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Introduction

The purpose of the present paper is to characterize explicitly the image of the
Fourier transform of C<®-functions with compact support on an n-fold covering
group G of SU(1, 1)~SL(2, R), that is, to establish an analogue of the classical
Paley-Wiener theorem.

The classical Paley-Wiener theorem can be stated as follows. Let f be a C*®-
function on R vanishing for [t| > T, and define its ordinary Fourier transform by

)
(0.1) F(s)=3 f(Deisdt (seC).

-
Then, F is an entire function with the property that for every non-negative integer
r, there exists a constant C, such that

(0.2) |F()| < C,(1+|s|)"eTitm e,

We topologize the vector space s# 1 of all entire functions satisfying (0.2) by means
of seminorms

|Flyp=8UP im sy <(1 +ISIYIF(s)]  (r, M=0, 1,...).

Then the ordinary Fourier transform gives a topological isomorphism between
2 (R) and 54, where 2 (R) stands for the topological vector space of C®-functions
on R vanishing for |t|> T equipped with the usual topology.

Our method basically follows Ehrenpreis and Mautner [3] in which they treated
the group SU(1, 1)/{+1}. In the present case, however, there arise some difficulties
when we follow their method directly. Let us explain this point in more detail.

In Part I of [3], they dealt with K,-bi-invariant functions, where K, is a maximal
compact subgroup of SU(1, 1)/{+1}. But there they failed to derive the exact cor-
respondence between ‘‘support” and ‘‘type of exponential” mainly due to rough
estimates. On the other hand, in Part II of [3], they succeeded in deriving the above
correspondence, using the result on the Abel transform corresponding to the trivial
one-dimensional representation of K,. In other words, they established the Paley-
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Wiener type theorem for K,-bi-invariant C*®-functions with compact support.
Next, shifting ‘“‘K,-type” of functions by means of certain differential operators,
they deduced the Paley-Wiener type theorem for arbitrary K-type from that for the
trivial K,-type. In our case, however, it is difficult to study at first the Abel transform
corresponding to the non-trivial representation of a maximal compact subgroup K
of G. Therefore we proceed in another way, that is, we improve the method
of estimation in Part I of [3], and then prove the Paley-Wiener type theorem for
G for any n. After that, we are able to study the Abel transform.

We can treat any finite covering group of SU(1, 1) in a unified way. The only
exception is the case of odd functions on SU(1, 1). This case requires careful treat-
ment because we must take account of some validity problem concerning the integral
expression of hypergeometric functions (cf. (4.17) and Lemma 4.3).

The present paper consists of six sections. We introduce a parametrization on
G in 1.1 and construct its representations in 1.3. In 1.4 we give intertwining oper-
ators which are important in characterizing the explicit image of the Fourier
transform. Sally constructed in [13] intertwining operators for the universal
covering group of SU(1, 1) by a different method. In 1.6 we give the list of all
irreducible unitary representations of G. Section 2 is devoted to the study of matrix
elements of representations. In section 3 we derive the inversion formula (Plancherel
formula) by an elementary method. In sections 4 and 5 we establish the Paley-
Wiener type theorem for arbitrarily fixed K-type (Theorems 4.1 and 5.1). Let us
outline these theorems. Denote by 2%, r(—n+1<k<n, p,qeZ, T>0) the
space of C®-functions with compact support satisfying

(0.3) f(ugv)=xkw) f(@rh(v)  (u, ve K~R/4nnZ),
0.4) f(ua,v)=0 for u,vek, t>T,

where xf,(uo)=exp(—i(p+7kn—)9) (as for uy, a, see 1.1). In section 4 we treat

the case p=¢=0, and in section 5 the case of arbitrary p,q. The image of 2%,
under the Fourier transform is the space s#%, r of all entire functions with the
property analogous as (0.2) (we replace Ims by Res in (0.2)) and satisfying certain
functional equation and the condition of zeros. As a consequence of Theorem 5.1,
we can investigate the Abel transform mentioned above (Theorem 5.3). In section
6 we finally establish the Paley-Wiener type theorem for C®-functions with compact
support (Theorem 6.3). The image of a function f which fulfills (0.4) under the
Fourier transform is given as an operator-valued entire function with the properties
analogous as those for %, r, and satisfying certain ‘‘rapidly decreasing” con-
ditions.

The author wishes to express his heartfelt thanks to Professor N. Tatsuuma and
Professor T. Hirai for their kind advices.

Notations

Here we give notations frequently used in the sequel. As usual C, R, Z, N
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stand for the sets of complex numbers, real numbers, integers, positive integers
respectively. We denote by T the set of complex numbers with absolute value one.
Ims (resp. Res) denotes the imaginary (resp. real) part of a complex number s.
Let G be a real Lie group. Then C*(G) (resp. CF(G)) denotes the space of C*-
functions (resp. C*-functions with compact support) on G. When we topologize
C&(G) as usual, we denote it by 2(G). Let g be the Lie algebra of G. For X eg
we define a right invariant differential operator on G, denoted again by X, in such a
way that

Xf@=Spfexp(-X)9)| @0,

Similarly we define for X ég a left invariant differential operator on G, denoted by
X', in such a way that

X f@)=f@exwin)|  (@e0).

Let U(g€) be the universal enveloping algebra of the complexification g€ of g. Then
any element X € U(g€) can be considered canonically as a right (resp. left) invariant
differential operator on G. We denote it by X (resp. X’). For a Hilbert space 9,
we denote by B(H) and U(9) the sets of bounded operators defined everywhere on
$ and unitary operators on $ respectively. For a linear operator T on £, we denote
by T* its adjoint. Dom(T) and Ran(T) stand for the domain and the range of T
respectively.

§1. Preliminaries

1.1. Let G, be the group SU(1, 1) consisting of all 2x2 complex matrices of
the form

« B
(LD ( ) with [a|2—|f|2=1.
B &

As in Bargmann [1, p. 594] put f/a=1y, arga=w € R[2rnZ, then G, is parametrized
as

{3 0); lyl<1, oe R[2nZ}.

In this system of coordinates group operation is written as follows: let (y, w)(y’, @)
=(y", "), then y” and " are given by

(1.2) Y =(ye 21" +y) (1 +yy’e2i@) L,
(1.3) 0" =0+’ + Qi) og(1+yye 2iw) (1 4+yye2ie) 1,

where the latter is understood by congruence mod2n. Here we take the principal
branch of logarithm and this is possible because Re (1 +yy’e~2i%")>0.
Let n be a positive integer and consider a manifold
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G=G,={(y, w); lyl<1, we R[2nnZ} .

We introduce an operation in G by (1.2) and (1.3) with congruence mod 2nn, then
G becomes a Lie group as is easily seen. The unit element e is (0, 0) and (y, w)™!
=(—ye?®, —w). G is actually an n-fold covering group of G,. The natural cover-
ing map @ of G onto G, is given as

&(y, w(mod 2n7))=(y, w(mod 27)).
We identify under @ the Lie algebra of G, with that of G, which is denoted by g.

Put
1 [—i 0 1[0 1 1[0 —i i =i
Xo=7< ) 1=7< » =7 » T=7
0 i 1 0 i 0 i =i

up=exp0X,=(0, —0/2), a,=exptX,=(th(t/2), 0),

and

b,=exptX,=(—ith(t/2),0), n,=exply,

where exp denotes the exponential mapping from g into G. We use the following
subgroups:
K={uy; 0eR}, A={a,;teR},

B={b,;teR}, N={n; (eR}.
Each element g in G can be expressed uniquely by
g=uqan, (0<f0<4nn, teR, (€R).
Also g can be expressed by |
g=u,au, 0<¢p<4nm, t>0, 0<yY<2m).
For g& K this expression is unique.

1.2. Haar integral. We normalize Haar measure on K in such a way that the
total mass is equal to one, and that on G as

[r@yag=( (" (" swangeraudrac

=2ﬂS SwS f(ua)shtdudtdy

KJO JK

N Ay, dy,do. o
—”"So ngqf(y’ w)(l—|y|2)2 (y=7y:1t+iy2).
We know that G is unimodular.

1.3. For a fixed integer k such that —n+1<k<n we put
(1.4) J@, D=0 I1+772,



The Paley-Wiener type theorem 277

(1.5) vig, D)= e‘“‘"lk[%]h,

where
g=()’, (D)GG, c=eiOET, lk=k/2n,

and as before we take the principal branch of the fractional power in the right hand
side of (1.5). We make G act on T by

afl

g-L=0(0) 1=

&' s

where @(g) is given by (1.1).
Let du({) be the ordinary normalized Haar measure on T, and denote by $
the Hilbert space L*(T; du({)). For any fixed seC, we define operators U(g, s)

(g€ G) by
UKg. )f(Q)=vg", DJjg~" DY**f(g~"-{)

. 1+;"5]Au e 1+y{)
= 2iwA| 1 T3> —_ 2)1/2+s 1-2s Qioy — " >
e e NN R I e G S e O
where g !=(y, w), fe . It is clear that {U*(-, s), } is a strongly continuous
bounded representation of G for any fixed seC. We put e ({)=("?(peZ).
Then, {e,; pe Z} forms a complete orthonormal system in $.

Proposition 1.1.

m a0,

(2) For veK, UX, s) is independent of s, and U*(v, s)e U(9H) for all ve K.

(3) 1UXg, 9l <e'®l for g=u,am, (120).

4) UMy, s)*=UMg™", —-3).

(5) {U*(-, s), O} is unitary if and only if seiR.

(6) For any seC, C*(T) is contained in H(U¥(-, s)), the totality of C®-vectors
for {UX(-, 5), H}.

Proofs are all elementary, so we omit the details.
Remark 1. For k=0 or n, g—U¥(g, s) gives actually a representation of G,.

We define for fe H,(U(-, s)), X €g,
UK(X, 5)f= —3t UHexptX, 9f | .
t=

Then the mapping X—U¥%(X, s) gives rise to a representation of g, and is uniquely
extended to that of the universal enveloping algebra U(g€) of the complexification
g€ of g.

Proposition 1.2.
(1) UIG‘O(Xoy s)ep= - i(j'k"-p)ep‘
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@) Uz;,(x+,s)e,=<xk+p+%+s)e,+l,
Uk(X_, s)e,= —(l,,+p—:lz—-s>ep_,, where X.=X,+iX,.
(3) Let Q be the Casimir element in U(g°), that is, Q=(Xo)*—(X)2—(X,)>?, then
Uk(Q, s)e,,=(%— s2>e,,.
Proofs are given by simple calculations.

1.4. Intertwining operators. We define for any integer p’a rational function
ak(s) as
P

=1
nosjgp_l(lk+j+—é-—s><lk+j+—é‘+s) for p>1

(1.6) ak(s)= 1 for p=0
! o1 -1
Hosislp|—1<—lk+1+7—SX—Z,(+]+7-+S> for p<-—1.
Note that a?(0)= —1 for p< —1. We see easily that |x%(s)| <1 for Res>0, and then
we can define for Res>0, bounded operators A*(s) e B(9) by A*(s)e,=ak(s)e,.

Proposition 1.3.

(1) A¥s)*=A*5E) (Res=0).

(2) AXs)e U(9) if and only if seiR.

(3) The operator A*(s) intertwines the representations U¥(-,s) and U*(-, —s)
as follows:

AXUXg, 5)=U g, —)44s)  (9€0).

The assertions (1) and (2) are immediately verified. We shall prove (3) after
the next two lemmas.

Since U*(exptX, it) is a one-parameter subgroup in ¢ of unitary operators for
fixed 7 e R, there exists by Stone’s theorem a selfadjoint operator H¥(t) such that

Uk(exptX;, it)=exp(—itH(1)).

We denote by H¥(z)~ the restriction of H¥(t) to D, where D is the totality of all
finite linear combinations of e,’s. Note that D<Dom (H¥(t)) by Proposition 1.1

(6.
Lemma 1.4. iU%(X, it) is essentially selfadjoint.
This lemma is well-known although its proof is not so trivial (cf. e.g. [19]).
Lemma 1.5. H%(t)~ is essentially selfadjoint.

Proof. For simplicity we drop superscript k and parameter 7, fixing them.
Since A, is ‘‘diagonal” (cf. Proposition 1.2 (1)), the lemma holds at least for j=0
as is seen without difficulty. Thus there exists for each x e Dom(H,) a sequence
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x, €D such that x,,—»x, Hox,,—Hyx. On the other hand, we have

—(Hy)x,, +'(H1)2x,,,+(Hz)zxm=(%+z2)xm (cf. Proposition 1.2 (3)).
Since ((H)?y, y)=IlH;y|l*> (yeD), we see that {H;x,} (j=1,2) are convergent.

Since A Xn,=Hx,, and H; is closed, we get

Dom (Hy)=Dom (H;), Dom(H,)=Dom(H;), H;x=Hjx
for xeDom(H,),

where H) denotes the closure of A ;- On the other hand, by Lemma 1.4 there exists
for each y e Dom(H;) a sequence y,, € Huo(U*(-, it)) such that y,—y, H;y,—H;y.
By the discussion above we have H;y,,=H;y,. (Note that H,(U*(-, it))=Dom(H,)
as is seen from the definition of C®-vectors.) Thus we obtain H;cHj. The
converse inclusion is clear. Q.E.D.

Proof of Proposition 1.3 (3). First of all we shall prove it for s=iteiR. By
a simple calculation we obtain

AX(it)H¥(t)e, = H¥(—1)A*(i1)e, (j=0,1,2).

This implies A*(it)H%(t)~=H¥% —1)~A(it). Then by limiting procedure and
Lemma 1.5 and noting that A*(it) e U(9), A*(i1)D =D, we obtain

(1.7) ARG HY(r) = HY( — 1) AX(ic) .
By a familiar argument, (1.7) gives us
Axit)UM(g, it)=UXg, —it)A*(it) for g=u,, a, or b,.

Since G is generated by the one-parameter subgroups u,, a, and b,, the above equality
leads us to the assertion (3) for Res=0.
Now, consider an operator T(s) € B(9) defined by

T(s)=AXs)UK(g, s)— UXg, —s)AX(s).

As is seen above, T(it)=0 for te R. On the other hand, it is clear that T(.) is an
operator-valued holomorphic function for Res>0 and continuous for Res>0.
Hence by the reflection principle of Schwarz we can continue T'(s) analytically across
the imaginary axis, because T(it)=0 is a symmetric operator. By the theorem of
identity, we get T(s)=0 for all s with Res>0. Q.E.D.

Proposition 1.6. Suppose that there exists a non-zero closed linear operator
L with the following properties (i)~ (iii).

(i) Dom(L)y>C™(T).

(ii) L leaves C*(T) invariant.

(iiiy For a pair (s, s"), LUXg, s)f=Ug, s)Lf (geG, fe C>(T)).
Then s’ is equal to s or —s.

Remark 2. It is readily verified that U*(g, s) leaves C®(T) invariant for



280 Takaaki Nomura
every ge G, se C. Hence the above condition (iii) makes sense.

Proof of Proposition 1.6. Taking account of Proposition 1.1 (6) and the
closedness of L, we deduce easily that for fe C*(T), X e g,

Uk(X, s)feDom(L) and LU%(X, s)f=Uk(X, s")Lf.

Thus (% —s2>Lf=LU£§,(Q, s)f=UK(Q, s")Lf= (%—s“)Lf. Since L is non-zero,
the assertion follows. Q.E.D.

1.5. Invariant subspaces. Here we investigate U¥(., s)-invariant subspaces.
When k=0 or n, g—U*(g, s) defines a representation of G, as was noted in Remark 1,

so we shall omit here these well-known cases. Of course the following discussion
also holds in the case k=0 or n after slight modifications.

1 1
Consider Ran (A"(lk+ —%)) and Ran (A"(—Ak+ —%)) for jeN. It
is easily seen that they are respectively equal to
$i=58,Ce, $7=X&Ce,
Proposition 1.7.

(1) 9} is invariant under U"(-, lk+j——é—> (jeN).

(2) 9j is invariant under U"(-, —l,&j—%) (jeN).

Proof. (1) Let fe$}, heRan(Ak(zﬁ j—%)). We have h=A"<Ak+ j-—;-)h'
for some h' € 9. Then

(g, hti=4)1 1) =(0 (g, mri=5 )1, a(mti=5 )
(. o(g, —lk~j+—é—>A"<Ak+j—%)h')
=(f, Ak(,l,,+j—%)uk(g-l, /1,‘+j——;—) ')=0.

2
(2) The proof is completely similar to that of (1). Q.E.D.

Thus 97 is invariant under U "< - At j—L).

We denote by 4% *(s) the restriction of A*(s) to HF. Note that 4¥(s) is “‘diago-
nal”. Define an operator B¥'* e B($}) by

A§'+<lk+j—%+s) )
B%*=lim ) (in norm) .

s=0 a}‘(lk+j——é—+s

Then

I+1 ,
kitp — cr. f >j.
(1.8) Bives oswg—j—1l+2(j+l,,) ér or p=l
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Here we understand [Jog<-(=1. Define a hermitian form on $7 by
(fo. =By fi. f) (1, [2€9]).

We see easily that (-, -)b-+ is Uk(-, o=
that (-, -)%* is positive definite. We denote by $%* the completion of the pre-

Hilbert space (97, (-, -)¥*). Thus we see that U"(g, At —%) is uniquely

extended to a unitary operator on $%* which we again denote by U "(g, At —%—)

-%)-invariant. It is clear from (1.8)

Hence {U“(., A+ j—-é—), 55}‘-*} is a unitary representation of G. Furthermore

it is irreducible. We denote by Dj, ., this irreducible unitary representation of G.
By the same reasoning as above, we get another irreducible unitary represen-

tation {Uk<., — A+ j——é—), 55}-‘} of G. In this case we use the operator

- I+1 .
k’ = —_— —
(1.9) Bke, o<l I|p|I S TE2=T0) e, for p<—j.

We denote by Dj, ; this irreducible unitary representation of G.

Proposition 1.8. For Res>0, there is no U*(-, s)-invariant subspace other
than those stated above.

Proof can be given by the analogous method for Theorem 2.1 in [15, p. 218].

1.6. Classification of the irreducible unitary representations of G. There are
other irreducible unitary representations of G. Concerning this point we give two
propositions whose proofs are elementary and omitted here.

Proposition 1.9. (A%(0)-,-) is a positive definite U*( -, o)-invariant hermitian
form on § for 0<a<%—|lkl.

This proposition assures the existence of supplementary series, which we denote
by EX(o).

Proposition 1.10.
(1) Ran (Ak(—/lﬁj— L—)) is invariant under U"( N Ak—j+—,l3—) (jeN).

(2) Ran (A"(l,&j-——%—)) is invariant under U"(-, —Ak—j+-é—> (jeN).

When 1 <k<n—1, it is readily verified that ¥ 1_ 2, )>0 for all p>0. Hence
P\ 2

aﬁ(,{k—%>=ag<%—)ﬂ‘)_l>0 for p>0. Thus we can define for every such k an
unbounded positive definite selfadjoint operator A% in H$*=3 & ,Ce, in such a way
that Aie,:a;‘,(lk—%)ep for p>0. Note that Dom(A%)=Ran (A"(%—Ak)).

(A% -, -) is a positive definite U¥{ -, 4, — %)—invariant hermitian form. The closed-
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ness of A% assures the completeness of (Dom (A4%), (Ak-, +)). Thus we obtain'a
unitary representation of G, which is seen to be irreducible. We denote it by Dj,.

When —n+1<k<—1, we have oz’;,(——é——).k>>0 for all p<0. By a similar
reasoning as above we also get an irreducible unitary representation of G for every
such k. We denote it by Dy,.

It can be shown that except for the trivial one-dimensional representation there
is no irreducible unitary representation of G other than those stated above. Here
we give the list of all irreducible unitary representations of G.

1. CK(1) (—n+1<k<n, 1eR) (excluding (k, 1)=(n, 0)).
2. (1) Di.; (—n+1<k<n, jeN) and Di,;;
(2) Dj3.-; (—n+1<k<n, jeN).
3. (1) Dj, (I<k<n—-1);
(2) D3, (—n+1<k<-1).
4. EX0) (-n+1gkgn—l. 0<a<—5——|z,‘|>.
S. Trivial one-dimensional representation.

For 1<k<n-—1 the locations of the irreducible unitary representations in s-
plane corresponding to A, are illustrated in the following figure. For —n+1<k
< —1 the reader can easily draw the similar figure. The case k=0 or n is well-known.

Ims l s-plane
Ck(r)=| E*(o) D 41 D3+
1 1 A +j—L
at | ] et )
—e 5 o—o—f *r—o
1 .1
I 'E"l‘).k I )"k +] - _2‘
I'k Ik—l D;k"j

In the following we do not nced explicitly the representations in 3, 4 and 5.

§2. Matrix elements

For the later uses, we prepare the matrix elements uk (g, s) of the representation
UX(-, s) as follows:
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uk (g, 5)=(UXg, s)e,, e,) (p,qeZ, —n+1<k<n).

Also we prepare the matrix elements of D}, ,; and D3, _; as

k,+
vkt (g, j)= (U"<g, A +J——l—) bt (jegs v’,i"‘(j)e,,)j (p,g=j, jeN),

k,—
o @ ) =(0(9, —h+i=F W (Deq 157(e,) T (pras =] jeN),
where
. 1+2(j+xk)]m
2.1 kt(j) = [———— ,
(2.1) Y5 () ocid L T+1

2(7i—A /2
(2.2) yE ()= i

Oslslpl—j—l[ I+1

By an easy calculation we obtain

(2.3) Vit (g, ) = okt (b g, et =)
(2.4) o9, J) = 0l (Db 9, = 2a+i=F )5

where we put

ok (N =y () yE ().

In the following we extend this definition of w“ o j) by putting them equal to zero
for any triplet (p, q, j) not appearing in the deﬁmtlons of vk:%(g, j).

Proposition 2.1.

(]) qu(u¢gud/’ S) Xp(uw)“ q(g, S)Xf](uw)
where

2.5) xk(u,)=e"iAtro,
The saume relation holds for vk, *(g, j).
(@) |uk (g, 9l <etlResl for g=u,au, (t=0).
() Xoup,(g, )=i(p+2uy,(g, 5),
Xoupy(g, 9)=—i(q+2)up,(9, ),
X oub(g )= (Bt b+ =5 ube1.4(9, 9,

X_up,(9,9)= _</1k+l7“%+5>“2—1,q(g» s).

Proof. The assertion (1) follows directly from the definition, (2) from Propo-
sition 1.1 (3), and (3) from (1) and Proposition 1.2. Q.E.D.

Proposition 2.2. Put Ak (s)=ak(s)/ak(s). Then, as meromorphic functions in
s, we have the following identity.

(2.6) uk (g, —s)=A5(s)uk (g, s).
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Proof. For Res>0 with ak(s)#0 we have
ufy(g, —5)=(UMg, —s)e, e,)=af(s)" (UX(g, —5)A*(s)e, e,)
=af(s)"(AH(UXg, s)e,, e))= Ay (S)ug,(g, ).

On the other hand, u% (g, —s) on the left hand side is an entire function ins. There-
fore by the uniqueness of analytic continuation, the equality in the proposition holds
for all se C. Q.E.D.

Remark 3. A% (s)=1 for all seC.
We define the hypergeometric function as follows:

. o« Tta+j) ITb+)) I'() 2
@D F@bGD=2"T@ Il Tt J!

for |z| <,

where I'(z) stands for the gamma function. In the sequel we consider F(a, b, c; )
as a meromorphic function on C\{1<z< oo} obtained by the analytic continuation
of the right hand side of (2.7).

Proposition 2.3.
uk (a,, 5)=(1—th(/2)) ”“‘F(s — Pt st hctp L1 thz(t/2)> :
Proof. By definition

. 1 —{th(e/2) Tt e eas
ubptan ) ={ [ 1o hparar |7 (1= th2]2) 72451 = {the[2) |2 du)

==y (1= gyeremtams (1= L aee (),

where we put x=th(t/2). Expanding (1—{x)**+r~1/2=s (1 —{x) #x~P~1/27¢ into
binomial series, we get

F<s—p~lk+—1-+j)
(1= x)htp=1/2=5= 3 2 /g,
j20 j!I"(s—p—lk+—2>>

F<s+p+/1k+%+j>

J=0 j!I"(s+p+)~,‘+%)

(1=Cx)~4emp=1/27s= xI{.

Since |x| <1, |{|=1, we can integrate them term by term. Noting that
[ vau =50
we get the right hand side of (2.7) multiplied by (1 —x2)!/2*s with a=s—p—,lk+%,

b=s+p+h+a, c=1, z=x Q.E.D.
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We define a function #% by

'7’;;(9’ §)= XZ(“o)e—(”l/z)' for g=uqamn,.
Proposition 2.4. u%,(g, 5)= er,j‘,(u‘lgu, s)du.

Proof. Denote by (g, s) the right hand side. Then we see that

Bi(u,guy, S)=er)f,(u“u¢gu.,,u, s)du

=ani‘,(u“‘uw+¢gu, s)du = yk(u,.y)BE(g, s).

Therefore it suffices to prove the equality only for g=a, by Proposition 2.1 (1). It
is readily seen that u,au_,=a_, and so uk(a_, s)=uk/(a, s). Note that u, is
a generator of the normalizer of A in K. Thus what we must prove is uk (a,, s)
=pBk(a_, s). Write a_uy=uga.n;. Then we have

e 2=(1-{th(1/2)) |1 - {th (¢/2)|7le™ /2,

e’ =jla-, )" ({=€").
Hence by (2.5), we get

4nn 3 , ,
B:(a_" s)=_4#8 el(p+lk)oe—;(p+lk)6 e—(s+1/2)¢ d0
0o

- |

Aktp

Ja-,0)'2du() = uz,(ay, 5) .
Q.E.D.

§3. Inversion formula

In this section we derive the inversion formula which serves to prove the injec-
tiveness of the Fourier transform. Here we do not appeal to the general results of
Harish-Chandra [7] but to the direct calculations because the structure of the group
is not complicated and so it would be exaggerated to apply the profound theory to
the present case, and because the constant factor appearing in the inversion formula
is automatically calculated.

We denote by 2%, the totality of functions fe C§(G) satisfying

G.D Su,guy) =e'3xrpe f(g)el AtV =yi(u,) f(g)x5(uy) .
We do not consider any topology on 2%, in this section.

3.1. Put

(.2) Fi={f@utio. 9dg  for feas,
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(3.3) (p,(t)=e'/zgi°wf(a,n¢)d€ for fed,.

Then for fe 2%,, we have

(3.4) F(s)= Sf(g)gknf,(u“gu, s)du dg = Sf(g)n:(g, 5)dg
= SKST Y_o fluan)yk(we s+ 1tet du dt d&

=S°° (e~ d.
In the following we use the method in Takahashi [16].

Lemma 3.1. Put ZYs)=stann(s—A)Fk,(s). Then it is a meromorphic
function in s and

lim i, 520 ZK(s)=0 uniformly in each strip a<Res<b.

Proof. Note that ¢, is a C*-function with compact support on R. Then by
(3.4) the assertion is a direct consequence of the Riemann-Lebesgue’s lemma for the
ordinary Fourier transform. Q.E.D.

Now we integrate Z¥(s) along the rectangle I', having vertices +iT, p+4,+iT
(T'>0) counterclockwise. In the interior of I',, Z¥ has poles at

s=l,,+j—% (<j<p  if p>0,
s=h—j+4 (I<j<lp) i p<o.

Note that Z¥ has no poles in the interior of I'q. The residues at these poles are
—n‘1<1k+j——é—)F’;p<lk+j——é—> if p>0,
-1 i 1\ gk L ;
T —lk+j—2 FE = A+ -5 if p<0.
From this we have for p>0,
: 3o W\pr (g 4oL
=23 <j<\ At 5 Fool A tj— 5
T ptik
=iS Z{‘,(p+lk+i1:)dt—g Z4(o +iT)do
-T 0
T ptik
i’ zynac+ (" 2o -iT)do.
-T

Letting T— o0, we see by Lemma 3.1 that the second and the fourth terms tend to
zero. Then we obtain
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3.5) —zg (P+ 24+ IOFE (p+ A+ iD)th nt d

- 2S°°Fg,,(n)r Re th 7z + iA)d
0]

1
+221$/Sp(}'k+]_—> pp(lk "2‘>
In the same way we obtain for p<0

(3.6) —lg (p+A+i0)FE (p+ A4 +it)thntdT
= 2S°°F;;,,(iz)r Re th n(c + i2,)dt
[}

+221S1S]p|( Aetj— > ( Ay J—“)

In case p=0 and 0<k<n, we obtain (3.5) without the last sum-part. In case p=0
and —n+1<k< —1, we have (3.6) without the last sum-part.

Lemma 3.2.
4nf(e)= — iS (p+ A+ IDFE (p+ A+ i)th e d.
Proof. Let I be the right hand side member. Then by (3.4),

I=— lg (p+A+it)th m:S @ (e~ Prixtinigy dy
=— 15 th m'S @ (e~ (Prante=iztdt dr

=— igw ¥ ;(v)thnt dr,

where Y (1) = @'(t)e”P*4)t and |/7f is the ordinary Fourier transform of y, (cf.

(0.1)).
We need the following lemma (cf. [15, p. 341]).

Lemma 3.3. Suppose that ¢ € CJ(R) satisfies p(0)=0. Then

S:ow(t)—sﬁ% =iS:¢(t)th ntdt.

For fe 9},, ¢, is an even function, and so ¢/(0)=0. Hence applying Lemma
3.3 to ¥, we get

shz2) 4

© I3 ,
oo i

Since fe 2%,, we have f(a,)=f(a_-,). Thus we can put f(a,)=f[cht]. Write an;
=ugapu, (' =0), then we get
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(3.7 cht'=ch t+—é—e‘§2,

X . l -1/2
(3.8) e 02 = (ch (#/2) — (i /2)5e"2)(ch2(t/2) + 7e'€2>
Hence

© h (1/2) — ([2)Ee'? P+
(1)=e'? ht+ eer || S d
Py e S—wf[c ]l>(chz(t/2)+-‘[‘_e,§z)l/2i| ¢

Putting x=sh(¢/2), y= —,—i—ée'/ 2 we get

=4 ree+m+ 01 ([_“”—"3——}”2)4
=2y X“ty 20+ 00\ | T 2242 Vs

where T,(z) denotes the Tschebyscheff's function of the first kind defined by T,(z)
=F(—a, a, 1/2; (1=2)/2) (cf. [10]). The function T, satisfies that T,(cos 8)=cos af.
Express (x, y) as ({/rcos6, \/rsinf), then we get for a=2(p+4,),

d ©_ ., 14+rcos?20 J1/2\, dx
gros0 =42 427 =%

+4S: fI1+2r] {%n([ﬁ{%oriﬁ]m)} 252X dy

® (T 14rcos?f 2\ xsin? 6
+480f[1+2r]T“<|: 1+r i| J (1+7r)172(1+rcos? 6)1/2 dtdy

On the other hand, we have ch (p+4,)t=T,(ch(#/2))=T([1+rcos26]'/?). Hence

dy

- —2S°°¢',(z)x-lr,,([1 +rcos?6]4/2)dt
(1]

o(n 2
—8 S P ri+2 T,([Lt]’j—?—e—}”z)n([l +rcos? 0]"/2)dr df
0Jo

S
-,
S

o 2
(7 roe 2 (20 )+ cost 034

oJo

[ rre 2 o (P N 47 cos? 072y o

~4

sin2 0 dr df
XA+D 72T +rcos?B) 777

Denote by I,, I,, I the first, the second and the third term respectively in the last
expression. Integrating by parts with respect to r, we obtain I, =4nf(e)—I,+J;,
where

w(n/2 14+rcos?0 1/2\,, cos20drdf
J3=4SOS° f[l+2r]T¢(|:————l+r } )T ([1+r 052 6149 roat )77
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Let us prove I;+J5;=0. It suffices to show that for all r>0,

m/2_ /T 14+rcos?f /2 sin2 0 46
(*) So T“([_—l-}-r j| >T¢([l+r00329]1/2) (1+,.)1/2(1+rcosz 9)1/2

(2 L+rcos? 0 U2\, 2 971/2y__ 0820 db
_So T“([ 1+r ] )T,([1+rcos 0] }(l+rcos20)‘/2‘

It follows from the definition of T, that
T(2)=zF((1+)/2, (1-)/2, 1/2; 1 -2?),
T (z2)=a?F((1+a)/2, (1—a)/2, 3/2; 1 —-2?).

Notice that both sides of (*) are real analytic in >0, so we have only to show (*)
for 0<r<1. After a simple calculation our problem is reduced to show the equality:

Mo (14a l—a 3. .2> (l+a l—a 1. _ 2).2

So F< 7 5 s T Ssin 0)F —5 5 s Treos 6 )sin2 0 d6
_("p(1+a 1—a 1. _ -2) (l+a l—a 3. 2) 2
—So F( I X ssin?6 ) F R rcos26)cos?6do,

where s= —r/(1+r). Since O<r<1, —1<s<0, we can expand the hypergeometric
functions in the above integrals into the hypergeometric series, which converge
absolutely and uniformly in . Hence we can integrate them term by term, then
simple calculations show us that the both sides are expressed by the same sum of a
certain kind of infinite series. This completes the proof of Lemma 3.2. Q. E.D.

For an entire function F we formally define IX(F) by

I¥(F)= S”F(iz)r Re thn(z + iA)de
0
lejs,:(}-k +J"—%)F()»k+j—%) for p>0

.1 .
Zicisip\ —At+i—5 )F —lk-l-J———l for p<O,
2 2

0 for p=0.

Combining Lemma 3.2 with the foregoing discussion, we obtain the following
theorem.

Theorem 3.4. Let k be an integer such that —n+1<k<n, fe 2%, and
put A,=k/2n. Then the operation 1} is well-defined for Fk, in (3.2) and

2nf(e)=1I%(F%,).

Remark 4. For k=0 or n, the above formula has been given by Takahashi

[16].
3.2. For fe C3(G) we define
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(.9) Psf @)= § 2500/ g0y du o

Then P}, fe 2%,. Put

(3.10) F3u(9)={ 1@uiy(g, 4,

then we have

Fi)=(Ptaf @us(g, )dg.

Theorem 3.5. Let fe C§(G). Then the operation 1% is well-defined for F%,
in (3.10) for any possible k, p and

2nf(e)= T, l5(Fyp).

Proof. Applying Theorem 3.4 to Pk, fe 2%, we first see that IYFk)) is
well-defined and 2nP%, f(e)=1I%(Fk,). On the other hand, we deduce easily

Phyf@={ raswdu

Noting that {yk; peZ, —n+1<k<n} forms a complete orthonormal system in
L*(K), and that the function u~s f(u) is smooth, we get for each u e K,

f(u)= Zk,pP:pf(e)X;(u) .
In particular, putting u=e, we get the equality in the theorem. Q.E.D.
By a familiar argument we obtain the following inversion formula for 2%,

Theorem 3.6. For any fe 9},
G.11)  2nf(g)= SwFI’;q(it)uf,q(g, Tt Re th n(t +il,)dz
0

—_ l )(Dk +(])F (lk )vk +(g J)
for p,q>0,

. l—ﬁ

s Aot s L

+ 1s;'sm§2—p.—q)< ) ~()F; ktJ =% Jopg (9, j)
for p, g<o,

ISjSmin(p,q)( k

otherwise.

§4. Analogue of the Paley-Wiener theorem for 2%,

We defined the function space 2§, by (3.1). Denote by 2%, , the subspace of
2%, consisting of functions f such that
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f(uap)=0 for t>T, u,vek.
We denote by DX, r when we topologize 2%, r by means of seminorms
(4.1 |fl:=supeqld”f(@)l  (r=0,1,..),

where 4 is the Casimir operator on G normalized in such a way that

(4.2) Aut (g, s)=(%—s2>uf,q(g, s)  (cf. Proposition 1.2 (3)).

Let Q be the Casimir element in U(g°), then the normalization above is equivalent

to identifying 4 with —Q. It is not clear at this stage whether or not D, r is

complete. But Theorems 4.1 and 5.1 answer this in the affirmative. We introduce
another topology in 2%, r by means of seminorms

4.3) |flx=supeclXf(@)l  (XeU(g).
This topological vector space, denoted again by 2%, r, is a Fréchet space.

4.1. Let 5,1 be the totality of all functions F on € which satisfy the follow-
ing conditions (i) ~ (iii).
(i) F is an entire function.
(ii) For every non-negative integer r, there exists a constant C, depending
on F such that

(4.4) |F(s)| < C,(1+]s[)reTIRe 51,

(iii) F(s)=F(-s).
We topologize 5y, r by means of seminorms

4.5) |Fl, m=supjre ism(1 + IS IF() (r, M=0, 1,...).

The classical Paley-Wiener theorem mentioned in Introduction assures that 544
is a Fréchet space.

Theorem 4.1. The linear mapping

71 fr— { f@bela, )dg
gives a topological isomorphism between D, y and 3y 1.

Corollary 4.2. D, r is a Fréchet space, and it coincides with the Fréchet
space Do,

Proof of Corollary 4.2. The second assertion is a direct consequence of the
open mapping theorem. Q.E.D.

4.2. Proof of Theorem 4.1.

Step 1. Let fe D, r. Here we show that F=9 fe #,r. We see easily
that F is an entire function. By Proposition 2.2 and Remark 3, we have F(s)=



292 Takaaki Nomura

F(—s).
Now let us prove (4.4). Since 4 is bi-invariant, we have 4" fe D§, r for each
non-negative integer r. Noting (4.2), we obtain

T4 f)(s)= 27:S0TA' F(a)uko(a, s)shtdt

= 2nS:f(a,)A'u£‘,0(a,, s)shtdt= (% - sz>rF(s) .
Therefore we get by Proposition 2.1 (2)
(4.6) |(% - sZ)'F(s)| < const. | f]eTIRe sl,
For |s|>3/4, we have

4.7) |[F(s)| < const.|%—s2|-r|f|'eTlReSI
< const,(1+ |s|)~"| f|,eTIRe sl

because |s|2——‘IT2(5/28)(1+|s|). Here const, stands for constant depending only
on r. For |s|<3/4, we get by (4.6)

‘[1+(ji——s2>r:|17(s)‘ <const. (| fo+ | f1,)eTIResl,
Since |1+(%—s2>'| 21—(%+ |s|2>r23/16 (r>1), we get

|F(s)| <const. (| flo+]f])eTRe sl
It is obvious from this inequality that
(4.8) |[F(s)| <const, (1 +|s])7"(I flo+ | f1,)eTIRe sl for |s|<3/4.
By (4.7) and (4.8), we see that F satisfies (4.4) and the mapping Z is continuous.
Step 2. Theorem 3.6 assures that J is injective.

Step 3. Let F € 5, be given. We define a function f on G by

(4.9) £(g)= —ZI;S:F (i) uko(g, 77)% Re th 7(z +iA)dr.

This f is well-defined, because F € 540 1, |ufo(g, it)| <1 and
|t Rethn(t+ i) < const. (1 +]z]).

In order to prove that fis a C®-function, it is sufficient to show that the differential
operators X,, X; and X, are applicable indefinitely many times. This can be done
by virtue of Proposition 2.1 (3). Thus we have fe C*(G). Moreover it is clear from
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(4.9) and Proposition 2.1 (1) that
f(ugv)=x&w) f(@)x§().

Step 4. In this step we show that f(a,)=0 for t>T.
Noting that

uko(a,, it)=(U*(a,, it)eq, eo) = (U*(a_,, it)e,, €o)
= uso(a—n it) = “50(‘1:’ it) (by a—t = unalu—u)s
we have

(4.10) f(a,) —-77}—8 F (it)uby(a,, it)T Reth n(t+id,)dz

i

=In Sl F(s)uk,(a,, s)stan n(s —1,)ds.

Putting y=sh2(t/2) in Proposition 2.3, we get

ugo(ar, )= (1 +y)‘“’“"F<S—/1k+%, s+/1k+%, 1;p/(1 +.v)>

=(l+y)_;"‘F(s—).k+%‘-, _S—Ak'l'%, l; —y)
(by Kummer’s formula)
=0y, )+ @y, 9) (by Gauss’ formula),

where

@10 90,9 =T(=25T (=s =t 5) T(=s+h+5) x

X (14 y)=hey~ (s~ Mﬂ/np(s—x,‘ ot L 14s; l/y),

2’s

and @,(y, s)=¢,(y, —s).

In case ““k#n, Res>0" or “*k=n, Res>6" (é is a positive number), we can
apply the Euler’s integral expression to the hypergeometric function in (4.11). Hence
in these cases we get for y>1,

@1y, )=
_ I(=29) [(1+2s) (1+y)~* YO s
T D Tt D oo ) e 7

where

1 X \~S+Ae—1/2
(4.12) V(y, s) =S xS~ 1/2(] —x)’“"'”2<1 +7) dx.
o

(It should be noticed here that the integral in (4.12) does not converge absolutely for
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Res=0 when k=n. This is the reason why we make s apart from the imaginary
axis when k=n.) Using the well-known formula

r(z)r(1-z)=n/sinnz,
we have the following expression of ¢,(y, s):

(4.13) ©1(y, 8)=

_ _cosm(s+A) cosm(s —4y)
- 7 sin 27s

1 —Akyy—(s—Ak+1/2) s).
(1+y)~2xy Y(y, s)

On the other hand, since ¢,(y, s)=¢,(y, —s), (4.10) is rewritten as

“4.14)  f(a,) =%$i°:wF(s)(pl(y, s)s[tan n(s —A,) +tan n(s +4,)]ds.

Then using (4.13), we obtain

a0

@19 f@) =gz ({7 Fyeseioy(y, s ds.

Now we estimate y~(~4+1/2)y(y, s) in (4.15). Since

x(1—x)

-1/2
sk | =0y + )i,

yETRHN (y, 5) =Sl[
0|

we have

M]a_llzx—lk(l — x)lkdx’

1
—(s—2Axk+1/2)
yremaeimy(y, 9| <[22

where o=Res. (Note that we assume y>1.) By a straightforward calculation we
obtain

x(1—x)

0< y+x

<e™t for 0<x<1 (y=sh2(z/2)).

Thus we have for az—é—,
(4.16) [y~ GAt 120y (y, 5)| < const. e~re(1/2)r,

L”
2

_l_”

On the other hand, we have for “‘k#n, 0<o< >

or “k=n, 6<o<

Ay, 5)] SB(G—A,&%, a+lk+-:lz—>SConst.,

where B(-, -) stands for the beta function. It is clear that

|y~ (~4+1/2)| < const. for OSG’S%.
Since F € #yq,1, We can shift the path of integration in (4.15) in case k#n.

Hence for >0,
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1 a+ti
fla,)= —#(1 +y)""g in(s)y'(""k“/z’l,b(y, s5)s ds.
a—ioo
1

For a27 we get by (4.16)

|f(a)| < const. (1 +sh2(t/z))-lke—«"a1/2»S::|sF(s)| \ds]

< const. (1 +sh2(t/2)) *xelT-1)ze(1/2)t,

where const. does not depend on a. Making a— o0, we see that f(a,)=0 for t>T.
By continuity we finally obtain the desired result so long as k#n.

It remains in this step to prove that in case k=n we can shift the path of inte-
gration in (4.14) from the line Res=0 to the line Res=4. For this purpose we must
evaluate the function ¢,(y, s). To do so we need another integral expression for the
hypergeometric function. By the formula in [4, p. 114, 2.12 (3)], we have for 0
<Res<d<1 the following expression:

ie~missI'(1+2s)

(4.17) SF(s, s, 1+2s; —1/p)=— 2sinns1"(s)1"(l+s)';(y’ 5),
where
(4.18) V(y, 5)= Scxs-l'(l fx)‘(l + %)fdx

The path C of integration can be taken-as follows. It starts from 1 and goes to ¢
(0<e<1) along the real axis, rounds O counterclockwise along the circle with
radius ¢, and returns to 1 along the real axis. We take the branch argx=0 at the
starting point. Concerning other factors in (4.18) we take the principal branch.
Here we assume y>1 for simplicity. We have the following lemma.

Lemma 4.3.
[W(y, s)| <2|em*| {|sin ns| log 2(1 +|s|) +4|s™ ! sin 7s|} .

Proof. We decompose C into three parts C,, C,, C; at the point ¢ according
to the order explained above. Denote by I; the integration along the path C; of the
integrand in (4.18). We put for each fixed s, e=2"!(1+|s[)"!. By simple cal-
culations we get

1
I, +1,] < 2Jems| [sin nslS xldx  (o=Res)
<2lem’s| |sin ns|log 2(1 + |s]) .

Concerning I,, we first expand the integrand into power series on C,:

xSl =x)s(1+x/y)~s=

— Zm,nZO £m+n+s—lei(m+n+s—l)0( — l)n(i)( ';ns)y—m (X=8€i0).
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We integrate it term by term and evaluate each term by using

y>1, 0<Res=0d<5, l(;)' <(1+|sDn,

then we get
e2nis_ 1 ) .
1) < |55 |7 [ Szt (1 + |51)12 <8 e |5~ sin s .
This completes the proof of Lemma 4.3. Q.E.D.

The integrand in (4.14) is estimated as follows. First by Lemma 4.3 and (4.17)
we get

ra+2
|SF(s, 5, 1+255 —1/y)| < {Is]log 201+ Is1) +4}| 1S ey |
and therefore from (4.11) the final estimate

ls@(y, s)cot ms| <(2m)~!{|s| log 2(1 +s]) +4} (1 + y)~1/2y.

Using this estimate and taking account of (4.4), we can shift the path of inte-
gration in (4.14) from the line Res=0 to the line Res=4 as desired (in case k=n,

A= -é—). Once the path of integration is shifted to the line Re s=4>0, the previous

discussion applies to the case k=n and we get the desired result.
Step 5. It remains to show the continuity of 1. Let Fe 40 and put
f=7"1F. Then by (4.9) we get
47 f(g) =71—ngm(711—+ 12>rF (it)uky(g, it)tReth n(t+ik,)dr.
-~ 0

Hence we have |f|, <const,|F|,,,3,. This proves the desired continuity.
Step 1 to Step 5 complete the proof of Theorem 4.1. Q. E.D.

§5. Analogue of the Paley-Wiener theorem for 2%,
5.1. First of all we define

N;‘,q',={lk+j——é—;jeN such that p<j$q} for k#n,

Nr,.1={j;jeNU{0} suchthat p<j<gq},

1.

N;‘,q.2={—/1k+j-7,jeN such that qg—j<p} for k#n,

n2={j;jeNU{0} suchthat g<—j—1<p}.
By Proposition 1.7 we have

(.1 uk(-,5)=0 forall se\U;,Nj, ;.
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Remark 5. N%, ,=¢ for j=1, 2.

4

Let s#%, r be the totality of all functions F on € which satisfy the following
conditions (i)~ (iv).
(i) F is an entire function.
(ii) For every non-negative integer r, there exists a constant C, depending on
F such that

(5:2) [F)I < C(1+s])7eTIRe =,

(iii) F(—s)= Ak (s)F(s) (cf. Proposition 2.2).
(iv) F(s)=0 forall se\U;-; Nk, ;.

Remark 6. By Remarks 3 and 5 we see that s#%, 1=, r for any pe Z.

We topologize 5%, r by means of seminorms in (4.5), then it becomes a Fréchet
space as is easily seen from the classical Paley-Wiener theorem.

Theorem 5.1. The linear mapping

T f Sf(g)uf,.,(g, )dg

gives a topological isomorphism between D%, r and 5%, ;.

Corollary 5.2. Dk, r is a Fréchet space, and it coincides with the Fréchet

k
space D}, r.

5.2. Proof of Theorem 5.1.

[1] ForfeD%, rweput F=7f. Inacompletely similar way as in the proof
of Theorem 4.1, we can prove that F satisfies (i), (ii) and that 7 is continuous and
injective. So we omit the details. The equalities in (iii) and (iv) follow from the
analogous ones (2.6) and (5.1) for uk (g, s). Therefore the image of D%, r under

. ek
Z is contained in %, r.

[IT] We show that 7 is surjective. Let Fe sk, r be given. We assume at
first p>g>0. Moreover we assume that F satisfies

(5.3) F<)‘k+j——%>=0 (1<j<q) if g>1.

This assumption (5.3) means that the discrete parts in the formula for 7 ~! vanish.
Put

- | .
ko (8)= I—IOSjSP-I(A‘k tit5+ S)‘nosmqq('{k +j+ %" S)-

Here we understand that [To<;<—y=1. It is easily verified that
(5.4) Ek (=) =4k, (s)EL (s).

Notice that for p>q >0, Ak (s) takes the form
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-1
A;q(s)=Hqusp_]<;»k+j+_é—_s><;.k+j+':%+s> .

Put H(s)=F(s)/Ek,(s). The assumption (5.3) together with the condition (iii)
makes H entire. By (5.4) and the condition (iii) we have H(—s)=H(s). Hence
H belongs to 5#4, . (The inequality (4.4) is obviously satisfied.) Thus by Theo-
rem 4.1 there exists uniquely a function h € D§, , satisfying

(itgteta. g =Hs).
Let X _, X_ be as in Proposition 2.1 (3) and set
(5.5) Fo=(X2)4(X _)?h.

We have fo(ua,v)=0 for t> T, u, ve K, because so does i. An easy calculation and
Proposition 1.2 (2) lead us to the following: let P be as in (3.9), then

(5.6) S Pty fo(g)uki(g, s)dg= Sfo(g)u‘;b(g, s)dg

= 6a1.16bq5§q(s)gh(g)“so(gy S)dg = 6ap5qu(s) .

Since we already know the 1n_1ect1veness of .7 this together w1th Lemma 6.2 in the
succeeding section implies that f, e D%,  and 7 f,=F.
Now we eliminate the assumption (5.3). Since u,’gq< At j—%)( 1<j<q)

are eigenfunctions of the Casimir operator 4 corresponding to distinct eigenvalues
A+ (A —2,—J), they are linearly independent each other. Moreover they are
real analytic. Thus by the uniqueness of analytic continuation, they are linearly
independent each other even if we consider them as functions on an arbitrarily small
non-empty open subset of G. Hence we can find for arbitrarily small ¢>0, func-
tions h;e D%, . (1<i<q) such that

(5.7) Shi(g)u§q<g, lk+j—%>dg=5,-j (1<i, j<q).
Put H;=9h; and
Fo(s)=F(&)= ZrsisaF (At =5 )HA5).
Since we already know that H;e 5%, ,c %, 1, we have Foe s#% ;. Moreover

by (5.7), F, satisfies the previous assumption (5.3). Therefore by the discussion
above, we can find f, e Dk, r such that F=7 f,. Put

f=fo+ leiSqF</k+l——>h

It is readily verified that fe D%, rand 7 f=F. This proves the surjectiveness of 7
in case p>q>0.
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The case ¢>p>0 can be treated in a similar way.
The case —p> —g>0 and k#n can be handled as the above two cases except
that we must put

- | ., 1
k. (s) =n0515|p|—1<_/‘"k +J+‘2‘+S>'nogs|q|—1(—ik +1+7—S),

and in (5.5), (X})!9!(X ,)!?'h instead of (X_)a(X _)?h.
On the other hand, for the case —p> —¢>0 and k=n, some remarks should
be added. In this case we put

E3a(8) =ITogssipi-1(J +8) Tlogjsiq1-1(/ = 5)
ITigi<isip-1G =9 (G +5)™! for ¢#0,

A;q(s)':[
—TTli<icip-1G—9)G+s5)! for g=0and p#0.

The differences consist in the point that when q#0, =7 has a two-fold zero at s=0,
and when ¢=0 and p#0, Z}, has a simple zero at s=0. But in case ¢#0, by
differentiating the functional equation in (iii), we get F'(0)=0 if F(0)=0. Hence
F has a two-fold zero at s=0 provided F(0)=0. Thus the preceding discussion
holds. 1Incase g=0and p#0, noting that 0e N7, ,, we can also apply the preceding
discussion.

The case —q> — p>0can be handled in the same way as the case —p> —g>0.

Now we consider the case p>0>g4. In this case no assumption such as (5.3)
is necessary thanks to (iv). We put

- | ., 1
gk (5)= HOSjSp—l<'1k +Jj+ 7'*‘ 5>‘Hosj5|q|—1(_ A t+J +‘2—— >,

and in (5.5), (X})191(X _)?h instead of (X.)4(X_)?h. We omit the details.
The case g>0> p can be treated in the same way as the case above.

[III] It remains to prove the continuity of 7 ~'. Since we already know the
bijectiveness of 77, the inverse transform Z ~! is written in the form (3.11). Note
that the point evaluation:F—F(s) is continuous in %, ., and that the discrete
part in the above inverse transform for F € s#°%, ; contains at most |g|-terms. Then
the continuity of 4 ! can be proved as in the proof of Theorem 4.1.

Thus Theorem 5.1 is completely proved. Q. E.D.

5.3. Using Theorem 5.1, we can investigate the linear mapping «: f =,
defined by (3.3).
Let D, (R) be the totality of even functions ¢ € C¥(R) vanishing for [t|>T.
The topology of D., (R) is that induced by 2(R) which we topologize as usual,
then D, r(R) is a Fréchet space.

Theorem 5.3. The linear mapping < gives a topological isomorphism
between D%, r and D, +(R).

Proof. Let feDk, ;. By (3.3) and (3.7) we easily deduce that @ (t)=0 for
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[t|>T. Tt is also easily verified that ¢ (—t)=¢(t) and that ¢, e C*(R). Hence
@y € Dy, 1(R).

Conversely, let ¢ eD,, (R) be given. Denote by ¢ its ordinary Fourier
transform in (0.1). Since @(—t)=¢(t), we have @(s)=@(—s). By the classical
Paley-Wiener theorem we conclude that @ is an entire function with the property

[@() < C(1+]s])reTItmsl,

Put F(s)=¢(—is). We see from the above that F e #yo =%, 1 (see Remark
6). Hence by Theorem 5.1 there exists uniquely a function fe D, ; such that
F=gf. Constructing ¢, from this f, we obtain by (3.4)

0(=i9=F6)={ f@utle. 9dg={" o e di=0,(~is).

Therefore we have ¢ =¢, by the injectiveness of the ordinary Fourier transform.
This proves that the mapping o7 is bijective.

It remains to prove the bi-continuity. Let ¢;—=0 in D, (R). Putting Fs)
=@,(—is), we have F;—0 in %, ; by the classical Paley-Wiener theorem. Let
fi=of71p;. As is seen above, f; coincides with g ~'F;. Hence by Theorem 5.1
we see that f;—0in Dk, ;. This proves the continuity of &/~'. Since both D, +(R)
and D%, r are Fréchet spaces (Corollary 5.2), the continuity of & follows from the
open mapping theorem. ; :

Now Theorem 5.3 is completely proved. Q.E.D.

In the course of the above discussion, we get explicitly the inverse transform of
&/. We do not write it down here.

§6. Analogue of the Paley-Wiener theorem for 2(G)
6.1. Let 2, be the space of functions fe CJ(G) satisfying
6.1) f(uaw)=0 for t=>T, u,vek.

The topology of 2, is introduced by means of seminorms in (4.3). This topology
of 2, coincides with the usual ones when we consider G as a C*-manifold. We
denote by 2% the closed subspace of 2 consisting of functions such that

(6.2) flugg)=e*r"f(g)  (—n+l<k<n).

Notice that u,, is a generator of the center of G, and that yk(u,,)=e"*/" for any
peZ.

Remark 7. Uk(u,,, s)=e ikm/n,
Lemma 6.1. 91': Z@VH'ISI(S"@";"

Let Pk, be the projection defined by (3.9). It is clear that if f satisfies (6.1),
so does P ftoo. It should be remarked here that P}, is also applicable to those
functions whose supports are not necessarily compact.
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Lemma 6.2. Suppose fe C®(G) satisfies (6.2). Then

f(9)=2pezPt f(9) (pointwise absolute convergence).

Proof. Since f satisfies (6.2), we have

f . 24001 gtz du do=8,3,Ph, 1)

Note that {y,x%; p, g€ Z, —n+1<I, m<n} forms a complete orthonormal system
in L%(K x K) and that K x K 3 (u, v)~ f(ugv) is smooth. Then the assertion follows.

Q.E.D.
Let 5#% be the totality of operator-valued functions
Cas— F(s)eB(H)

which satisfy the following conditions (i)~ (v).
(i) & is an entire function.
(ii) For every non-negative integer r, there exists a constant C, depending on
& such that

(6.3) ()] < C(1+]s])"eTIRe I,

(i) (F(—s)ep ) =Abo(8)(F(s)ep e)  (p, g€ Z).

(iv) (F(s)e, e,)=0 forall se\U;- Nk, ;.

(v) For every quintet of non-negative integers a, b, ¢, r, M define | #|,, ..
as below. Then |#|,; ., u<0:

(6'4) |33' | a,b,c,r, M= Supp.qez;JeN“ + Ipl)a(l + |q| )b

<1 O ep Lot 1 Eemr bt D [(# (ki =5 ews )| |

Remark 8. Conditions (i)~(iv) imply that for all p,qeZ, (F (e, e,)
€ #k, r for T>O0 in (ii).

We topologize 5% by means of seminorms ||, , ., »-
T y ab,c,r,M

Theorem 6.3. The linear mapping

71— {14, g

gives a topological isomorphism between 2% and s#%.
6.2. Proof of Theorem 6.3.

Step 1. Let fe 2% and put F=7f. Clearly £(s)e B(9) and & is entire.
Let us show (ii). Put &#,=9(4"f). Then we have

F ()= (% - sz>r§ (s).
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Once this relation is obtained, (6.3) can be proved in a completely similar way as
in the proof of Theorem 4.1 by using Proposition 1.1 (3).
Since Pk, fe Dk, r and

(6.5) (F (e, e,,)=SP’,§qf(g)u£q(g, $)dg,

we have (iii) and (iv) by Theorem 5.1. To verify (v) we first note that

(6.6) (—i)"i"(p+/1,,)“(q+l,‘)”<% —sz)r(.g’(s)eq, e,)
—[(Xoy (X0 471(9) - usy(a, $)dg.

Next, putting s=+ 4, +j—% in (6.6) and noting (2.3) and (2.4), we have

(6.7) (=) (p+A)*(g+ ) (£ 4+ )" UF 4 =D ok () x

(#2204 i=5)ew &)= | (X X021 () 082 (9, f1dg.

Since fe 2% and |vk,*(g, )| <1, we obtain (v) from (6.6) and (6.7).
In the course of the discussion above we also get the continuity of 7.

Step 2. We verify that 7 is injective. Let fe 2% be a function such that &
=7 f=0. Then we have

(Z(-)ep e,)=0 forall p,qeZ.

Consider P%, f. Taking into account (6.5), Remark 8 and Theorem 5.1, we have
Pt f=0for all p, ge Z. By Lemma 6.2 we have f=0.

Step 3. Let & € 5% be given. Define a function f on G by
6.8 fl9)=

=21_7r, ZZS:(.?(it)eq, e)uk (g, it)tReth n(t+il,)dt
1 g€

1 .1 of § .1 —r—
B rerBp T D) D (S = Jew )G
Condition (v) assures that the right hand side of (6.8) is absolutely convergent. To
show that f is a C®-function, it is sufficient to verify that the differential operators
Xo, X + are applicable indefinitely many times. This can be done in view of Propo-
sition 2.1 (3) and the assumption & € s#%. It is clear that f satisfies (6.2) (cf. Remark
7.

Step 4. We show that f in (6.8) satisfies (6.1). We can apply Pk, to the right
hand side of (6.8) term by term because it is absolutely convergent. Hence we
obtain

(6.9) 2nP%, f(g)=the right hand side of (3.11),
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where we put Fk (s)=(F(s)e, e,) in (3.11). By Remark 8, (6.9) and Theorem
5.1, we have P fe Dk, ; for T>0 in (ii). Since we already know that fis a C*-
function, we have by Lemma 6.2

f(g)= Zp.qez P:qf(g) .

Thus we have (6.1) because so do all P%_f.

Step 5. It remains to prove the continuity of 7 ~'. Let # ;-0 in s#% and
put f;=9"1% ;e 2% It is sufficient to show that

(X)X )X ) f(g) — 0

uniformly on G for every triplet of non-negative integers a, b, ¢, because X,, X,
and X, form a basis of g. This is clear by virtue of Proposition 2.1 (3).
Step 1 to Step 5 complete the proof of Theorem 6.3. Q.E.D.

6.3. We summarize here some direct consequences of Theorem 6.3.
Corollary 6.4. % is a Fréchet space.

Corollary 6.5. The topology of 2% is also defined by another family of semi-
norms |f|,., given by

(6.10) |f lap,r = 5UPecl(X 0)%(X6)° 4" f(g) .

Proof. We denote by D% the topological vector space with the same underlying
space as that of 2% and with seminorms in (6.10). In the same way as in the proof
of Theorem 6.3, we can prove that D% is topologically isomorphic to s#%. Since
% is complete by Corollary 6.4, so is D% too. By the open mapping theorem D%
and 2% are canonically isomorphic. Q.E.D.

Corollary 6.6. Let fe 2%. Then we have

f= Zp.qez vaqf (ln 9%‘)
Proof. Note that

(_i)ziz(P+)~k)2(q+lk)z(Xo)“(Xa)"Arpl;qf(g)
=, § a2 s pwgonserdu do.

Then by Corollary 6.5, 3, .z Pk, f is convergent in 2%. Since 2% is complete,
the assertion follows from Lemma 6.2. Q.E.D.

6.4. Analogue of the Paley-Wiener theorem for 2(G). The space 2(G) is
the inductive limit of 2 as T—c0, and by Lemma 6.1, 2, is a direct sum of 2%
over —n+1<k<n. In Theorem 6.3 we have established an analogue of the Paley-
Wiener theorem for the ‘‘Fourier transform™ 7. Therefore extending 7 to 2(G)
naturally, we have an analogue of the Paley-Wiener theorem for 7 on 2(G).
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