regarded
as acting on functions in HL, satisfying the Dirichlet or Robin boundary condition

{ u or
Bu=

v•V u+d(x)u
=0 o n  00

in the distribution sense in 00, where v=(v 1 ,..., yn ) is the outer unit normal to the
boundary ao and d(x) is a real-valued smooth function on OS2.

We define the operator L acting in the Hilbert space L 2(0) as follows:

g(L )={u E 112 (2): Bu =O o n  (S-2}

(1.2)
L u= —du + V(x)u f o r  ti e .9(L).

Then it is known (cf., e.g., Ikebe-Kato [3] and Mochizuki [9]) that the operator L
is selfadjoint and lower semi-bounded in L2(0).

In the following, we consider the boundary-value problem
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(1.3) J
 — Au + V(x)u — u =f(x) in

1 Bu=0 on 3 S2

for suitably chosen e C and f(x )e  L 2 (0 ) .  The selfadjointness of L  shows that if
E C\R, (1.3) has a unique L 2 -solution for given any 1(x) E L 2 (0 ) .  To extend the

unique existence theorem to real contained in the continuous spectrum of L , it is
necessary to consider the operator — A+V(x) in a wider class of functions in lifo c ,
whereas f(x )  should be chosen from a more restricted class. T h e  domain o f  —
+V (x) will be characterized by means of a radiation condition at infinity.

The Sommerfeld radiation condition is used in  Eidus [2] to determine the
domain of — A + V(x) with V(x) tending sufficiently rapidly to zero as lx1--oo. We
shall improve this radiation condition so as to be able to apply to a wider class of
potentials V (x ) . For this purpose, the essential point is in obtaining a  complex-
valued function k(x, C) which solves the following "Riccati type equation" for r= xi
large:

(1.4) V(x)— 14( + 0 , x , n
r

l  k(x, — k (x, 02 =

where Re C is in the continuous spectrum of L  and 6 is a  positive constant. The
function k(x, C) will be used to define a modified radiation condition. In Appendix,
we shall explain how we get to the "Riccati type equation" (1.4).

To make clear the role of the function k(x, 0, we assume first the existence and
some properties of k(x, 0, and construct a semi-abstract theory. After proving all
the theorems, we give in § 8 the explicit form of conditions on V(x) under which all
the assumptions stated below are satisfied.

Assumption 1 .  There exist real constants 6>O, A 6  an d  a  real function AA)
of ),> A 6 such that

(1.5) 0 <y().)< min {46, 2}

and the following growth property h o ld s :  Let u el-IL  satisfy the equation

(1.6) —  + V (x)u — Au =0 i n  Q

with real A> A .  If we have the inequality

1(1.7) (1 + r) - '+P I u i 2 dx <oo for some
/3(Ro)

then u must identically vanish in Q.

Assumption 2 .  We put

/7-S={C EC; Re(> A6 a n d  Im C 1:)}
(1.8)

/7i={CeC; ReC>A 6  a n d  I m C 0 } ,

where o > 0  and A 6 real are constants given in Assumption 1 , and let K ± be any
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compact set in I n .  Then there exists an  R 1 =R 1(K ±)> R c,  and a complex-valued
continuous function k(x. C)= k ± (x, C) defined for (x, E B(R,) x K ± which satisfies
equation (1.4), namely, if we put

(1.9) q ( x , )=V (x ) - -C +a r k ± (x, n  1  k ± (x , C )-k ± (x, C) 2 ,

then there exists a constant C 1 --= Ci (K ±)>0 such that

(A2-1) lq±(x , C)I.C,r - l - a for any (x, C)e B(R,) x K ±.

Further, we assume that there exist constants C i = Ci (K±)> 0 ( j= 2 5) and  f3=/3(K )
>0  such that k ± (x, satisfies the following inequalities for any (x, e  B(R 1) x K :
(A2-2 .) 1 k ±(x, Cil

(A2-3)

(A2-4)

(A2-5)

T-Im k ± (x , 1)>C 3 ,

n-1-13 Re k ± (x, ) -   _>_C4r-',9r

k ± (x, C)--Sear k ± (x , )1 __C 5 r - 1 - `

Finally, we assume that 13 in (A2-4) can be chosen as follows:

(A2-6) 1—
2  

y ( R e  <  fl < 26 fo r  a n y  e  K ± ,  and [3 < 1.

Now we fix any compact set K ± in  H ,  and consider equation (1.3) with E K±

and f  (x )e L 2
1 + fl (0).
2

Definition 1.1. A solution u of (1.3) w i t h  e K ± is said to satisfy the  (out-
going [or incoming]) radiation condition if we have

(1.10) U E L 2- 1 - Œ (Q ) a n d  Or u + k ± (x, e L 2-i+p  (B(R,)),
2 2

where R , and fi are as in Assumption 2 and a is a positive constant satisfying

(1.11) +fl_<.min {26, 2} and

Definition 1 .2 .  A solution u  of (1.3) w ith  e  K ±  is called a n  outgoing [or
incoming] solution if it also satisfies the radiation condition (1.10).

Remark 1 . 1 .  The restriction f3<1  is not essential, and we can weaken the
conditions on a and 13 in (1.10) as follows:

(1.12) a-Ffi min {26, 2}, 0 < a < f l  and

1 y(Re C) < fl <m in {26, 2} for any Ce K±

Thus, the apriori inequalities (Theorem 2 stated below) for outgoing [incoming]
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solutions of (1.3) can be slightly generalized in case (5>  1/2. In this paper, however,
we do not enter into this problem since (A2-4) on k+ (x, has to be replaced by a
rather complicated condition.

1.3. Theorems. The main results of this paper are summarized in the following
theorems.

Theorem 1 (uniqueness). For any  e K+ [K - ]  and fE Li + p (0), the boundary-
2

value problem (1.3) has at m ost one outgoing [incoming] solution.

Theorem 2 (apriori estimates). T h e re  e x is t s  a constant C = C (K ± )> 0  such
that f o r any  outgoing [incom ing] solution u=u(• , C) o f  (1.3) w ith ( e K ±  and

fEL14-11  (Q ), we have
2

(1.13) II ( ) il  -1-ceC R -2 /2 1 1 /1 1  14-0 f o r an y  R> R i ,
2 2

(1 .1 4 ) II Vu() +5Ck ± (x , )u ()11  , 1-1-2/)

(1.15) u(C) II  fll 1+#  •
2 2

Theorem 3 (principle of  lim iting absorption). (a) For any  non-real (e  K ±

and f e L i + 13  (0 ), there ex ists a u n iq u e  outgoing [incom ing] solution of  (1.3),
2

which coincides with the L 2 -solution.
( b )  L et tr be a  non-real sequence in  K ±  such  that (,-+C o e K ±  as

l--±co, let {f,} be a  sequence in L 2
1 -0 (Q ) such that f , - + f,  strongly  in  Li- f•fi (Q )
2 2

as l-*oo, and let {u,} be the corresponding sequence of  outgoing [incoming] solu-

tions of (1.3) with (=C, and .f = f , .  Then { u,} converges in L i_ 1 _2  (Q ) to a function
2

u0  as and u0  becom es an  outgoing [incom ing] solution of  (1.3) with C = ( 0

and f = f o .

As a corollary of the above theorems, we have the following

Theorem 4 (existence and property ). For any  C E K ±  and fE  L i+ f i  (0), there
2

exists a unique outgoing [incom ing] solution 1 4 := U (• J .) of  (1.3). M oreover, if
we define the operator .q ): K± x L i + p (Q) 3 (C, f)-+u(• , C, f) e L 1 -Œ  (Q) by

2 2

(1.16) [ .R f ](x )= u (x ,  ( ,  f ) ,

then .el f depends continuously  on ( ,  f )  E K± x L i + p (0).
2

Finally, we return to th e  selfadjoint operator L  defined by (1.2). For the
spectrum of L, we have the following results.

Theorem 5 . ( a )  L et {g ( ) ) ;  2 ER} denote the spectral m easure of  L, and for
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any  Bor el set  e c (A s , oo) choose a, 13 and ac depending on  K ± ={A+ is; 2 e
0 1) as above. Then for  any  fe L i +p (0) and g e Li + .  (0), we have

2 2

(1.17) (6° (e)f, g) =  2 n
1

 e (R A + io f — RA_Lof,

where the integrand of the right side means the duality between L 2- 1 ,  (0 ) and
2

L L  (Q ):
2

( I .18) (.4A±iof, g) = [ ± w .f.] (x) g (x) dx
f2

( b )  The part of L in e((A,, co))L2 (Q) is absolutely continuous, i.e., (S(A)f, f)
for  fe L 2( 0 )  is absolutely continuous w ith respect t o  the Lebesgue measure in

e (A,, co).

§ 2 .  Some estimating propositions

In this section, we prepare some estimating inequalities related to the outgoing
[incoming] solutions of (1.3).

Proposition 2 . 1 .  L et  u e 14(f2), y e R ,  b e  a  so lu t ion  o f  (1.3) with e  K ±
and f E L ( S 2 ) .  Then we have for some C 6 = C6(1( ± )>  0

(2.1)I I  Vu II v c6{11u11, + Ilf11„} •

P r oo f. In the case where u satisfies the Dirichlet boundary condition, (2.1)
can be proved by the same argument as in the proof of Lemma 1 o f Mochizuki-
Uchiyama [11]. F o r  u satisfying the Robin boundary condition, we can also follow
the same line of proof if we have the following: for any s> 0 there exists a constant
C(e)> 0 such that

(2.2) Id(X)111112dS {E IV III2+C (01/112}dX
Û(R0+ 1)

and

(2.3) I V(X) I I 11 I 2 dX {elFul2+C(s)lul2)dx.1 ) ( R 0 )  
n(Ro+i)

Inequality (2.2) is well known, and inequality (2.3) can be proved by use of near-
singularity behaviors of the elementary solution of 4  and the fact that V(x) e
(cf., e.g., Mochizuki [9]). q. e. d.

Proposition 2 .2 .  L et  u  b e  an  outgoing [incom ing] solut ion of (1.3) with

Ce K ± and fe L i+ p  (0 ).  If ImC00, then we have u e L2 (0) and

(2.4) IImI Ilull Ilf II •
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P r oo f. By the Green formula, we have

Im fridx = Im5 — Au +V(x)u — Cu}adx
(2(R) (2(R)

=  — 11111 0 , 0  ads—imc5 iupdx.
S(R) f2(R)

Thus, it follows that

ImC I u I 2 dx Imk± (x, I u I 2 dS
f2 (R ) S(R)

=  — 11n1 { ô ,1 4 +  k ± (X , C )u }  iidS-1m ffidx.
S(R) (2(R)

As we see in (A2-3), f o r  e K+ [1( - ]  both Tm C and —Im k+ (x, C) [—Imk_(x, C)]
are non-negative [non-positive] for lxi >R I . Thus, we have from (2.5)

(2.6) IImI IuI 2 d x
(1(R)

I a k± (x,C)ulluidS+5 ifiluidx
S(R) (2(R)

for R >R 1 . From the radiation condition (1.10) (since we have chosen a <fl) it
follows that

lim inf +k ± (x, C)uiluldS=0.
R-000 S(R)

Thus, letting R-4 oo in  (2.6) and then dividing both sides by du II, we obtain
(2.4). q. e. d.

Proposition 2 .3 .  Let u  b e  an outgoing [incom ing] solution of (1.3) with
E K ± and f e L i + fi (0). Then there exists a C 7 =  C 7(K ± ) >  0  such that  for any

2

(2.7) R)-"{Meru+k±(x, C)u II 2_1 + ,1 ,
B ( R )2 ,B(R) 2

+ Ilull 2-1 -«  +11111 I+. }
2 2

P r oof. By (2.5) and (A2-3)

(2.8)C 3 I uI2dS._ Imk±(x, C)I lu 12 d S
S(R) S(R)

lar u+k±(x, OulluldS+
S(R) D(R ) 

Ifl luldx

(2.5)

for R1 . Multiplying by (1 +R) - 1 - 2  on both sides of (2.8) and integrating over
(R', on) with respect to R, where we have
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C311u11 2-12-cc  ,B(Ri)

(1+r) - 1 - "le ru +k ± (x, C)ulluldx
B(R')

+ccq l+K ) - aliull  11111  11 .  

Since

(1 1 -0 -1 -œ la r t i+ k ± (X , ) U l l U l d X
B (R ')

-a -fi- 2 - a + P
B (R 1 )  

(1 + r) (l+r) larti+k±(X1 0 11 1 l UldX

-a -fi 
( - F I  ) 2 I l la r li-Fk±(X, C)Ull

2
B2-1+.  ,B (R ') +1114 112- 1 -a }

2

noting that a< f3 and choosing C 7 =(1 +Œ')C 1 , we obtain (2.7). q. e. d.

Proposition 2.4. L et  u  b e a n  outgoing [incom ing] solut ion o f  (1.3) with

eK± and fe L i + fl (0 ) .  Then there exist a constant C g=  C g(K ± )> 0  such that
2

-12+13u + gk± (x, ) u  II  .B (R i) C8{1I u II -12-a + 11f11 1-42-P }•

Remark 2.1. The assumption that /3 1 (cf., (A2-6)) is essentially used only
to prove this proposition.

P r oof. For the sake of simplicity, we put

(2.10) 0=0(x, 0=  Vu +5-ck± (x,

Then it follows from the first equation of (1.3) that

(2.11) 17 •0=k ± i•O-F{ziu—kiu+(ô rk± )u +  n - 1   k  u }r

= k± .54. 0+ q ± (x, —f(x)

Multiply by 5Z • on both sides of (2.11) and take the real p a rt. Then we have

—Re{17•0(56•0)}+Rek± 15-c•012 +Re{(q ± u—f)i•O} =0 .

—Re{17•0(2.0)}= —ReF • {0(g•O)} +Re{0•17 (5i.0)}

n 
2r

1  )1012= —Re 17 • {0(5Z • 0)— Ri01 21+(Rek ±  —2 

—Rek ± 156•012 + ÷.{101 2 -1g-01 2 } +Re {(Fk±-56ark±)•Ou}

(2.9)

(2.12)

Here



2 -body Schr6dinger operators 387

since we have

f 7 (5e .0) = V (5e • 17 + k ± u)

= {Vii--2(2.Vii)}+Cfc.17 )Vii+k ± ru+(rk ± )u

=  Jr -  {0 - 2(A•0)} + )0 — Cg • V k ± )u — k ± (2 .0) + k ± 0 + 7 1 c ± )u ,

where g • V =a,. Thus it follows from (2.12) that

(2.13) Re v• {0(2 0) — 1
2-  1012 } =(Rek ±  — n  2—r1 ) 1 ° I 2

+  ÷ - {1012 - 15e.012 ) +Re{(vIc± - 20,./c±).0 u}

+Re {(q ± u —f)2.0} .

Let 4(r)> 0 be a C1 -, monotone increasing function of r e [0, co) such that OW =0
for a n d  OW = 1 for r R  +  1 . Multiply by ck(r)rP on both sides o f (2.13)
and integrate over B(R,, R), where R R 1 + 1. Then integration by parts gives

g •0 1 2 -
2
1 101 2PS

S(R)

B (R I,R )

x.(r) rP [(Re k — n  1  2 1-fl  {
10 1I 2 — 1 0 12}2r 1 °1  +  r

+Re {(171c± — Rark± )•0 } +Re {(q ± u — f)2. }]dx

+  Buzi ,Ri + t) '4)(r)rP{l
1i . .01 2 -  —

2  
101 2 }dx.

Note that 0<cc<13 and a-Ffis min {26, 2} by (1.11), and that (1 - $){1 0 12 - P• 0 12 }
Then it follows from (A2-1), (A2-3), (A2-4) and (A2-5) that

-(2.14) rP15Z•012dS_ rP {C4r 1 1012
S(R) B(121-1-1,R)

_C 5 r_l_olOI lui — Cir- "1 0 11u1 - 1i1101}dx

1— (if (r)rP101 2dx.zy .ti(Ri ,Ri+1)

By the Schwartz inequality, we have for any e>0

- {C 5 r- l- a I u I +C i r- 1 - 6 1u 1+ ifl )101

-  er-
1 1012

 -  C9 (K±, e)(r -
1-

2alui 2 +rif1 2).

Thus, noting the radiation condition
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5•O =O ru+k ±(x,)ueL 2-1-4-0 (B (R i )) ,
2

we can let R-÷ co in (2.14) to obtain

(2.15) (C4 — g) r-1411012dx

{ r -1 -2 (3+ fi u I 2 ± r l +/I I f  I d x
B (RI+ 1)

+
BUZ! ,  Ri+ 1) 

I 012 dx,

where s is chosen so small that C 4  E >  C4 /2 and C 1 0m a x (I)'(r)rfl . Since
xeB(Iti,R1+1)

2IVui 2 + 2Cijul 2 by (2.10) and (A2-2), it follows from Proposition 2.1 that

(2.16) 1012 dx C11 {110  + Il fll 2-1 -«  }  •
B(Ri, RI+ 1) 2 2

Moreover, we have by (1.11)

— 1— 26 fi —1 — Œ.

Thus, (2.9) follows from (2.15) and (2.16). The proof is completed. q. e. d.

Corollary 2 . 1 .  Suppose that (5> 1 12  in  Assumptions 1  and  2 ,  and  le t  f(x )
e Li(S2). Then for  any outgoing [incoming] solution of (1.3) w it h  e K ±, we have
Vu+Rk ± (x, C)u E L 2 (B (R  1 )) and

(2.17) 11V u+ 2 k ±(x, 1)

where ce min {26, 2)-1.

P r oof. If (5> 1/2, we can choose fl = 1 in (2.9). q. e. d.

§ 3. Proof of Theorem 1

In the case where 1m C 00, the uniqueness theorem easily follows from Propo-
sition 2.2. Thus, to complete the proof of Theorem 1, we have only to show the
uniqueness for real + i 0  K ± .  For this aim we use the growth property of
solutions of the homogeneous equation (1.6) (Assumption 1).

Let u be an outgoing [incoming] solution of (1.6) with real = 2 +10 e K± which
also satisfies the boundary condition (1.1). Applying the Green formula, we have
for s IZ,

0 = — Im { Au + V(x)u —.1u}fidx
fl(s)

= imÇ (a ,14) d S = IM1 {a + Re k ± (x, A )u}iidS
S(s) S(s)
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1 
s(s) Imk±(x, )L) Re Nar ti +Re k± (x , ).)u } Imk±  ,  A)u]dS

1 1  =
2  s ( s )  Ilnk±(x, arts + k± (x, 11)111 2

- la r u+Rek±(x, /1)/41 2 -  I'm k±(x, )L)1211412}ds.

Thus, it follows from (A2-3) and the radiation condition (1.10) that

( I +  ) - 1 4 - fi I uj 2 dx ,C 2 5 (1 + I a r u + k ±( , 2)u 1 2  dx
B (R ) B (R )

< 00

for R >R 1 . Since fi satisfies (A2-6), this shows that u satisfies condition (1.7) of
Assumption 1. Hence u =0 in f2, and the proof is complete.

§4 . Proof of Theorem 2

We prepare two lemmas which follow from Propositions 2.1, 2.3 and 2.4.

Lemma 4.1. Let {( 1)  be a bounded sequence in K±, let {A } be  a  bounded

sequence in Li + fi (0) and let {u 1}  be the corresponding sequence of outgoing

[incoming] solutions of (1.3) with and f = f .  Then {u i } is precompact in

L2_1 _OE (Q) if it is bounded in the same space.
2

Proof. Suppose that {u t}  is bounded in L 2- 1 - OE (0 ).  Then by Proposition 2.1
2

with y= 
 - 1 - a  

and the Rellich compactness criterion, we see that for any R>0

(4.1) 0411 is precompact in  1,2(Q(R)).

On the other hand, Propositions 2.3 and 2.4 assert that for any c>0, if we choose
R>R, sufficiently large, then

(4.2) sup II -1
2
-1 <E.

 ,B ( R )

The precompactness of tul l in L 2_ i _Œ  (Q) then follows from (4.1) and (4.2). q . e . d.
2

Lemma 4.2. Let {4 1} be as in Lemma 4.1. Suppose that Ci -oC, and u 1 -ou,
2in L_ i _c,  (f2) as l--400. Then u, satisfies the radiation condition (1.10) with C= Co.

2

Proof. Since {u1}  is bounded in  L 1 _,, (0), we see from Proposition 2.4 that
2

{Or ui +k ± (x, C1)141} is also bounded in L2_ 1 -Fp(B(R)) for some R= R(K±)_>. R 1 , and
2

hence there exists a convergent subsequence, which we also write a s  {Dr ui +k ± (x,

C,)141}, in the weak topology of L2_ 1 + p (B (R )). We denote by w the limit function.
2
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Then for a n y  e CT;(,)(B(R))

(4.3) {Orui+k±(x, C i )u i } dx
B (R) I-. B (R)

- B (R)

n -1  uo{ar - F r - k ± ( x ,  Co) }d x ,

where to obtain the last equality, we have used the condition that {u l } converges to

u0 in L 1 _„ (Q). (4.3) implies that
2

w=aruo +k ± (x, Co)uo.

Since w e L2_ 1 + fi (B(R)), we conclude that u0 satisfies the radiation condition (1.10).
2

q. e. d.

Proof of Theorem 2. Note that (1.14) follows from Proposition 2.4 and (1.15),
and (1.13) follows from Proposition 2.3, (1.14) and (1.15). Thus, we have only to
prove inequality (1.15).

We shall prove (1.15) by contradiction. If we assume contrary, we can choose

a sequence {Ci} in K± and sequences {A} in L 1+ 0 (Q) and {fi t } of outgoing [incoming]

solutions of (1.3) with C=C/ and f = f i as follows:

(4.4) 1II u i ll  -1-„ = 1  and
2 2

Since {A} is bounded in L i+ p  (0), it follows from Lemma 4.1 that {u1} is precompact
2

in L2- 1 - OE (0 ).  Let {u r } be a convergent subsequence and denote the limit function
2

by tic,. Then

(4.5) Iluoll  =1
2

and u0 satisfies the equation

(4.6) - duo  + V(x)uo - Couo = 0  i n  Q

in the distribution sense. The ellipticity o f  - tl + V (x ) im plies that uc, e Hioe .
Moreover, u0 satisfies the boundary condition (1.1) since it is satisfied by each ur .
Lemma 4.2 asserts that u0 satisfies the radiation condition. Hence, by the unique-
ness theorem (Theorem 1), u0 m ust identically vanish in  Q .  This contradicts to
(4.5) and the proof is complete.

§ 5. Proof of Theorem 3

(a )  B y  (A2-2) and Proposition 2.1 with y -  1 +  fl  <0
'
 w e see that for any

2 -  
C eK± and feLi+fi (Q) c L 2 (Q), the L2 -solution of (1.3) satisfies the radiation con-

2
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dition (1.10). Since we have the uniqueness theorem, this proves assertion (a).

( b )  It follows from Lemma 4.1 and (1.15) that {141} is precompact in L2-1- OE  (Q).
2

Let {u1,} be a convergent subsequence and let /40 be the limit function. Then by the
same reasoning as in the proof of Theorem 2, uo satisfies the boundary-value problem
(1.3) and the radiation condition (1.10) with = C o and  f= f .  T h e  uniqueness
theorem shows that this u o i s  a unique accumulation point of {u1}. Hence, {10
itself converges to the outgoing [incoming] solution uo .

The proof of Theorem 3 is complete.

§6. Proof of Theorem 4

The first assertion of Theorem 4 is obvious from Theorems 1 and 3 . L et

{( II and {f1} be convergent sequences in K 1  and L 2
1 .03 (Q), respectively. Assume that
2

and f i -+fo as 1-+ ci. T h e n  as is proved in Theorem 3, {u( • , , f 1) }  becomes

a Cauchy sequence in  L 2_ 1 - OE (Q) which converges to u( , C o , fo)  as /--> oo. T h is
2

proves the continuity of .Rcf, and hence Theorem 4 is proved.

§7. Proof of Theorem 5

(a) We have only to show (1.17) in the case where e is an interval: e=(A i ,
/12 ), where A6< /It < Al< 00. Note that if s> 0, R, ± i e  coincides with the resolvent
(L - is) - 1  of the selfadjoint operator L. Since L has no eigenvalues in (A 6 , ox),
by the Stieltjes inversion formula we have for any f, g  E L 2 (Q )

(7.1) 1A 2
(S (e )f, g )  =  

2 n i
,t_ i c f ,  g)dA.

el0

Let fE L i + p (Q ) and g  e L 2
I +OE ( Q ) .  Then Theorem 4 shows that ( a ,t ± , ef, g )  is

2 2
continuous in ). E e and converges to (' A ± i0 f , g )  (cf., (1.18)) uniformly in e  e as
e O. H ence w e have (1.17).

(b) Since Li+p (Q )c L i + c, (Q) by (1.11), and is dense in L 2 (Q), assertion (b)
2 2

easily follows from assertion (a).
The proof of Theorem 5 is complete.

§ 8 .  Applications : Sufficient conditions on V(x)

In this section we shall show that Assumptions 1 and 2 hold for potentials V(x)
which satisfy the following conditions.
(V1) V(x) is a  real-valued function which belongs to the "Stummel class"

for some it>0.
(V2) There exists an Ro >0 such that B(R o ) Q and V(x) is decomposed in B(R o )

as
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V(x)= V i (x)+ V2 (x)+V 3 (X) ,

where V3(x) is a short-range potential:

(V2-1) V3(x)= 0(r - 1 - 6 ) for s o m e  5> 0

and V2(x) is a non-oscillating long-range potential:

(V2-2) V2(x)= 0(r - 6 ) a n d  17 V2(x)= 0(r - 1 - 6 ).

Vi (x) is a  oscillating long-range potential, and we require the following
(V2-3) and (V2-4):

(V2-3) V,(x)= 0(1), ar Vi (x)= 0(r - 1 ) and

a V i (x)+ aV i (x)= 0(r - 1 - 6 ) for some a > 0,

(V2-4)V  V1(x) — :Za,,V,(x)= 0(r - 1 - 6 ) and

ar vi (x)— 5Z V jx) = 0(r - 1 - 6 ).

Hereafter we assume that 0<6 <1 which does not restrict the generality.
(V3) For the operator —A + V(x), the unique continuation property holds.

Remark 8 .1 .  I f  a < 0 in  th e  c o n d it io n  av 1 + aV ,= 0(r - 1 - 6 ), th e n  b y  a
straightforward calculation (cf., Lemma 8.1), w e  have 0(r -1 -6 ). Namely,
1/1(x) becomes a short-range potential.

Remark 8 .2 .  (V3) can be verified fo r  V(x) satisfying a  Holder condition
except at a finite number of singularities.

To show that Assumptions 1 and 2 hold for the above potential, we put

(8.1) E (y) = lim su p  -  {rar (x )  +  Y V 1.(x)}
r -+ 00 I

for y>0, and define A 5 as follows:

115= inf E(y) + 
a

1 -

yeris
5 =  (0, min {46, 2}) .(8.2)

By condition (V2-3), we see E(y)‹ oo for any y >O. M oreover, as is proved in
Lemma 2 of Mochizuki-Uchiyama [ 1 1 ] ,

 we have

(8.3) E0 =  inf E(y)> — CO.
0 < y < 2

Proposition 8 .1 .  Let 6 and A 5 be as given above. Then there exists a non-
increasing function y(A) of A> jib which satisfies the following inequalities:

(8.4) 0 <y(A)<min {46, ,

(8.5) E (y (A)) + < A  + (A -  A 6) < ;t.a 1



2-body Schrödinger operators 393

Moreover, Assumption 1 with this y() ) holds.

Proof. The existence of y() ) satisfying (8.4) and (8.5) follows from (8.2). Since
a >_ 0 in  (8.5), w e have 0 < y( ) ) < 2 and E 0 E ( y ( A ) ) < A .  Then as is proved in
Mochizuki [10] (cf., also Uchiyama [13] and Mochizuki-Uchiyama [11]), u
satisfying (1.6) and (1.7) must identically vanish in Q. Thus, Assumption 1 holds
and the proposition is proved. q. e. d.

To proceed into verifying Assumption 2, we need some lemmas.

Lemma 8.1. If a > 0  in (V2-3), then we have

(8.6) Vi (x) = 0(r - ') at infinity.

Proof. If a= b2 >  O (b > 0), noting the equality

0,.(e - brar V i ) —b0r (e - b r v o= e - bro ,2., v i-2b er V i+ b 2V i)

e-brfo( +0(r-1)1

we have

_C e - brr- 1 < a r( e - brarV i ) _ b ar(e-brir r i`V  ) _ C e - b r r - 1

for any r > R , where the constants C> 0 and R> R 0 have been chosen sufficiently
large. Integrating this with respect to r from r to oo and noting the inequality

e -brr - ld r <r - 1 e - b r d r e "

r J rb r

we obtain

ar V i (x)—   _ ar V i.(x) +  .br br

This shows (8.6) and the proof is completed. q. e. d.

Lemma 8.2. The following inequalities hold:

(8.7) Aa— al4>E 0 > lim sup V, (x) .
r-.(x)

P ro o f We have only to show that Eo > lim sup V ,(x ) . Assume the contrary.

Then there exists a constant C such that

(*) E(y) < C < lim sup V1(x) for so m e  y e(0, 2) .

It follows from (8.1) and the first inequality of (*) that

rt - YOr (rY Vi (rR)) <C
Y

for r large. Multiplying both sides by yr- 1 -+Y and integrating over (r 0 , s ) , where

ro is chosen sufficiently large, we have
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sy V1 (si)  r V 1(r 0 50 <C(s 7 - .

Hence,

(s50 < C +  Y{r6Vi (r o 5c) -  C r}

for any s> r o . This contradicts to the second inequality of (*), and the lemma is
proved. q. e. d.

Lemma 8.3. E(y) is a non-increasing, continuous function of y E (0, 2].

Proof. For any pair y, y' in (0, 2], we have from (8.1)

x.B(Ro)
E(y ) - E(y ') ly {1E(y `) I +  sup I V i (x)

This implies the continuity o f E (y). Moreover, if 0<y'<y <2, we have

E ( y ) - E ( y ' ) _ _   { E (y 1)- lim sup V,(x)}
Y r

since E(y 1) >_lni sup V1(x) by Lemma 8.2. Thus, E(y) is non-increasing in y e (0, 21
r

q. e. d.

Now we define the domain H ef by (1.8) and (8.2). Let K 1  be any compact set
of / i f ,  and let

(8.8) d = d (K I)=  inf (R e  -  /16) .
e l(±

To determine the constant fi =fl(K ±) satisfying (A2-6), we put

(8.9) y(K±)= sup y(Re = y(A,+ d),
ceIC±

where y(),) is the non-increasing function given in Proposition 8.1. Then by (8.4)
and (8.5) we have

(8.10) 0<y(K)<min {46, 2} ,

E (Y (K I))+  -a- < A 6 + —
d

-,
4 3

Taking account of these inequalities, we can choose positive constants fl =fl(K ±)
and Œ = Œ ( K ± )  as follows:

(8.12) —
1

y (K ± )< f l< 2 5  a n d  f l< 1 :
2

(8.13) 0 < a < 2 6 - f l  a n d  a._<fi.

Remark 8.3. If Vi (x) satisfies (V2-3) with 6 > 1 /2 , as is seen in (8.12), we can
choose f3= 1  for any K ±.

Remark 8.4. If e r Vi (x)= o(r - 1 )  in (V2-3) (see §9; Examples I-1 and I-2),

(8.11)
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we have from (8.1) E(y)=1im sup i/1(x) for any y>0, and hence E(y) is independent
r-' oo

of y. I n  this case, 13 can be any constant satisfying

(8.14) 0 < 1 3 < 2 6  and  /3_1 .

In fact, if we put y(.1)=y (constant), where 0<y <2fl, then (8.4), (8.5) and (8.12) are
satisfied with this y().)= y.

Next we define k ± (x, 0 as follows (cf., Appendix):

k ± ( x , ) = - iNIC- riv, (x) -  v2 (x) + n  2r 1

4C 
11- 4C  - a •

It follows from (8.16) that

Im(C -  V2 ) = Im C i 1 +  4 a V 1  
14C-a1 2 f

and

Re (( - r/V 1 - V 2 ) = R e  -  V1 -R e   a  V 1  -  V
4C -a 2

 *

For any e llk  w e have from Lemma 8.2

Re C > lim sup V,(x) i f  a=0,
r  0 0

and from Lemmas 8.1 and 8.2

V1 (x)=0(r - i) an d  R e(> a /4 i f  a>0.

Moreover, we have V2(x)= 0(r- 6 ) by (A2-2). Thus, it follows that there exist con-
stants R , 0 = R  0 (K ±)> Ro and C =C (K ± )>1  such that

(8.17) 0  + Im g - riVi (x ) -  V2( x ) }  C:

(8.18) C- 1  < Re g vi (x) - v2 (.01
for any (x, O e B(R to) x K

Proposition 8 .2 .  For 13 and k ± (x, given as above, Assumption 2 holds.

Proof. The continuity of k ± (x, easily follows from (8.15), (8.17) and (8.18).
Further, we have (A2-2) for 'xi > R t o  sufficiently large. (A2-6) is obvious from
(8.12). Note that

(8.15)

where

(8.16)
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Imk ± (x, C)= -  Re .\/C  -  V, -  V 2 + IM [ 4 (c v 2 ) 1 .

Here

r/R e / - V1 - V 2  N/Re (C - V2 ) > C-1 /2[ - V R e (C - V2) < - C - 1 /2]

if e K+ [I( - ]  and 1x1 is sufficiently large. Thus, (A2-3) follows if  w e note that
ar vi (x) = 0(r - 1 ) at infinity. Note that

ir/(17 V1 -3Ca r V1 ) + (1 7 V2 -  V,.V2 ) 
2,/ -r iV 1 -  V2

tl(r ar Vi —  ga,W r i ar v i {n(v vi g a r v +( V2 —  ga rV2)} 
4(C-riV 1 -V 2 )4 ( t - V 1 -  V2) 2

Then (A2-5) follows from (V2-2) and (V2-4).
Next we prove (A2-4).

n -1 = hn  N /C - V 2 +  1 -  Re
[ 
 _ -  v 2 i•

1 Re k ± (x, 2r

For y =y(K±) given by (8.9), we put

  

16= Re [ qa r V I+ i  -  Y Re
-11V 1 - V 2 j  r r

Since CM = •- a/4, it follows that

 

— (ra r v i + y )  —  r7 2Y

 

—11V1 —V2

 

rk ± -51ar k± =

y iR e ( -
Jo =

a 1 a- V  - R e  V 2} i R e  -  -  —(ra,.V + yV i ) -R e 1
1  V2 174-

—  — v i  —  V 2  2

-  Im  Y 2 ) 2

a
•

2( -  V  - — V  
2

-4-

Here we choose R >R i o  so large that /16 —  -(21-4 — V i (X)> — (cf., (8 .7)), -R eit i  V2 (x)

> — 
d

(cf., (V2-2)) and E(y) - (rarV i +yV i ) > - —
d  

(cf., (8.1)) for where
Y 3

d>0 is as given in (8.8). Then

1Re C- a  - V , -  Re — V2 = Re zi6 + A 6 — --a-  -V ,  -  Re —
1 

V2 > >04 4 11 3
and

R e - - -  -  jy- + y . 1)  -  R e  1 V 2 = R e  -  A 6 +  A  - (E(Y) +

E (y )- I-(ra
r

 V, + yVi ) -R e 1 V 2 >0
Y 
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for 1x1>R, and hence we have /,>  0 . If we note that

Im \IC-riV 1 -  V2 >0 (see Notation given in §1),

it then follows that

n - 1 -fi 13 y 213- y Rek ± 2r -  2 r  -  4 r  -  4 r

This proves (A2-4) since we have 2/3>y by (8.12).
Finally, we prove (A2-1). It follows from (1.9) and (8.15) that

nq ± (x, C) = (1 —r ) v, + ( n - 1 ) ( - 3 )  
4(C - 1 2r/V  -V  ) 4 r 2

5112 (arvi) 2 + 4113
r Via, v2 i3 rv 2  + v16(C V2)2 2N/C  nv, —  V2

3 .

If a = 0 in (V2-3), then I/ =1 and (A2-1) follows from (V2). If a> 0 in (V2-3), then
we have

- na2 V( l - q ) V  r a r i
)

ri(a,W i+ aV i) 
4(C -r iV i - V 2 ) Lt 4(C -n V 1 - V 2 )

aqV i (nV 1 + V 2 ) 
4 ( C - tiV - V 2 )

sin ce  1 -n +  a l   =0 by (8.16) and V1 =0(r - 1 )  by Lemma 8.1. Thus, (AZ-1) also4C
holds in this case. Proposition 8.2 is proved. q. e. d.

By means of the above two propositions, we see that for the potential V(x)
satisfying (V1), (V2) and (V3) all the results (Theorems 1-5) stated in § 1 hold.

Remark 8.5. We can replace (V2-3) by the following more general conditions
(cf., Lemma 8.1):

(V2 -3)'1 ' 1 ( x ) =  00- 1+9, ar Vi (x)=0(r - 1 ) and

0,2V,(x)+ a(r)V ,(x)=00. - ' ,

where v is a constant such that

(8.19) 0< v< 1

and a(r) is a real function of r> Ro such that

(8.20) a(r )=0(r -2v ), a'(r )=0(r - v- 6 ) a n d  a"(r)=0(r - v- a).

In fact, if we replace A0 by

2170= max { infE(y), infE(y)+ lim sup a(r)/41
y er 6y e r , r-.00

(8.21)

and k ± (x, by
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k±(x, C )= - 1\1C - TIW V 1(x)-V 2(x) + n2-r1

-0,.[n(1)1' i (x)] 
4 { n(r)Vi(x) - V2(x)}

r1(0= 4C
4C -a(r)'

then Propositions 8.1 and 8.2 can be proved for these 1 6  and k ± (x, C) by the same
argument as given above.

§ 9. Examples

I. First we consider potentials V1 (x) of the form

(9.1) Vi(x)= V1 (r)=0(1og r) at infinity,

where Ot) is a real function of t >0 satisfying the following conditions:

(9.2) OW, 0 '( t )  a n d  (VW are bounded at infinity.

This type of potentials satisfies (V2-3) with a =0 and (V2-4) for any 0< 5 <1 , since
we have

Vi(r)= 0(1), V (r) = 0(r -1 ) a n d  .11(r)= 0(r -2 ) .

Let 5> 0  be as given in conditions (V2-1) on V3 (x) and (V2-2) o n  V2 (x). Then, by
(8.2)

(9.3) A 6=  inf E (y )= inf [lim sup —

1  
{(Y(log r)+y(k(log r)}];

yer6 Yer6 r—oco y

o= (0, min {46, 2)),

and it follows from Theorem 5  that the spectrum of L= -  A + V (x) (V (x) = V1 (r)
+ V2 (x)+V 3 (x)) contained in (A s , co) is absolutely continuous.

I-1 . L e t 4 0 = 0 .  Then V 1(x)= O and

(9.4) Y(x)= V2 (x)+ V3 (x) .

In this case, we have from (9.3)

116= E(y)= 0 for any (5> 0  a n d  y > 0,

and hence the continuous spectrum (0, co) of L is absolutely continuous (this result
is already obtained by Ikebe-Saito [4] and Lavine [8]).

1 - 2 .  Let

(9.5) 4(t)= o(1) and 4 '0 ) = o ( 1 )  at infinity.

Then we also have from (9.3)

(8.22)

(8.23)
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A — E (y )=  O for a n y  5> O a n d  y >O.

The potentials

(9.6)
j 7 1 ( r ) =  lo g r ( real constant),

(9.7) V1(r)— log (log r )'

(9.8) V1(0— sin (log r) 
log r

are typical examples which satisfy not only (9.2) but also (9.5).

I - 3 .  Let OW =sin t, i.e.,

(9.9) Vi(r)= sin (log r).

Then, as we see in Mochizuki-Uchiyama [11], L has no eigenvalues in ( V572, oo).
From (9.3) it follows that

A 6 =  inf [lim sup  1  {cos (log r )+ y sin (log r)}]
yel- 6 r --.0 0 y

= inf + y- 2  = ‘N/11-  max { 1 6
1
6 2  ,

yel'a

Thus, in general A6> V372. However, if 6  1/2 in conditions on
we have A6= N1312.

V2(x) and V3(x),

H. Next we give examples which satisfy (V2-3) with a> O. Let Vi (x) be an
oscillating long-range potential of the form

(9.10) sin br Vi (x)=tfrtx r (b; real constant) ,

where ip(x) is a real function satisfying the following conditions at infinity:

(9.11) 0(x) = 0(1), V thx) = 0(r - 6 ) a n d  V2tfr(x)= 0(r - 6 ).

Then Vi (x) satisfies (V2-3) with a =b 2 and (V2-4). By (8.2)

(9.12) A6=inf E(y)+ b2/4
yerd

=1bl max 11/46, 1/2) lim sup {0(x) cos bi-} +b 2 14,
r-■co

and (As , co) becomes the absolutely continuous spectrum of L .  Note that, in this
case, the essential spectrum of L consists of [0, oo) since V(x) tends to zero at infinity.
Moreover, as we have proved in [11], there exist no eigenvalues in (E0 , oo), where

E0 = inf E (y) =  lim sup {ifr(x)cos br}
0<y<2 r ,c 0

(9.13)
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i.e., (E0 , oo) is the continuous spectrum of L .  In this sense, our above result is in-
complete, and it remains as an open problem to study a more precise structure of
the spectrum of L in (0, Ai ].

II-1. Let i/i(x)=c (real constant), i.e.,

(9.14) V i (x) — C sin br 

and assume that 6> 1/2 in conditions on V2 (x) and V3 (x). Then it follows from
(9.12) that A,= A,(b)=Ibc112+ b2/4, whereas E, = I bci/2. N o te  th a t i16 -40 as
b -0 .  This is reasonable since V 1 (x) tends as b—+0 to  the Coulomb potential clr
(in some sense) for which the absolutely continuous spectrum consists of (0, no).

II-2. Let kfr(x)=cx, I r, i.e.,

cx„ sinV1 (x) — br
r

2

Since 1//(x) satisfies (9.11) with 6 =1, in this case, we also have As=lbC112+ b2 / 4 if
6> 1/2 in conditions on V2 (x) and V3 (x).

I I - 3 .  The potential

—32 sin r[g (r) 3  cos r —3g (r) 2 sin3 r + g (r) cos r + sin3dV(x) — [ 1 + g  (0 9 2

in R 3 , where g (r) = 2r — sin 2r, is given by von Neumann and Wigner as an example
which has the eigenvalue +1 with eigenfunction

u (x) — r[l + g (r) 2 ]

V(x) can be decomposed as

8sin 2r V (x)= — + V3 (X )  ,

where V3 (x)=O(r 2 ) as oo . Thus, by II-1, we see that (8, no) is the continuous
spectrum of L and (9, co) is the absolutely continuous spectrum.

11-4. The potential

—  32 k2 Œ2 sin kr[(kr + 1/2a) cos kr —sin kr] V(x) = [1+ ah(r)] 2

in R 3 , where k, a are non-zero real constants and h(r)= 2kr — sin 2kr , is given by
Moses and Tuan as an example which has the eigenvalue + k2 with eigenfunction

u (x) — sin kr 
r[1 +och(r)]

(9.15)

(9.16)

sin r

(9.17)

The above V(x) has the following property:



V i(x )=V1 (r )—  sin rP ( 0 <  t t  1) .(9.19)
r"

2 -body Schrlidinger opera tors 401

—4ksin 2kr V(x)— +v3 (x )

where V3(x )=0 (r - 2 ) as r-4 co. Thus we see that (4k2, oo) is the continuous spec-
trum of L and (5k2, oo) is the absolutely continuous spectrum.

II-5. Generalizing the above two examples, Kato [6] gave the potential

(9.18) V (x )= + 2  f / 2  2 k  co t  kr f 3) 
f f2 j' 4r2

in Rn , where

f = f (r)= r2 — ce r œ -  cos 2krdr (a> 0).

Here we assume a > 1/2 and consider the operator L=  —4 + V(x) defined for func-
tions in S2= {x; xi > nIk} satisfying the Dirichlet boundary condition. Then + k2

is the eigenvalue with eigenfunction

sinu(x)— 
k r

r- 0 - 1 )12 .f (r )

In fact, f (r)=
 rŒ{1

 + O(r - 1 ) }  at infinity. Since we have

4ka sin 2kr V(x) — + 0 (r -2 )  a s  r co,

it follows that (4Œk2 , oc) is the continuous spectrum of L and (4ak2 + k2, co) is  the
absolutely continuous spectrum.

I I I .  Finally, we give an example for which condition (V2-3)' o f Remark 8.5
is applicable. Let

This potential behaves like

V1( r )= O (r ) ;

V ;(r
) — 1UCOS rU

+ 0(r - l- P) = 0(r - 1 ) ;(9.20)

V7(r) — 1,12 sin rt,

r2 - 4 "  ( r - 2 ) 0 ( r - 1 - ( 1 - 1 ))

Namely, if we put a(r)= tt2 r - 2 ( 1 - - "), Vi (r ) satisfies (V2-3)' with y =1 —p, and 6=1.
We assume that 6>1/2 in conditions on V2 (x) and V3(x ).  Then by (8.21) we have

A =  A 1 1 2 = -y-- + 1 2
4, r-2(1-P),

and (ira , co) becomes the absolutely continuous spectrum o f L .  If 0 <y <1, we
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have ;175 =pt/2, and if ft = 1, we have 1 6 = 3 /4 ,  which coincides with the result obtained
in II-1.

As we see in (9.20), the potential (9.19) satisfies also (V2-3) with a =0 and
6 = 1 -  II i f 0 < i t  < 1 . However, in this situation, the result becomes bad especially
for it> 1/2. In fact, we have from (8.2)

A 6 =  A  _  =  in f E (y) =max
y eri_,

1 P P  t
( 4(1-0 ' 2 1 •

Hence, if pt> 1/2, we have A 6 = 4(l  1.1)  , which tends to co as p-ol.

§10. Extension of the results to more general second order elliptic equations

In this section, we shall show that all the previous results (Theorems 1-5 ) can
be extended to the exterior boundary-value problem

(10.1) P(x, D)u = - + ib /O a fax) (a k + ibk(ou + v (x )u
k=1

= C U + f (x ) i n  S2;

or
(10.2) B u = {  „ =O o n  00,

E v i a» , ( x )  k + ibk (o u  +  d(x)u
i,k=1

where V (x) satisfies conditions (V1) and (V2) in § 8, and the unique continuation
property (V3) is assumed to the operator P(x, D ) .  ai k (x) and bi (x) are required
further to satisfy the following conditions.

(AB1) ai k (x) and bi (x) are real-valued smooth functions in 1-2= Q u 3s-2; a i k (x)
= ak i (x) and there exists a constant Co >1 such that

Clik(X)c
j,k=1

for a n y  e I?" and x e

(AB2) As r ---0 oo

(AB2-1) ai k (x )- 6 p c =  0(r - 6 ) a n d  Fa i k (x )=0(r - 1 - 6 ),

(AB2-2) i bk(x )- a k b i (x)= 0(r - 1 - 6 ),

where bi k  is the Kronecker delta and 6 is a positive constant as given in
(V2).

For the sake of simplicity, we put Di = a + ib i (x), D = (D 1 ,..., DO and A= A(x)
=(a i k (x)); that is P (x , D )=  -D  AD +V(x).

We define the operator L in L 2 (0) by
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g(L )= tu ; u e L2 (0) n HL ,, D • ADu e L2 (2), Bul of2 =0}
(10.3)

1 Lu = P(x, D)u f o r  u G 9(L ).

Then L is selfadjoint and lower semi-bounded in L2 (0) (see, e.g., Mochizuki [9]).
Moreover, th e  grow th p rop er ty  (Assumption 1 ) h o ld s for solutions of the
equation

(10.4) P(x, D)u- Au =0 i n  S2

with real ) > A  (Mochizuki [10]).
Let rik , a, /3 and k± (x, C) be as in § 8. For solutions of (10.1), (10.2) with C

in a compact set K ±  o f i l k  and f  e Li + p (Q ), the radiation condition has to be
2

modified as follows:

(10.5) u e L 2- 1 - 6, (0 )  a n d  2 • A{Du +5ek ± (x, Ou} e L 2-1+P (B(R
2 2

for some R 1 = R i (K ±)> R o , where

(10.6) i2 (x, c)=k ± (x, C)(2 • A2) -1 1 2 .

Outgoing [incoming] solutions are defined by means of (10.5) as in Definition 1.2.
We know that Theorems 1 -5 can easily be proved if one can establish Propo-

sitions 2.1 ,-2.4, where in  a ll assertions 17 u+2k ± (x, O u should be replaced by
A{Du+2k ± (x, C )u} . Propositions 2.1 can be proved without any essential
change of arguments. Thus, Proposition 2.4 remains as the  only one assertion
which has to be carefully checked. It should be noted that in the proof o f Propo-
sitions 2.1-2.3 we never make use of (AB2), which will be used to prove Proposition
2.4.

We put

(10.7) 0=Du+2k ±(x, )u.

Then it follows from equation (10.1) that

(10.8) -D • AO+ k ± (x, 05e • A O +  ± (x, ou— f(x)=0;

(10.9) ±(x, 0 =q ± (x , C) + {17  • (A2 (2 • A2) -1 1 2 )  -   n
 r

 1 } k ± (x, C)

+ {(2 • A2) -1 1 2 2 • AV - 2 • V }k ± (x, C) .

By (AB2-1)

17 • (A ( • A 2)-1/2) n -
r 

1( 2 .  A r ) ( s e  .A30-1/2

+ (2 • A.2) -  ' 12 (V • 21.2) -  n  ; 1  =O (r 6)

and
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(2 • AR)-  / 2 A V  5c" • V = 0(r-  6 ) • V.

Hence, we see that there exist constants R 1 = R i (K ±) R 0 and C 1 = Ci (K±)> 0 such
that

(10.10)( 4 ( x ,  C)I a for a n y  ( x ,  e  B(R i ) x K±.

This corresponds to (A2-1) in Assumption 2. Using again (AB2-1), we have the
inequalities corresponding to (A2-2)— (A2-5):

(10.11) Ik±(x, C2,

(10.12) T-Im k ± (x, () C3,

(10.13) Re 1 (x, — n

(10.14) A2)V k ± (x, 0 - 50 • A V A ± (x, 01 0 5 r - ' -
8

for any (x, C) e B(R i ) x K .
Now, we multiply by • AO on both sides of (10.8) and take the real p arts. Then

we have

(10.15) Re V • 1240(2 • AO) -1- AR(0 • A0)}

= { R e  ± — (V Ag)} (0 Aû)+ {1A01 2 A 0 1 2 )

+ Re [{(2 • A i ) V  — • AV)k ± ) • Apu]

+ R e  [  E  ajp (Di am )210 p0
i.k.1,P

-Im  [ ;(A5c1(ai bk —akki)(Ao) j ai

+ Re [(4 ± u —f)5e -0].

This corresponds to equation (2.13). Making use of this equation and applying
(10.10)—(10.14), (AB1) and (AB2), we can follow the same line of proof of Propo-
sition 2.4 to get inequality (2.9) with Vu + Rk ± (x, C)u replaced by Du + 5c1± (x, )u.
Hence, Proposition 2.4 holds true for outgoing [incoming] solutions of (10.1),
(10.2).

Remark 10.1. If w e assume aik (x)--(5ik = 0 ( 7 * - 1 - 6 )  in (AB2-1), then as the
radiation condition we can use the following

(10.5)' u e L 2-1-OE ( Q )  and 2 • ADu+k±(x, t3u e L 2-i-Ffi (B(Ri)) •
2 2

For if we put 0= Du +  k ± (x, C)u, then 0 satisfies

(10.8)' —D • AO + k ± (x, 0:i • AO+ ± (x, — f=  0,
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where

(10.9)'4 ± ( x ,  = q ± (x, C) + {V • A54 — n
;

1
}  k ± (x, C)

+  •  AP' — 56 • 17 1k ± (x, () — k ± (x, {(2 • AR) — 1} ,

and by assumptions we have .4 ± (x, C)= 0(r - 1 - 6 ).

Appendix

Let us explain how we found the radiation condition (8.15).
For solutions u of the Helmholtz equation

(1) — du — (u =f (x) i n  Q,

the Sommerfeld radiation condition is given in the form

(2) u = 0(r- ( n - 1 ) / 2 )  a n d  eru — V -C-u = O (r(i)I 2)

at infinity. This condition is used in Eidus' classical paper [2] to prove the principle
of limiting absorption for the boundary-value problem (1.3) with V(x) behaving like
0(r - ( +1+6)/2) at infinity. Note that (2) can be written as

(3) u E L 2- 1 -e  (0 ) and
2

Or u —I u = u) e L 1- e (0 ) for a n y  8 > 0 .
2

In  order to generalize Eidus' results to more general potentials, (3) should be
modified in the form

(4) u  /42- 1- «   (0 )  a n d  e- P(x,c)ar(eP(x.ou)e L 2- i +p (Q),
2 2

where a, )6 are positive constants satisfying a+ 13 min {26, 2). Suppose that p(x, C)
depends only on r and C. T h e n  eu  satisfies the equation

(5) —LI + 2p' Or + q(x, ()}(ePu)=eP f(x);

(6) q(x, C)=V(x)—(+ p"(r, ()+ n —

r

l   p'(r, C) — p'2(r, o.

In this equation we hope to make q(x, C)= 0(r - 1 - ')  at infinity. This implies the
"Riccati" equation (1.4). Namely, if we put

(7 ) p'(r, C)=k(r,

then we have

(8) V (x) — C + k' +  n —

r  

1 k— k 2 = 0(r -  a) .
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Let V(x) be a short-range potential: V(x)= 0(r - 1 - 6 ). Then (8) has a  special
solution

(9) k(r, =  _ n 2-r 1

Making use of this k(r, 0, we can represent (4) as follows:

(10) u e L2- l - Œ ( Q )  a n d  er u + k(r, Ou e L 2-14-P (0).
2 2

This is  the radiation condition used in Mochizuki [9] (cf., also Ikebe-Saito [4],
where is used the same radiation condition for some long-range potentials).

In the present case, however, the function (9) does not satisfy equation (8) since
the behavior at infinity of the potential is not so sim ple. So we have to make a
modification of (9). For this purpose, we first assume that V1(x) depends only on
r and V2(x)= O. Put

(11) k(r, =  -  i riVi(r)+ h(r, O ,

where n is a complex number, h(r, is a complex function and Re C and r should be
chosen sufficiently large . Then it follows from (6) and (7) that

(12) q=1/11- V3.--C -1- k'+  n k 2

= (1 - ) V 1 +V 3 +12' +  n 1  h  h 2

+ 2iVC nV,  ih n - 1  t
2r 4(C -nV i )

Our aim is to find some and h(r, C) which make q=0(r - " ) .  We put

n -1  (13) h(r, C) = 2r '

and substitute this in  (12). Then

q=(1-70V1+ 5/72V112 ( t  -  1 ) ( n  3 )   4 .  v 3

4(C-nV 1) 1 6 ( ( - V 1) 24 r 2

= ( 1-17) / 1 + - r1V7 
4(C-n vo +0(r - i- 4 ),

since we have assumed that V',= 0(r - 1 )  and V3 = 0 ( r " ) . Let a  =0  in (V2-3).
Then since V7. = 0(r - 1 - 6 ), choosing

(14) n=1,

we have q = 0(r- 1 - 6 ). Next, let a> 0 in (V2-3). Then, as is proved in Lemma 8.3,
V1 = 0(r 1 ) and hence
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ro v i +  
4(C —

r1{V;— 4 C( 1 - 1 1) v

+ 0 ( r
- 2 )

4 (1 —tiV1)

Thus, choosing

4C 
(15) r/— 4C —a

we have g = 0(r - 1 - 6 ). It follows from (11), (13), (14) and (15)

tir i (r)4 (  (16) k ( r , )= n—  +2r 4{ Vi(r)} ; n 4e — a

As is shown above this k(r, C) solves equation (8).
T he function k ± (x, C) defined by (8.15) com es from  (16) i f  w e  replace riV1(r)

by V ,(x )+  V2 (x) and V (r )  by 0,.V,(x) (note that we d o  not assume that V2 (x) has
second order derivatives). Conditions (V2-4) o n  Vi (x) a n d  (V2-2) o n  V2 (x) are
required in  order to guarantee that this replacement cau ses n o  serious difficulties
(cf.. Proposition 8.2).
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