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Introduction

“In the paper [18] we proposed a finite element approximation corresponding
to the upwind finite differencing to diffusion equations with drift terms, and obtained
L*-stability and L2 error estimates. This approximation enables us to obtain
L®-stable schemes under weaker conditions than the conventional finite element
method. The purpose of this paper is to present a class of upwind finite element
schemes for semilinear parabolic problems and to show the L®-convergence. We
also derive the rate of convergence, which is optimal in this type of approximation.

The finite element method is usually considered as the Ritz-Galerkin method
using piecewise polynomial base functions. Therefore, for parabolic problems as
well as elliptic ones, it is natural to derive the error estimates in the L2-sense (e.g.,
Douglas-Dupont [5], Wheeler [23], Thomée-Wahlbin [19], Fujita-Mizutani [7]).
On the other hand, in the L®-sense, Fujii [6] obtained stability conditions for a class
of finite element schemes for the diffusion equation. Considering the finite element
scheme as a step-by-step approximation of an evolution equation in the lumped
mass space, and using the approximation theory for semi-groups in the space of
continuous functions, Ushijima [20] proved L®-convergence for semilinear parabolic
problems without presenting any convergence rate. (cf. Nakagawa-Ushijima [14],
Ushijima [21]).

Our standpoint for the finite element scheme is to regard it as a finite difference
scheme defined on an irregular mesh, which is obtained by substituting each local
base function to the test function of the weak form derived from the original equa-
tion. From such a standpoint we use a skillful technique of the finite difference
method in dealing with the nonlinear term. To put it concretely, our L®-stable
schemes include an artificial term which was introduced by Mimura [11] to obtain
a class of L®-stable finite difference schemes for semilinear parabolic systems. (cf.
Mimura-Kametaka-Yamaguti [10]).
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Viewing a finite element scheme as a finite difference scheme has not been taken
so frequently. The main reason is considered that the derived finite difference scheme
does not have ‘“‘local consistency’ except some cases of special triangulation of the
domain. (cf. Waltz-Fulton-Cyrus [22], Yamamoto-Tokuda [24]) For parabolic
problems, however, since the inconsistency stems only from the highest derivative
terms with respect to the spatial variables, we can overcome the difficulty by using
the result of uniform convergence of the corresponding linear elliptic problems,
which is an extension to the upwind finite element scheme of the result obtained by
Ciarlet and Raviart [4] for the conventional finite element scheme.

The contents of this paper is as follows. In §1, two main theorems are stated
with some basic assumptions. In §2, some properties of the derived finite difference
equations are discussed. In §3 (resp. §4), by making use of a theorem concerned
with the corresponding elliptic equations, the main theorem for the explicit (resp.
implicit) scheme is proved. In §5, the theorem used in §3 and §4 is proved. In
§ 6, some remarks are given.

§1. Presentation of results

Let Q be a bounded domain in R" (n=2) with a C3-class boundary I' or a
polyhedral domain in R", and T be a fixed positive number. Consider the problem,

%=Au—(b~7)u+f(x,t,u) in 0=0x(0, T),

(1.1 w=g(x, f) on X=Ix(0,T),

u=u%x) in Q at t=0,
where b=(b,(x),..., b,(x)) is a given vector-valued Lipschitz continuous function
in Q and
=%y 0
b-V= Elb‘ o, -
Assumption 1. f, g and u° satisfy the following conditions:
) f(x, t, w)=fo(x, )+fi(x, t, u)u, where f, and f, are continuous in Q and in

0 x R respectively. Furthermore, f, is continuously differentiable in ueR
and satisfies

(1.2) filx, t, )M for (x,)e0, ueR,

where M is a constant;
ii) g is Lipschitz continuous in te[0, T] uniformly with respect to xer;
iii) u® is continuous in 2;
iv) g and u° satisfy the compatibility condition

(1.3) g(x, 0)=u"x) for xerl.

In order to obtain the approximate solutions we discretize (1.1). We tri-



Upwind finite element approximation 329

angulate £ and obtain a set of closed n-simplices {T;}}%, and a set of nodal points
{P}¥+N= satisfying the following four conditions:

i) the interiors of T; and T;, i# j, are disjoint;

ii) any one of the faces of T; is a face of another n-simplex T; or a portion of the

N
boundary of the polyhedron \ﬁ T;;
j=1

N
iii) all the nodal points lying on the boundary of the polyhedron j\‘j T; exist on I';
=1
iv) P,i=1,..., N, existin Q and P, i=N+1...., N+ Npg, existon I,
Define h(T)), p(T)), h, x, Q,, and T';:
h(T;)=the diameter of the smallest ball containing Tj;
p(T;)=the diameter of the largest ball contained in T};
h=max {h(T); j=1,..., Ng}.
x =the minimum perpendicular length of all the simplices;
N
Q,=the interior of U T
j=1
I',=the boundary of €.

We denote by 7, (={T;}}%,) a triangulation of @ satisfying the above conditions.
(Ng, N, and Ny may vary depending on a triangulation.)

Remark 1.1
i) Obviously it holds that

(1.4) k<h.

ii) In the case where Q is a polyhedral domain, we can take Q,= and then we do
not have to consider any extensions of functions defined in @ in the subsequent
sections.

Assumption 2. Triangulation &, is regular and of acute type; i.e.,
i) there exists a constant y (>1) independent of triangulation such that

WT)=yp(T,) forall T,es,
ii) it holds that
o(T)<0 forall T,es,,

where o(T))= max cos(F4;, V2, and 4; i=0,..., n, are the barycentric co-
0Si<jsn

ordinates with respect to the vertices of the n-simplex T,.

With each nodal point P, we associate functions ¢;, and ¢,, such that

i) ¢y is linear on each n-simplex and ¢, (P;)=4,; for i, j=1,..., N4+ Ny,

i) @, € L3(R,) is the characteristic function of the barycentric domain D, associated
with P;; i.e..

D;= \kj {D¥; T, € 7 such that P, is a vertex of T;},

where
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Di= N\ {x;xe T and A(x)SA(x))
i=1

and 4;, 4;,,..., 4;, are the barycentric coordinates with respect to P, P;,...., P
the vertices of T,.
Define V,, V,, and a lumping operator —:
V,=the linear span of ¢y, i=1,.... N+ Ng;
Von=the linear span of ¢,,, i=1,..., N;
—: C(Q) or C(Q,) — LX)

in

N+N
Vb= ZBU(Pi)$ih°
i=1

We now introduce the upwind finite element. A n-simplex T;e .7, is called an
upwind finite element at a nodal point P; if the following two conditions are satisfied :
i) P;isa vertex of T},
ii) T;—{P,} meets the oriented half line with end point P; of direction b(P;).
We denote by T;, the upwind finite element at P;, by selecting arbitrary one in the
case where there exist some upwind finite elements at the point. Define a linear
operator B, from V, into L*(Q,) by

N
B,v,= 21 By Gin for v,eV,
i<

where
] Bhivh__'b(Ri)'Vvth,(.)'

We consider the following discretized problems of (1.1).
Explicit scheme:

Find {uf},=o,.. vy <V, such that

—k+1 _ 7k
(Eh——‘u—h, $h)h= —ay(uf, ¢,) — (B,uf, d’-h)h

T
+(fo(k)+(fi(x, kz, ul)— M)uk*' + Mk, §,),
forall ¢,eV,,, k=0,..., Ny.—1,

(1.5)

ukti(P)=g(P, (k+1)t)  for i=N+1,.., N+Ng k=0,.., Ny—1,

ud(P)=u(P)  for i=1,..., N+Np
Implicit scheme:

( Find {u%},=0... n, <V, such that
k=0,...,N1

gk+1

ok
(E”-"—lib‘s $h>h= —ay(uk*, ) — (Bul*', §,),

T

+(fo(k‘t+1-’)+(f1(X, kz, uf)— M)kt + Maf, $h)h
(1.6)
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for all ¢,€ Vo k=0,..., Ny—1,
uf*1(P)=g(P; (k+1)7)
for i=N+1,..., N+ Ny, k=0,..., Ny—1,
u(P)=u’(P;) for i=1,..., N+ Np,

where 7 is a time mesh, N;y=[T/t],

(u, v),,=$ u-vdx,
2

h

and

& ( 0u _Ov
a0 = £ (G505,

Our main results are the following two theorems.

Theorem 1.1. Under Assumptions 1, 2, and the condition

2
< K
(1.7) T=(n+1)+||b||o.uo,n" ’

(1.5) is L=-stable and if the exact solution u of (1.1) belongs to C1+1.1(Q)
N C2*1.9(Q) n CO1+3(D), then the solution uf of (1.5) satisfies the estimate

(1.8) max |uk(x)—u(x, k)| <ch,
xef,k=0,...,Nr

where ¢ is a nonnegative constant independent of h, t, and k and

[Bll0,5.0=max { 3% bi(x)?} 112

Theorem 1.2. Under Assumptions 1 and 2, (1.6) is unconditionally L*-
stable and if the exact solution u of (1.1) belongs to C'*::1(Q)n C**1:°(Q)n
CO1*+1(Q), then the solution u} of (1.6) satisfies the estimate

(1.9) max  |uf(x)—u(x, k1) Sc(t+h),
N1

where ¢ is a nonnegative constant independent of h, T and k.

Remark 1.2.

i) In (1.8) and (1.9), uk are supposed to be extended to Q— €, in such a way that
uk are constant along the normal to I'.

ii) More precise results about the L= -stability are shown in Corollaries 3.1 and
4.1.

ili) We cannot expect ch? (resp. ¢(t+h?)) in (1.8) (resp. (1.9)), because the upwind
finite element approximation corresponds to the one-sided difference approxi-
mation whose trancation error is of order h.

iv) Notations of function spaces used in this paper are listed below.
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For 0<a =1 and nonnegative integers I, m,

| Du(x)— Dlu(y)|
[x—yl®

|l 1ve,e,0=sup | 181 =1, % ye @},

| DED™u(x, t) — DED™u(y, t)|
[x—pyl*

]

l u | (I+a,m),©,Q = Sup {

Bl =1, x, yeQ, te(0, T)},

| D6 Dru(x, t)— DEDM(x, 5)| .

|u[(l,m+a),w,Q=sup{ 't__sla

1Bl =1. xeQ. 1, se(0. T)},

ltelly, 0,0 =sup {IDGu()|: 1BIS1, x € Q},

Il 1y, 0.0 =SUP {IDEDJu(x, D5 IBIS1, j=0,....,m, xeQ, te(0, T},
”u”l+a.oo,ﬂ= "u"l.oo,ﬂ+|u|l+a,oo,9!

Nl 1+ aumy,o0i0= 14l tmy,c0,0 F 1814 2m), 0.0 5

Nttt ayyoon = 18|ty 0,0 F [l Gm+2y,0000

C’(Q)={a; u is conﬁnuous]y differentiable up to order I in ’Q} ,

Clm(Q)={u; u is continuously differentiable up to order [ in x
and up to order m in t in Q},

C*(@)={u; ue C'(Q) and [[u];44,0,0<+ 0},
CH'a.m(Q): {ll; ue Cl,m(Q) and ” u "(l+a,m),oo,Q< + w} ’

Cl,')‘+a(g)= {u; ue CI'M(Q) and "u”(l,m+a),oo,Q< + w} ’

I.‘]|(0,0+1),w,2=5uP {‘I&l‘i)_;s“fﬂ)—ia xel,t se (0, T)} .

For 1Sp<+ o0,

lulype={ = [ID5ullfo@}'?,
18]=1

1
flul Lp0= {jf_:0| ul f,p.n} Up,

Wip(Q)={u; u is measurable in Q, |[ul; , o< +0}.

Also, the following notations are used throughout this paper:
c¢=c(A,...., A;) means that ¢ is a nonnegative or positive constant depending
only on A4,,..., A;;

<i,j>={i, i+1,...,j} for integers i< j;
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0 with super- and/or sub-scripts denotes a real number whose absolute value
is bounded by 1.

§2. Preliminaries

In this section we introduce a difference operator related to the spatial deriva-
tive terms of (1.1). After examining some properties of the difference operator, we
rewrite (1.5) and (1.6) by making use of it.

Let L,={L,;})., be a difference operator such that

N+Ngn
(2.1) L,,,v=—1—» > (aj+b;;)vy for ie<l, N>,
=1

myy
where v,=v(P;), je <1, N+ Np>, and
ma=($,-h, alh)m aij=ah(¢jm din)s bu=(Bh¢p 55.-;.);.-

Lemma 2.1. Under Assumption 2, it holds that for ie <1, N> and je <1,
N+ Ng>, )

<0 if i#jf ay cntl
(2.2) a;; 20 if i#j and 0<m‘“= 7
ce s b |b(P)]
< Zii iJl
(2.3) b, =0 if i#j and O§m“§ P
N+Np N+Np
(2.4) Z aij=0 and E bu=0,
Jj=1 Jj=1

where K, is the minimum perpendicular length of all the simplices which contain
P, as a vertex and

|b(P)| = {;z:'l b(P)2}/2.

Proof. (2.2) is the result obtained by Fujii [6]. Let us prove (2.3). Let
T, have vertices P, P;,..., P; and Z,, 4,,..., 4, be the barycentric coordinates with
respect to them. Observing that

bij=mb(P)-FPulr.»

we have

m“b(P,)-Vl, lf j———i‘G {i, il""’ i"}
(2.5) bu=

if &, ifyenns iy},

where ip=i. Let p, be the vector P,P;,, ke <1, n>. A brief calculation shows

e

(2.6) Vll.p‘C:é"( fOl' l, kG <1, n> >
2.7 Vie-p=—1 for ke<l,n>,
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(2.8) IZHE
Ky

In view of the definition of the upwind finite element, we note that there exist non-
negative numbers ¢}, ke <1, n>, such that

(2.9) b(P)= — kgnl cipe

Combining (2.5)~(2.9), we obtain (2.3).
(2.4) is obtained by noting that

N+Np .
jgl din=1 in Q.

This completes the proof.

For later use we present equivalent schemes to (1.5) and (1.6), making use of the
difference operator L,.
Explicit scheme:

ukFt gk
LU Lyl £+ £(Py K b kTt = M —uk)

(2.10) for ie<l, N>, ke <0, Ny—1>,

uftl=g(P;, (k+1)1) for ie<N+1, N+Ng>, ke <0, Ny—1>,
u9;=ul for ie<l, N+ Ng>.
Implicit scheme:

k+1 _ ok
Uhi - Uhi — L+ 4 flF 4 £(P, ke, uk)ult ! — M(ulit — uk)
(2.11) for ie<l, N>, ke <0, Ny—1>,

uffl=g(P;, (k+1)y1) for ie <N+1, N+Np>, ke <0, Ny—1>,
u;=u? for ie<l, N+ Ng>,

where uf; =uf(P)), f& =fo(P;, kt) and u=u’(P)).
(2.10) and (2.11) are derived by substituting ¢,=¢;, in (1.5) and (1.6) respec-
tively and by dividing both sides by m;;.

Remark 2.1. Except some cases of special triangulation, L, has no local
consistency in the conventional sense: for any sufficiently smooth solution u of (1.1),
— L,u does not approximate (du—(b-p)u)(P); i.e.,

—Lyu=(du—(b-p)u)(P)+0(1).
(See Waltz, Fulton and Cyrus [22].)
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§3. Proof of Theorem 1.1.

In this section we prove Theorem 1.1 by using the result of uniform convergence
for the corresponding elliptic problem (Theorem 3.1), which will be proved in §5.

We first state without proof a result about the approximate domain Q, (cf.
Ciarlet and Wagschal [3]).

Lemma 3.1. Let 9, be regular (i.e., i) of Assumption 2). Then, for
sufficiently small h, there exists a bijective mapping v from I" onto I', along the nor-
mal to I at that point and we have

(3.1) sulr_) dist (x, v(x)) < ch?,

where c=c(Q, n).
Let Q, be a bounded domain containing Q. By Lemma 3.1, without loss of
generality, we can assume that

3.2) Q,cQ, for all h.
Consider the following elliptic problem with b stated in (1.1),
—dv+(b-Py+uv=f in Q
(3.3)

u=g on T,

where f(x) € LP(Q) and g(x) € C(I') are given functions and y is a nonnegative constant
greater than or equal to some nonnegative constant uy(y, n, [|bllo,,0). (See (5.24).)
We discretize (3.3) by the finite element scheme,

Find v, € V), such that
(3.4) ay(v G+ (Byou G+ u(Gr Bdu=C(F. ) for all ¢,€ Vo,
vh(Pi)=g(Pi) fOl‘ iG <N+],..., N+NB>’

where fe LP(Q,) is an extension of f to Q, satisfying that

(3.5) 17 llo,p.s Zc(Bs D) 11 fllo,p-
Define an interpolation operator I, from C(2) onto V, by
(3.6) (I,0)(P)=0v(P)) for ie<l, N+ Ng>.

Theorem 3.1. Suppose Assumption 2 and that p>n. If the exact solution
v of (3.3) belongs to W2:P(Q), then we have, for the solution v, of (3.4),

3.7) “vh_Ihvllo,oo,ﬂ;,§ChIlv"Z,p,ﬂ’
where C=C(')’, 'Q’ n, p, i, ”b"0+l,ao.ﬂ) and

|b(x)—b(y)|

1Bl0s1,0,0= sup{ 2=

%,y Q)+ 1Blo,m,0:



336 Masahisa Tabata

Theorem 3.1 is an extension to the upwind finite element scheme of the result
obtained by Ciarlet and Raviart [4]. For the proof we are required to develop an
approximation theory for the upwind finite element term, so we shall show the com-
plete proof in §5.

Now, we fix a linear operator = which is decided from Q. In the case when 0Q2
is smooth, Z extends functions defined in Q to Q,, satisfying

(3.8)  |&0]mp0,=c(D, Q) [V mp0
for ve W™P(Q), me <0,3>, ISp<+ 0,
(3.9) 1E0] m, 0,0, = () |V]lm, 0,0 for veC"(Q), me <0, 3>,
and
(3.10)  1E0]m+a,00,0, (D) V]l m40,00,0
for veC™%(Q), 0<a=l, me <0, 2>.

Since Q has the C3-class boundary I', we can construct such a & by the method of
Nikolskij. (See Necas [15], Theorem 3.9, p. 75 or Mizohata [12], Theorem 3.10,
p. 183). In the case where Q is a polyhedral domain we define Z=1.

Define a linear operator E, from C(Q) n W-7(Q) into V,, by

(3.11) E,,v=v"—;ll"—v for veC(Q)NW2r(Q),

where v, is the solution of (3.4) with u=y, corresponding to
f=—AZv+ (b -P)Zv+usEv and g=vo.

It has been noted in Remark 2.1 that L,(I,v) does not approximate (—dv
+(b-p)v)(P). However, if we replace I,v by I,v+hE,, which is nothing but v,
the desired result is obtained.

Lemma 3.2. Let v belong to C2*1(2). Then, we have
3.12) IEwllo,w,00=Scllvll14+1,00,05
(3.13) LI+ hEw)=(—4v+(b- 7)) (P)+0,ch|Poll 1 +1,0,0
for ie<l, N>,
where c=c(y, @, n, |bllo+1,,0)-
Proof. Fix p>n and set
f=—4v+(F -b)v+ pov.

Obviously, f belongs to L?(Q) and f(= —A4Zv+(b-P)Ev+peEv) is an extension of
f satisfying (3.5) by virtue of (3.8). Applying Theorem 3.1 with u=pu,, we have

(.19 IEwllo,,0,S¢llVll2,p,0-
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Combining (3.14) and the trivial inequality

IIUIIZ.p,Qéc(pa Q) ”U" 1+1,00,0

we obtain (3.12).
We now prove(3.13). Since I,v+hE,v=v,, we have

(3.15) Ly (Iv+hEyv) =—’;1L;{ah(vh’ Gin) + (Bivy, Gin)in}

= (= 450+ b P)Zo+ po30, $u)s = 1o(Brs B}
In the support of ¢,,, it holds that
(3.16) —A4Zv+ (b -P)Ev+ poEv=(—Adv+(b-P)v+ pnyv) (Py)
+0:(1+po)h P01+ 1,00,0-
Combining (3.15), (3.16), (3.12) and that
(L, $ud=(1, Gup=my,
we obtain (3.13). This completes the proof.

Lemma 3.3. Let vieV,, ke <0, N>, satisfy

k Ky gpkpk K
k1 Uiy = TLy0f + Trivy, + 78§
(3.17) ok L

Jor ie<l, N>, ke<0,N;—1>,
and
(3.18)  |vkFt—vf|<tS  for ie<N+1, N+Np>, ke <0, Np—1>,

where g%, r¥ and s¥ are given functions defined on the nodal points P;, ie <1, N>,
Jor ke <0, N>, satisfying

q¥=0, [r¥|SR and |[s¥|£S
for ie<1, N>, ke <0, N>,

where R and S are nonnegative constants.
Then, under the condition (1.7), we have

eRT—1

3.19) max | vk | £eRT max  |v),| +
le<1,N+Np> te<1,N+Np> R

S

for ke <0, Np>.
Proof. From (2.1) we have

(I—-t‘—q%b”)vﬁ,—mi > (aiy+by ;) vk + trivk + tst
(3.20) vﬁ}“= ii il J#i .
1+ tq*
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By (2.2), (2.3) and (1.7), it holds that

l_fmgo’ —mL(au"‘bu)%O
i ii

i

forie <1, N>,je <1, N+ Ny>, i#j. Hence, we have

i+b
R AR AR

myy j#i
+rlrk ol +lsé|  for ie<l, N>.
By (2.4) we obtain
(3.21) max |vf}!|S(1+7R) max |vf]|+7S.
ie<1,N> ie<1,N+Np>

From (3.18) and (3.21), we have

max [vff!|S(1+1tR) max |vf]|+1S for ke <0, Np—1>,
ie<1,N+Np> ie<1,N+Npg>

which implies (3.19). This completes the proof.

Corollary 3.1. Under Assumptions 1, 2 and the condition (1.7), the solution
ul of (1.5) satisfies the estimate

k M|T|[,,0 eMIT—1
(3.22) max |uk;| LeMIT|u0]y o 0+
ie<1,N+Np> ' M|

xmax (|l follo,w,00 910,04 1),0,8)  for ke <0, Ny>.
Proof. From (2.10) we observe u} satisfies (3.17) and (3.18) by taking
gf=M—fi(Py, kt, ut;), ri=M, and sk=f§;
for ie<l, N>, ke <0, N>
and
R=|M|, S=max([lfollo,w,0 191(0,0+1),a0,5)-
Applying Lemma 3.3, we obtain (3.22). This completes the proof.
Proof of Theorem 1.1. Set vie Vy,, ke <0, Np.>, as follows:
vk=uk—Iu(kt)— hE,u(kt).

We look for a difference equation which vf sdtisfies. Setting u¥=u(P,, kt) and
c=c(y, @, n, [bllo+1,0,0), We have

k+1 _ 5,k k+1_ 4k k+1 _ ok —
(.23 : vk _ ubi - up; uk - u! —h(E,, u(k‘t+'c£ u(kt) )(Pi)

Wk Ay
H_W(P" k1) +0%;1'2 | u, | (0.0+}),@,0
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+ 0% chlu, |l (141,0), 0,0
(3.24) Lyvi=Lyuk— L, (I,u(kt)+hE,(u(kt))
= Lyul—(—du+ (b-F)u)(P;, k1) +05;chl|Pu] (141,0),,0
(.25)  Moty=Mub, — Mu* + 05 MA|ul 1 1.0).0.00
and
(3.26) {f1(P;, kt, uk;) —M}oit!

={f1(P, k1, uk) —M} “ﬁl_{fl(Pi, kT, uf) + (uf; —ub)
x%(P kt 6")—M}{u’~‘+0"-t‘/2|u| 1 }
ou is s 6§ i 5i (0,0+3),»,Q

+0&{ f1(P;, Kk, uk) —M}Ch”u"(1+l.0),oo,Q
={f1(P;, kt, uf) — MYuft' —f1(Py, kv, ub)ul+ Mu}

0 &1 (P, ke, eyut+ 05 YL (P, kex, Eutlchllul 110,00
—05{f1(Py, kt, ul) _M}T1/2|u|(o,o+%),°°.e

+08{ f1(P;, kt, uk;)—M}ch|ull(1+1,0),w,0>

where ¥ is an intermediate value between uf; and u¥. Since uf; are bounded by
Corollary 3.1, so are &%, i.e., it holds that

|E U for ie<1l, N>, ke <0, Np>,
where
U=max {|ully,0,0 the right of (3.22)}.
Combining (3.23) ~(3.26), we obtain

K+1_ pk
(3.27) 9‘“,‘—0“= —Lyok+ { f1(Py, kv, ul;) —M}oft!

+{M+ Ly, ke, ol st
for ie<l, N>, ke<0, N;—1>,
where s¥=0%¢(z1/2+h) and

e={llull1+1,1),0,0F 12l (241,0y,,0 + 122l (o,1+-21-).uo,Q}

. ofy
X c(U Qx(syvrfv) | o (x, ¢, u)l, Qxfl_’b’,m | filx, t, w)|, M,

”b"o+1,no,m y, 2, ")~
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From (3.27) we observe v} satisfies (3.17) and (3.18) by taking
qf =M —f,(P, kt, uk,)

=M+ 9P, ke, ut,
R=|M|+U-_sup i (x, 1,0,
and
S=¢(t'2+h).
Applying Lemma 3.3, we have

eRT

max | vk < eRT| 9 —lacuzgp .
ke<0.N—r>" Mlo,00,0, SeRTII0R] 0,0, + R (z124-h)

Hence, it holds

(3.28) max (luf—Eu(kt)]o,0,0,< max [Lyu(kt) —Eu (k)| o,0,0,
ke<O,Nt> ke<O,Nt> .
+h  max |[|E,u(kt)|o,w,q,+heRT| E,u(0)]o,u0,q0,
ke<O,N1>
eRT—1 1/2
+ R t(zV2+h).

By the interpolation theory, the first term of the right of (3.28) is bounded by c(y,
Q, m)h?||ull(2,0),0,0- Applying Lemma 3.2, we obtain

(3.29) max luk— Eu(kt)]lo,c0,0, < c(z1/2 4+ h),

ke<O0,Nt>
where c=c(¢, y, 2, n, [[ull(2,0),0,00 R, T).
For x € Q—Q,, remembering i) of Remark 1.2, we have
uf()—u(x, k)= {uh(y) —u(y, KO} +{u(y, kn)—u(x, kn)},
where y=v(z) e I', such that the normal yz at z to I' contains x. By Lemma 3.1

and (3.29), we obtain

(3.30) max  [uf—u(kt)|o,0,0-0,<c(t!/24h),
ke<O0,Nt>

where ¢=(2, 9, @, n, ||ul/(2,0),0,0» R, T). Combining (1.4), (1.7), (3.29) and (3.30),
we get (1.8). This completes the proof.

§4. Proof of Theorem 1.2

Theorem 1.2 can be proved in a similar way to the proof of Theorem 1.1. So,
in this section, we only state the corresponding results to Lemma 3.3 and Corollary
3.1 without proofs.
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Lemma 4.1. Let vkeV,, ke <0, Ny> satisfy
“.1 viFU 4 oLy ok L gkt ok = v + kol + sk
for ie<1, N>, ke <0, Ny—1>,

and
4.2) juit—ok|ZtS  for ie <N+1, N+ N>, ke <0, Ny—1>,
where g%, r¥ and s¥ are given functions defined on the nodal points satisfying

q¥=0, |r¥|<R |s¥|£S  for ie<l, N>, ke <0, Ny>,

where R and S are nonnegative constants.
Then, we have

RT _
e lS

4.3) max |vk;| £eRT  max |od;] +
ie<1,N+Np> ie<1,N+Np> R

for ke <0, Ny>.

Corollary 4.1. Under Assumptions | and 2, the solution u} of (1.6) satisfies
the estimate

e!MIT — |

(4.4) max [ kil .S.eIMlT"“Q"o w0t y
ie<1,N+Ng> Y | M|

X max ("fo”o,oo,Q) |g|(0.0+1),m,}2)

for ke <0, Ny>.

§5. Uniform convergence for elliptic problems

In this section we prove Theorem 3.1. The upwind finite element approxi-
mation has such a feature that the domain where the approximate function is used
does not coincide with the domain where the data for the approximation are taken;
i.e., the former is the barycentric domain D; and the latter is the upwind finite element
T, Therefore, we first develop a theory for the upwind finite element approxi-
mation. We next prove Theorem 3.1 according to Ciarlet and Raviart [4].

For later reference we begin by stating the following two lemmas without
proofs.

Lemma 5.1. (c¢f. Ciarlet and Raviart [2], Theorem 5) Suppose T, is
regular. For 1 <p< + oo, there exists a positive constant c(y, p, n) such that

(5.1) [0 =0l 1, p,0, S chlv]; pq, for veW2r(Q,), p>n/2,

and

(52) “m"U”o.p,nhéfr'hlvln,p.o,. fOl‘ ve Wl’p(Ql)’ p>n'



342 Masahisa Tabata

In particular, it holds that

(5.3 I ‘;h—¢h||o.p.9,.§6h|¢h|1,p,n,. for y,eV,.

Lemma 5.2. (¢f. Fujii [6]) Suppose J, is regular. Then, there exist
positive constants c,(y, p, n) and c,(y, p, n) such that

(5.4) (2 ||¢h”o,p,n,,§ I 'ph"o,p,n,.écz”'//h”o.p,n,. for Y,eV,.

Now let B, be the open ball in R* with center at origin O of radius 1. Let &
be the set of (open) polyhedral domains containing O such that G e ¢ if and only if
the closure G is divided into a union of closed n-simplices T¢ satisfying the following
conditions:

i) Ois a vertex of T¢ for all i;
ii) T$¢<B, forall i;
iii) the interiors of T§¢ are pairwise disjoint;
iv) any one of the face of T¢ is either a face of another T¢ or else is a portion of the
boundary of G;
v) there exists a constant y (> 1) independent of G such that

WTE)Zyp(TY) for all i;
vi) there exists iy such that T has at least one vertex on the boundary of B,.

Lemma 5.3. Let ¥ and B, be those defined above. Then, for 1<p<+ o
and 0 m < + o0, there exists a uniformly bounded extension operator from WmP(G)
into W™P(B,); i.e., there exists a positive constant c(y, p, m, n) such that, for any
Ge % and ve W™?(G), there exists an extension ¥ of v to B, satisfying

(5.5) ”5”m,p,81 éc”v"m,p,G'
Proof. We first prove that there exists a positive constant d(y, n) such that
(5.6) B;=G forall Ge%,

where B;={x; |x|<d}. From the condition v) of ¢, each G consists of a finite
number of T¢. The number is bounded by a constant depending only on y and
n. By vi) and v), the minimum length of OPY, where P§ is any vertex of G, is greater
than some positive constant ¢(y, n), which implies (5.6).

For the proof of (5.5), we use the variant of Calderon’s extension theorem
(cf. Morrey [13], p. 74). Each G e ¢ is a strongly Lipschitz domain and its Lipschitz
constant is bounded by some positive constant ¢’(y). Making use of (5.6), we can
obtain a partition of unity {{§} such that the support of {§ does not become so small
for any j and G. This completes the proof.

By the following lemma we observe that the result obtained by Bramble and
Hilbert [1] holds uniformly for G belonging to .

Lemma 5.4. Let ¥ be as above. For l<p<+o00 and 0Em<+ o0, there
exists a positive constant c(y, p, n, m) such that
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(5.7) infllo+qllms1,p6SClVlmsrpe Sforall Ged and ve W 12(G),

qEPm

where 2, is the space of polynomials of degree <m defined in R".

Proof. Assume that there is no such constant. Then, it follows that there
exists a sequence {G;, v;} such that G;e ¥, v;e Wm*!-»(G;) and that

(5.8) inf ”vj+q"m+l,p,G,=1 and |vj|m+1,p,G, — 0.

94EPm
By selecting a subsequence we may assume furthermore that there exists a polyhedral
domain G € ¢ such that G; converges to G, i.e.,
(5.9 Xj — X pointwise in By,
where y; (resp. x) is the characteristic function of G; (resp. G). Take a sequence
{9;} =2, satisfying

1= v;+qllms1,p6,52

Applying Lemma 5.3, we can construct w;e Wm*!-»(B;), a uniformly bounded
extension of w;=v;+q;. Since {W;} is bounded in Wm*!-»(B,), we can select a
subsequence, which is also denoted by W;, such that

(5.10) Ww; — w weakly in- Wm*1.»(B,) and strongly in W™?(B,),

where w is a function belonging to Wm+1.7(B,).
We first claim that

(5.11)

|wlm+ l.p,G=O'
For any ¢ e C§(G), it holds that supp[¢]<=G; for sufficiently large j. Therefore,
using (5.10) and (5.8), we have, for |a|=m+1,
S Déw ¢ dx =(— 1)l lim S ;D% dx
G j*+0JG

—(=1)lel limS D% dx
Gy

Jj=to

= lim S D%v, ¢ dx
Gy

jotoo
=0‘

which yields (5.11).
We next claim that for all ge 2,,

(5.12) IW+qlms1,p621.
From (5.8) it holds, for any qe 2,

(5.13) 1< mzsm ID*(v;+q;)+D*ql8, 5,6, + 015+ 1,p.6,°
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By making use of (5.10) and (5.9), we have, for |¢|<m,
I x;(D*w;+D*q) — x(D*w+ D*q)ll,, .8,
=xD*w;=x;D*Wlo,p,8, % [ %;D*W = xD*Wlo 5,8, + | X;0*q — xD*qllo,p,85,
S| D*W;—D*Wllo,p,8, + (X;— 0)D*Wll0,p,8, + | (X; — )D*q 0, p,8,
—0 as j—— + oo,
which implies that
(5.14)  [ID*(v;+9,)+D*qllopc,— ID*w+D*qllo 6 @ j— +oo.

Combining (5.8), (5.13), and (5.14), we get (5.12).
But, (5.11) and (5.12) contradict the result for the fixed domain G (cf. Bramble
and Hilbert [1], Theorem 1),

inf IWw+qlm+1,p,6=€IWlns1,p6 for all we Wm*1:»(G),

qEPm

where ¢ is a positive constant independent of w. Hence, there is a constant ¢(y, p,
n, m) such that (5.7) holds. This completes the proof.

For Ge %, we can find the barycentric domain D¢ associated with O as G is
the union of T¢. Define a linear operator I1§ from W2?(G) into 2, such that, for
ve W2P(G), II§v coincides with v at n+1 nodal points of T§, where p>n/2 and
T§ is one of n-simplices constituting G. We regard II§ as an operator from W?2:7(G)
into Wt:»(D€). Then, we have

Lemma 5.5. Let & be as above. Then, for p>n/2, there exists a constant
¢3(y, p, n) such that

(5.15)  lv—1ISv|, ,pcScslvly p6 forallj, Ge%, and veW2?(G).

Proof. By the definition of ¢ and p>n/2, we observe IT1¢ is continuous from
W2:p(G) into W1:»(D) and that I1¢ is uniformly bounded for j and Ge%. Noting
that I19q=q on D¢ for any g€ #,, and using Lemma 5.4 with m=1, we obtain
(5.15) in a similar way to that of Ciarlet and Raviart [2, Lemma 6]. This completes
the proof.

We now have the following estimate for the upwind finite element approxima-
tion.

Lemma 5.6. Suppose a triangulation J, is regular and that V, is the finite
element space defined in § 1. If p>n(2, then there exists a constant c(y, p, n) such
that, for any ve W2P(Q,) and Y, € Vy,,

(5.16) |(Bil v, '/7h)h —((B-P)v, Y)ul Sch|bllo l,oo,ﬂ" ofl 2,p.01 ¥l 1,p". 0

4

where p =7-T
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Proof. Set

Qw="5"b(P) - Po()F-
By Hélder’s inequality, (5.3), and (5.1), we have
(5.17) the left of (5.16) < |(B,I,v— Quv, ¥l
1w, T +1(Qu— B P, Yl

N
=< 'gl | B (Iv) —b(P;) - Vv(x)"o,p.b." ‘ph "0.p K

+c(y, p, Wh|bllo,w,alvli pe¥hl1,p0.
+h‘blo+l,uo.ﬂlvl1.p,ﬂ|"wh"0,p’,0h'

Let us estimate the first term. Given any interior nodal point P;, we let h;
be the maximum length of all the sides containing P, and S; be the union of all the
n-simplices containing P;. Define an affine mapping F; from R} onto R} such
that x = h}& + x®, where x¥) is the coordinate of P, Itis easy to see that F7!(S)) e
. Using F71, (5.15), and F;, we obtain

| Bpi(1,0) —b(P) - Pvllo,p.0,.= c3hilbllo,,0l0|2,p,5, s
which implies that

N
(5.18) igl | B, {I,v)—b(P;)- VU"o.p,D.éca(""‘ ]-)h||b”o.ac.n|l’|z.p.m .

Combining (5.17), (5.18), and (5.4), we get (5.16). This completes the proof.

Lemma 5.7. Let there be given a triangulation 7, satisfying Assumption
2. Given any function w,eV,, we let w, , denote the function of V, which satisfies
forie <1, N+ Ng>

wiy(P)—a if wy(P)>o
(5'19) Wh,a(Pi)=
if w{P)=o,
where o is a given nonnegative number satisfying

(5.20) azw (P) for ie<N+1, N+Ng>.

Then, there exists a positive constant ¢(Q) and a nonnegative constant py(y, n,
1ll0,0.0) such that, for all p2 po,

(5.21) A (Wh, W o) + (ByWhy Wy oy + Wy Wy )€ [ Wh,a “%,2,:2,.-
Proof. We first prove that

(5.22) the left of (5.21) 2 a,(Whar Wia) + (BiWhor Wiodn+ IM(Wh 0o Wi ons
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which is an extension of the result obtained by Ciarlet and Raviart [4, Lemma 2].
According to it, we divide the indices of all nodal points into two disjoint sets,

In={i;ie <1, N+ Ng>, w(P)>0o},
Io={i;ie <1, N+ Ng>, w(P)<Za}.
Then, we can write
Wha = igl(wm — )i,
Wy =Wy o= jezlowhj¢jh +j:4;l oQ i,
where wy,,=w,(Py), k=i, j. Using the notations in (2.1), we have
AWy = W0 Wi a) + (By(Wy— Wy ), Wi o)+ [(W),— Wy 4y Wy ),

= Z Z (a,'j+ bij)whj(whi_a) + Z - (aij+ h,'j+[l.’n,',-6ij)“(whi—a)

Jelo iel Jjelgiel,

=jeZIO ieZ“(a.-ﬁ b;;) (wy,;— ) (Wy,; — )

> 2 (ay+b+ #miiéij)a(whi —a).

Jel/UIg iely .

By (2.2) and (2.3), we get a;;+b;;<0 for i# j, which implies that the first term is
nonnegative. Noting that I, = <1, N> by (5.20), and applying (2.4), we have

the second term= Y a(w,; —o)um; =0.
iel

el

Therefore, we obtain (5.22).
We next prove that

(5.23) [(ByWh,ar Wi onl <c(y, n) [16l0,,0/Whal1,2,0. Wh,.z”o.z.n,. .

By i) of Assumption 2, the ratio of the volumes of any two n-simplices sharing with
a nodal point is bounded by a constant ¢(y, n), which gives (5.23). Using the con-
stant ¢(y, n) in (5.23), we fix y, as follows,

(5.24) o= (v, m)?1b13 .0
Combining (5.22) ~(5.24), we have
ap(Wy Wy o)+ (Bpwy, Wy o) n+ Wy Wy )y
Z (wh,al}:2.0, =2 W) bllo, 0,0l Wh,al 1,2,0.1Wh,ll0,2.0,

+ ull#, 43,2, 0,

1 _
= 5 Wi al? 2,00+ (0= 1) W4 4l3,2,0,
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> 1 2
= 2 Iwh.al 1,2,25°

Noting that w,, € V,, and using Poincaré’s inequality and (3.1), we obtain (5.21).
This completes the proof.

Lemma 5.8. Suppose 1 <q< + o0 and that Q, and Q, satisfy (3.1) and (3.2).
Then, there exists a positive constant ¢(Q, q, n) such that

(5.25) ||g"0.q,n,.—n§0h2/q”9|| 14,9, for gewhaQ,).

Proof. We begin by proving that
) d , AR
(5.26) {(lax 1ot xoleax} " sc@a gl pu

for ge C¥(R"),

where d(<1) is a positive constant and x'=(x,,..., x,_;). Using that

Xn

, _ , og
g(x', x,)=g(x', 0)+S0 BY,,(X , Bdt,
we have for 0<x,<d
96, %) S clg) lg ', )1+ x2/7 (7| 29w, ) |,
010X,

where q’ is defined by 7;—+%= . By the boundedness of the trace operator, we

obtain

d
[laxf 1o, x)|9dx' Sclgd]  1g(x', 0)]9dx
0 R"-1 R

d , d a q
q/q ’ g ’
+Sox,, dx,,SR"_Idx So‘ax,,(x , t)| dt
§ C(q)(d+ dq) ” g ” ‘ll,q.R"*
which implies (5.26).
By making use of a partition of unity, of C'-mappings (a portion of I is trans-
ferred into {(x’, x,); x,=0} by a map), and of (5.26) and (3.1), we obtain (5.25) for

all ge C¥(R"). Density arguments yield (5.25) for all ge W 9(Q,). This com-
pletes the proof.

Proof of Theorem 3.1. Let w, be v,—I,veV,, and w,, be as (5.19) for a20.
We first prove that

(5'27) "wh.aH %.2.!2;. § Ch “U" 2,y,Q” wh,a” 1,p'

where c=c(y, Q. n, p, it, |bllo+1,.0.0) and p’=?%—,. Let 1=Ev, where Z is the
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extension operator defined in §3. Set f, € LP(Q,) as follows,
fi=—45+(b-p)o+ ub.
Since w,, , € V4, we have
(5.28) a(®, Wi+ (b 7Y, wy o+ (@, Wi odw=C(f1, Wian-
Combining (3.4) and (5.28), we obtain
(5.29) ay(Wys Wia) + (BuWis W+ (Wi Wh o)
=(f. Whadn— (140, Wi a) — (Bl o, W 0)y— u(Ty, Wil
=(f=S1s Wadh—aTyo =B, wo) = {(Bulyo, Wh0)y— (b= P)B, Wy}
—pu{(Tyw, Whadh— (B Whadnt -

Let us estimate each term of the right of (5.29). Defining w,,=0 on Q, -, and
applying Lemma 5.8, (3.1), and (3.5), we have

(5.30) |the first term|§{§n - f,|ndx}”"{gn Il dx}” g

S, p, mh¥* v z,p.o" Wil 1,020

By (5.1)~(5.4) and Lemma 5.6, we have

(5.31) |the second term| = c(y, p, Mh|vl2,,.0Whal1,p.20 v
(5.32) [the third term| =< c(y, p, n)h(|bllo . l.oo.O”DIIZJ"{)“wh.a“ 1,p" 20
and

(5-33) |thc fourth tel'ml éu{l(l_h;_ 6a wh,a)hl + |(5’ Wh,a_ Wh.a)h‘}

<uc(y, p, n)h|v|, ,p,ﬂ“ Wholl 1,p",. 90

Combining (5.29)~(5.33), applying Lemma 5.7, and noting 1<p’'<2, we obtain
(5.27).
According to Ciarlet and Raviart [4], we define

E(@)={x; x € Qy, W, ((x)>0},

and {(x)=mes E(a). By Holder’s inequality and Sobolev’s lemma, we have

(5.34) Wil 1 g S PN T 2wyl 00

and

(5.35) IWnloaan <@y 1 @ Wil 12,00
2

where q= in n#2 and we take q>1-72_i2 in n=2. Combining (5.27), (5.34),

n—2
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and (5.35), we obtain

. i
(5.36) [ Wh,a“o.q,a,. S ch|vllz,p0 ()7 2,

where C=C(% Q- n, p, i, "b”0+1,co,{)’ q)

Nolma

Now take >a. Then, we can write
E@B)= \,J {T;; there exists a vertex P of T such that w,(P{)> B} .
Therefore, we have
Wi(¥)Z(B—)i{20  on T,eE(p),

where A{ is the barycentric coordinate associated with P{ in T;. Noting E(f)< E(x)
and that

S |A{19dx=(q+n+1)B(n+1, g+1)mes T},
T

where B is the beta function, we get

(5.37) [Whallo,q0nZ(B—e) {(g+n+1)B(n+1, g+ 1)}/{(B)!/1.
Combining (5.36) and (5.37), we obtain

(5.39) () s(-Hzro Y@ @D por prazo,
where C=C()’, Q) n, p, i, "b”0+l,ao,ﬂv q)'
Since q(l%—-—é~>>l, by a result of Stampacchia [17, Lemma 4.1] we obtain

{(c’chvl2,5,0)=0,

where ¢’=¢'({(0), g, p’) is monotone increasing with respect to {(0). Therefore,
we have

(5.39) v (x) —(Iw) () S chllv]l,, 50 forall xegQ,,

where c=c(y, 2, n, p, i, Ibllo+,,.0). Replacing v by —v, we have
(5.40) = 0(x)+(I) (x) S ch|vll 3, p.0 forall xeQ,.
Combining (5.39) and (5.40), we obtain (3.7). This completes the proof.

§6. Concluding remarks

We have discussed hitherto uniform convergence of the upwind finite element
approximation for semilinear parabolic problems. In dealing with the nonlinear
term, the assumption (1.2) has been essential. Now we can replace it by the weaker
condition

(6'1) fl(xr t’ u)éM fOI' (X, ')GQ' u G[Ull UZ]»
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where U, (resp. U,) is the minimum (resp. maximum) value of the exact solution u
in Q. Actually, consider a continuous function f,(x, t, u) such that f, is continuous-
ly differentiable in u and that

=fl in QX[UD U2]

SM+1 otherwise.

Ji

Then, replacing f, by f, does not give rise to any change in the solution in J. Since
f, satisfies i) of Assumption I, we can apply Theorems 1.1 and 1.2 to the schemes
(1.5) and (1.6) with f; and M +1 in place of f; and M respectively. By the same
argument, for the problems of blow-up type such that the solution tends to infinity
at a finite time T*, we can also show the uniform convergence in @ x [0, T* —¢] for
any £>0. (cf. Nakagawa-Ushijima [14])

Our method can be extended straightforward to the problems with Neumann
condition,

G fu—@-putfx tw)  in O,
g—ﬁ=g(x, 1) on I,
u=u° in Q at t=0,

if b satisfies

b-v=20 forall xerl,

where v is the outer normal to I'.
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