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Introduction

In his paper [2], Atiyah completely classified the vector bundles on an elliptic
curve (see also Oda [12]). His results have been extended to the curves of higher
genus in various ways. Another direction in which we must try to extend it is the
study of vector bundles on an abelian variety X of higher dimension. In contrast
with the case g=dim X =1, there are ‘‘too” many vector bundles on X when g>1.
The main object of our study in this article is the vector bundle of the following type:

Definition. A vector bundle E on X is semi-homogeneous if for every x € X,
there exists a line bundle L on X such that

TXE)=EQL,
where T, is the translation of X by x (see also Definition 5.2).

By this definition, the difference between the case g =1 and the case g > 1 can be
explained by the following two facts:

(1) Every indecomposable vector bundle on an elliptic curve is semi-homogene-
ous.

(2) Semi-homogeneous vector bundles on X are very special when g>1.

(1) will be easily seen by the following result of Atiyah ([2] Theorem 10): If
two indecomposable vector bundles E and E’ on an elliptic curve have the same rank
and the same degree, then E'~ E®Q L for some line bundle L on X.

To show (2) is one of our main aims of this article.

Abelian varieties have a lot of automorphisms, that is, translations. As for the
vector bundles which are invariant under all translations (such vector bundles are
said to be homogeneous), their structure has been considerably clarified by
Matsushima [6], Morimoto [9] and Miyanishi [7]. In §4, we shall complete their
results by i) determining the category of homogeneous vector bundles (Theorem
4.19) and ii) computing their cohomologies (Theorem 4.12). (In the case g=1,
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i) was implicitly done by Oda [12]. The essential tool for ii) is that of Mumford
which was used in the construction of the dual abelian variety ([10] §13).) These
results are inevitable for our study of semi-homogeneous vector bundles.

In contrast with rational homogeneous spaces, there exist many line bundles on
abelian varieties. In fact, the connected component Pic°(X) of Pic(X) has the same
dimension as X. It is this fact that makes our definition of semi-homogeneous
vector bundles meaningful.

In §5, semi-homogeneous vector bundles will be characterized by various
properties under the condition that they are simple (Theorem 5.8). Among those
the property dim, H(X, &»s,,(E))=g is the simplest one. The equivalence (1)
and (4) in Theorem 5.8 is the generalization of the characterization given by
Morikawa [8] and Oda [12], [13] to the case where the characteristic p of the base
field is arbitrary. The keys of our proof are the pro-representability and the relative
representability of the moduli of simple vector bundles (they are summarized in
§ 1) and nice properties of the group scheme XZ(E). (See §2. For the basic idea, we
owe to Takemoto [15].) These enable us to overcome the difficulty which arises
when p>0 (see Remark 3.18 and the proof of Proposition 2.6).

§ 6 is devoted to the study of semi-homogeneous vector bundles which may not
be simple. The similar results to homogeneous vector bundles will be obtained for
a certain category S; consisting of semi-homogeneous vector bundles (Theorem
6.19). This almost determines the category S; and reduces the study of semi-
homogeneous vector bundles to the case they are simple.

In the final section, we shall again consider the simple semi-homogeneous vector
bundles. Various group schemes attached to them will be explicitly determined and
it will be shown that their ranks and other numerical invariants are much restricted
when g>1 (Remark 7.13).

The author expresses his hearty thanks to Professor M. Maruyama for his
valuable suggestions and kind advices.

Notation. Throughout this article k denotes a fixed algebraically closed
field of characteristic p>0. By a scheme we understand a scheme of finite type over
k. For a scheme X, X is the contravariant functor on (Sch) to (Sets) associated
to X. For Oy-modules F and G, 5#sm,,(F, G) denotes the sheaf of @y-homomor-
phisms, while Hom,,(F, G) is the set of global 0x-homomorphisms. &ns,, (F)
and End, (F) are #ssm, (F, F) and Hom,(F, F), respectively. We use the terms
“‘vector bundles” (resp. ‘‘line bundles™) and ‘‘locally free sheaves” (resp. ‘‘invertible
sheaves™) interchangeably. For a vector bundle E on X, r(E) is the rank of E.
EY=5f0omy,(E, Ox) denotes the dual vector bundle of E (especially, for a vector

space V, V'V is its dual vector space). For a positive integer ¢, ;\E is the t-th exterior
power of E. 1In the case t=r(E) it is a line bundle which we denote by det (E).

For a scheme X, Pic(X) is the set of isomorphic classes of line bundles on X
and Pic°(X) is the subset of Pic(X) consisting of elements represented by line bundles
which are algebraically equivalent to zero. Pic(X) is an abelian group and Pic®(X)
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is its subgroup with respect to the tensor product ®. We denote the quotient
Pic (X)/Pic°(X) by NS (X).

§1. Simple vector bundles

In this section we shall summarize the facts about families of simple vector
bundles. (A vector bundle E on a complete variety X is said to be simple if End, (E)
=~k.) They seems to be well-known in the case of line bundles and the proof is
similar to the case (see [10] § 10). Thus we only sketch them for the convenience of
readers.

Let f: V—S be a proper, flat, integral morphism. Let F and G be locally free
sheaves on V. There exist a coherent 0g-module 4 and an isomorphism of functors
on quasi-coherent @g-modules M :

(1.1) S5(Homo, (G, F)Q o M) =% Hom,i(4, M)

(EGA III (7.7.6)). For an affine morphism, a: T—S, this gives rise to isomor-
phisms

(1.2) (fT)*(fﬂ’”ayT(GT, F1)) =% Home (4, Or)
(L.3) Hom,,,T(GT, F 1) == Hom, (4, 07).
Let Z be the closed subscheme of S defined by the ideal # = Ann (4).

Lemma 14. Let a: T»S be a morphism. If F12G;®,,.N for some in-
vertible sheaf N on T, then o factors through Z«c, S.

Proof. We may assume that « is affine. Since F;~G;®,,. N
f‘”"w.‘.(Grv Fr) ;é’na/wT(GT)(@"N
Hence there exists an injective homomorphism
(1.4.1) (fD)*(N) — Homy, (Gr, Fr).
By the assumption on f, we have

(fD)(Oy,) =0y

Hence, taking the direct image of both sides of (1.4.1), we have an injective homomor-
phism

N — ‘Y"’”as(A’ 01) .

Therefore, it follows from the definition of # that #- N=0. Since N is an invertible
Or-module, - @ =0, which completes our proof. q.e.d.

Obviously the underlying set of Z is

Supp (4) = {s € S|there exists a non-zero homomorphism ¢: G, — F.},
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and hence the set W={se S|G,~F,} is contained in it.
Proposition 1.5. W is a constructible set.

Proof. The functor T-—>Isom,,VT (Gr, Fr) on (Sch/S) is representable by an

open subscheme Y of ¥V(A4) (see [11] Lemma (1I.11) and Remark (II.14)). Since
W=p(Y), it is a constructible set, where f: Y-S is the structure morphism. q.e.d.

To obtain further results we have to assume that G is S-simple, i.e., the natural
homomorphism Os—f «(&»a4,(G)) is an isomorphism. From this assumption we
have

Lemma 1.6. For every we W, there exists an open neighbourhood U of w
in Z such that Aly=0,|y.

Proof. By (1.3),
Hom,, (G, F))=Hom,,(AQ®k(s), k(s))=[AQk(s)]¥

for all seS. Since G is S-simple, we have dim,,,(A®k(w))=1 for all we W. By
Nakayama’s lemma, there exist an open neighbourhood U of w and an ideal ¢ of
0y such that A|;=0,/¢. Obviously # =S|y, whence A|y=0,|, for U=UnZ.

g.e.d.

Proposition 1.7. W is an open subset of Z.
Proof. By (1.3) and Lemma 1.6, the map
Hom,, (Gy, Fy) — Hom,, (G,, F.,)

is surjective for a U in Lemma 1.5. Hence there exists a homomorphism ¢: Gy—
Fy, such that ¢ ®k(w) is an isomorphism. The rest is routine. q.e.d.

By virtue of the above proposition, W can be regarded as an open subscheme of
Z. :

Theorem 1.8. W represents the following functor of (Sch) to (Sets);
T—~—{o: T>S|F;2Gr®,, M for some invertible sheaf M on T}.
Proof. Put L=( fw)*(éfamm,w(Gw, Fy)). This is an invertible sheaf on W
by (1.2) and Lemma 1.6. We see easily that the natural homomorphism
A Gy®y,, L— Fy
is an isomorphism. This and Lemma 1.4 prove our theorem. q.e.d.

Under the assumption that F or G is S-simple, we shall refer to the above sub-
scheme W of S as the maximal subscheme over which F and G are isomorphic to each
other.

Let E be a simple vector bundle on a complete variety X. Let C be the category
of artin local rings over a field k and 2 the functor on C defined by

2(A)={E|E is a vector bundle on X, such that (E),=E® ,(4/m) is
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isomorphic to E}/isom.
For this functor, we have the following.

Proposition 1.9. The functor 2 is pro-representable by a pro-couple (R, &)
and, moreover, the Zariski tangent space tg of R is canonically isomorphic to
HYX, &nd o (E)). We shall call this R the local moduli of E.

For the terminology and the proof, see Schllesinger [14]. If one notes the
following lemma, he would see that the proof of the pro-representability of Picard
functor in [14] works in our case without any modifications.

Lemma 1.10. If E€ 9(A), then End,, (E)=4.
The proof is easy and we omit it.

§2. The group scheme X(E)

From now on, we shall fix an abelian variety X of dimension g over k. In this
section we shall give a condition for a vector bundle E on X to be isomorphic to the
direct image m,(E’) for some isogeny n: Y= X and vector bundle E’' on Y (Propo-
sition 2.6).

In general we regard X as a variety. Hence, by a point of X, we mean
a k-rational point of X. But, in some places, regarding X as a scheme, we shall
consider subschemes of X which may not be reduced or X xS for an arbitrary
scheme S.

We denote by X the dual abelian variety of X. For a point £ of X, we denote
by P, the line bundle in Pic°(X) corresponding to £. Moreover, for an arbitrary
scheme S and an S-valued point f of X, we denote by P , the line bundle (1x x f)*(2)
on Xg=X x S, where £ is the normalized Poincaré bundle on X x X.

Let E be a vector bundle of rank r on X.

Definition 2.1. X°(E)={%e X|[EQP,~E}.

If EXP,®E, then det(E)~P$ ®det(E), whence r£=0. Hence X°(E) is con-
tained in the r-torsion of X.

Let p, (resp. p,) be the projection of X x X to the first (resp. second) factor.
We shall apply the results in § 1 to the morphism p, and the couple of vector bundles
F=(p))*(E)®% and G=(p,)*(E). By virtue of (1.1), there exist a coherent 0g-
module A4 and an isomorphism of functors on quasi-coherent ¢4-modules M:

(2.2) (P ((PI*(End o (E)) P Qo3 M) = Homos (A4, M).

Let us assume that E is a simple vector bundle. It is easily seen that G is an
X-simple vector bundle.

Definition 2.3. X(E) is the maximal subscheme of X over which F and G
are isomorphic to each other.

By virtue of Theorem 1.8, X(E) represents the following functor of (Sch) to
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(Sets);

(2.3.1) S—— {fe X(S)|Es®P;~Es®, N for some invertible sheaf N on S}.
Obviously this is a subgroup functor of X. Hence Z(E) is a subgroup scheme of X.
As in the case of X°(E), we see that X(E) is contained in the scheme-theoretic kernel
(), of the multiplication rg: X—»X by r. Especially, Z(E) is a finite commutative
group scheme. Since every invertible sheaf on Z(E) is trivial, there exists an isomor-
phism

(2.3.2) (P)¥E)®(2lxxsE)=(P)X(E),

where p,: X x Z(E)— X is the projection.
The relation of 4 and Z(E) is as follows.

Lemma 24. A05; @A’ for some coherent Og-module A’ and moreover,
Supp(4') n Z(E)=g.

Proof. By Proposition 1.7, X(E) is open in Z. Since X(E) is finite, we have,

by Lemma 1.6,
Alsy =0zl 56y= Oxepy
Since X(E) is a union of some connected components of Z, A|yg) =0y, is a direct
summand of 4. Hence we have A~0;; @A’ for some coherent 0z-module 4'.
Let £ € 2(E). Since E is simple, we have
dim, (A® k(%)) =1=dim, (05 ®k(X)) .

Therefore A’®k(£)=0, which proves the second assertion. q.e.d.

For a vector bundle E on X, let 4 ,/(E) be the cokernel of the natural injec-
tion i of Oy t0 End/ o, (E). Let Tr: Emns/ o (E)—0y be the trace map. We see easily
that Troi=r.id;, where r=r(E). Hence if (r(E), p)=1, then &ns/, (E)=0x
® 4 4/ (E) and especially H'(i) is injective. In general this is not true.

Lemma 2.5. If E is a simple vector bundle on X, then

(§)) Lie ®(Z(E))~Ker [H(X, 0y) — HY (X, &na’ o (E))],
2 H°(X, 4 4/(E))=Lie "(Z(E))
Proof. There are natural identifications
(2.5.1) HY(X, 0x)=Lie ®(X)
(see [10] §15) and
(2.5.2) HY(X, End o (E))2tg

(see Proposition 1.9), where R is the local moduli of E. Hence (1) follows from the
definition of Z(E). (2) is derived from (1) and the exact sequence

0 — Oy —> End o, (E) — 4 o/ (E) — 0.
g.e.d.
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2(E) has the following nice property.

Proposition 2.6. Let E be a simple vector bundle on X and suppose that
Z(E)x0. Then there are a non-trivial isogeny n: Y—X and a simple vector bundle
E, on Y such that n(E\)~E.

Proof. Our proof consists of several steps.

StepI. Let G be a simple subgroup scheme of Z(E). Let p: £—~X/G be the
natural isogeny and n: Y- X be the dual isogeny of p, where Y is the dual abelian
variety of X/G. Ker(n) is canonically isomorphic to the dual G of G ([10] §15).
We shall construct a vector bundle E, on Y so that n(E,)=E.

Step II.  Restricting (2.3.2) to X x G we have

(P)*E)®2|xxc=(P)*(E),
where p, is the projection of X x G to X. Taking the direct image by p, we have
EQ(p)x(2xxc)ZEQT(G, 0).
Since (p)x(2|x x 6) = n4(0y) ([12] Corollary 1.7), we have
(26.1) T (n*(E)) = EQn,(0y) = E®!,
where [ is ihe o-fder of G. This and the >assumption thét E is simple imply that
26.2) ' dimy End, (n*(E)) =dim, Hom, (E, myn*(E)=1. =

Step III.  Since G is simple, I is a prime number. When (I, p)=1, G=Z[IZ
and when I=p, G is isomorphic to Z/pZ, p, or «,. The structure of the k-algebra
A=End, (n*(E)) is one of the following:

Case 1. A~k[TI(T'—1) if G=Z[IZ and Ixp.
Case 2. A~k[TIN(T?) if G=Z[pZ.

Case 3. A=Kk[T](T°-T) if G=p,

Case 4. A=K[T](T?) if G=oa,

We shall prove the above only in the case 4. The others are similar (cf. [15]
Lemma (1.12) for the case 1).

The embedding Go X determines a non-trivial cohomology class « € H!(X, 0y)
(cf. (2.5.1)) uniquely up to the constant multiplications. Since G=a,,

(2.6.3) a® =0
By the definition of the isogény 7, we have
(2.6.4) *(a)=0

in H(Y, 0y). Let {4;;} € Z'(X, GL,(0y)) be a 1-cocycle which defines E for some
affine open covering {U;} of X. For the covering {U;}, « is represented by a
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l-cocycle {a;;}, a;;eI'(U;qU;, 0x). By (2.6.3), there exists a 0-cochain {f},
fie I(U;, Oy), such that

(2.6.3) al;=fi—f; forall i and .

By (2.6.4), there exists {¢;}, t;e I'(U,;, n4(0y)), such that

(2.6.4°) a;;=t;—t; forall i and j.

By Lemma 2.5, (2), there exists {B;}, B;e I'(U;, M,(0x)), such that
(2.6.5) a;;A;j=B;A;;— Ai;B;,

where M, (0y) is the sheaf consisting of all the (r, r)-matrices whose coefficients are
in 0. By (2.6.3') and (2.6.4'), we can find a constant ¢ in k such that t/—f;=c
for all i. Replacing f; by f;—c we may assume that t?=f; for all i. By (2.6.4') and
(2.6.5), we have

(B;i—tD)A;;=A;(B;—1;),

where I denotes the unit matrix. Hence {B;—t,I} determines an endomorphism
¢ of n*(E). Let K(X) and K(Y) be the function fields of X and Y, respectively.
Since ;& K(X) and [K(Y): K(X)]=p, the endomorphisms id, ¢,..., P~ ! are
linearly independent in End,(n*(E)). Moreover, since (B;—tI)?=Bf—fl, ¢”
is induced by an endomorphism of E. Since E is simple, ¢? is a scalar multiplication.
By this and (2.6.2), we see that A =k[T]/(T?).

Step IV. In the case 1 and 3, the semi-simple endomorphism forces n*(E)
to decompose into a direct sum of its eigenspaces:

n*(E)~E,®---@E,.
Hence we have
(M (E) = u(E) D @74(E) -
By the Krull-Schmidt theorem of locally free sheaves (see [2]) and (2.6.1), we have
n(E)=E foralli=1, 2,..., .

In the case 2 and 4, there exists an endomorphism ¢ such that ¢?=0 and @r~!
0. We have two filtrations of n*(E) by its subsheaves:

0xKer(p) < Ker(¢p?) << Ker(pr!)cn*(E)
Ul ul Ul Ii
O0xIm(pr )< Im(p?P~2)c---< Im(p) <n*E).

Since n, is an exact functor, we have

0xKer(y) < Ker(¥?) <---< Ker(yp~ ') = n,(n*(E))
ul ul ul It
OxIm(y* e Im(¥rH)=--c Im() cn(n*(E)),

where y=m,(¢). Since yx is an endomorphism of n,(n*(E))=~ E®? and E is simple,
we see that
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Ker(x)=Im(y»)~E®  forall i=1,2,..,p.

This yields that Ker(¢i)=Im(¢?~%) and that n,(E)=E® for all i=1,2,..., p,
where E;=Ker(¢?). Moreover, we have n,(E;/E,_,)~E for all i=1, 2,..., p.

It suffices, therefore, to show that all the E; are locally free @y-modules. This
follows from the following lemma. (Apply the lemma to the case where f=¢' and
g=0")

Lemma 2.7. Let R be a regular local ring and let M and N be free R-
modules with finite ranks. Let f: M—»N and g: N-—M be homomorphisms such

that Im (f)=Ker(g) and that Im(g)=Ker(f). Then Ker(f) and Ker(g) are free
R-modules.

Proof. The infinite complex
O—Im(g) «— N L Mt NL - Me— et

is considered as a free resolution of the R-module Im(g). Since the cohomological
dimension of R is finite, both Ker (f) and Ker(g) are free. g.e.d.

For an isogeny n: Y- X and a vector bundle E, on Y, we see that r(n,(E,))
=(degn)-r(E,). This and Proposition 2.6 show the following.

Corollary 2.8. For every simple vector bundle E on X, there exist an isogeny
n: Y- X and a simple vector bundle E’' on Y with X(E")=0, such that n,(E')~E.

§3. The group scheme ®(E)

For a line bundle L on X, the homomorphism ¢,: X—X can be defined. ¢,
is the unique morphism such that

(Ixx ¢ )*(2)=m*(L)®(p)*(L) ' ®(p)* (L),

where p, and p, are projections of X x X to X and m: X x X—X is the group law
of X. Asa map ¢, (x)=T¥L)YR®L"! for every point x € X, where T,: X— X is the
translation of X by x. For details, see Mumford [10] § 13.

For a vector bundle E on X, we define an analogue corresponding to ¢, in the
case of line bundles.

Definition 3.1. For a vector bundle E on X,
P (E)={(x, 2)e X x R|THE)XE®P,}.
Proposition 3.2. ®°(E) is a closed subgroup of X x X.

Proof. Let p,,, Pi3. p;. €tc. be the various projections of X x X xX. We
shall apply the results in § 1 to the morphism p,3: X x X x £—»X x X and the couple
of vector bundles F=(p,,)*(m*(E))®(p,3)*()"! and G=(p,)*(E). Obviously
P (E)={(x, £)e X x X| Flyxpyx 2y = Glxxmxg). Thus P°(E) is a constructible
set by Proposition 1.5. On the other hand, ®#°(E) is closed under the multiplication.
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Hence our proposition is proved. q.e.d.

Let p°: #°(E)=X be the restriction of the projection of X x X to X. Set-
theoretically the kernel of p° is isomorphic to 2°(E). Hence we have

Proposition 3.3. For a vector bundle E on X, we have dim®°(E)<g. p°is
surjective if and only if dim @°(E)=g.

If E is simple, we have more information on ®°(E). First we have

Proposition 3.4. If E is a simple vector bundle, then ®°(E) is a union of some
connected components of the closed set W°(E)={(x, £) € X x X| there exists a non-
zero homomorphism f: T¥ E)-E®P,}.

Proof. On one hand, Proposition 3.2 implies that ®°(E) is closed in ¥Y°(E).
On the other hand, it is open in ¥°(E) by Proposition 1.7. Thus we have proved
our proposition. g.e.d.

Secondly, we have

Definition 3.5. For a simple vector bundle E on X, ®(E) is the maximal
subscheme of X x X over which F and G are isomorphic to each other, where F and
G are the same as in the proof of Proposition 3.2.

By virtue of Theorem 1.8, 45(E) represents the following functor on (Sch);
(3.5.1) S~ {(h, /)€ X(S)x X(S)|TH(Es)=Es®P;®,,N for some

invertible sheaf N on S},
where T,=(mo(1 x h), p5): X x S—>X xS.

Clearly this functor is a subgroup functor of Xx X. Hence ®(E) is a subgroup
scheme of X x X.

Let p (resp. q) be the restriction of the projection p,: X x X— X (resp. p,: X X X
—X) to &(E).

Lemma 3.6. p*(E)~L®" for some line bundle L on ®(E), where r=r(E).

Proof. If h: S— X factors the morphism p: #(E)— X, then by (3.5.1), we have
T¥Es)~Es®L for some line bundle L on X Restricting this isomorphism to
{0} x S, we have that h*(E)=(0$")®L. Putting h=p, we have our lemma.

q.e.d.

By (2.3.1) and (3.5.1), we have

Lemma 3.7. For a simple vector bundle E on X, the (scheme-theoretic)
kernel of p is isomorphic to Z(E).

For the morphism g, we can manage a similar business to p.

Definition 3.8. For a simple vector bundle E on X, K(E) is the maximal
subscheme of X over which the vector bundles m*(E) and (p,)*(E) on X x X are
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isomorphic to each other, where X x X is regarded as an X-scheme via the projec-
tion p,: X x X-X.

Under this definition we have

Proposition 3.9. Let E be a simple vector bundle on X.
(1) K(E) represents the following functor on (Sch);

3.9.1) S~—>{he X(S)|ITHEs)2Es®,,N for some invertible sheaf N on S}.
(2) There exist a line bundle L on K(E) and an isomorphism

(3.9.2) HE)=(p)*(E)®(p2)*(L)

on X x K(E), where p is the restriction of m: X x X—X to X x K(E).
(3) The scheme-theoretic kernel of q is isomorphic to K(E).

We shall consider the relation between @°(E) and ®°(F) in the case where E
and F are related with each other.

Definition 3.10. For a vector bundle E on X, ®#°°(E) is the neutral component
of &°(E).

Proposition 3.11. Let F be a vector bundle on X.
(1) IfE is a direct summand of F, then ®°°(F)< ®°°(E).
(2) If F has a filtration

0=FycF,c-:cF,_cF,=F

such that F,/F,_,=~E (i=1,2,...,n) for a simple vector bundle E, then ®°°(F)
< ¢°°(E).

Proof. (1) Assume that @°°(F)ZP°°(E). We can choose an infinite sequence
a;, a,... of points in @#°°(F) so that g, and a; do not belong to the same coset of
@°°(E) whenever ixj. Put a,=(x;, £)e Xx2X. From the choice of a,’s, we see
that E;=T% (E)®Pz! is a direct summand of F for every i and that E;XE; whenever
i% j, which contradicts to the Krull-Schmidt theorem of locally free sheaves (see
2D.

2) If THF)~F®P,, then there exists a non-zero homomorphism f: T*(E)
—E®P,. Hence ®°(F)c=¥°(E). Since E is simple, our assertion follows from
Proposition 3.4 q.e.d.

Proposition 3,12. Let n: Y-> X be an isogeny and F a vector bundle on Y.
For E=n,(F), we have

(% 1)(@°(F) x ¢ R)S ®°(E).

Proof. A point of ®°(F)x ¢ X corresponds to a point (y, £) € Yx X such that
(», #(R)) € @°(F). Hence T}(F)=F®Pye=FQn*(P,). Taking the direct image
by =, we have

(T o) *(mal(F)) = n*(T;(F))’; T (F)Q@P,.
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This proves our proposition. q.e.d.
Let us refine the above proposition in the case where both E and F are simple.

Lemma 3.13. Let F be a simple vector bundle on Y. If E=ny(F) is simple,
then

K(F) nKer(n)=0,
where N means the scheme-theoretic intersection.
Proof. The followings are easily verified;
End, (E)~Hom,, (n*n.(F), F)
and ¥ (F)=(p)«(V*(F)),

where v is the restriction of m: X x X— X to X x Ker(n). Since H=K(F)n Ker(n)
is finite, we have

V¥(F)lx « g Z(py)*(F)

by (3.9.2). Hence there exists a surjection n*n,(F)—F®" where h is the order of
H. Therefore h<dim, Hom, (n*n.(F), F)=dim,End, (E). By the assumption,
h=1, which proves our lemma. q.e.d.

In the above lemma, the converse is true if F is a line bundle ([12] Theorem
1.2).

Proposition 3.14. Let n: Y- X be an isogeny and F a simple vector bundle
on Y. Assume that E=n(F) is simple. Then the restriction o of nx 1¢ to ®(F)
x ¢ X factors through ®(E). Moreover, o is a closed immersion.

Yx X =4, xx X
U 1]
D(F)x X C— B(E)

Proof. An S-valued point of ®(F)x y X corresponds to a pair (h, f)e Y(S)
x X(S) such that (h, #(f)) € ®(F)(S). Hence

THF)=F®P; @,y N

for some invertible sheaf N on S. Since P, 2 (ms)*(P,), taking the direct image
by ng we have

T i *(1(F)) 2 (1) o (TH(F$) = (mu(F)s® P ® N.
Hence (n(h), f) e ®(E)(S), which proves the first assertion. We see that
Ker (0) = ((F) x ¢ £) 0 (Ker (m) x {0})= K(F) n Ker (n).
Hence by Lemma 3.13, we have our second assertion. g.e.d.

Corollary 3.15. Under the situation of Proposition 3.14, we have the follow-
ing.
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(1) The projection ®(F)x ¢ X—X induces a closed immersion
(Ker(m)x ) n &(F)) x ¢ X & 2(E).

Especially, when F is a line bundle, the projection of Ker(n)x y X to X induces a
closed immersion

(3.15.1) Ker(m)x 9 X 2(E),

where Ker (n) is regarded as a Y-scheme via Orlkern): Ker(m)o Y.
(2) =: Y- X induces a closed immersion

(3.15.2) K(F)o K(E)

Proof. Restricting the morphism « in Proposition 3.14 to Ker(n)x X (resp.
Yx {6}), we have the first assertion of (1) (resp. the assertion (2)). The second
assertion of (1) is easily derived from the fact that for a line bundle F, ®(F) is the
graph of ¢,. g.e.d.

In the case where E is simple, dim @(E) is closely related with the dimension of
the local moduli of E. In fact.

Proposition 3.16. Let E be a simple vector bundle on X and R its loacl
moduli. Then we have

g<2g—dim ®(E)<dim R<dim, H(X, &nd,, (E)).

Proof. The first inequality follows from Proposition 3.3 and the third in-
equality from Proposition 1.9. It suffices to show the second inequality. By the
Poincaré’s complete reducibility theorem, there exists an abelian subvariety Y of
X x X such that

(3.16.1) Y n &(E) is finite,
(3.16.2) Y and ®(E) generate X x X.

Let us consider the family F’'=F|y ., of vector bundles on X, where F is the same as
in the proof of Proposition 3.2. Since F'|y,o, = E, there exists a homomorphism
R—»(AOY,O of complete local rings. The dimension of the fibre @y,(,@R(R/m) should
be 0. For otherwise there exists an artin local k-algebra A,,=@y,o/a,, of length n
for an arbitrarily large n such that F'ly,gspec(q,) i isomorphic to E®, A, which
contradicts to (3.16.1). Hence we have that dim Y <dimR. Since dim Y=2g
—dim &(E). we have our proposition. q.e.d.

Corollary 3.17. Under the situation of Proposition 3.16, we have

(1) dim HY(X, End o\ (E)>g

() if dim H(X, &»a/ o (E))=g, then dim®P(E)=g and the ring R is a
regular local ring.

Remark 3.18. If (#(E), p)=1, then &ns/, (E) contains ¢y as a direct
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summand. Hence (1) of Corollary 3.17 is trivial in this case.
In the proof of Proposition 3.16, if p=0, then Y n ®(E) is a discrete finite group.
Hence the natural map

Ty, — HY(X, End o, (E))

is injective, where Ty, is the tangent space of Y at 0. Thus, in this case, we can
prove the inequality

29 —dim &(E)<dim, H'(X, &n/, (E))

without aid of Proposition 1.9.

§4. Homogeneous vector bundles

For a scheme V, we denote by C, the category of coherent ¢,-modules. Let
us consider the functor & on Cyg to Cy defined by

4.1 y(M)=(P1)*(-@®a,;M),
for every M € Cg, where p, (resp. p,) is the projection of X x X to X (resp. X).

Proposition 4.2. & is a left exact functor. Moreover, & has a left adjoint
functor I and for every NeCy and M €Cy, there exists a functorial isomor-
phism ‘

(4.2.1)  (pDsHomoyuz((P1)*(N), PO oxM) = Homoy (7 (N), M).

Proof. The functor & is a composition of the functor &’ on Cy to Cx,
and the functor (p,)4, where ¥'(M)=2®,, M for every M eCs. Since £ is an
0¢-flat module, &’ is an exact functor. Since p, is a proper morphism, &' has a
left adjoint functor .7 and for every L e Cx, ¢ and M e Cy, there exists a functorial
isomorphism

(4.2.2) (P Hoomgynz(L, PRo:M) % Homy (T (L), M),

(see EGA 111 (7.7.2)). As is well known, (p,) is left exact and has a left adjoint
(p)*. Therefore & =((p,)s)= is left exact and I =7 "o((p,)*) is the left adjoint
of &. Putting L=(p,)*(N) in (4.2.2), we have (4.2.1). q.e.d.

‘Lemma 43. Let MeCy; and NeCy. Then we have the following iso-
morphisms: ,

(.3.0) FIMOP)= THL(M)), #(THM)=F(M)@P3",
(4.3.2) T(N®P)=T*(T(N)), 7(T¥(N)=T(N)®P,,
where P, is the line bundle in Pic°(X) corresponding to x € X;(%).

Proof. (4.3.1) is easily verified by the following properties of the Poincaré
bundle £;
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9@0,‘( Px;—l(T(x,O))*(g)
and (’T(o‘g))*(.@).g 9®0x Pg.
The isomorphisms (4.3.2) are derived by (4.3.1) and the adjointness property of &
and 7. q.e.d.

Other properties of & and J will be pursued in a forthcoming paper. In this
section we shall consider them in a special case to obtain some results related with
homogeneous vector bundles.

Definition 4.4. A vector bundle F on X is homogeneous if T¥(F)~F for
every point x of X. We denote by Hy the full subcategory of Cy consisting of the
zero sheaf and all homogeneous vector bundles on X.

Definition 4.5. A vector bundle F on X is unipotent if F has a filtration
0=F0CF1C"'CF”_1CF,,=F

such that F;/F;_ =0y for all i=1,..., n. We denote by Uy the full subcategory of
Cy consisting of the zero sheaf and all unipotent vector bundles on X.

Definition 4.6. C} is the full subcategory of Cy consisting of all coherent
Og-modules supported on a finite set.

Definition 4.7. We put B=0g,5. Mod,(B) is the category of B-modules of
finite length. We identify Mod,(B) with the full subcategory of C} consisting of all
coherent 0g-modules with Supp (M)={(f}.

In the rest of this section we shall show that the functors & and J give us close
relations among the above categories.

Lemma 4.8. If M €C%, then P(M)eHy and r(¥(M))=Ilength(M). If
M e Mod,(B), then #(M) € Uy.

Proof. If M eCj, then M has a composition series by k(£), £€ X. Since the
restriction of & to C,{ is exact, (M) has a composition series by Z(k(R))=P,.

Hence r(&¥(M))=Ilength(M) and if Supp(M)={6}, then &(M) is unipotent. The
homogenity of &#(M) follows from (4.3.1). q.e.d.

Lemma 4.9. If Ue Uy and %0, then H(X, U®P,)=0 for all i.

Proof. It suffices to show the lemma when U=~0,. But in that case it is well-
known ([10] § 8).

Lemma 4.10. If U € Uy, then we have
length R¢(p,)«((p)* (V)@ 2)=r(V).
Proof. There exists an exact sequence

0—V—U—70y—0



254 Shigeru Mukai

for some Ve U,. Since R”(pz)*(g’)gk(f)) and R?7(p,).(2)=0 ([10] §13), we
have

length R¢(p2)«((p)*(U)® 2) =length R%(p,)+((p, ) (V)@ 2) + 1.

Hence an induction on r(U) completes our proof. g.e.d.
Proposition 4.11. If U e Uy, then 9 (U) has a support at the origin 0.
Proof. Putting N=U and M =k(%) in (4.2.1), we have

HY(X, UY®P,)=Hom, (7 (U), k(X)).

Hence, by Lemma 4.9, if £2¢0, then Hom,, (T(U), k(%))=0. Since Hom,, (7 (U),
k(RN = [T (U)®kK(R)]Y, the stalk 7 (U), of 7 (U)at % is zero whenever £x0. Hence
7 (U) is supported at the origin 0. q.e.d.

By Lemma 4.8 and Proposition 4.11, & (resp. J) defines a functor on Mod  (B)
(resp. Uy) to Uy (resp. Mod(B)), which we also denote by & (resp. ). Then
we have the following theorem.

Theorem 4.12.

(1) & and T give an equivalence of categories between Mod,(B) and
U,.

(2) For M, NeMod,(B), let U=%(M) and V=%(N). Then we have the
following correspondences:

i) r(U)=length(M).

ii) the dual vector bundle UV of U corresponds to (—1)§2(M), where 2 is
the dualizing functor of Mod;(B) and (—1)g: B—B is the isomorphism induced by
(— 1)xZ X—)X.

iiiy U®V corresponds to Mx*N, where MxN is M@N regarded as a B-
module via the co-multiplication u: B>B®B of the formal group B.

iv) Hi(X, U)=Exty(k, M) for all i, where k=B/m.

Remark 4.13. By the above theorem, the category Uy is determined by the
local ring B, whence essentially by g=dim X. But the operations ¥ and ® depend
on the formal group scheme structure of B (especially in the case p>0).

Let Ue Uy. By Lemma 4.6, Ri(p,)s((p,)*(UY)® ) are concentrated at the
origin. There exists a complex

K Q0— KO — Kl —s oo. — K071l — K9 —— (

of locally free B-modules of finite rank which gives the direct images of (p,)*(U")
® £ universally, that is, there exists an isomorphism of functors

(4.14.1) Ri(p)s((p)*(U) PR, M) 2 HI (K ®pM)

on the category of B-modules M ([10] § 5, see also § 13). Since B is a regular local
ring and H¥(K') are artinian modules, H{(K')=0 for 0<i<g. (See [10] §13
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Lemma. The regularity of B is not necessary. One sees easily that it is sufficient
that B is Cohen-Macaulay.) Put Q=R9(p,)«((p)*(UV)®2P)=H9K"). Then the
sequence

0— K0 — K! — ... — K#71 — K¢ — Q0 — 0.
is exact. Let
(K)¥: 0 — (KO)Y—s (K971 ¥ s oo — (K 1)V = (K°)Y —0
be the dual complex of K'. Then we also have that Hi((K')V)=0 for 0<i<g.
Putting R=H9((K")V)=Ext%(Q, B), we have the exact sequence

(4.14.2)
0 —> (K9)Y — (Ke™)¥ —> v — (K)¥ — (KO)¥ — R — 0.

Since B is Gorenstein, Ext% (-, B) is the dualizing functor 2 of B and we have
(4.14.3) length (R) =length (Q).

Lemma 4.15. R~ 7 (U).

Proof. Hompg(R, M)~Ker[Homy ((K°Y, M) — Homg((K!)", M)]

~Ker[K°QpM — K@ ; M]=HY(K ®zM).
Hence by (4.14.1), we have
Homy (R, M)=(p2)x(p)*(UV)@ 2@, M).

By this, (4.2.1) and Proposition 4.11, we have our lemma. q.e.d.

Proof of Theorem 4.12

(1) Since 7 is a left adjoint functor of &, there exist morphisms of functors
@ idy,>FT and Y: T oF —idyoq,). It suffices to show that ¢ and ¢ are
isomorphisms. First we note that ¢(U) and y(M) are not zero for every U0 in
Uy and M =0 in Mod,(B). By Lemma 4.10, (4.14.3) and Lemma 4.15, we have

(4.16.1) length 7(U)=r(U),

for every U € Uy. Hence by Lemma 4.8, we have

(4.16.2) (L (T U))=r),

(4.16.3) length (7 (#(M)))=length (M),

for every Ue Uy and M eMod,(B). Since r(F(7(0x)=1, L(T(0x)=0x and
@(0y) is an isomorphism. Let

00— V—U—0y—0
be an exact sequence in U,. Then we have the sequence

(4.16.4) 0— LT V) — LTU) — F(T(0x) —0
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in Uy. Since 7 is right exact and & is exact, (4.16.4) is exact in the middle and the
right terms. By (4.16.2), we have

(T UN)=rF(T (V) +1(F(T(0x)).

Hence the sequence (4.16.4) in Uy is exact. Therefore we have the following com-
mutative exact diagram

0 > V U > Oy »0

lcpm lrp(v) k

00— LT V) — LTWU) — LT (0x) — 0.

By the 5-lemma, if (V) is an isomorphism, then ¢(U) is also an isomorphism.
Hence by induction on r(U), we see that ¢(U) is an isomorphism for every U € Uy.
For the morphism it is similarly proved.

(2) 1) has been already proved in Lemma 4.8. We omit the proof of ii) and
iii) since we shall not use them later. By Lemma 4.15, we have to compute Extj (k,
R) to prove iv). Since B is Gorenstein, we have

(4.16.5) Ext} (k, B)=0 for ixg,

IR

k for i=g.
Hence for every free B-module L, we have
(4.16.6) Ext} (k, L)=0 for ixg,

>L®gpk for i=g.
Hence by the exact sequence (4.14.2), we have

Exth(k, R)=H'((K')V®pk) ~H'((K'@pk)") = [H (K '®k)]".
By (4.14.1) and the duality theorem, we have
Exti(k, R)~[H (X, UV)]V=H! (X, U). g.e.d.

The following theorem was proved in Matsushima [6] and Morimoto [9], in
the case p=0.

Theorem 4.17. Let F be a vector bundle on X. Then the following condi-
tions are equivalent.

i) F is homogeneous,

ii) there exist line bundles P, in Pic®(X) and U, Uy such that Fge‘a(P,(X) U).

Proof. i)=ii): This was proved in Miyanishi [7]. ii)=i): Since P;
€ Pic°(X), T*(P) =P, for every x € X. Hence it suffices to show that every unipotent
vector bundle U is homogeneous. By virtue of Theorem 4.12, (1), there exists
M e Mod(B) such that U=~%(M). Hence by Lemma 4.8, U is homogeneous.

q.e.d.
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As a corollary to the above theorem, we have the following proposition which
will play an important role later.

Proposition 4.18. Let F be a homogeneous vector bundle.
(1) There exists a line bundle M in Pic°(X) such that HY(X, FQM)=0.
(2) The following conditions are equivalent.
i) HYX, F)=0,
i) HYX, FV)%0,
iii) HYX, F)=0,
iv) F contains a unipotent vector bundle U =0 as a direct summand.

Proof. By Lemma 4.9 and Theorem 4.17, i) and ii) are equivalent to iv), and
iii) implies iv). If U0, then (U)=0. Since (U) is artinian, Ext§ (k, 7(U))
%0 for 0<i<g. Therefore iv) implies iii). q.e.d.

The category Hy is determined as follows.

Theorem 4.19. &% and J give an equivalence of categories between C%
and Hy.

Proof. As in the proof of (1) of Theorem 4.12, we have only to show that ¢:
idy,—»%°7 and Y: T oS —idck are isomorphisms. Let Fe Hy. We have to show
that ¢(F) is an isomorphism. Since & and J are additive functors, we may assume
that F is indecomposable. Then, by virtue of Theorem 4.12, F~P,QU for some
£eX and Ue Uy. By Lemma 4.3, we have only to show the assertion in the case
F~U. In this case ¢ is an isomorphism by Theorem 4.12. For the morphism ,
it is similar. g.e.d.

Let #: Y= X be an isogeny. The following is obvious.
Lemma 4.20. If Fe Hy and G e Hy, then n (F)e Hy and n*(G) e Hy.

Hence n, (resp. n*) defines a functor of Hy (resp. Hy) to Hy (resp. Hy). As
a special case of Lemma 4.20, 7,(0y) is a homogeneous vector bundle on X. In
fact, we have

Proposition 4.21. 7,(0y)=(p)x(Plxxg), that is, n(0x)=F(0g), where G=
Ker (®).

For the proof see [12]. As a corollary to the above we have,

Corollary 4.22. If # is separable, then n,(0y)~ @ P, If & is purely
£eKer(#)
inseparable, then n,(0y) is an indecomposable unipotent vector bundle on X.

Proposition 4.21 is a special case of the following theorem.

Theorem 4.23. Let n: Y- X be an isogeny and f: XY the dual isogeny of
n. Then the following diagrams are commutative.
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4
C; —— Hy

w

C{> %’ Hy
and

C£—f“’Hx

(fr)tl lﬁ"‘

Cg—f’Hy

The proof is not difficult. We omit it since we shall not use it later.

§5. Semi-homogeneous vector bundles

Every vector bundle E on an abelian variety X has two natural deformations.
The one is the family {T#E)|xe X} and the other is the family {E®P,|%e X}.
The algebraic group @°(E) considered in § 3 represents a relation between these two
deformations. The object studied in the rest of this paper is the vector bundle E
such that the former family is included in the latter.

Proposition 5.1. Let E be a wvector bundle on X. Then the following
conditions are equivalent:

(1) for every x € X, there exists a line bundle L on X such that THE)~E®L,

(2) p°: °(E) —> X is surjective,

(3) dim®°(E)=yg,

(4) for every x € X, there exists an isomorphism @, of P(E) which covers the
translation T,, where P(E) is the projective bundle associated with E.

Proof. The equivalence of (1) and (4) follows from the well-known fact that
P(E)~P(F) as X-schemes if and only if EXF®L with some line bundle L on X.
If THE)~E®L, then we have T¥(det(E))=det(E)®L®", where r=r(E). Hence
L® e Pic°(X). Since NS(X) is torsion free, L itself is contained in Pic°(X). Hence
(1) implies (2).. The converse is trivial. The equivalence of (2) and (3) was shown
in Proposition 3.3. q.e.d.

Definition 5.2. A vector bundle E on X is semi-homogeneous if E satisfies
the equivalent conditions of Proposition 5.1.

Our aim of this section is to characterize semi-homogeneous vector bundles.
In the first place, we have

Proposition 5.3. Let F be a semi-homogeneous vector bundle on X.
(1) Every direct summand of F is semi-homogeneous.
(2) IfF has a filtration

0=Fy,cF,c--cF,_,cF,=F
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such that FiJF,_=~E (i=1, 2,..., n) for a simple vector bundle E, then E is also
semi-homogeneous.

Proof. This is an immediate consequence of Proposition 3.11 and Proposition
5.1, q.e.d.

Semi-homogeneous vector bundles behave nicely under isogenies.

Proposition 5.4. Let n: Y- X and 1: X—Z be isogenies of abelian varieties.
Let E be a vector bundle on X.

(1) If E is semi-homogeneous, then so are ny(E) and 1*(E).

(2) Assume that E is simple or # (resp. 1) is separable. If n*(E) (resp. 14(E))
is semi-homogeneous, then so is E.

Proof. (1) Since = is ‘surjective, it is easily seen that =n*(E) is semi-
homogeneous. It easily follows from Proposition 3.12 that 74.(E) is semi-
homogeneous.

(2) If n*(E) is semi-homogeneous then n a*(E)~E®mn.(0y) is semi-homo-
geneous by (1). If # is separable, then, by Corollary 4.22, n,(0y) decomposes into

the direct sum @ P;. Hence E is contained in n,n*(E) as a direct summand.
ReKer(R)

Therefore, by (1) of Proposition 5.3, E is semi-homogeneous. Suppose that E is
simple. By the above result, we may assume that # is purely inseparable. Then,
by Corollary 4.22, ©,(0y) is unipotent. Hence our assertion follows from (2) of
Proposition 5.3.

If 7,(E) is semi-homogeneous, then t*1,(E)=(p,)s«v*(E) is semi-homogeneous,
where v: X x Ker(r)— X is the restriction of the multiplication m: X x X—X.
If 7 is separable, then E is a direct summand of t*t,(E). Hence E is semi-homo-
geneous. Therefore, we may assume that t is purely inseparable and deg(z)=p.
Set G=Ker(t). Since Og is an artin local ring and dim, (in/m2)=1, O;=k[T]/
(T?) (which also follows from the structure theorem of local group schemes). Hence
the filtration

O=mPcm?P lc-..cmcl,
induces a filtration
0=FycF,c--cF,_,cF,=1t*t,(E)

such that Fi/F;_,~E (1<i<p). Therefore, as before, we see that if E is simple,
then it is semi-homogeneous. g.e.d.

Remark 5.5. In Proposition 5.3, (2) and 5.4, (2), the assumption of simple-
ness or separability of isogeny is superfluous. We shall show it in a forthcoming

paper.

As a special case of (1) of Proposition 5.4, we have that E=n,(L) is semi-
homogeneous for every line bundle L on Y.

Proposition 5.6. It is necessary and sufficient for E to be simple that Ker ()
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n K(L)=(0).

Proof. We have seen the necessity in Lemma 3.13. For the sufficiency, see
[12] Theorem 1.2. qg.e.d.

Lemma 5.7. Let E be a simple semi-homogeneous vector bundle on X. If
Z(E)=0, then E is a line bundle.

Proof. The assumption implies that p: #(E)—»X is an isomorphism. In
view of Lemma 3.6, r(E) must be one. q.e.d.

We are now ready to prove the main theorem in this section.

Theorem 5.8. Let E be a simple vector bundle on X. Then the following
conditions are equivalent to one another:

(1) dim, H{(X, &»a,,(E))=9g,

(1) dim, Hi(X, é’,,,/,,x(E))=<i.) forall j=1,2... g,

(2) E is semi-homogeneous,

(3) &na/,(E) is a homogeneous vector bundle,

(4) there exist an isogeny n: Y- X and a line bundle L on Y such that E
~n.(L).

Proof. We shall prove the theorem following the diagram below:

D= Q=

|

(1)<=0B

The implication (1)=>(2) is an immediate consequence of Corollary 3.17, (2)
and Proposition 5.1. The implication (2)=>(3) is obvious.

(3)=(1"): Let A4 be as in (2.2). Then A=7J (€»s,,(E)) by (4.2.1). Since E
is simple, we have, by Lemma 2.4, that A~ 0y, @A’ for some A" and that Supp(4’')
N Z(E)=(0). Since &na’,,(E) is homogeneous, AeC4. Therefore, A’ is also
contained in C§. Since 6é€Supp (4), H(X, &(A'))=0 for all i. Thus we have

(5.8.1) HI(X, End o (E)) =H (X, ¥ (O55) DS (A)) = H' (X, & (Oy(gy)

for all i.
Let G be the connected component of identity in X(E). By the similar reason,
we have

(5.8.2) H{(X, & (0g)=H (X, £(0)) for all i.
By virtue of Theorem 4.12, we have
(5.8.3) dim, Hi(X, £(0g))=length Ext} (k, 0),

where B=0y 5 and k=k(6)=B/m. By virtue of Cartier’s theorem of local group
schemes ([3] 111, § 3, 6.3), we have that @05;=B/ Zgﬂ;“'B, where {t;} is a regular
i=1
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system of parameters of B and a;'s are some non-negative integers. Using the
Koszul complex we see easily that

(5.8.4) length g Ext} (k, (DG)=<‘?> forall i=0,1,...,g.

By (5.8.1), (5.8.2), (5.8.3) and (5.8.4), we have (1).

The implication (1')=>(1) is obvious and the implication (4)=>(2) is a special case
of Proposition 5.4 as we have seen before Lemma 5.6.

(2)=>(4): By Corollary 2.8, there exist an isogeny n: Y— X and a vector bundle
E’ on Y with 2(E')=0 such that n(E)~E. By (2) of Proposition 5.4, E' is also a
simple semi-homogeneous vector bundle. Therefore, E’ is a line bundle by Lemma
5.7, which implies (4). q.e.d.

The natural injection i of Oy to &ne’,,(E) induces a homomorphism H!(i)
of H(X, 0x) to H'(X, &ns,,(E)). As is stated before Lemma 2.5, if (r(E), p)
=1, then H!(i) is injective. Surprisingly, the converse is true if E is simple and
semi-homogeneous. In fact,

Proposition 5.9. Let E be a simple vector bundle on X. Then the following
conditions are equivalent:

(1) H(i): H(X, 0x) =% HY(X, £ns,,(E)) is an isomorphism,

(1Y Hi(i): H(X, 0x) == Hi(X, &na ,(E)) is an isomorphism for all j=1,
2,..., 9,

(2) E is semi-homogeneous and (r(E), p)=1,

(3) E is semi-homogeneous and X(E) is reduced.

Proof. (1)=(1"): Since dim, H'(X, &nd/,,(E))=dim, H'(X, Ox)=g, End,,
(E) is homogeneous by virtue of Theorem 5.8, whence so is 4 5/(E). Consider the
exact sequence

0—>0x—i>¢3’na/ax(E)——->/,//(E)———>0.

Since H'(i) is injective and E is simple, we see that HY(X, 4 s/(E))=0. By virtue
of Theorem 4.17 and Lemma 4.9, we have that H/(X, 4 »/(E))=0 for all j. By the
above exact sequence, we have (1').

(1=>(2): Consider the trace map

Tr: End o (E) —> Oy.

By the canonical isomorphism [&#e’,, (E)]Y& Endy (E), Tr is identified
with the dual homomorphism iV of i. Therefore, by the duality theorem, H(Tr)
is identified with

HI7H )V [H X, End o, (E))]Y — [HTI(X, 04)]".

Hence, by the assumption, both H!(i) and H!(Tr) are isomorphisms. It follows
that H!(Trei) is an isomorphism. Since H!(Troi)(a)=r-a for every ae H(X,
0Oy), we have (r, p)=1.
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The implication (2)=-(3) follows from the fact that Z(E) is a closed subscheme
of (X),. The implication (3)=(1) is obvious if one takes Lemma 2.5 into account.
’ q.e.d.

As an application of the above, we have

Proposition 5.10. Assume that p>0 and that the p-rank of X is maximal.
If E is a simple semi-homogeneous vector bundle on X, then there exist a separable
isogeny n: Y- X and a line bundle L on Y such that Exmn,(L).

Proof. If (r(E), p)=1, then the assertion is clear. Assume that p divides r(E).
Then X(E) is not reduced by virtue of Proposition 5.9. Since the p-rank of X is
maximal, X(E) contains a subgroup scheme G isomorphic to u, ([10] §15). By
Step I in the proof of Proposition 2.6, there exist an isogeny n': X'— X and a vector
bundle E’ on X’ such that a) (n')«(E')~E and b) Ker(n')~G=~Z/pZ. b) means
that =’ is separable. By virtue of (2) of Proposition 5.4, E’ is also simple and semi-
homogeneous. Hence repeating the above argument we have our proposition.

q.e.d.

§6. The category S,

Semi-homogeneous vector bundles are characterized in the preceding section
when they are simple. In this section we shall study semi-homogeneous vector
bundles which may not be simple. Let us begin with a definition.

Definition 6.1. Let E be a vector bundle on X. A vector bundle F on X is
said to be E-potent if F has a filtration

0=FycF,c--cF,_<F,=F

such that F;/F;_,~E for all i=1, 2,..., n. We denote by Uy ¢ the full subcategory
of Cy consisting of all E-potent vector bundles and the zero sheaf on X.

It is easily seen that if E is a simple vector bundle, then Uy ; is an abelian
subcategory of Cy and E is a unique ‘‘simple’” object in Uy g.
For a vector bundle E on X, a natural functor

og: Uy — Uy

is defined by ag(U)=U®E and ag(p)=¢®1 for each U, U’ € Uy and ¢ e Hom,, (U,
U").

Proposition 6.2. If E is a simple semi-homogeneous vector bundle and if
(/(E), p)=1, then ag is an equivalence of categories.

Proof. Consider the natural injection
A fﬂmax(V, U) — ”omax(V®E, U®E)
for U, Ve Uy. By the canonical isomorphism #om, (V ®E, URE)= En ,,(E)
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®Homy, (V, U), 4 is identified with i®Hom, (V, U), where i: Ox—Ens, (E)
is the natural injection. By Proposition 5.9, HJ(i) is an isomorphism for all j.
Hence by the 5-lemma argument, we see that H/(i® W) is an isomorphism for every
We Uy. Thus we have two natural isomorphisms

(6.2.1) H°(A): Hom, (V, U) == Hom, (V®E, URE),

(6.2.2)  HYWA): HY(X, #omy, (V, U)) = HY(X, #omy (VRE, URE)).

By (6.2.1), ag is a full embedding. Hence it suffices to show the following lemma.
Lemma. For every F e Uy g, there exists a U € Uy such that FXUQ®E.

Proof. We prove our lemma by induction on r(F). If r(F)<r(E), then the
assertion is trivial. If r(F)> r(E), then there is an exact sequence 0—»F' —»F—F"—0
in Uy p such that both F' and F” are non-zero. By induction hypothesis, there
exist U and Vin Uy such that FF*U®E and F"~V®E. The isomorphism (6.2.2)
means that every extension of F” by F’ is derived by tensoring E from some extension
of Wby U. Hence there exists a We Uy such that F=~W®E, which completes our
proof. g.e.d.

Let n: Y- X be an isogeny and L a line bundle on Y. For E=mn.(L), a functor
B=Brr: Uy —> Uy

is defined by B(U)=n(U®L) and B(p)=n.(p®1) for each U, U' e Uy, and ¢
€ Hom, (U, U’). In this situation we have

Proposition 6.3. If n is separable and E is simple, then B is an equivalence
of categories.

Proof. Let U, Ve Uy and @ e Hom, (V, U). Then ¢ induces a homomor-
phism ¢®1 of VL to URL. pf(e) is, by definition, the homomorphism n,(p®1)
of n (V®L) to n(U®L). Since n* is a left adjoint of m,, there exists an
isomorphism

Hom, (n (V®L), n,(URL)) 4& Hom, (n*n,(V®L),URL),

of functors on U and V. It is easily seen that 67!(8(¢)) is the composition n*m(V
®L) —+» V®L?28L, U®L, where ¢ is the canonical homomorphism. Similarly,
the natural homomorphism

(6.3.1) Ty(Home (VRL, URL)) — Homq (nu(VRL), n(URQL))
= n*(fafno),(ﬂ*ﬂ*(‘/@L), U®L))

equals to m(u), where
Ui Homy (VRL, URL) — Hom, (n*n(VOL), URL)

is the homomorphism induced by the natural surjection &. On the other hand, we
see that
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(6.3.2) *r (VL) @ )T;"(V@L)’;V®L®( K(—B Py )

aeKer(n er(m)

because 7 is separable and V is homogeneous (Theorem 4.17). Since E is simple,
we have, by Lemma 3.13, that ¢,(a)#0 for every a#0 in Ker(n). Hence the
restriction &(a) of e to VQ L®P,, , is zero for every a#0 in Ker () by Lemma 4.9.
On the other hand, since ¢ is surjective, &0) is an isomorphism. Hence u is an
isomorphism onto the direct summand om, (VQL, URQL) of Hom, (n*m,(V
®L), U®L). For the other direct summands H,=#om, (VROL®P,, ), USL),
we see that H(X, H,)=0 for all i, where a#0. Therefore, Hi(x) is an isomorphism
for each i. Hence, by (6.3.1), we have isomorphisms

(6.3.3) Hom, (V®L, U®L) >4 Hom,, (n,(V L), n(USL))
(6.3.4) H\Y, #omo (VRL, URL)) 2% H(X, Homq (ny(VRL), ny(USL)))

It is easily seen that the homomorphism (6.3.3) is B and that the homomorphism
(6.3.4) sends each extension class 0—-U—W—-V—0 in Uy to the extension class
0-p(U)—=p(W)—-p(V)—0 in Uy Hence the rest is similar to the latter part of
the proof of Proposition 6.2. g.e.d.

As a corollary to the above two proposition, we have

Proposition 6.4. Let E be a simple semi-homogeneous vector bundle on X.
Assume that one of the following conditions holds:

(1) (E), p)=1,

(2) the p-rank of X is maximal.
Then every E-potent vector bundle is semi-homogeneous.

Proof. By Theorem 4.17, every unipotent vector bundle is homogeneous.
Hence, if (1) holds, our assertion follows from Proposition 6.3 and if (2) holds, our
assertion follows from Proposition 5.4 and 6.4.

Remark 6.5. Proposition 6.4 is true without the assumption (1) or (2). We
shall prove it in a forthcoming paper.

Let E be a vector bundle on X. We denote by 6(E) the equivalence class of
det(E)

+(E) in NS(X)®, Q. The following equalities are easily verified:

ME®F)=06(E)+d(F)
and O(EV)=—&(E).
Definition 6.6. For a §eNS(X)®,0Q, S; is the full subcategory of Cx

consisting of all semi-homogeneous vector bundles E with 6(E)=46 and the zero
sheaf.

If F € Uy, then it is clear that §(F)=6(E). Thus Proposition 6.4 implies that
if E is a simple vector bundle in S,, then S, contains Uy under the assumption
(1) or (2) in the proposition. We shall show that S; is covered by such Uy g’s
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(Proposition 6.18).

Lemma 6.7. Let E be a semi-homogeneous vector bundle on X. Then for
all xe X, we have

TY(E)=ZE®Pyp),
where r=r(E) and D=det(E).
Proof. Since E is semi-homogeneous,
6.7.1) THE)YXE®QM
for some line bundle M in Pic°(X). Hence we have
(6.7.2) T*(E)~EQM®"

On the other hand, taking determinants of both sides of (6.7.1), we have T*(det(E))
~det (E)®@M®. This and (6.7.2) prove our lemma. q.e.d.

Lemma 6.8. Let F and G be semi-homogeneous vector bundles. Then
0(F)=06(G) if and only if ®°°(F)=®°°(G).

Proof. By Lemma 6.8, ®°(F) contains Yp={(rx, ¢p(x))e X x X|x € X}, where
r=r(F) and D=det(F). Since dim ®°(F)=dim Y (=g) and Y is irreducible, we
have @°°(F)=Y. It is easily seen that Y =Y if and only §(F)=48(G). Hence
we have our lemma. g.e.d.

Proposition 6.9. Let F and G be vector bundles on X. Let 5§eNS(X)
®20.

(1) FeS, if and only if F is homogeneous.

(2) F®GEeS; ifand only if both F and G are contained in S;.

Proof. If F is homogeneous, then F is semi-homogeneous and det(F) is also
homogeneous, which implies that FeS,. The converse is obvious by Lemma 6.7.
(2) is an immediate consequence of Lemma 6.8 and (1) of Proposition 3.11. q.e.d.

Let F and G be vector bundles in S;. Then #m, (F, G) is a homogeneous
vector bundle by (1) of the above proposition. Applying Proposition 4.18 to this
vector bundle, we have

Proposition 6.10. Let F and G be vector bundles in S,.
(1) There exists a non-zero homomorphism ¢: F5>G®M for some line bundle
M in Pic’(X).
(2) The following conditions are equivalent:
1) there exists a non-zero homomorphism f: F—G,
ii) there exists a non-zero homomorphism g: G- F,
iii) HYX, #om,(F, G)#0.

Let E be a semi-homogeneous vector bundle. We put r=r(E). For every line
bundle L on X and integer I, (Ix)*(L)~L®"*, where ~ means the algebraic equiva-
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lence ([10] §8). Since
det ((rx)*(E)) = (rx)*(det (E)) ~ det (E)®"*,
we have det ((ry)*(E)®det (E)®")~0x. Hence, by (1) of Proposition 6.9, we have

Lemma 6.11. (ry)*(E)~det(E)Y®>*®H, where H is a homogeneous vector
bundle.

By Theorem 4.17, for every line bundle L we have y(LQ H)=r-y(L). Hence
r20- (E)=x((rx)*(E))= x(det (E)*®H) (Lemma 6.11)
=r-y(det (E)®)=r9*1. y(det (E)).
Thus we have proved

Proposition 6.12. If E is a semi-homogeneous vector bundle, then x(E)

_ X(det(E))_
= r(E)st

We shall fix an ample line bundle @(1) on X and use the terms *‘stable™ and
‘‘semi-stable™ in the sense of Gieseker [4]. For a non-torsion coherent @x-module

E we denote by P the polynomial such that Pg(m)= —X(ri(g’)’—)z— for all integers m,
where r(E) is the rank of E at the generic point of X.

Proposition 6.13. Every semi-homogeneous vector bundle is semi-stable.

Proof. Obviously, every unipotent vector bundle is semi-stable. Therefore,
by Theorem 4.17, every homogeneous vector bundle is semi-stable. Let F be a
semi-homogeneous vector bundle. By Lemma 6.11, we see that F'=(ry)*(F) is
semi-stable, where r=r(F). If G is an @0y-submodule of F, then G'=(ry)*(G) is an
Oy-submodule of F'. Hence Pg(m)< Pp(m) for m>0. Therefore, by the follow-
ing lemma, Pg(m)< P(m) for m>0, which completes our proof.

Lemma 6.14. Let F be a coherent Ox-module. Let F'=(ry)*(F). Then
Pr(r?m)=r2?P.(m) for all integers m, where r=r(F).

Proof. Obviously, r(F)=r(F’). On the other hand,
AF'(r2m)) = x((ro)*(F)®@0(r2m)) = x((rx)*(F(m)))

because 0(r?) is algebraically equivalent to (ry)*(0(1)). Hence x(F'(r*m))=
(deg(ry)) - x(F(m))=r2? . y(F(m)). Thus our lemma is proved. q.e.d.

By Lemma 6.13, every semi-homogeneous vector bundle has a filtration
0=FycF,c--cF,_,<F,=F

such that E,=F,;/F,;_, is stable and Py, =Py for all i=1, 2,..., n. Moreover, Eq,...,
E, are determined uniquely up to permutations (see [4]). We fix an index i. If
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(x, £) € ®@°(F), then THF)®P3;'=~F. Hence, for each (x, ) e #°(F), there exists
an index j such that THE)®P;'=~E; In other words, ®*(F)c \U ®;;, where
D;={(x, e X x X‘T:‘(Ei);EjC)DPx}. Since E; is stable, @;; is a éli)lsf:’c'i subset of
X x X (Langton [5]. Though the concept of stability in it differs from what we are
using in this section, the proof works in our case without any modifications). More-
over, ¢ is a closed subgroup and @;; is a coset of @, if d;;#¢. Hence we have that
¢°°(F)c=®;;. Thus E; satisfies the condition (1) of Proposition 5.1. Therefore,
E, is a semi-homogeneous vector bundle (the fact that E; is locally free is deduced
immediately from that condition) and §(E;)=J(F) by Lemma 6.8. Thus we have
proved

Proposition 6.15. Every vector bundle F in S; has a filtration
0=F,cF,c-cF,_cF,=F
such that E;=F,/F;_, is a stable vector bundle in S; for all i=1, 2...., n.
Proposition 6.16. Every simple semi-homogeneous vector bundle is stable.

Proof. Let E be a simple vector bundle in S;. Assume that E is not stable.
By Proposition 6.15, there exists a proper subbundle E' of E which is stable and
belongs to S;. Then by (2) of Proposition 6.10, there exists a non-zero homomor-
phism g: E—E' < E, which contradicts to our assumption. q.e.d.

By Proposition 6.12, we see that if E, E'€S;, then Py=Pg. Hence by the
above proposition, we see that for every simple vector bundles E and E’ in S;, every
non-zero homomorphism f: E—E’ is an isomorphism (see [4]).

Proposition 6.17. Let E and E’ be simple vector bundles in S;.

(1) There exists a line bundle M in Pic°(X) such that E'~E®M.

(2) Let F (resp. F') be an E (resp. E’)-potent vector bundle. If EXE', then
Hom, (F, F')=0 and H(X, #osm, (F, F'))=0.

Proof. (1) follows from the above result and (1) of Proposition 6.10. 1f EXXE’,
then Hom, (E, E')=0, whence H(X, #om, (E, E'))=0 by (2) of Proposition
6.10. Put H=5fom, (E, E'). Since #Fom, (F, F') is H-potent, HY(X, H)=0
and H'(X, H)=0, we have (2) by cohomology exact sequence. g.e.d.

The followings are main results in this section.

Proposition 6.18. If FeS,, then there exist simple vector bundles E,,..., E,
in S; such that F= (-0"3 F;, where F;e Uy g, for all i=1,2,..., n.
i=1

Proof. We prove our proposition by induction on r(F). By Proposition 6.15,
there exists an exact sequence 0—»E—F —2, G—0, where E, Ge S; and E is simple.
If Ge Uy, then so is F. If G& Uy g, then by induction hypothesis, there exists a
simple vector bundle E’ which is not isomorphic to E such that G=G’'@G", for some
G'eUy . We see that F=¢p YG)+ ¢ 1(G") and ¢ (G )n ¢ Y(G")=E. By (2)
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of Proposition 6.17, the exact sequence 0—E—¢ }(G')-G =0 splits. Hence
F=G'®¢~!(G"), which completes our proof because G', p~1(G")eS; by (2) of
Proposition 6.9. g.e.d.

Let C; (iel) be a family of abelian categories. Let C= @IC,. be the following
category: -

(1) An object a of C is a sequence (a;);, such that a;eC; for every iel and
a;=0 for all but a finite number of i.

(2) A morphism f: (a;)—(b)) is a collection of morphisms f;: a,—b; in C; for
every iel.

Theorem 6.19. Let e NS(X)®, Q.
(1) S; is a full subcategory of @ Uy g, where E runs over the isomorphic
E

classes of all simple vector bundles in S,.
(2) Assume that one of the following conditions holds.
i) For some (any) simple vector bundle E in S;, (r(E), p)=1.
il) The p-rank of X is maximal.
Then the category S; is equivalent to the category @ Uy e

Proof. (1) is an immediate consequence of Proposition 6.18 and (2) of Propo-
sition 6.17. (2) follows from (1) and Proposition 6.4. q.e.d.

Remark 6.20. As was stated in Remark 6.5, the condition i) or ii) of (2) in
the above theorem is superfluous.

Here we have to show that the category S; is not trivial.

Lemma 6.21. Let n: Y- X be an isogeny and E a vector bundle on Y. For
=m(E), we have n*(det(F))~(det(E))®4, where d=deg(n) and ~ means the
algebraic equivalence.

Proof. Assume n=m,on, for some isogenies n;: Z—X and n,: Y»Z. It is
easily seen that if our lemma holds for #, and =,, then it does for . Hence we may

assume that deg(n) is a prime number. If n is separable, then n*(n.(E)= @
xeKer(n)

T¥E). Since det(T*(E))~det(E), we have n*(det (F))~det (E)®4. Assume that 7
is purely inseparable and d=p. As we have seen in the proof of Proposition 5.4,
n*(n4(E)) has a filtration

0=Go=G,c- =G, =G, =n*F)
such that G;/G;_,=~E for all i=1, 2,..., p. Hence det(z*(F))=~det(E)®?. q.e.d.

Proposition 6.22. For every e NS(X)®,Q, there exists a vector bundle in
S;.
[L] . . .
Proof. Let 5=—l—, where [L] is the equivalence class of L in NS(X) and I
is a positive integer. Put F=(ly),(L®"). By Proposition 5.4, F is semi-homogene-
ous. By the above lemma, we have
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det (F)®* ~(Ix)*(det (F)) ~ L®1*¢*!

29-1
Since r(F)=1%¢, we have 5(F)=1—# =%=5. Therefore, F is contained in

S;. q.e.d.
By Proposition 6.15, we have

Corollary 6.23. For every 6eNS(X)®,Q, there exists a simple semi-
homogeneous vector bundle E with §(E)=3.

§7. Simple semi-homogeneous vector bundles

In the preceding section we have seen that for every 6 e NS(X)®,Q, there
exists a simple vector bundle in S; (Corollary 6.23). Proposition 6.17 tells us that
simple vector bundles in S; are unique up to tensoring line bundles in Pic°(X).
Furthermore, Theorem 6.19 shows that simple vector bundles play a key role in S;.
Hence our task is to study more closely simple vector bundles in §;. In this section
we shall investigate the various group schemes associated with those vector bundles.

Proposition 7.1. Let E be a simple semi-homogeneous vector bundle on X.
Then ord 2(E)=r(E)* and &nd 4 (E)= L (O5)).

Since E is stable and &x+/,,(E) is homogeneous, our proposition follows from
Theorem 4.19 and the following lemma.

Lemma 7.2. For every stable vector bundle E, Oy 5= T (& ne o, (E)).

Proof. Let A be as in (2.2). Since E is stable, for every line bundle L in
Pic°(X), every non-zero homomorphism f: E-E®L is an isomorphism. Hence
Supp (A)=Supp(Z(E)). Therefore, our lemma follows from Lemma 2.4. q.e.d.

Here we add one property which characterizes simple semi-homogeneous
vector bundles.

Proposition 7.3. For a simple vector bundle E on X, the following conditions
are equivalent:

i) E is semi-homogeneous,

i) There exist an isogeny n: Y- X and a line bundle M on Y such that n*(E)
~L® where r=r(E).

Proof. Put R=¢°°(E). Since E is simple, R is considered as the reduced
scheme associated with the neutral component of @(E). Let p’ be the restriction to
R of the projection p,: X x £—X. If E is semi-homogeneous, then p’: R—»X is
an isogeny. Hence the implication i)=>ii) is obtained from Lemma 3.6. The con-
verse is clear by (2) of Proposition 5.4. q.e.d.

We shall investigate such an isogeny as in ii) of the above proposition. Let
p: Z—X be the dual of the natural isogeny X —X/X(E), where Z is the dual abelian
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variety of X/Z(E).

Lemma 7.4. Let E be a stable vector bundle. For every isogeny n: Y—X,
we have

dim; End, (7*(E)) =ord (X(E) n Ker (#)).
Proof. The following isomorphisms of k-vector spaces are easily verified :
End, (n*(E))=Hom,, (E, n,n*(E))=~Hom,, (E, EQn.(0y))
=Hom,, (s o, (E), T4(0y)).

By Proposition 4.21. n.(0y)=F(Oke.(1))- Hence, by the definition of 7,
Hom,, (€#e/p, (E), m4(0y))=Hom, (T (Enay,(E)), Oger(z)). This and Lemma 7.2
complete our proof. q.e.d.

Lemma 7.5. Let E be a simple semi-homogeneous vector bundle. Let
n: Y= X be an isogeny of abelian varieties. If n*(E)=M®" for some line bundle
M on Y, then there exists an isogeny n': Y—Z such that n=pon'.

Proof. If n*(E)~M®", then dim,End,, (n*(E))=r2. Hence by Proposition
7.1 and Lemma 7.4, Z(E)< Ker(#). There exists an isogeny f: X/X(E)—Y such that
fi=fop. Hence we have n=pon’ for n'=F. g.e.d.

Proposition 7.6. Let E be a simple semi-homogeneous vector bundle and p
the restriction to ®(E) of the projection p,: X x X —X.

(1) There exists an isomorphism ¢: ®(E) == Z such that po@=p.

(2) For an isogeny n: Y- X, the following conditions are equivalent:

i) w*E)=M®" for some line bundle M on Y,

ii) There exists an isogeny n': Y—>®(E) such that t=pern'.

Proof. Let p': R—» X be as in the proof of Proposition 7.3. By Lemma 7.5,
there is an isogeny ¢: R—Z such that p’=pop. By Lemma 3.7, Ker(p)=X(E).
Hence deg(p’)<r2. On the other hand, deg(p)=r?. Hence deg(p)=1 and
deg(p’)=r?, which implies that ¢ is an isomorphism and R~ ®(E). Thus we have
proved (1). (2) is an immediate consequence of (1) and Lemma 7.5. q.e.d.

Among others the above proposition implies that @¢(E) is an abelian variety for
every simple semi-homogeneous vector bundle E. Therefore, by Lemma 6.7, we
have

Proposition 7.7. If E is simple and semi-homogeneous, then ®(E)=Im
[X tx:¢0), X « X7, where r=r(E) and D=det(E).

Corollary 7.8. Let E be a simple semi-homogeneous vector bundle on X.
Then there are exact sequences of group schemes

(7.8.1) 0— X,nK(D) —> X, 242, ¥(E) — 0
(7.8.2) 0 — X, n K(D) —s K(D) "%, K(E) — 0
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Proof. By the proposition
0— X,nK(D) — X2, &(E) — 0

is an exact sequence, where a=(ry, ¢p). Since X(E)=Ker(p), a 1(Z(E))=Ker (oo
p)=X,. Similarly « ' (K(E))=K(D). By these isomorphisms, our corollary is
clear. q.e.d.

Corollary 7.9. For a simple semi-homogeneous vector bundle E, we have
(1) dim K(E)=dim K(D),
(2) if x(E)#0, then ord K(E)=x(E)2.

Proof. (1) is clear by the exact sequence (7.8.2). If y(E)#0, then y(D)#0 by
Proposition 6.12. Hence ord K(D)=yx(D)? (see [10] §16). By the exact sequences
(7.8.1) and (7.8.2), we have

ord X,  ord K(D)
ord 2(E) ~ ord K(E) °

Since ord Z(E)=r? and y(D)?=r2?"2. y(E)? (Proposition 6.12), (2) is easily derived
by direct computation. g.e.d.

Remark 7.10. In general, we can prove the inequalities ord X(E)<r(E)? and
in the case y(E)#0, ord K(E) < y(E)? for every simple vector bundle E on X.

We summarize the results in this section in the following theorem.

Theorem 7.11. Let 5=[1L], where [L] is the equivalence class in NS (X) of

a line bundle L and | is a positive integer.

(1) There exists a simple vector bundle E=E; in S;.

(2) Every simple vector bundle in S; is isomorphic to EQM for some line
bundle M in Pic®(X).

(3) ®(E)=Im[X Yx20), ¥ x X7].
(4) There are exact sequences of group schemes

0— X;nK(L) — X, 2=, $(E) — 0

and 0— X,nK(L) — K(L) =% K(E) — 0.
(5) ord(X,n K(L))=u? for some positive integer u. For this u, we have

g
r(E)="L" and z )= L)

Proof. (1) and (2) has been proved in §6. If ££'J= [L'] in NS(X)®, Q,

then Im [X 4x:98), X x X]=Im[X Ux9), X x ®]. Hence (3) and (4) follow from
Proposition 7.7 and Corollary 7.8. (5) is an immediate consequence of (4). q.e.d.

Corollary 7.12. Assume that | is minimal among the positive integers I’
such that 6= [Il',]

for some line bundle L'. Then
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(1) 1 divides r(E) and r(E) divides I°. Especially, I<rE)<I’.
(@ If , y(L))=1, then H(E)=1° and y(E)=x(L). Moreover, Z(E)=X, and
K(E)=K(L).

Remark 7.13. Let (X, L) be a principally polarized abelian variety. By
the above theorem, for each pair of integers (n, m) with n>0 and (n, m)=1, there
exists a simple semi-homogeneous vector bundle E,, with r(E,,)=n? det(E)
=L®m*"* and y(E,,)=m?. In addition, if NS(X)=Z, then they are all the simple
semi-homogeneous vector bundles on X modulo tensoring line bundles in Pic’(X).
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