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Introduction

• In  the paper [18] we proposed a  finite element approximation corresponding
to the upwind finite differencing to diffusion equations with drift terms, and obtained
Lw-stability and L 2 e rro r  e s tim a te s . This approximation enables u s  to obtain
Lw-stable schemes under weaker conditions than the  conventional finite element
m ethod . The purpose of this paper is to present a  class of upwind finite element
schemes for semilinear parabolic problems and to  show the Lw-convergence. We
also derive the rate of convergence, which is optimal in this type of approximation.

The finite element method is usually considered as the Ritz-Galerkin method
using piecewise polynomial base functions. Therefore, for parabolic problems as
well as elliptic ones, it is natural to derive the error estimates in the L 2 -sense (e.g.,
Douglas-Dupont [5], Wheeler [23], Thomée-Wahlbin [19], Fujita-Mizutani [7]).
On the other hand, in the Lw-sense, Fujii [6] obtained stability conditions for a class
of finite element schemes for the diffusion equation. Considering the finite element
scheme a s  a  step-by-step approximation of an evolution equation in  the  lumped
mass space, and  using the approximation theory for semi-groups in  the  space of
continuous functions, Ushijima [20] proved Lw-convergence for semilinear parabolic
problems without presenting any convergence rate. (cf. Nakagawa-Ushijima [14],
Ushijima [21]).

Our standpoint for the finite element scheme is to regard it as a finite difference
scheme defined on an irregular mesh, which is obtained by substituting each local
base function to the test function of the weak form derived from the original equa-
tion. F ro m  su c h  a  standpoint we use a skillful technique of the finite difference
method in  dealing with the  nonlinear te rm . T o  pu t it concretely, our Lw-stable
schemes include an artificial term which was introduced by Mimura [11] to obtain
a class of Lw-stable finite difference schemes for semilinear parabolic systems. (cf.
Mimura-Kametaka-Yamaguti [10]).
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Viewing a finite element scheme as a finite difference scheme has not been taken
so frequently. The main reason is considered that the derived finite difference scheme
does not have "local consistency" except some cases of special triangulation of the
d o m a in . (cf. Waltz-Fulton-Cyrus [22], Yamamoto-Tokuda [24]) F o r  parabolic
problems, however, since the inconsistency stems only from the highest derivative
terms with respect to  the spatial variables, we can overcome the difficulty by using
the  result o f  uniform convergence of the corresponding linear elliptic problems,
which is an extension to the upwind finite element scheme of the result obtained by
Ciarlet and Raviart [4] for the conventional finite element scheme.

The contents of this paper is as follows. In  § 1, two main theorems are stated
with some basic assum ptions. In § 2, some properties of the derived finite difference
equations are discussed. In  § 3 (resp. § 4), by making use of a theorem concerned
with the corresponding elliptic equations, the main theorem for the explicit (resp.
implicit) scheme is proved. In  § 5, the theorem used in  § 3 and § 4 is  p roved . In
§ 6, some remarks are given.

§1 . Presentation of results

Let Q be a  bounded domain in Rn (n._ 2) with a  C3 -class boundary r o r a
polyhedral domain in R n, and T be a fixed positive number. Consider the problem,

(3u 17)u

(1.1)

in

on

Q=

Z =

x (0, T),

x(0, T ),

e t  = —  (b • f(x, t , u)

u=g(x , t)

u=u°(x) in Q at t=0,

where b=(b i (x),..., b n(x )) is  a  given vector-valued Lipschitz continuous function
in 52 and

0 b•V --=  t b , nc/x i •

Assumption 1 .  f , g  and u° satisfy the following conditions:
i) f (x , t, u)=10 (x , t)+f ,(x , t, u)u, where f o  an d  f ,  are continuous in and in

x R  respectively. Furthermore, f ,  is continuously differentiable in  u e R
and satisfies

(1.2) fax , t, M f o r  (x, t)e Q , u eR,

where M is a constant;
ii) g  is  Lipschitz continuous in  te [0, T ]  uniformly with respect to  x e F;
iii) u° is continuous in r2 ;
iv) g and u° satisfy the compatibility condition

(1.3) g(x, 0)=u°(x) f o r  x e F.

I n  order to  obta in  th e  approximate solutions w e discretize (1.1). W e tri-
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angulate 12-  and obtain a set of closed n-simplices {Ti }7_fi. and a set of nodal points
{P i }it.TB satisfying the following four conditions:

i) the interiors of T, and Ti , i j, are disjoint;
ii) any one of the faces of Ti is a face of another n-simplex Ti  or a portion of the

NE
boundary of the polyhedron u  ;

J= 1 NE
iii) all the nodal points lying on the boundary of the polyhedron u Ti  exist on F;

.1=1
iv) P i , i =1,..., N, exist in Q and P i , i = IV +1,..., N+ NB, exist on F.

Define h(T; ), p(T; ), h, K, Qh , and F h :
h(T; )=the diameter of the smallest ball containing Ti ;
p(T)=the diameter of the largest ball contained in Ti ;

h =m ax {h(T) ); = 1 ,..., N E );
K= the minimum perpendicular length of all the simplices;

Ne
Dk =the interior of Ti ;

J=1
Th.= the boundary of Oh.

We denote by "„ (= {Ti } f 1) a triangulation of D satisfying the above conditions.
(N E , N, and NB may vary depending on a triangulation.)

R em ark  1.1
i) Obviously it holds that

(1.4) K < k.

ii) In the case where D is a polyhedral domain, we can take Oh = Q and then we do
not have to consider any extensions of functions defined in Q  in the subsequent
sections.

Assumption 2 .  Triangulation is regular and of acute type; i.e.,
i) there exists a constant y (>1) independent of triangulation such that

h(TOYP(Tk) for all T ,, -10

ii) it holds that

0 for all T , ,  E

where o-(Tk ) =  m ax cos (17 .11 ,  VÂ.j ), and 1=0,..., n, are the barycentric co-
osi<jsu

ordinates with respect to the vertices of the n-simplex Tk .

With each nodal point P i we associate functions rk i , and & , such that
i) 49i i, is linear on each n-simplex and O ik (P i ) = Si ;  fo r  i, j =1,..., N+ NB,

ii) e L 2 (Qh ) is the characteristic function of the barycentric domain Di associated
with Pi : i.e.,

Di = { D ; T h e  h  such that P i is a vertex of TO ,

where
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I?

Di/ = {x; x e T„ and  Ai ( x )  ..(x)}
= 1

and Ai , Ain are the barycentric coordinates with respect to  P , P- t - i i ,•••,
the vertices of Th.

Define Vh ,  V„ and a lumping operator —:
Vh= the linear span of

 4 1 h '
 i= 1, . ,  N + N )3;

Voh= the linear span o f  ih, i =1,..., N;
C(r2) o r  c („ )- - ,  L 2 (g -20

N+Na

In— ,  /5=  E  v(P i ) (L .
1=1

We now introduce the upwind finite element. A n-simplex T  e  h is called an
upwind finite element at a nodal point P i if the following two conditions are satisfied:
I) P i is a vertex of

ii) {P,} meets the oriented half line with end point P i of direction b(P i).
We denote by Tc " ) the  upwind finite element at P . by selecting arbitrary one in the
case where there exist some upwind finite elements at th e  p o in t . Define a  linear
operator Bh from Vh into L 2 (0 ,) by

where

B,, y,,  E  Bh ,v,
i=1

f o r  v, e V,,

Bh i vh = b(P i)•17 v„I L . ,,, .

We consider the following discretized problems of (1.1).
Explicit scheme:

Find V, such that

( 4- hk + 1 _  hk
, =  — ah(Ut, Oh) —

h

+ ( fa k t )+ ( i i (x ,  k t ,
 r i t ) —  M )ü ' + M ñ , 1 ,1 1 ,

for all O h  E  Vo , k = 0 ,..., N 1,

u r ( P i) = g(P i , (k + 1)T) f o r  i = N + 1 ,...,N + N B , k = 0 ,...,N T  — 1,

4,(P i)=14 ° (.13f o r  i=1,..., N+N B .

Implicit scheme:

Find {4,},,=0 .......... N T V h  such that

kh —  h
=

h
ah(Ut+1, O h ) 0 0 4 + 1 , ' .h)h

fdier ± (11(X ,  k t , 51) —  Afla r  +m at , &,)h

(1.5)

(1.6)
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for all O h e k=0,..., N 1,

1411,+ 1 (P i )= g(P i , (k +1)T)

f o r  i = N + 1 ,...,N + N B , N — 1,

UVP = u°(P i) for N +  N8,

where t is a time mesh, N T =[T IT ],

(u, v),=S u • v dx,

and

ah (u , v )= aua v  
; = ,  ax,' ax, J „ •

Our main results are the following two theorems.

Theorem 1.1. Under A ssumptions 1, 2, and the condition

K

2

(1.7)
(n+ 1) + K

(1.5) is L'-stable an d  if  th e  ex ac t so lu tio n  u  o f  (1.1) b e lo n g s  to  C1 +1 .1( )
n C 2+ 1  •' °k01)  n C0 .1 +1( ), then the solution ut, of (1.5) satisfies the estimate

(1.8) max lut(x)—u(x, icr)i ch,
xeri, k=0 ..... N T

where c is a nonnegative constant independent of h, t ,  and ic and

Ilb o , ,n = max { bi(x)2 }1 /2 .
xes, i = 1

Theorem 1.2. Under A ssum ptions 1  an d  2 , (1 .6 )  is unconditionally  Lcc-
stable and  if  the  ex act so lu tion  u  o f  (1.1) belongs to  Ci+ 1 . 1 (0 )n c 2 +, , o( ) n

(v )  then the solution ut of (1.6) satisfies the estimate

(1.9) max jut(x)—u(x, kr)I _c(t+h),

where c is a nonnegative constant independent of  h, '1" and K.

R em ark  1.2.
i) In (1.8) and (1.9), ut, are supposed to be extended to Q—C2„ in such a  way that

ut, are constant along the norm al to F.
ii) More precise results about the LOE)-stability are shown in  Corollaries 3.1 and

4.1
iii) We cannot expect ch2 (resp. c(r+h 2 )) in (1.8) (resp. (1.9)), because the upwind

finite element approximation corresponds to  the one-sided difference approxi-
mation whose trancation error is of order h.

iv) Notations of function spaces used in this paper are listed below.
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For 0< cx and nonnegative integers 1, in,

I u  i+OE,00,Q= sup D ijxu ( Y) 1  
Ix — yll ; f i l  = 1 , x , y  e C21 ,

ul (ii.„,„,), ,(2= D'IDru(x , t) —  DP,Dr'u(y, t)I l „ sup I X — .1' I a

1)6'1 = 1, x , y  E S2, t e (0, T)} ,

! P D DD'/'(x,x , s)I   .u  ( i ,m + a ) ,,,, Q = sup .1  D  mu(x t)—  DD x
It — s I"

111 1= 1, x E 52, t, e (0. T)}

Ilu II 1,09 ,tt= sup {i Dfix ii(x)1; I ,q1 1, X E Q1,

II u II = suP 01; I fil j=0 ..... in, x E s2, t G(0, T )},

II14 111-Ea,co,O= Il 1 lli.m,f1+1 14 1/+n,00,f? ,

II14 11(/,m),co,CHUI(/+a,m), ,x,Q ,

III4 11001+0,0o,Q =  1114 11(1,m),co,Q+1U1(1„n+a) Q ,

C l (n )=  0 4 ; u is continuously differentiable up to order 1 in DI,

C 1 '1'1(0)=0.4.; u is continuously differentiable up to order / in x
and up to order ni in t in  -0),

0 - "(n)={ 11; u e 0(f2-)  and < + oo} ,

0+ 2 ."1(Q)= u e C'on(Q) and  111111(1-1-2,m) Q ‹ ,

Clon+2 (0)={ u; u e C'."'(0) and  Ilull ( i ,m + ,0 . , 02 ‹  + 00}

I (0 ,0 + 1 ), , I
{Ig (x , t)— g(x , s)l  , x  er, t, s  e (0, T)} .1g .0 —sup It—si

For 1 .... p<+oo ,

a= {  I II DPxu II f , p (0) }  " P ,
'1/41=1

lull=  .1=0

147 ' , P(0)= {u; u is measurable in Q, + 00} •

Also, the following notations are used throughout this paper:
c=c(A ,,..., Ai )  means that c is a  nonnegative or positive constant depending

only on A ,,..., Ai ;

< i, j> { i, i+ 1 ,..., j} for integers i< j;
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O with super- and/or sub-scripts denotes a real number whose absolute value
is bounded by 1.

§ 2 .  Preliminaries

In this section we introduce a difference operator related to the spatial deriva-
tive terms of (1.1). After examining some properties of the difference operator, we
rewrite (1.5) and (1.6) by making use of it.

Let L h=  {L h i} iV= 1 be a difference operator such that

(2.1)
1 N+NB

L h iV  =  E  (au  +boy,
mu J=1

fo r  i E  < 1 , N  ,

where vi =v(P i ), je  <1, N + NB>, and

(th)h, au= ah(Ch, O n ), k J= (Bh0J, ,h)h•

Lemma 2.1. Under A ssumption 2 , it holds that f o r i e  < 1 , N >  and j e <1,
N +N B >,

(2.2) a. j O  i f  10 j  a n d  0 < a ii <12+1 
nzi , —

(2.3) i i j  a n d  OS  b a 111(Pi)1
mi,

N+NB N+NB
(2.4) E  a, j = 0  and E b,=0,

J= 1

where K, is the m inimum perpendicular length of  a l l  the simplices which contain
P, as a vertex and

ib(13 = { j± i b
2 ) 1 / 2 .

Pro o f . (2 .2) is the resu lt ob ta ined  by  Fujii [6]. Let us prove  (2 .3 ). Let
Tc ( i ) have vertices P,, Pin and Ao , 2„ be the barycentric coordinates with
respect to them. Observing that

k J = mi,b(Pi).

we have

(2.5) bu=

where i =  i. Let p k b e  the vector P 1 P I k , k e  <1 , n >  .  A  brief calculation shows

(2.6) Pk— 6 ik fo r  /, k e <1, n> ,

(2.7) F  *P k =  — 1 f o r  k e <1, n> ,

I
mi l b(P,)• FA, i f  j = 11 E { i, in}

0 i f  j e { i ,  1,,...,
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(2.8)

In view of the definition of the upwind finite element, we note that there exist non-
negative numbers ci, kE  < I , n >, such that

(2.9) b(P1) = — k±

Combining (2.5)—(2.9), we obtain (2.3).
(2.4) is obtained by noting that

N+NB
E  j h =  1i n  Qh .J=1

This completes the proof.

For later use we present equivalent schemes to (1.5) and (1.6), making use of the
difference operator L b .

Explicit scheme:

p,k+1 p.p.kP•it i L h iu t+f 8 i+f i(Pi, k t, u t 1)14)-1 — M (utt 1 — 4 )

f o r  i E <1, N >, k e  <0, N T -1 >  ,

u t t '=g (P i , ( k +l) t )  f o r  i e < N +1 ,N +N B >, k e  <0,

f o r  i e <1, N + NB> .

Implicit scheme:

k+ kU h 1i - - Uhi v k  l i j k+1 M ( u t t l u lht i ).• ... i . . .h i

f o r  i e <1, N >, <0 , NT — l >  p

u tp =g (P i ,(k + 1)t) for i n < N +1 ,N +N B > ,  k e  <0, ,

u2 i =u? f o r  ie  <1 , N +N B > ,

where f  6i =f0 (Pi , la) and u?=-- u°(/) i ).
(2.10) and (2.11) are derived by substituting 0„=-O i h  in  (1.5) and (1.6) respec-

tively and by dividing both sides by mu .

Rem ark  2.1. Except some cases of special triangulation, L b h a s  no local
consistency in the conventional sense: for any sufficiently smooth solution u of (1.1),
— Lau does not approximate (du —  (b V)u)(P ); i.e.,

— Lh i u = (A u — (b 17)u) ) + 0(1).

(See Waltz, Fulton and Cyrus [22].)

(2.10)

0 0uhi — ui

(2.11)
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§ 3 .  Proof of Theorem 1.1.

In this section we prove Theorem 1.1 by using the result of uniform convergence
for the corresponding elliptic problem (Theorem 3.1), which will be proved in  § 5.

W e first state without proof a  result about the approximate domain Oh (cf.
Ciarlet and Wagschal [3]).

Lemma 3 . 1 .  L e t  .5"„ b e  re g u lar ( i.e ., i) o f  A ssumption 2). T hen, f or
sufficiently small h, there exists a bijective m apping v f rom  F onto F,, along the nor-
m al to F at that point and we have

(3.1) sup dist (x, v(x))._ Ch 2 ,
X E F

where c=c(52, n).
Let S21 b e  a  bounded domain containing D. By Lemma 3.1, without loss of

generality, we can assume that

(3.2) c fl if o r  all h.

Consider the following elliptic problem with b stated in (1.1),

— tiv+(b • 17 )v + pv=f i n  Q
(3.3)

1 u=g o n  F,

where f (x) e LP(52) and g(x) e C(F) are given functions and it is a nonnegative constant
greater than or equal to some nonnegative constant tto (y, n, (See (5.24).)
We discretize (3.3) by the finite element scheme,

Find yhE V h such that

(3.4) ah(vh, 0,)+(B hvh , ,,),,+ it(',,, (%)h= 001, for all ed E Vr h - Oh ,

vh(P,)= g(P,) f o r  ie  < N + 1,..., N + N B >

where J e LP(521) is an extension of f  to Q1 satisfying that

(3.5) f c(P, 0)11If II 0 ,p ,0

Define an interpolation operator 1„ from C(n) onto Vh by

(3.6) (I hv)(P ,)= v(P,) f o r  i E < 1, N + N B > .

Theorem 3 . 1 .  Suppose A ssumption 2  and  that p > n .  If  the exact solution
of (3.3) belongs to W2 .P(S2), then we have, for the solution vh of (3.4),

(3.7) — /011 o00.01, ch v112,"  
,

where c=c(y, Q, n, p, 11b110-1- 1,03,0) and

lb x, ye g2} +x
I b (x)—b(y)i  .

0+1. oo . f) = sup{ ,
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Theorem 3.1 is an extension to  the upwind finite element scheme of the result
obtained by Ciarlet and Raviart [4]. For the proof we are required to develop an
approximation theory for the upwind finite element term, so we shall show the com-
plete proof in §5.

Now, we fix a linear operator S which is decided from S I  In the case when 00
is smooth, 72 extends functions defined in Q  to 0 1 , satisfying

(3.8) 115v II c(p, Q) II v11 ,p,r)

f o r  v e Wrn, "(0), mE <0, 3 > , p < + oo,

(3 .9 ) c(Q) fo r  y  E 0"(0), rn E <0, 3>

and

(3.10) IlEivii + 1 ) ,.<c(0) II vil,„+ „,00 ,0

for V E C m + 2 (0), m e <0, 2> .

Since 0  has the C3 -class boundary T, we can construct such a S  b y  the method of
Nikolskij. (See NeCas [15], Theorem 3.9, p. 75 o r Mizohata [12], Theorem 3.10,
p. 183). In the case where 52 is a polyhedral domain we define E=I.

Define a linear operator Eh from C(r2) n W2 •P(0) into Vo h  b y

—(3.11) E hV  
v h Ih v f o r  v e caw\ w2 , P(o),

h

where vh is the solution of (3.4) with it = ito  corresponding to

f = - (b • p)1.3v + po E v  a n d  g =v.

I t  h as b een  n o ted  i n  Remark 2.1 th a t  L h i (/h v )  does not approxim ate  (—A v
+(b • r)v)(P  i). However, if we replace /h v  by /h v+hE h v, which is nothing but Vi,,
the desired result is obtained.

Lemma 3.2. Let y belong to C2 -" (n ) .  Then, we have

(3.12) IlEhyllo,œ,nh-- II II

(3.13) Lhi(lhv+ hEh v )= ( —  A v+ (b • 17)v) (I' i)+ 0 ichll,V111

fo r  iE  < 1 , N > ,

where c=c(y, Q, h, i,co,n)•

Pro o f . Fix p>n  and set

f= —4v+(r7 • b)v + Ito v.

Obviously, f  belongs to LP(0) and A = — AEv+ (b • 17)2Ev + po lEv) is  an extension of
f  satisfying (3.5) by virtue of (3.8). Applying Theorem 3.1 with it =g o , we have

(3.14) IlEhvli o,co.nhClIv112,,,Q.
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Combining (3.14) and the trivial inequality

11v112,p,0 c(P, 0 )11v111+1,,n,

we obtain (3.12).
We now prove(3.13). Since /h v+hE h v=v h , we have

1  f ,„
OO

N_L fpp,(3.15) Lhi(/hv+hEhv) --- l a h l y h t  W

— 1 { ( 4 E ,v +  (b  •  p )E, v+ it 0 E' v, &Oh - 11
0 ( 13h, in)h} •

m jg

In the support of Ow  it holds that

(3.16) —JET+ (b • V ) v + 120 ,76,v=(— At; + (b • p)v + tt o v)(P i)

+ 0 ( 1 +110hI11701+1 0 0,f2.

Combining (3.15), (3.16), (3.12) and that

(1, 7'ih)h= ( 1, Ch)h= mu,

we obtain (3.13). This completes the proof.

Lemma 3.3. Let vt e V h, k e <0, N T> , satisfy

t hkt+T.Sli,,k k „rr vk,,k +1—
1 +  w it

f o r  ie  < 1 , N > , ke <0, N T - 1 >  ,

and

(3.18) 10 ,P 1—vt i l: TS f o r  i e < N + 1 ,N + N B > , k e  <0, N T -1 > ,

where gt, rt and st are given functions defined on the nodal points P t , i e <1, N > ,
f or kE <0, N T > , satisfying

q O,  I r I R  a n d  IstI S

f o r  i e  < 1 , N > , k e  <0, N T > ,

where R and S are nonnegative constants.
Then, under the condition (1.7), we have

RT
(3.19) max I V hil e R T  max 0 , Ø

1 ,
V hi

te<1,N+NB> te<1,N+NB>

f o r  ke <0, NT> .

P ro o f . From (2.1) we have

(3.20)
( i —  a i i  E TSit

k + 1  • T nii f o l  V hi
id - TO

(3.17)
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By (2.2), (2.3) and (1.7), it holds that

aii+bii 1— T > 0 ,
M ii

— + 0

for i e <1, N > , je  <1, N+ A r g > ,  i j .  H ence, w e have

I < ( I  — Ta u b ")I 4/1 — E

+Ti4livt i l+TI41 f o r  i e <1, N >.

m a x  lvtt 1l:5_ (1 + T R ) m ax luti l + TS.
ie< 1,N > ie<1,N+NB>

From (3.18) and (3.21), we have

m a x  lvtt'l (1  + T R )  m a x ivt i l + TS f o r  ke <0, N T — l >,
ie<1,N+NB> ie<1,N+NB>

which implies (3.19). This completes the proof.

Corollary 3.1. Under Assumptions 1, 2 and the condition (1.7), the solution
ut of (1.5) satisfies the estimate

elmIT-1 (3.22) max 141 imiie <1,N+NB>

X MaX (II f0110,œ,Q ,  Ig1(0,0+1),00,E) f o r  ke <0, N T >.

Pro o f . From (2.10) we observe ut satisfies (3.17) and (3.18) by taking

k t, u t,), r it= M , a n d  4 = f 1

f o r  i E <I, N > , k e  <0, NT>

and

R=IMI, S=max(Ilfollo Q, 191(O,0+1),c0,T)•

Applying Lemma 3.3, we obtain (3.22). This completes the proof.

Proof of  Theorem 1.1. Set vt E Voh, ke <0, N T >, as follows:

=ut— / h u(kT)—hEh u(kT).

W e look for a difference equation which vt satisfies. S e t t in g  ut=u(P,, kt) and
c=c(y, Q, n, we have

'hI l  _  uttl — ut,  h(Eh  u (k t + t)— u(k t)  „ ,(3.23) v
) t r i ,

k+ , k auU h 1i _ ( Pi, kt) + OliT 112 I ut Iat

By (2.4) we obtain

(3.21)
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+ WI; chllutil. (1+1,o),co,u,

(3.24) Lh i =  L h i ut - L b ; a h u (kr) + hEn(u(kT))

=L h i u ;, - ( -  du+ (b•l7 ) 0(.1)
1, k t)+0chliFuli(l+1,0),.,(2,

(3.25) Mvt, = Mut i M u ',5 + OlicA lh u11 (1+1,0),00,Q,

and

(3.26) { f ,(Pi, k t, uk i ) - M }

= (Pi, k t ,  u t i ) - M} k t, W O+ (4  -u 'l)

x 'VI ( P .  k t -111}{u't +0 1L t 112 1ui (o,o+-1),.0,Q}Ou "  "

+ Clif f  i(Pi, k t, uk i ) - M}chiluil(i+1,0),03,Q

= { f i (P i ,  k r , M}utl-1 - f t(Pi, k t, 14)&1+ M O

(Pi, k t , + 0 1 4 4 1  ( P „

k r, u 1)  -M } t 1I2 lu i (0,0-4),.0,0

kr, uk i ) - chiluii (1 +

where Vic is an intermediate value between u'Ai and uit. Since 4, 1 are  bounded by
Corollary 3.1, so are VC, i.e., it holds that

1015 f o r  i E <1 , N >, k e  <0 , N  T >  9

where

U=max {1lull o ,,,Q , the right of (3.22)}.

Combining (3.23)-(3.26), we obtain

(3.27)
,,k+1 v k

L h i  +  f i  ( P i ,  k t ,  t i kh i ) Vhkti

+ + (P i , k t, 0)14 11}v'41 +

f o r  ie  <1, N >, k  e  <0 , N T - 1 >  ,

where .511=Olt(r 1/2  +  h) and

e= {HO (1+11), œ,QU  1 1  (2 +  1,0),co,(2 lu ll (0 .1 4 ),0 0 ,Q )

x c(U .  sup
Qx(-u,u)

( x  t  u )  I , sup I f i (x , t, u)1, Af,Ou " Qx(--(1.(1)

11b110+1,0,,0, y , Q , n).
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From (3.27) we observe v satisfies (3.17) and (3.18) by taking

q't =M k t, 4 )

rit = M +
O f

 (P,, u kau 

R = I MI + U . s u p  1U1, (x, t, u)Qx(-u,u) uu

and

S= (14 /2 + h).

Applying Lemma 3.3, we have

max II V  0,00,Dh —e"liV2110.00,0,+eRT 
___

t ( T 1/ 2 ±
ke<O,NT>

Hence, it holds

(3.28) max 11 — Su (kt) IIj0 m a x  I I I hU(kT)— (kt) II 0, .c,f2i,ke<O,NT> ke<O,NT>

+ h  m a x  IlEh u (k t)h n h + heRTIlEh u(0)110 . œ . p h
ke<O,NT>

e R T  _ 1
 ( T 112 +h) .

By the interpolation theory, the first term of the right of (3.28) is bounded by c(y,
12, n)h211u11(2,0 . Applying Lemma 3.2, we obtain

(3.29) m a x  114 — Eu(kr)110 ,00.0h c (r 1/2  + h),
IC 0 ,

where c = c (,  y, Q, n, 1111 11(2,0,0,Q, R, T).
For x Qh, remembering i) of Remark 1.2, we have

ut(x)—u(x, kt)= {ut(y)— u(y, kt)} + {u(y, kt)—u(x, icy)},

where y = v (z )e r h such that the normal yz a t z to  F contains x .  By Lemma 3.1
and (3.29), we obtain

(3.30) m a x  114 — u(kt)11 < c(T1/ 2 h ) ,o,œ,(2--(4=

where c= (t, y, Cl, n, T ) .  Combining (1.4), (1.7), (3.29) and (3.30),
we get (1.8). This completes the proof.

§4 . Proof of Theorem 1.2

Theorem 1.2 can be proved in a similar way to the proof of Theorem 1.1. So,
in this section, we only state the corresponding results to Lemma 3.3 and Corollary
3.1 without proofs.

ke<O,NT>
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Lemma 4.1. Let t i e  Vh, kE <0, N >  satisfy

(4.1) +  T L  v k +
T,,k1- 10+ 1 — v k T rk v k

Vhi h i  h i h i  —  hi i hi

f o r  ie  <1, N >, ke <0 , N T -1 >  ,

and

(4.2) I — _-rS f o r  i e < N + 1 , N + N B > , k e  < 0 , NT —1> ,

where at, rt and st are given functions defined on the nodal points satisfying

glp_.0, IstI S f o r  ie  <1 , N > , ke  <O, NT>

where R and S are nonnegative constants.
Then, we have

eRT
(4.3) max 1 eRT max M i l+ s

ie<1 ,N +N n> te< I,N +N B >

f o r  k e <0, N  T > .

Corollary 4.1. Under A ssumptions 1 and 2 , the solution ut, of  (1.6) satisfies
the estimate

(4.4) max I ut, i i e lm iT ilu° 110,co,n+ e im i r 1
I 'i.<1,N+N8 > *

x  max (1Ifollo,œ,Q , 1910 ,0+0 , 0 , )

f o r  ke <0, N r >  .

§ 5 .  Uniform convergence for elliptic problems

In th is section we prove Theorem 3.1. The upwind finite element approxi-
mation has such a feature that the domain where the approximate function is used
does not coincide with the domain where the data for the approximation are taken;
i.e., the former is the barycentric domain Di and the latter is the upwind finite element
Tc ( i ) . Therefore, we first develop a theory for the upwind finite element approxi-
mation. We next prove Theorem 3.1 according to Ciarlet and Raviart [4].

For later reference we begin by stating the following two lemmas without
proofs.

Lemma 5.1. (c f . Ciarlet a n d  Raviart [ 2 ] ,  Theorem 5) S uppose 5 - h i s
re g u lar. For 1. p< +co, there ex ists a  positive constant c(y, p, n) such that

(5.1) iii„v —vjj 1 Q h  chlv1 2 ,p . , f o r  v e VV2, P(S21) ,  p>

and

(5.2) [thy — v 0,p, f2h  5 Chilli " p 4 2 ,, for y e  W"P(S2 1), p>n.
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In particular, it holds that

(5.3) h—fr nil o,p,ah
<chltp for 114 e Vh.io 1 •17.14

Lemma 5.2. (c f . Fujii [ 6 ] )  Suppose Y ,,  is  re g u lar. T h e n , th e re  e x is t
positive constants c,(y, p, n) and c 2 (y, p, n) such that

(5.4) ci tknii 0,p.ohI I I O,p,f1h=<C2II hI/hlIO,p,flh f o r tf r h e Vh.

Now let B , be the open ball in R with center at origin 0  of radius 1. Let g
be the set of (open) polyhedral domains containing 0  such that G e g  if and only if
the closure G is divided into a union of closed n-simplices TF satisfying the following
conditions:

i) 0  is a vertex of T ? for all i;
ii) B, for all i;

iii) the interiors of TF are pairwise disjoint;
iv) any one of the face of TF is either a face of another T ? or else is a portion of the

boundary of G;
v) there exists a constant y (>1) independent of G such that

h(T F)y p(T f ) for all i;

vi) there exists io  such that TF0  has at least one vertex on the boundary of B 1 .

Lemma 5.3. L e t g  an d  B , be those defined above.  T hen , f o r 1<p< + co
and 0 m < + (x), there exists a uniformly bounded extension operator from Wm>P(G)
into Wm , P(B,); i.e., there exists a positive constant c(y , p, m , n) such that, f o r any
G e g and v  e Wm, P(G), there exists an extension i5 of v to B , satisfy ing

(5.5) m ,p,B , c 11v11„„p,G.

P ro o f . We first prove that there exists a positive constant b(y, n) such that

(5.6) B 6  Gf o r a i !  G e ,

where B,=- {x; 1x1 <6 } . From  the condition v) of g ,  each G consists o f  a  finite
number o f T ? .  The number is bounded by a constant depending only on y and
n .  By vi) and v), the minimum length of opy, where Py is any vertex of G, is greater
than some positive constant c(y, n), which implies (5.6).

F or the  proof o f (5.5), we use the variant of Calderon's extension theorem
(cf. Morrey [13], p. 7 4 ) . Each G E g  is a strongly Lipschitz domain and its Lipschitz
constant is bounded by some positive constant c'(y). Making use of (5.6), we can
obtain a partition of unity gq} such that the support of Cy does not become so small
for any j  and G .  This completes the proof.

By the following lemma we observe that the result obtained by Bramble and
Hilbert [1] holds uniformly for G belonging to g.

Lemma 5.4. L e t  g  b e  as above. F o r 1  <p < + oo an d  (71.. m < + cc, there
exists a positive constant c(y, p, n, m) such that
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(5.7) inf 1,p ,G .6eltdm +1,p ,G for all G e a n d  v  elP"+"P(G),

where .9 m  is the space of polynomials of degree m  def ined in R.

P ro o f . Assume that there is no  such constant. Then, it follows that there
exists a  sequence {G1 , v i l  such that G j e g , vi  e W m  ' 9(G1) and  that

(5.8) inf ilvj +q11„, + ,,p ,G i = 1  a n d  ivj i„,+ ,,,,,G j — o 0.
9 E P .

By selecting a subsequence we may assume furthermore that there exists a polyhedral
domain G e g  such that Gj  converges to G, i.e.,

(5.9) -- +  x  pointwise in  131 ,

where x i  (resp. x ) is the characteristic function o f Gj  (resp. G ) .  Take a  sequence
{q 1}  .9',„ satisfying

Applying Lemma 5.3, we can construct 1.0i E W m + I 'P (B i ) ,  a  uniformly bounded
extension o f wi =v i +g i . Since f l is bounded in  Wm+1 , P(B 1 ) ,  w e can  select a
subsequence, which is also denoted by Op such that

(5.10) i4-)j — 0 w  weakly in  Wm+1, P(B i )  and strongly in Wm•P(B i ) ,

where w is a function belonging to Wm+1 , P(B 1 ).
We first claim that

(5.11) 1Wim+1,p,G
=

•

For any 0 E q,°(G), it holds that supp [0] OE G sufficiently large j. Therefore,
using (5.10) and (5.8), we have, for (al = m +1,

D Œ w  dx =(-1) 1Œllim 0  . D 1 0 dx
G J—■+00 G

lim 5 v ii j DŒ0 dx
—■+co

= lim 1:;rui  d x
Gi

=0,

which yields (5.11).
We next claim that for all g e

(5.12)

From (5.8) it holds, for any g e .9„„

(5.13) 1 E
Ice! _Srn
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By making use of (5.10) and (5.9), we have, for lal

Ilx,(D"wi +Daq)—x(Daw+D"q)11 0

XjD œ  W j W  0 ,p ,B  +  X jD œ W 1102q—x1Ỳ q110,p,B1

D œ 0  j D œ W  0,p,B1 + 11(0 X )D œ W 0,p,131 ± 1100 XV 2 q110,p,131

0 a s  j + co,

which implies that

(5.14) IIDŒ(vi +q ; )+ D "q ilD"w+ 0,p,G a s  j  --- ) +  co.

Combining (5.8), (5.13), and (5.14), we get (5.12).
But, (5.11) and (5.12) contradict the result for the fixed domain G (cf. Bramble

and Hilbert [1], Theorem 1),

inf 1 ,p,G CIWIm+ 1,p,G fo r  a ll  w e W"' , P(G),
q e 9 ,, ,

where c is a positive constant independent of w . Hence, there is a constant c(y, p,
n, m) such that (5.7) h o ld s . This completes the proof.

For G e T , we can find the barycentric domain DG associated with O a s  G is
the union of T ? .  Define a linear operator riy from W2 , P(G) into g  such that, for

E W 2 , P(G), /7yv coincides with v a t n + 1 nodal points of T7 , where p> n12 and
Ty is one of n-simplices constituting G . We regard Hy as an operator from W2 •P(G)
into W 1 , P(DG). Then, we have

Lemma 5 .5 .  Let be as ab o v e . Then, for p> n/2, there ex ists a constant
c3 (y, p, n) such that

(5 .1 5 ) v — Hgv II 1 ,p,DG 5c3Iv12,„,G f or all j, G e T ,  a n d  v e W2 , P(G).

Proof . B y  the definition of f  and p> n/2, we observe II7  is continuous from
W2 , P(G) into 14/ P(DG) and that Hy is uniformly bounded for j  and G E  T . Noting
that /7yq=q on  DG for any q e 1, a n d  using Lemma 5.4 with m =1, we obtain
(5.15) in a similar way to that of Ciarlet and Raviart [2, Lemma 6 ] .  This completes
the proof.

We now have the following estimate for the upwind finite element approxima-
tion.

Lemma 5 .6 .  S uppose a triangulation ,F h is  re g u lar and that Vry is the finite
element space defined in § 1 .  If  p> n12, then there exists a constant c(y, p, n) such
that, f o r any  v e W2 , P(521) and th e  Voh ,

(5.16) 1(B,,/,,v, — ((b -17 )v, 111 )h1'5-  ch o + 1,0 3

where p '- p
P 1.
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Pro o f . Set
N+ND

Q„v =  E  b(P1) • pv(x)& h .
1=1

By Holder's inequality, (5.3), and (5.1), we have

(5.17) the left of (5.16) 1(Bh l h v—Qhv,

+1 ( Q h v , h + W hy —  • F)v,

11B hi(ihv )— b(P1)• v(x)Il 0,p
i= 1

+c(y, p, Id/h 1 ,p',Dh

h ibl 0 + 1,00,01 V 11,P,ni II th  0,e,f2h*

Let us estimate the first term . Given any interior nodal point P 1,  we let lt;
be the maximum length of all the sides containing P1, and S i be the union of all the
n-simplices containing P i . Define an affine mapping F. f ro m  R Z  onto  1:17.„' such
that x =h g +x (i) , where x( 1 ) is the coordinate of P i . It is easy to see that FT 1 (S i ) e
T . U sing  F 1, (5.15), and F  we obtain

IlBh i (I h v) — b(P i) • v  0,p,Di C 3 h i

which implies that

(5.18) il-Bhi(ihv)—b(Pi) • V v II o.p.Di c  3 (n + Ilb II 006,n1v12.p.01 •
i= 1

Combining (5.17), (5.18), and (5.4), we get (5 .1 6 ) . This completes the proof.

Lemma 5 .7 .  L et there be giv en a triangu lation  T h satisfy ing A ssum ption
2. Given any function wh E V h, we let w h ,„ denote the function o f  V h which satisfies
f o r ie  <1 , N +N B >

W (P) W h(P)>
(5.19) wh..(Pi)=

0i f  w h (Pi)--ai,

where a is a given nonnegative number satisfying

(5.20) wh(Pi) f o r ie  <N  +1 , N  +N B > .

Then, there exists a positive constant c(Q) and a nonnegative constant n,
such that, for all

(5.21) ah(wh, + (B h wh , h ,„)h +

P ro o f . We first prove that

(5.22) the left of (5 .21)_a h (w,,,Œ, wh , ) + ( B h w„,„, h ,œ)h +
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which is an extension of the result obtained by Ciarlet and Raviart [4, Lemma 2].
According to it, we divide the indices of all nodal points into two disjoint sets,

1 1 =f i ; le  <1 ,  N +N B >, W h (P l ) >Œ},

I o = f i ;  lc  <1 , N +N B > ,w h (P i otl.

Then, we can write

w h . =  E (whi — 7 )(1)ih,' iEt,

Wh — Wh,a =  E  whAh+ E C O jh ,

JO ° j c b i

where w„= wh ( P , ) ,  k = i ,  j .  Using the notations in (2.1), we have

ah(wh—i'Vh. a ,  W ry,a)+(Bh(W h — Wh,a) ,h , a ) h ± Ç4-3h,8, h,a)h

=  E  E  (au + bit)whi(whi - 1 ) E  E  (au+ bu+ f tm ii(507(whi —
feb  j e l l J e u i  i e f i

=  E  E  (au+ bii)(whi - 7 )(whi —  7 )Jet. ie u t

+ E (au + bu + 7).
i d ,  U / 0  t e l l

By (2.2) and (2.3), we get au + b i i 5_0 for i #  j ,  which implies that the first term is
nonnegative. Noting that I, c  < 1 ,  N >  by (5.20), and applying (2.4), we have

the second term = E rx(whi —
i e l l

Therefore, we obtain (5.22).
We next prove that

(5.23) Onwh,Œ, 0 1„Ohl n)Ilbllo,..niwh,Œ11.2,0,,d0h,211o,2,a,, •

By i) of Assumption 2, the ratio of the volumes of any two n-simplices sharing with
a nodal point is bounded by a constant c(y , n), which gives (5.23). Using the con-
stant c(y , n) in (5.23), we fix p o  as follows,

(5.24) 1 n)211b116,.,a•

Combining (5.22)—(5.24), we have

a h (w h , °h,a)11+,11(-4-)h,177h,l)h

I W h, a1 i, 2,12k — c(7. w h , 11,2, 3 W0, h, /11 0,2,12h

+

W h,aWh 2 f2 PO) 112— 2 .° h
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1 12tr. 2  "  h , o e  1 , 2 , 0 h

Noting that wh,„ e Vo l, and using Poincares inequality and (3.1), we obtain (5.21).
This completes the proof.

Lemma 5.8. Suppose 1 + co and that O h an d  Q, satisfy  (3.1) and (3.2).
Then, there exists a positive constant c(Cl, g, n) such that

(5.25) Ilg110,,, _‘25.ch2/glig11,4,0, f o r  g  e W IA (0 1)•

Pro o f . We begin by proving that

(5.26)
i l q

dx„ I g (x', x„)lq dx'}
o

f o r  g  C (R " ) ,

where d(<1.) is a positive constant and x'=(x,,..., x„_ 1). Using that

g (x', x„)= g(x', 0) +1 x n (x', t)dt,
0 ax„

we have for 0 < x„< d

d  a„x„) q c ( q ) g + xvg' (x ', 01' dt,
ax,

where g ' is defined by -1q -+-1 7q  = 1 .  By the boundedness of the trace operator, we

obtain

„1 I  (x' , x„)lq dx' <c(q)c6dx I g (x' , 0) Iqdx'
JO

d d  an

Jo
 x eg . dx,,5 d x '1  (x', t)1 dt

R. - 1 W C ? ,

c(q)(d+c19 111g111,, ,H ,

which implies (5.26).
By making use of a partition of unity, of C'-mappings (a portion of F is trans-

ferred into { (x', x,); x = O} by a map), and of (5.26) and (3.1), we obtain (5.25) for
all g E  C (R "). Density arguments yield (5.25) for a ll g e WI , q(0 1 ). This com-
pletes the proof.

Proof  o f  Theorem 3.1. Let wh b e  vh — /h v e V01, and w,„ be as (5.19) for c O.
We first prove that

(5.27)

where c=c(y, fl, n, p. i t ,  11b110+1,.,0) and  p' = p  P f . L et i3=Ev, where E  is the
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extension operator defined in § 3 .  Set f1 E LP(S21) as follows,

= —.413+(b • 57)13+

Since wh ,„ E Vo h , we have

(5.28) ah(ti, wh ,„) +((b • V)1, + u(13 ( f i , w  1h ,z ,h 9 19 h,a,h •

Combining (3.4) and (5.28), we obtain

(5.29) an(wh, wh,)+ hW  h9 1-4 7-  h,a)h 1 - 1(Ç -1 199 'T  h ,a)h

w„,„)h— ah( l h v, wh ,a ) —(B„Ih v, h,a)h —  P(Inv• vTh,.)h

Wh,Oh— aahv —
 V, Wh,0 — {(Bhihv• On,a)h — Ob • F913,

— Pffinv, h,a)n —  (3, W  h,a)h) •

Let us estimate each term of the right of (5.29). Defining w, 2  =0 on 0, —Oh and
applying Lemma 5.8, (3.1), and (3.5), we have

(5.30)t h e  f i r s t  t e r m '  5 d 5 If—f1 IPdX
ah - ci }"Pi1 lip'

j IP' dx}
a h  a  w h,a

Lç.c(S2, p, n)h 2 I P '11142oliwn,ad1,p•,o,,•

By (5.1)—(5.4) and Lemma 5.6, we have

(5.31) Ithe second terml p. n) 11 11v112,p,alwh,211,p•A. ,

(5.32) the third term' p, n)h1111 11o+ t oilv112 n11wha ll

and

(5.33)th e  fo u r th  te rm l./ .4 1 (1 „ v — + • IT h,. —  wn,01.1)

• pc(y, p, n)h11v11 1I l w 11

Combining (5.29)—(5.33), applying Lemma 5.7, and noting 1 <p ' <2, we obtain
(5.27).

According to Ciarlet and Raviart [4], we define

E(ot)-= {x; x E Oh ,  Wh0 )  ,

and C(a) = mes E(Œ). By H61der's inequality and Sobolev's lemma, we have

l i

(5.34) II c(P')C(01) - ' II wh,711

and

(5.35) II W n, II W

2nwhere q = 2  in n 2  and we take g>   2 P   in  n = 2 . Combining (5.27), (5.34),
p — 2
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and (5.35), we obtain

(5.36)I I  w h , . i i  o , q,n,„ chliv 1124 0  COO P'

where c=c(y, 0, n, p, p,11b110+ q).

Now take fl> a .  Then, we can write

E(I3)= {Ti ; there exists a vertex PI, of Ti  such that wh(P)>

Therefore, we have

w„,.(x) (fl — ce)Ai 0 o n  Ti  e E(13),

where Ai is the barycentric coordinate associated with P in T . N o t in g  E(fl) c E(a)
and that

T 
l2ilqdx=(q+n+1)B(n+1, q+1)mes Ti,

where B is the beta function, we get

(5.37) V who , 11 o,q.n„ ( f i  —  {(q+ n +1)B(n + 1, q+ 1 )} 11qC(f
3
) 11 q.

Combining (5.36) and (5.37), we obtain

(5.38) c o ) chlif iv112 ; ,0  y c w q ( j÷ _ )
fo r  /3> a 0 ,

where c=c(y, Op h, p, 12, ilbllo+ I ,co,f), q).
Since q(--pl, — 1, by a  result of Stampacchia [17, Lemma 4.1] we obtain

C(c'ch
 iv

 Ii 2,p,D) = 0,

where c' =c'( (0), q, p') is monotone increasing with respect to  C(0). Therefore,
we have

(5.39) vh(x)— (/h v)(x) ch Ilvii2,p,o for all x e Oh,

where c=c(y, Q , n, p, p, Replacing v by — v, we have

(5.40) — vh(x)+(/hv)(x)5e1111v1i 2 ,p,t1 for all x e Oh .

Combining (5.39) and (5.40), we obtain (3.7). This completes the proof.

§6 . Concluding remarks

We have discussed hitherto uniform convergence of the upwind finite element
approximation for semilinear parabolic problems. In dealing with the nonlinear
term, the assumption (1.2) has been essential. Now we can replace it by the weaker
condition

(6.1) fi(x, t, u) 5 M f o r  (x, t)e Q , u  [El i , U2] ,
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where U, (resp. U2 ) is the minimum (resp. maximum) value of the exact solution u
in Q. Actually, consider a continuous function j i (x, t, u) such that L is continuous-
ly differentiable in u and that

fi
= f 1 in x [U 1 , U 2 ]

1 otherwise.

Then, replacing f, by j ,  does not give rise to any change in the solution in O. Since
f , satisfies i) of Assumption 1, we can apply Theorems 1.1 and 1.2 to the schemes
(1.5) and (1.6) with f , and M+1  in place of f ,  and M  respectively. By the same
argument, for the problems of blow-up type such that the solution tends to infinity
at a finite time T*, we can also show the uniform convergence in -a x [0, T* —e] for
any e> 0. ( c f .  Nakagawa-Ushijima [14])

Our method can be extended straightforward to the problems with Neumann
condition,

au = du — (b • v)u +f(x, t, u) i n  Q,

du 
d p  =g(x , t) o n  E,

u =u° in  Q at t=0,

if b satisfies

b • v fo r a ll x  e f,

where I) is the outer normal to F.
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