On quasi-positive definite functions and unitary representations of groups in Pontrjagin spaces

By

Kôkichi SAKAI

(Communicated by Prof. H. Yoshizawa, Dec. 10, 1977)

§ O. Introduction

Let G be a topological group. The general structure of unitary representations of *G* in Pontrjagin spaces has been investigated by M.A. Naimark, e.g., [5]. In this paper we shall consider the relation between cyclic unitary representations o f *G* in Pontrjagin spaces and quasi-positive definite functions o n *G .* This is the generalization of Godement's theory in [3] concerning cyclic unitary representations of G in Hilbert spaces and positive definite functions on G . In §1 the basic notions concerning indefinite inner product spaces are introduced, and especially the elementary properties of quasi-positive spaces and Pontrjagin spaces are stated without proofs. In $\S 2$ we shall give the definition of quasi-positive definite functions on G , and show that every quasi-positive definite function ϕ on *G* is given in the form: $\phi(g)=(f, U_g f)$ ($g \in G$), where $g \mapsto U_g$ is a unitary representation of G in a quasi-positive space $\{\mathfrak{D}, (\ ,\)\}$ and $f \in \mathfrak{D}$. Moreover in §3 we shall see that there exists a one to one correspondence between the space of all quasi-positive definite functions on G and the space of all isometrically equivalent classes of weakly continuous cyclic unitary representations of G in Pontrjagin spaces. In §4 we shall generalize the results in R. Godement [3, Chapter II, A] to the case of unitary representations of G in Pontrjagin spaces. Some examples of quasi-positive definite functions are given in §5.

Notations. Throughout this paper, G is always a topological group with the identity *e* whose generic elements are denoted by the small letters g, h, \cdots . $C(G)$ is the space of all continuous functions on *G*, and $P_0(G)$ is the space of all continuous positive definite functions on *G*. For any function *f* on *G* and $h \in G$ we denote by f_h the left translate of f by h , i.e., $f_h(g)=f(h^{-1}g)(g\in G)$. C [resp. R] is the complex [resp. real] number field.

§ 1. Preliminary.

1. 1. Inner product spaces. We shall begin with some definitions and notions concerning inner product spaces. More detailed expositions are found in [1] and [4]. Let V be a vector space over C with an inner product (\cdot) . Here an inner product (,) is a complex valued function on $V \times V$ with the properties that $(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z)$ and $(x, y) = (y, x)$ for any $x, y, z \in V$ and λ , $\mu \in \mathbb{C}$. We do not require that (,) is positive definite. The pair $\{V, (\cdot)\}$ is called an *inner product space.* Let W be a subspace of V . W is said to be *positive* [resp. *negative*] *definite* if $(x, x) > 0$ [resp. $(x, x) < 0$] for all $x \in W$ except $x=0$. When $(x, x)=0$ [resp. $(x, x) \ge 0$] for all $x \in W$, W is said to be *neutral* [resp. *non-negative*]. We now put $W^{\perp} = \{x \in V : (x, y) = 0 \text{ for all } y \in W\}$ and $W^0 = W \cap W^{\perp}$. Then W^{\perp} is called the *orthogonal complement of W* and W^0 is the *isotropic part* of W. W is said to be *non-degenerate* if $W^0 = \{0\}$, and otherwise to be *degenerate*. For any subsets A and B of V we write $A \perp B$ if $(x, y)=0$ for any $x \in A$ and $y \in B$. Let $\{W_i; 1 \leq i \leq n\}$ be a family of subspaces of *V* such that $W_i \perp W_j$ for any $1 \leq i < j \leq n$. If *V* is the direct sum of $\{W_i\}$; $1 \leq i \leq n$, we say that *V* is the *orthogonal direct sum of* $\{W_i; 1 \leq i \leq n\}$ and denote by $V = W_1(\dot{+})W_2(\dot{+})\cdots(\dot{+})W_n$. *V* is said to be *fundamentally decomposable* if V is decomposed as follows:

(1.1)
$$
V = W^{-}(\dot{+})W^{0}(\dot{+})W^{+},
$$

where W^- , W^0 and W^+ are negative definite, neutral and positive definite subspaces of *V* respectively. Any decomposition of the form $(1,1)$ is called a *fundamental decomposition* of V. Let W be a degenerate subspace of V and π be the canonical map of W onto the quotient space W/W^0 . Since $(x+u, v+v)=$ (x, y) for any $x, y \in W$ and $u, v \in W^0$, it follows that W/W^0 becomes an inner product space with the inner product given by

(1.2)
$$
(\pi(x), \pi(y))=(x, y) \ (\pi(x), \pi(y)) \in W/W^0).
$$

Let $\{V_1, \ldots, V_l\}$ and $\{V_2, \ldots, V_l\}$ be inner product spaces and consider the product space $V_1 \times V_2$. For any $[x_i, y_i] \in V_1 \times V_2$ (*i*=1, 2) we put

$$
(1.3) \qquad (\lbrack x_1, y_1 \rbrack, \lbrack x_2, y_2 \rbrack) = (x_1, x_2)_1 + (y_1, y_2)_2.
$$

Then $V_1 \times V_2$ becomes an inner product space with the inner product given by $(1,3)$, which is called the product space of inner product spaces V_1 and V_2 .

1.2. Linear operators on inner product spaces. Let $\{V, \ldots\}$ be an inner product space. *A* linear operator *A* on *V* is said to be *selfadjoint* if (Ax, y) . (x, Ay) for any $x, y \in V$. A linear operator U on V is *unitary* if it is bijective and satisfies $(Ux, Uy)=(x, y)$ for any $x, y \in V$. It is clear that the space of all unitary operators on V is a group under the multiplication as operators. For inner product spaces $\{V_1, \ldots, V_n\}$ and $\{V_2, \ldots, V_k\}$ a linear map *T* of V_1 to V_2 is said to be *isometric* if $(Tx, Ty) = (x, y)$, for any $x, y \in V_1$. We note that an

isometric map of V_1 to V_2 is not necessarily injective if V_1 is degenerate. We say that $\{V_1, (,)_1\}$ and $\{V_2, (,)_2\}$ are *isometrically isomorphic* if there is an isometric isomorphism of V_1 onto V_2 .

1. 3. Quasi-positive spaces. Let $\{V, \ldots\}$ be an inner product space and W be a finite dimensional subspace of V . Then W admits a fundamental decomposition : $W = W^-(\dot{+})W^0(\dot{+})W^+$. The dim (W^-) [resp. dim (W^+)] is called the negative [resp. positive] rank of W, and denoted by $r^-(W)$ [resp. $r^+(W)$]. For any $f_1, f_2, ..., f_n \in V$ let $H(f_1, f_2, ..., f_n)$ be the Hermitian matrix of *n*-th order whose (i, j) -element is (f_i, f_j) :

(1.4)
$$
H(f_1, f_2, \cdots, f_n) = \begin{pmatrix} (f_1, f_1)(f_1, f_2) \cdots (f_1, f_n) \\ (f_2, f_1)(f_2, f_2) \cdots (f_2, f_n) \\ \cdots \\ (f_n, f_1)(f_n, f_2) \cdots (f_n, f_n) \end{pmatrix}
$$

For any Hermitian matrix *H* we denote by $\chi^-(H)[\text{resp. }\chi^+(H)]$ the number of negative [resp. positive] eigenvalues of *H*. If *W* is a linear span of $\{f_1, f_2, \cdots\}$ $\subset V$, then we have

$$
(1.5) \t r-(W) = \mathcal{X}-(H(f1, f2, ..., fn)) \text{ and } r+(W) = \mathcal{X}+(H(f1, f2, ..., fn)).
$$

Using the relation (1.5) , we get easily

Proposition 1.1. Let $\{V, \langle , \rangle\}$ be an inner product space and n be a non*negative integer.* Assume that V is spanned by a subset $\mathfrak{F}\subset V$. Then the *following three conditions are mutually equivalent:*

(1) V contains at least one n-dimensional negative definite subspace, and $dim(W) \leq n$ *for any negative definite subspace W of V.*

(2) V *contains at least one finite dim ensional subspace with the negative rank n,* and $r^-(W) \leq n$ *for any finite dimensional subspace W of V.*

 (3) There exists a finite subset $\{f_1^0, f_2^0, \cdots, f_m^0\}$ of $\mathfrak F$ for which $\mathcal X^-(H(f_1^0, f_2^0))$ $..., f_m^0)$ $=n$, and $\chi^-(H(f_1, f_2, ..., f_k)) \leq n$ for any finite subset $\{f_1, f_2, ..., f_k\} \subset \mathcal{X}$

Definition 1.2. An inner product space $\{V, \langle , \rangle\}$ is called a quasi-positive space with negative rank *n*, denoted by QP_n -space, if it satisfies the equivalent conditions in Proposition 1.1. The negative rank *n* is written by $r^{-}(V)$.

1. 4. Pontrjagin spaces. Let $\{\mathfrak{D}, \langle , \rangle\}$ be a non-degenerate QP_n -space $(n>0)$. According to Proposition 1.1, \oint contains an *n*-dimensional negative definite subspace $\mathfrak{R}.$ Then $\mathfrak{P}=\mathfrak{N}^{\perp}$ is positive definite, and \mathfrak{H} is the orthogonal direct sum of \Re and \Re . So we have a fundamental decomposition:

(1.6)t o = (- - . h) q 3

and any $x \in \mathfrak{H}$ is given in the form:

$$
(1.7) \t\t\t x=x^+ + x^+ \t (x^- \in \mathfrak{N}, x^+ \in \mathfrak{P}).
$$

For the fundamental decomposition (1.6) there corresponds a positive definite inner product \langle , \rangle on $\hat{\varphi}$ defined as follows:

(1.8)
$$
\langle x, y \rangle = -(x^-, y^-) + (x^+, y^+) \quad (x, y \in \mathfrak{H}).
$$

We define the norm by $||x|| = \sqrt{\langle x, x \rangle}$ $(x \in \mathfrak{H})$. Let $\{e_1, e_2, \dots, e_n\}$ be a basis of R such that $\langle e_i, e_j \rangle = -\langle e_i, e_j \rangle = \delta_{ij}$ for $1 \leq i \leq j \leq n$. Then we have for any $x, y \in \mathfrak{H}$

$$
(1.9) \qquad \langle x, y \rangle = (x, y) + 2 \sum_{k=1}^{n} (x, e_k)(e_k, y) = (x, y) + 2 \sum_{k=1}^{n} \langle x, e_k \rangle \langle e_k, y \rangle.
$$

Moreover we have (cf. $\lceil 1, 1 \rceil$. Lemma $11.4 \rceil$).

$$
(1.10) \t\t |(x, y)| \leq ||x|| ||y|| \t (x, y \in \mathfrak{H}).
$$

The relations $(1, 9)$ and $(1, 10)$ are essential to our discussions in §§3 and 4. It is noted in [4, Theorem 1.3] that, if δ becomes a Hilbert space under the inner product (1.8), then any norm topologies corresponding to fundamental decompositions of δ are mutually equivalent. So the follwing definition is reasonable.

Definition 1.3. A non-degenerate QP_n -space $\{\mathfrak{D}, \langle , \rangle\}$ is called a Pontrjagin space with negative rank *n*, denoted by \prod_{n} -space, if \tilde{p} becomes a Hilbert space under the inner product of the form (1.8) corresponding to a fundamental decomposition of \mathfrak{H} .

If $\mathfrak P$ in (1.6) is not complete in the norm topology and $\tilde{\mathfrak P}$ is the completion of \mathfrak{B} , then we get a Π_n -space $\widetilde{\mathfrak{D}}=\mathfrak{N}(\dot{+})\widetilde{\mathfrak{P}}$, which is called the completion of \mathfrak{D} . For a non-degenerate QP_n -space its any completions are mutually isometrically isomorphic. Any topological concepts in a Π_n -space $\hat{\varphi}$ are always defined by the Hilbert norm topology induced from the inner product of the form (1.8) corresponding to a fundamental decomposition of \mathfrak{H} .

1.5. Properties of QP_n - and Π_n -spaces. In order to refer in later sections, we here collect some properties concerning QP_{n} - and \prod_{n} -spaces without proofs.

Lemma 1.4. Let \mathfrak{H}_1 and \mathfrak{H}_2 be inner product spaces and suppose that there *exists* an *isometric* linear map of \mathfrak{D}_1 onto \mathfrak{D}_2 . Then \mathfrak{D}_1 is a QP_n -space if and *only if so is* \mathfrak{H}_2 .

Lemma 1.5. $(cf, [1, 1, 7]$ *feorem* 11.7]). *Any* QP_n -space *is fundamentally decomposable.*

Lemma 1.6. Any subspace W of a QP_n -space is a QP_m -space for some m, $0 \le m \le n$, and the quotient space W/W^0 is also a QP_m -space.

Lemma 1.7. (cf. [1, IX. Theorem 1.4]). Let \mathfrak{D} be a $\prod_{n=1}^{n}$ -space and \mathfrak{D}_0 a *dense subspace of 0 . Then 0 , contains an n-dimensional negative definite subspace.*

More generally the following is proved by the same method as in Theorem 1.4 in $[1, K]$.

Lemma 1.8. Let \mathfrak{H} be a normed space with norm $\|\cdot\|$, and \mathfrak{H}_0 be a dense $subspace of$ \mathfrak{D} , *Assume that* \mathfrak{D} *admits a continuous inner product* $($, $)$ *, that is,* it satisfies $|(x, y)| \le K ||x|| ||y||$ for any $x, y \in \mathfrak{D}$, where K is a positive constant. *I f {0 , (,)} contains an n-dimensional negative definite subspace, then 0, contains also an n-dimensional negativ e definite subspace. Especially {0 , (,)1 is a QPⁿ space if and only if so is* $\{\mathfrak{D}_0, \langle , \rangle\}.$

Lemma 1.9. Let \mathfrak{H} be a Π_n -space, \mathfrak{R} be a closed subspace of \mathfrak{H} , and set $m=r^-(\mathbb{R})\leq n$. Then we have:

 (1) *If* \Re is non-degenerate, then \Re [resp. \Re ¹] is a H _m [resp. H _{n-m}]-space *and* \mathfrak{D} *is the orthogonal direct sum of* \mathbb{R} *and* \mathbb{R}^{\perp} *.*

 (2) *If* \tilde{D} *is the sum of* \tilde{R} *and* \tilde{R}^{\perp} *in the algebraic sense, then* \tilde{R} *is nondegenerate.*

(3) If \Re *is degenerate, then the quotient space* \Re/\Re° *becomes a* H_m -space and $m < n$.

Lemma 1.10. The product space of a QP_i [resp. Π_i]-space and a QP_m *[resp.* H_m]-space is a QP_n [resp. H_n]-space, where $n=1+m$.

Lemma 1.11. Let \mathfrak{D}_1 and \mathfrak{D}_2 be H_n -spaces, and U be an isometric isomorphism of a dense subspace of \mathfrak{H}_1 onto a dense subspace of \mathfrak{H}_2 , then U is con*tinuous and can be ex tended continuously to an isometric isomorphism o f 0,* $onto S_2.$

§ **2 . Unitary representations in QP ⁿ -spaces and quasi-positive definite functions.**

2. 1. Unitary representations o f groups in inner product spaces. Let $\{\mathfrak{H}, (\ ,\)\}$ be an inner product space. By a unitary representation $U=\{U_{g},\,\mathfrak{H}\}$ of *G* in δ we mean a homomorphism $g \mapsto U_g$ of *G* to the group of all unitary operators on \mathfrak{D} . $\{U_g, \mathfrak{D}\}\)$ is said to be *(w)-continuous* if the function $(x, U_g y)$ on *G* is in $C(G)$ for any *x*, $y \in \mathfrak{D}$. Let \mathfrak{M} be a *U*-invariant subspace of \mathfrak{D} , i.e., $U_g(\mathfrak{M}) \subseteq \mathfrak{M}$ for all $g \in G$. Then, restricting each U_g ($g \in G$) to \mathfrak{M} , we get a unitary representation $\{U_g, \mathfrak{M}\}\$, which is called the *partial representation* of $\{U_g, \, \hat{\mathbf{p}}\}$. Let $U_i = \{U_g^{(i)}, \, \hat{\mathbf{p}}_i\}$ be a unitary representation of *G* in an inner product space \mathfrak{D}_i for *i*=1, 2. We define a unitary operator U_g ($g \in G$) on the product space $\mathfrak{H}_1 \times \mathfrak{H}_2$ as follows:

$$
(2.1) \tU_g[x, y]=[U_g^{(1)}x, U_g^{(2)}y] \t([\tilde{x}, \tilde{y}]\in \mathfrak{H}_1\times \mathfrak{H}_2).
$$

Then we get a unitary representation $\{U_g, \, \mathfrak{H}_1 \times \mathfrak{H}_2\}$ of *G*, which is called the *product representation* of U_1 and U_2 and denoted by $U_1 \times U_2$. If there exists an isometric linear map τ of \mathfrak{D}_1 onto \mathfrak{D}_2 such that $\tau U_g^{(1)} = U_g^{(2)} \tau$ for all $g \in G$, then U_1 is said to be *isometric* to U_2 , and denoted by $U_1 \sim U_2$. Moreover if τ is isomorphic, then U_1 and U_2 are said to be *isometrically equivalent*, and denoted by $U_1 \cong U_2$ or $U_1 \cong U_2$.

2.2. Quasi-positive definite functions. Let ϕ be a function on *G* such that

(2.2)
$$
\phi(g^{-1}) = \overline{\phi(g)} \quad \text{for all} \quad g \in G.
$$

For any $\{g_1, g_2, ..., g_m\} \subset G$ define an Hermitian matrix $\Phi(g_1, g_2, ..., g_m)$ of m -th order as follows:

(2.3)
$$
\Phi(g_1, g_2, ..., g_m) = \begin{pmatrix} \phi(g_1^{-1}g_1) \phi(g_1^{-1}g_2) \cdots \phi(g_1^{-1}g_m) \\ \phi(g_2^{-1}g_1) \phi(g_2^{-1}g_2) \cdots \phi(g_2^{-1}g_m) \\ \vdots \\ \phi(g_m^{-1}g_1) \phi(g_m^{-1}g_2) \cdots \phi(g_m^{-1}g_m) \end{pmatrix}
$$

Definition 2.1. A function ϕ on *G* with (2.2) is called a quasi-positive definite function with negative rank n if it has the following two properties:

$$
(QP)_1 \quad \chi^-(\Phi(g_1, g_2, \cdots, g_m)) = n \quad \text{for some} \quad \{g_1, g_2, \cdots, g_m\} \subset G,
$$

$$
(QP)_2 \quad \chi^-(\Phi(g_1, g_2, \cdots, g_k)) \leq n \quad \text{for any} \quad \{g_1, g_2, \cdots, g_k\} \subset G.
$$

The negative rank *n* of ϕ is denoted by $r^-(\phi)$.

We denote by $P_n(G)$ the space of all continuous quasi-positive definite functions on *G* with negative rank *n* and set $QP(G) = \bigcup_{n=1}^{\infty} P_n(G)$. Let $L(G)$ be the linear space of all functions f on G such that $\{g \in G : f(g) \neq 0\}$ is finite, and let $\phi \in C(G)$ satisfy (2.2). Then on $L(G)$ we can define an inner product $(,)_{\phi}$ as follows:

(2.4)
$$
(f_1, f_2)_{\phi} = \sum_{g, k \in G} f_1(g) \overline{f_2(h)} \phi(g^{-1}h) \quad (f_1, f_2 \in L(G)).
$$

For any $g \in G$ define $\varepsilon_{(g)} \in L(G)$ by

(2.5)
$$
\varepsilon_{\left(g\right)}(h) = \begin{cases} 1 & (h=g) \\ 0 & (h \neq g). \end{cases}
$$

 $L(G)$ is spanned by the family $\{\varepsilon_{(g)}: g \in G\}$. In the inner product space $\{L(G),$ $($, $)_{\phi}$ }, using the notation (1.4), we have $\Phi(g_1, g_2, ..., g_m) = H(\varepsilon_{(g_1)}, \varepsilon_{(g_2)}, ..., \varepsilon_{(g_m)})$ for any $\{g_1, g_2, \dots, g_m\} \subset G$. So comparing Definition 2.1 with Proposition 1.1(3), we get immediately

Theorem 2.2. Let $\phi \in C(G)$ satisfy (2.2). Then ϕ belongs to $P_n(G)$ if and *only if* ${L(G), (,)_\phi}$ *becomes a* QP_n -space.

2. 3. **Relation between quasi-positive definite functions and unitary representations in quasi-positive spaces.**

Theorem 2.3. For any $\phi \in P_n(G)$ there exists a (w)-continuous unitary *representation* $\{U_g, \mathfrak{H}\}$ *of G in a* QP_n -*space* \mathfrak{H} *such that* ϕ *is given in the form:*

(2.6)
$$
\phi(g) = (f_0, U_g f_0) \quad (g \in G),
$$

where $f_0 \in \mathfrak{H}$.

Proof. Let $L(G)_{\phi} = \{L(G), (\cdot, \cdot)_{\phi}\}.$ Then $L(G)_{\phi}$ is a QP_n -space by Theorem 2.2. For any $g \in G$ define a linear operator U_g on $L(G)$ by $U_g f = f_g$ ($f \in \mathfrak{H}$). It is easily seen that each U_g ($g \in G$) is a unitary operator on $L(G)_{\varphi}$, and that ${U_g, L(G)_{\phi}}$ is a unitary representation of *G* in the QP_n -space $L(G)_{\phi}$. Further for any $f_1, f_2 \in L(G)$ and $g \in G$

(2.7)
$$
(f_1, U_g f_2)_{\phi} = \sum_{h, k \in G} f_1(h) \overline{f_2(g^{-1}k)} \phi(h^{-1}k)
$$

$$
= \sum_{h, k \in G} f_1(h) \overline{f_2(k)} \phi(h^{-1} g k).
$$

In particular for $f_0 = \varepsilon_{(e)} \in L(G)$ (cf. (2.5))

(2.8)
$$
(f_0, U_g f_0) = \phi(g) \quad (g \in G).
$$

Since ϕ is continuous, it follows from (2.7) that $\{U_g, L(G)_{\phi}\}\$ is (w)-continuous, and from (2.8) that $\{U_g, L(G)_{\phi}\}\$ is our desired representation of *G*.

q. e. d.

Conversely we have

Theorem 2.4. Let $\{U_g, \, \mathfrak{H}\}$ be a (w)-continuous unitary representation of G in a QP_n-space \mathfrak{D} . For any $f \in \mathfrak{D}$ let $\mathfrak{D}(f)$ be the linear span of $\{U_g f : g \in G\}$ in \mathfrak{H} and define $\phi(g) \in C(G)$ by $\phi(g) = (f, U_g f)$ $(g \in G)$. Then ϕ belongs to $P_m(G)$, $where m = r^-(\mathfrak{H}(f)) \leq n.$

Proof. It is clear that ϕ satisfies (2.2). Let τ be a linear map of $L(G)$ onto $\mathfrak{H}(f)$ defined as follows:

$$
\tau: L(G) \times \longrightarrow \tau(x) = \sum_{g \in G} x(g) U_g f \in \mathfrak{H}(f).
$$

Then for any $x, y \in L(G)$

$$
(\tau(x), \tau(y)) = \sum_{g,h \in G} x(g) \overline{y(h)} (U_g f, U_h f)
$$

=
$$
\sum_{g,h \in G} x(g) \overline{y(h)} \phi(g^{-1} h) = (x, y)_{\phi}.
$$

This shows that τ is an isometric map of $\{L(G), \langle , \rangle_a\}$ onto the QP_m -space $\mathfrak{D}(f)$, and it follows from Lemma 1.4 that $\{L(G), (\cdot, \cdot)_d\}$ becomes a QP_m -space. So we get from Theorem 2.2 that $\phi \in P_m(G)$. $q.e.d.$

Theorem 2.5. (1) If $\phi \in P_n(G)$ and $\lambda > 0$, then $\lambda \phi \in P_n(G)$.

(2) The constant function $\phi(g)=c$ $(g\in G)$ is in $P_0(G)$ if $c\geq 0$, and is in $P_i(G)$ *if* $c < 0$.

(3) If $\phi_1 \in P_{n_1}(G)$ and $\phi_2 \in P_{n_2}(G)$, then $\phi = \phi_1 + \phi_2 \in P_m(G)$, where $m \leq n_1$ $+n_{2}$.

Proof. (1) and (2) are obvious. Let us see (3). By virtue of Theorem 2.3, for each $i=1$, 2 there exists a (w)-continuous unitary representation $U_i = \{U_i^{\alpha}, \xi_i\}$ of *G* in a QP_n -space Φ_i such that ϕ_i is given in the form $\phi_i(g)=(f_i, U_g^q)f_i$ $(g \in G)$ for some $f_i \in \mathfrak{D}_i$. Consider now the product representation $\{U_g, \mathfrak{D}_i \times \mathfrak{D}_i\}$ of U_1 and U_2 . Then we have

(2.9) $(\lceil f_1, f_2 \rceil, U_g \lceil f_1, f_2 \rceil) = (f_1, U_g^{(1)} f_1) + (f_2, U_g^{(2)} f_2) = \phi_1(g) + \phi_2(g) \quad (g \in G).$

Since $\mathfrak{H}_1 \times \mathfrak{H}_2$ is a $QP_{n_1+n_2}$ -space by Lemma 1.10, it follows from (2.9) and Theorem 2.4 that $\phi \in P_m(G)$ for some $m \leq n_1+n_2$.

§ 3. Cyclic unitary representations in \prod_{n} -spaces and quasi-positive definite functions.

3.1. Characteristic functions of cyclic unitary representations in $\pi_{\mathbf{n}}$ spaces. Let $U = \{U_g, \, \delta\}$ be a unitary representation of G in a \prod_{n} -space $\{\mathfrak{D}, \langle , \rangle\}$. $f \in \mathfrak{D}$ is said to be *cyclic* with respect to U if the linear span of ${U_g f; g \in G}$ is dense in $\tilde{\phi}$. If *U* admits a cyclic vector $f \in \tilde{\phi}$, then *U* is called a *cyclic unitary representation* of *G* and is denoted by the triplet $\{U_g, \mathfrak{H}, f\}$. The *characteristic function* ϕ of $\{U_{\varrho}, \mathfrak{H}, f\}$ is defined as follows:

$$
\phi(g)=(f,\,U_g\,f)\quad(g\in G).
$$

We say that two cyclic unitary representations $\boldsymbol{U}_i {=} \{U^{(i)}_{\boldsymbol{s}},\boldsymbol{\mathfrak{H}}_i,\, f_i\}$ for $i {=} 1, \,2$ are *isometrically equivalent* if there exists an isometric isomorphism τ of \mathfrak{H}_1 onto \mathfrak{H}_2 such that

(3.2)
$$
\tau f_1 = f_2 \quad \text{and} \quad \tau U_g^{(1)} = U_g^{(2)} \tau \quad \text{for all} \quad g \in G.
$$

In this case we denote by $U_1 \cong U_2$ or $U_1 \cong U_2$.

Theorem 3.1. For each $i=1, 2$ let $U_i = \{U_g^{\scriptscriptstyle{(i)}}, \mathfrak{H}_i, f_i\}$ be a cyclic unitary re*presentation of G in a* H_n -space \mathfrak{D}_i *with the characteristic function* ϕ_i . Then $U_1 \cong U_2$ *if and only if* $\phi_1 = \phi_2$.

Proof. Suppose that $U_1 \subseteq U_2$. Then by (3.2) we have for any $g \in G$

$$
\phi_2(g) = (f_2, U_g^{\text{(2)}} f_2) = (\tau f_1, \tau U_g^{\text{(1)}} f_1) = (f_1, U_g^{\text{(1)}} f_1) = \phi_1(g).
$$

Conversely suppose that $\phi_1 = \phi_2$. Let $\mathfrak{F}(f_i)$ be the linear span of $\{U_g^{(i)}f_i; g \in G\}$ in \mathfrak{G}_i for $i=1, 2$. For any $x = \sum_{i=1}^n \lambda_i U_{g_i}^{(1)} f_1 \in \mathfrak{H}(f_1)$, where $\lambda_i \in \mathbb{C}$ and $g_i \in \mathbb{G}$ $(1 \le j \le m)$, we put

Unitary representations inPont rjagin spaces 79

$$
\tau(x)=\sum_{j=1}^m\lambda_jU_{\mathcal{S}_j}^{(2)}f_2\in\mathfrak{H}(f_2).
$$

From the hypothesis we have for any $x, y \in \mathfrak{F}(f_1)$ and $g \in G$

(3. 3) $(x, U_{g}^{(1)} f_{1}) = (\tau(x), U_{g}^{(2)} f_{2}),$

(3.4)
$$
(\tau(x), \tau(y)) = (x, y),
$$

(3.5)
$$
\tau(f_1)=f_2
$$
 and $\tau(U_g^{(1)} x)=U_g^{(2)} \tau(x)$.

Since $\mathfrak{H}(f_1)^{\perp} = \mathfrak{H}(f_2)^{\perp} = \{0\}$, it follows from (3.3) and (3.4) that τ is regarded as an isometric isomorphism of $\mathfrak{H}(f_1)$ onto $\mathfrak{H}(f_2)$. By Lemma 1.11 τ can be extended continuously to an isometric isomorphism of \mathfrak{H}_1 onto \mathfrak{H}_2 , and hence from (3.5) it follows that U_1 : $\cong U_2$. q. e. d.

Let $U = \{U_g, \, \Phi, f\}$ be a cyclic unitary representation of G in a $\prod_{n=1}^{\infty}$ -space δ (n >0) with the characteristic function ϕ , and δ be the linear span of $\{U_{\kappa} f; g \in G\}$ in \mathfrak{D} . Then by Lemma 1.7 there exists an *n*-dimensional negative definite subspace \Re contained in \mathfrak{D}_0 . As noted in §1.4, putting $\mathfrak{P}=\mathfrak{D}^{\perp}$, we have a fundamental decomposition of \mathfrak{D} :

(3.6)< = 9 Z (²F)

By \langle , \rangle we denote the positive definite inner product on \mathfrak{D} corresponding to the fundamental decomposition (3.6) (cf. $((1, 8))$ and by $\|\cdot\|$ the norm induced from \langle , \rangle . Let $\{e_1, e_2, \dots, e_n\}$ be a basis of \Re such that $\langle e_i, e_j \rangle = -\langle e_i, e_j \rangle = \delta_{ij}$ for $j \leq n$. Since U_g ($g \in G$) is unitary, from (1.9) we have for any $x, y \in \mathfrak{H}$ and $g \in G$

$$
(3.7) \t\t\t\t $\langle U_g x, U_g x \rangle = (x, x) + 2 \sum_{k=1}^{n} |(x, U_{g-1}e_k)|^2$
$$

$$
(3.7)' = (x, x) + 2 \sum_{k=1}^{n} |\langle U_g x, e_k \rangle|^2,
$$

(3.8)
$$
\langle x, U_g y \rangle = (x, U_g y) + 2 \sum_{k=1}^{n} (x, e_k) (U_{g^{-1}} e_k, y)
$$

$$
(3.8)' = (x, U_g y) + 2 \sum_{k=1}^n \langle x, e_k \rangle \langle e_k, U_g y \rangle.
$$

Let $x = \sum_{i=1}^n \lambda_i U_{g_i} f$ and $y = \sum_{j=1}^n \mu_j U_{h_j} f$ be any elements in \mathfrak{D}_0 , where λ_i , $\mu_j \in \mathbb{C}$ and g_i , $h_j \in G$ for $1 \leq i \leq l$ and $1 \leq j \leq m$. Then the function $(x, U_g y)$ on G is given in terms of two sided translations of ϕ as follows:

(3.9)
$$
(x, U_g y) = \sum_{i=1}^{l} \sum_{j=1}^{m} \lambda_i \bar{\mu}_j \phi(g_i^{-1}gh_j) \quad (g \in G).
$$

Using these notations and relations (3.7) - (3.9) , we prove the following two theorems.

Theorem 3.2. Let $U = \{U_g, \mathfrak{H}, f\}$ be a cyclic unitary representation of G in *a* $\prod_{n=1}^{\infty}$ *a M a space* Ω *with the characteristic function* ϕ *. Then U is uniformly bounded, i.e.,* $K = \sup \{ \|U_{g}\| ; g \in G \} < \infty$, *if and only if* ϕ *is bounded.*

Proof. If $K < \infty$, then it follows from (1.10) that $|\phi(g)| \leq K ||f||^2$ for any $g \in G$. Hence ϕ is bounded. Conversely suppose that ϕ is bounded. As e_i , e_k \in 92, the function $(e_j, U_g e_k)$ on *G* is bounded by (3.9) and so is $||U_g e_k||^2$ by (3.7) for each $1 \leq k \leq n$. Hence we can take a constant $M > 0$ such that $\sum_{k=1}^{\infty} \|U_g e_k\|^2 < M$ for all $g \in G$. From (1.10) and (3.7) we have $\|U_g x\|^2 < (1+2M)\|x\|^2$ for any $x \in \mathfrak{H}$ and $g \in G$. Therefore *U* is uniformly bounded. $q.e.d.$

Theorem 3.3. Let $U = \{U_{\kappa}, \mathfrak{H}, f\}$ be a cyclic unitary representation of G in α \overline{H} α -space δ *with the characteristic function* ϕ . Then the following conditions *are mutually equivalent :*

(1) *U* is weakly continuous, i.e., the function $\langle x, U_{g} y \rangle$ on *G* is in $C(G)$ *for any* $x, y \in \mathfrak{H}$.

- *(2) U is (w)-continuous.*
- (3) ϕ *is continuous.*

Especially if G is a locally compact group, then the above conditions are equivalent to

(4) U is strongly continuous, i.e., the map $G \ni g \mapsto U_g x \in \mathfrak{H}$ is continuous *for any* $x \in \mathfrak{H}$.

Proof. From (3.8) and (3.8)' it follows immediately that (1) and (2) are equivalent, and it is obvious that (2) implies (3). Further if *G* is locally compact, then it is shown in $[2,$ Theorem 2.8] that (1) and (4) are equivalent. Thus it remains to prove that (3) implies (2). Suppose that ϕ is continuous. We consider the following subsets of δ :

 $\mathfrak{H}_1 = \{x \in \mathfrak{H} : \text{the function } (x, U_g, y) \text{ on } G \text{ is in } C(G) \text{ for any } y \in \mathfrak{H}_0\},\$

 $\mathfrak{H}_2 = \{x \in \mathfrak{H} : \text{the function } (x, U_g z) \text{ on } G \text{ is in } C(G) \text{ for any } z \in \mathfrak{H} \}.$

It is obvious that $\mathfrak{H}_2 \subseteq \mathfrak{H}_1$ and $\mathfrak{H}_0 \subseteq \mathfrak{H}_1$ by (3.9). If $\mathfrak{H}_1 \subseteq \mathfrak{H}_2$, then we can conclude easily that $\mathfrak{D}=\mathfrak{D}_2$. This means that (3) implies (2). So it suffices to prove that $\mathfrak{H}_1 \subseteq \mathfrak{H}_2$. Let $x \in \mathfrak{H}_1$, $z \in \mathfrak{H}$, $g_0 \in G$ and $\varepsilon > 0$. In view of (3.7) the function $||U_g x||$ on *G* is continuous. Putting $M = ||U_{g_0^{-1}}x|| + 1$, we take a neighborhood W_1 of g_0 such that $||U_{g^{-1}}x|| < M$ for any $g \in W_1$. Since \mathfrak{H}_0 is dense in \mathfrak{H}_1 , we can take $y \in \mathfrak{D}_0$ with $||z-y|| < \varepsilon/3M$. Then the function $(x, U_g y)$ on G is continuous, and there exists a neighborhood W_2 of g_0 such that for all $g \in W_2$

$$
|(x, U_{g_0}y)-(x, U_g y)|<\frac{\varepsilon}{3}.
$$

So for any $g \in W_1 \cap W_2$ we have

$$
|(x, U_{g_0}z) - (x, U_g z)| \le |(U_{g_0-1}x, z-y)| + |(x, U_{g_0}y) - (x, U_g y)|
$$

$$
+ |(U_{g-1}x, y-z)|
$$

$$
< 2M||z-y|| + |(x, U_{g_0}y) - (x, U_g y)| < \varepsilon.
$$

Hence the function $(x, U_g z)$ on *G* is in $C(G)$. This shows that $x \in \mathfrak{H}_2$ and $\mathfrak{H}_1 \subseteq \mathfrak{H}_2$. Thus the proof completes. $q.e.d.$

3.2. The correspondence between quasi-positive definite functions and weakly continuous cyclic unitary representations in π -spaces.

Theorem 3.4. Let $U = \{U_g, \mathfrak{H}, f\}$ be a weakly continuous cyclic unitary *representation of G in a* H_n -space \mathfrak{D} . Then the characteristic function ϕ of **U** *is* in $P_n(G)$.

Proof. Let \mathfrak{D}_0 be the linear span of $\{U_g f : g \in G\}$ in \mathfrak{D} . Then \mathfrak{D}_0 is a QP_n -space by Lemma 1.7. So our assertion is an immediate consequence of Theorem 2.4 , $q.e.d.$

Theorem 3.5. For any $\phi \in P_n(G)$ there exists a weakly continuous cyclic *unitary representation of G in* $\prod_{n=1}^{n}$ *anglee whose characteristic function is* ϕ *.*

Proof. Let \mathfrak{H}_0 be the subspace of $C(G)$ spanned by the family $\{\phi_g : g \in G\}$ and let $L(G)_{\phi} = \{L(G), (\cdot, \cdot)_{\phi}\}\$ (cf. § 2.2). Now define a linear map τ of $L(G)$ onto \mathfrak{H}_0 by

$$
\tau: L(G) \ni \alpha \longmapsto \tau(\alpha) = \sum_{h \in G} \alpha(h) \phi_h \in \mathfrak{H}_0.
$$

For any $x = \tau(\alpha)$, $y = \tau(\beta) \in \mathfrak{D}_0$, where α , $\beta \in L(G)$, we put

(3.10)
$$
(x, y) = (\alpha, \beta),
$$

Then using (2.2) we have

$$
(x, y) = \sum_{g,h \in G} \alpha(g) \overline{\beta(h)} \phi(g^{-1}h) = \sum_{h \in G} \overline{\beta(h)} x(h) = \sum_{g \in G} \alpha(g) \overline{y(g)}.
$$

This means that (x, y) depends only on x and y. So the function (x, y) on $\mathfrak{D}_0 \times \mathfrak{D}_0$ given by (3.10) is regarded as an inner product on \mathfrak{D}_0 , and it follows from (3.10) that τ is an isometric linear map of $L(G)_{\phi}$ onto $\{\mathfrak{D}_{0}, \langle , \rangle\}$. Since $\phi \in P_n(G)$, $L(G)_{\phi}$ is a QP_n -space by Theorem 2.2, and so is $\{\mathfrak{H}_0, \langle , \rangle\}$ by Lemma 1.4. The following relations are seen easily

$$
(3.11) \t (x, \phi_g)=x(g) \t for any $x \in \mathfrak{H}_0$ and $g \in G$,
$$

(3.12)
$$
(\phi, \phi_s) = \phi(g) \text{ for any } g \in G.
$$

If $x \in \mathfrak{H}_0 \cap \mathfrak{H}_0^{\perp}$, then $x(g)=0$ for all $g \in G$ by (3.11). This shows that $\{\mathfrak{H}_0, , , \$ is non-degenerate. For any $g \in G$ define a linear operator U_g on \mathfrak{D}_0 by $U_g x = x_g$

 $(x \in \mathfrak{D}_0)$. Then it is obvious that each U_g $(g \in G)$ is unitary, and that $\{U_g, \mathfrak{D}_0\}$ is a unitary representation of *G* in the non-degenerate QP_n -space $\{\mathfrak{D}_0, , ,\}$. Let \mathfrak{D}_{ϕ} be the \prod_{n} -space obtained from \mathfrak{D}_{0} by the completion (cf. §1.4). Then each U_g ($g \in G$) is extended to a unitary operator on \mathfrak{D}_{ϕ} , which is also denoted by the same letter U_g . Thus we get a unitary representation $\{U_g, \, \tilde{\psi}_\phi\}$ of *G* in the \prod_{n} -space δ_a . Since δ_a is dense in δ_a , ϕ is cyclic with respect to $\{U_g, \, \boldsymbol{\tilde{\psi}}_d\}$. So from Theorem 3.3 and (3.12) it follows that $\{U_g, \, \boldsymbol{\tilde{\psi}}_d, \, \phi\}$ is a weakly continuous cyclic unitary representation of G with the characteristic function ϕ . q, e, d .

Let $\phi \in P_n(G)$. By $U(\phi)$ we denote always the set of all weakly continuous cyclic unitary representations of *G* in \prod_{n} -spaces with the characteristic function ϕ . According to Theorem 3.1, $U(\phi)$ is an isometrically equivalent class in the space $U(G)$ of all weakly continuous cyclic unitary representations of G in Pontrjagin spaces. Theorems 3.4 and 3.5 show that the correspondence $\phi \mapsto U(\phi)$ is a bijective map of $QP(G)$ onto the space of all isometrically equivalent classes in $U(G)$. From now on we shall consider only weakly continuous representations, so that the adjective *"weakly continuous"* is omitted.

3.3. Subrepresentations and quotient representations. Let $U = \{U_g, \, \mathfrak{H}\}$ [resp. $U=[U_g, \mathfrak{H}, f_0]$] be a [cyclic] unitary representation of G in \prod_{n} -space $\mathfrak{H},$ *R* be a *U*-invariant closed subspace of $\tilde{\mathcal{P}}$ and set $m = r^-(R)$. Then R^{\perp} and R° are also U-invariant. First suppose that \Re is non-degenerate. As noted in Lemma 1.9 (1), \Re and \Re^{\perp} become $\prod_{m=1}^{n}$ and $\prod_{n=m}^{n}$ -spaces respectively, and \Im is the orthogonal direct sum of \Re and \Re^{\perp} . Let f_1 and f_2 be the orthogonal projections of f_0 in \Re and \Re ¹ respectively. Then we say that the partial representations $U_1 = \{U_g, \, \Re\}$ [resp. $U_1 = \{U_g, \, \Re, f_1\}$] and $U_2 = \{U_g, \, \Re^{\perp}\}$ [resp. $U_2 =$ $\{U_g, \, \Re^+, f_z\}$ are *subrepresentations* of $U = \{U_g, \, \Im\}$ [resp. $U = \{U_g, \, \Im, f_o\}$], and that *U* is the orthogonal direct sum of U_1 and U_2 . In this case we denote by $\boldsymbol{U}{=}\boldsymbol{U}_1(\boldsymbol{\dot{+}})\boldsymbol{U}_2$. Any [cyclic] unitary representation \boldsymbol{U}' of G is said to be *contained* in U if U has a subrepresentation which is isometrically equivalent to *U'.*

Next suppose that $\hat{\mathcal{R}}$ is degenerate. Then the quotient space $\hat{\mathcal{R}} = \hat{\mathcal{R}} / \hat{\mathcal{R}}^0$ becomes a \prod_{m} -space by Lemma 1.9 (3). For any $g \in G$ define a unitary operator \tilde{U}_g on $\widetilde{\mathbb{R}}$ by

(3.13) *Og(z(x))=-7r(Ug x) (x*

where π is the canonical map of \Re onto $\tilde{\Re}$. Then we get a weakly continuous unitary representation $\tilde{U} = \{ \tilde{U}_{g}, \tilde{\mathbb{R}} \}$ of *G* in the \prod_{m} -space $\tilde{\mathbb{R}}$, which is called *the quotient representation of U determined by the U-invariant subspace R .* The partial representation $\{U_g, \, \Re\}$ is isometric to $\{U_g, \, \Re\}$: $\{U_g, \, \Re\} \simeq \{U_g, \, \Re\}$

Under these terminology, we obtain easily

Theorem 3.6. Let $U = \{U_g, \delta\}$ be a unitary representation of G in a Π_n . space \mathfrak{H} . For any $f \in \mathfrak{H}$ let \mathfrak{H}_f be the closed linear span of $\{U_g f : g \in G\}$ in \mathfrak{H} and define $\phi \in QP(G)$ by $\phi(g)=(f, U_g f)$ ($g \in G$). If \mathfrak{H}_f is non-degenerate, then *the subrepresentation* $\{U_g, \mathfrak{H}_f, f\}$ *of U belongs to* $U(\phi)$ *. While if* \mathfrak{H}_f *is degenerate,* then the quotient representation $\{\tilde{U}_\kappa, \tilde{\mathfrak{F}}_f, \pi(f)\}\;$ of U determined by \mathfrak{H}_f belongs to $U(\phi)$, where π is the canonical map of \mathfrak{H}_f onto $\mathfrak{F}_f = \mathfrak{H}_f/\mathfrak{H}_f^0$.

§ 4. Product representations and normal decomposition of quasi-positive definite functions

4.1. Product representations. Let $\phi \in P_n(G)$ and $\{U_g, \xi, f\} \in U(\phi)$. By $H(\phi)$ we denote the linear subspace of $C(G)$ consisting of all functions $x(g)$ given in the form: $x(g)=(x, U_g f)$ $(g \in G)$ for some $x \in \mathfrak{H}$. It is clear that $H(\phi)$ does not depend on the choice of $\{U_g, \mathfrak{H}, f\} \in U(\phi)$. Further we can see easily

Lemma 4.1. Let $\phi \in P_n(G)$, $\{U_g, \mathfrak{H}, f\} \in U(\phi)$, and $\{U'_g, \mathfrak{H}'\}$ be a (w)*continuous unitary representation of G in a quasi-positive space* $\{\mathfrak{D}', (\cdot, \cdot)'\}$. If $\{U'_g, \, \mathfrak{H}'\} \simeq \{U_g, \, \mathfrak{H}\}\$ and $\tau(f') = f$ for some $f' \in \mathfrak{H}'$, then $H(\phi)$ coincides with the space of all functions $x(g)$ given in the form: $x(g)=(x', U'_g f')'$ (g $\in G$) for *some* $x' \in \mathfrak{H}'$.

For $\phi \in P_n(G)$ assume that it is decomposed as follows:

$$
\phi = \phi + \theta,
$$

where $\psi \in P_i(G)$ and $\theta \in P_m(G)$. Then by Theorem 2.5 (3) we have $n \leq l+m$. Throughout §§4.1 and 4.2 we use the following notations :

$$
U_1 = \{U_g^{\omega}, \mathfrak{H}_1, f_1\} \in U(\phi), \quad U_2 = \{U_g^{\omega}, \mathfrak{H}_2, f_2\} \in U(\theta), \quad H_1 = H(\phi), \quad H_2 = H(\theta),
$$

$$
\mathfrak{H} = \text{the product } \Pi_{l+m} \text{-space } \mathfrak{H}_1 \times \mathfrak{H}_2, \quad f = [f_1, f_2] \in \mathfrak{H}_1 \times \mathfrak{H}_2,
$$

 ${U_s, \, \mathfrak{H}}$ = the product representation of U_1 and U_2 ,

 \Re =the closed linear span of $\{U_g f; g \in G\}$ in \Im ,

 \tilde{R} =the quotient space \mathbb{R}/\mathbb{R}^0 ,

 π =the canonical map of \Re onto $\widetilde{\Re}$, $\widetilde{f} = \pi(f)$,

 ${U_g, \mathfrak{F}_f}$ =the partial representation of ${U_g, \mathfrak{F}}$ with the cyclic vector *f*,

 $\{\tilde{U}_g, \tilde{\mathbb{R}}, \tilde{f}\}$ =the quotient representation of $\{U_g, \tilde{F}\}\$ determined by \mathbb{R} with the cyclic vector \tilde{f} .

Then $\{\tilde{U}_{g}, \tilde{\Re}, \tilde{f}\} \in U(\phi)$. Indeed for any $g \in G$

(4.2)
$$
(\tilde{f}, \tilde{U}_g \tilde{f}) = (\pi(f), \pi(U_g f)) = (f, U_g f) = (f_1, U_g^{\text{(i)}} f_1) + (f_2, U_g^{\text{(j)}} f_2) = \phi(g) + \theta(g) = \phi(g).
$$

Since $\{U_g, \hat{X}, f\} \stackrel{\pi}{\approx} \{\hat{U}_g, \hat{\hat{X}}, \hat{f}\}\$, it follows from Lemma 4.1 that $H(\phi)$ coincides with the space of all functions $x(g)$ given in the form:

$$
(4.3) \t x(g) = (\lceil \eta_1, \eta_2 \rceil, U_g f) = (\eta_1, U_g^{(1)} f_1) + (\eta_2, U_g^{(2)} f_2) \t (g \in G),
$$

where $[\n\eta_1, \eta_2] \in \mathbb{R}$. In particular, as $(\eta_1, U_g^{(i)} f_i) \in H_i$ $(i=1, 2)$, we have

(4. 4) *H(çb)_ÇH,-HH,.*

In the next theorem we give a necessary and sufficient condition for any representation belonging to $U(\phi)$ to be contained in the product representation $\{U_g, \, \tilde{\mathfrak{Y}}\}$.

Theorem 4.2. *T h e following conditions are mutually equivalent:*

- (1) $\{U_g, \, \Re\}$ *is a subrepresentation of* $\{U_g, \, \Re\},$
- (2) $H(\phi) = H_1 + H_2$ (algebraic sense in $C(G)$),
- (3) $H_1 \subseteq H(\phi)$ *and* $H_2 \subseteq H(\phi)$.

If (1) *holds, then* $\{U_g, \Re, f\} \in U(\phi)$.

Proof. Suppose that \Re is non-degenerate. Then \Im is the orthogonal direct sum of $\hat{\mathcal{R}}$ and $\hat{\mathcal{R}}^{\perp}$. Let $x_i(g)=(\xi_i, U_g^{\text{(i)}} f_i) \in H_i$, $\xi_i \in \mathfrak{H}_i$ for $i=1, 2$, and $[\eta_1, \eta_2]$ the orthogonal projection of $[\xi_1, \xi_2] \in \mathfrak{H}$ in \mathfrak{R} . Then by (4.3) we have

$$
x_1(g) + x_2(g) = ([\xi_1, \xi_2], U_g f) = ([\eta_1, \eta_2], U_g f) \in H(\phi),
$$

and $H_1 + H_2 \subseteq H(\phi)$. Therefore it follows from (4.4) that (1) implies (2). Conversely suppose that (2) holds. For any $[\xi_1, \xi_2] \in \mathfrak{H}$ there exists $[\eta_1, \eta_2] \in \mathbb{R}$ such that

$$
(\lbrack \xi_1, \xi_2 \rbrack, U_g f) = (\xi_1, U_g^{(1)} f_1) + (\xi_2, U_g^{(2)} f_2) = (\lbrack \eta_1, \eta_2 \rbrack, U_g f) \quad (g \in G).
$$

So $[\xi_1, \xi_2] - [\eta_1, \eta_2] \in \mathbb{R}^1$, and we have $\mathfrak{H} = \mathbb{R} + \mathbb{R}^1$. Hence $\mathbb R$ is non-degenerate by Lemma 1.9 (2). Thus (2) implies (1). From (4.4) it is clear that (2) and (3) are equivalent. The last assertion follows from $(4, 2)$. $q.e.d.$

4.2. Normal decomposition of quasi-positive definite functions. The decomposition (4.1) of ϕ is said to be *normal* if $n=l+m$. In this case ϕ and θ are called *normal components* of ϕ .

Lemma 4.3. If (4.1) is a normal decomposition of ϕ , then \Re is a $\prod_{n=1}^{n}$ -space, and \mathbb{R}^{\perp} *is a Hilbert space.*

Proof. Since $\phi \in P_n(G)$ and $\{\tilde{U}_g, \tilde{\mathfrak{R}}, \tilde{f}\} \in U(\phi)$, $\tilde{\mathfrak{R}}$ is a Π_n -space. Suppose that $\mathbb{R}^0 \neq \{0\}$. Then by Lemma 1.9 (3) \mathbb{R} must be a \prod_k -space for some $k < l+m$. But this contradicts to the assumption $n=l+m$. Therefore $\hat{\mathbb{R}}^0 = \{0\}$, $\hat{\mathbb{R}} = \tilde{\mathbb{R}}$ is a \prod_{n} -space, and \mathbb{R}^{\perp} is a \prod_{0} -space, i.e., a Hilbert space. q. e.d.

The next theorem follows immediately from Theorem 4.2 and Lemma 4.3. This is a generalization of Theorem 4 in $\lceil 3 \rceil$.

Theorem 4.4. If (4.1) is a normal decomposition of ϕ , then we have:

 (1) *The product representation* $\{U_g, \mathfrak{H}\}$ *of* U_1 *and* U_2 *is the orthogonal* direct sum of $\{U_g, \hat{\mathbb{R}}\}\$ and $\{U_g, \hat{\mathbb{R}}^+\}\$, where $\{U_g, \hat{\mathbb{R}}, f\} \in U(\phi)$ and $\{U_g, \hat{\mathbb{R}}^+\}\$ is a *unitary representation in the Hilbert space*

- (2) *Any unitary representation belonging to* $U(\phi)$ *is contained in* $\{U_g, \, \tilde{\mathcal{D}}\}$.
- (3) $H(\phi)=H_1+H_2$, and especially $H_i\subseteq H(\phi)$ for $i=1, 2$.

Theorem 8 in [3] holds also for our case as follows.

Theorem 4.5. If (4.1) is a normal decomposition of ϕ , then the following *three conditions are mutually equivalent:*

 (1) *f* is cyclic with respect to the product representation $\{U_g, \delta\}$, and $\{U_{\mathbf{g}}, \mathfrak{H}, f\} \in \mathbf{U}(\phi).$

(2) U_1 *or* U_2 *are contained in any unitary representation belonging to* $U(\phi)$,

(3) $H(\phi)$ is the direct sum of H_1 and H_2 , i.e., $H(\phi)=H_1+H_2$ and $H_1 \cap H_2 = \{0\}$.

Proof. It is obvious that (1) implies (2). Suppose that (2) holds. Let $V=$ ${V_{\varepsilon}, \mathfrak{H}', f' \in U(\phi)$ and assume that U_1 is contained in V. Then V has an orthogonal decomposition as follows:

$$
V = \{V_g^{(1)}, \mathfrak{H}'_1, f'_1\} (\dot{+}) \{V_g^{(2)}, \mathfrak{H}'_2, f'_2\},\
$$

where $\{V_g^{\text{(i)}}, \mathfrak{H}'_1, f'_1\} \cong U_1$. Moreover we have for any $g \in G$

$$
\phi(g)=(f',\;V_g\;f'){=} (f'_1,\;V_g^{(1)}f'_1)+(f'_2,\;V_g^{(2)}f'_2){=}\phi(g)+(f'_2,\;V_g^{(2)}f'_2),
$$

and $(f'_2, V_g^{(2)} f'_2) = \phi(g) - \phi(g) = \theta(g)$.

So it follows from Theorem 3.1 that $\{V_g^{\scriptscriptstyle{(2)}},\,\mathfrak{D}'_2,\,f'_3\}\cong U_2$. Thus we get

$$
\{U_{\mathbf{g}}\,,\,\mathfrak{H}\}=\{U_{\mathbf{g}}^{\text{\tiny(1)}},\,\mathfrak{H}_1\}\times\{U_{\mathbf{g}}^{\text{\tiny(2)}},\,\mathfrak{H}_2\}\cong\{V_{\mathbf{g}}^{\text{\tiny(1)}},\,\mathfrak{H}'_1\}\,\big(\dotplus\big)\,\{V_{\mathbf{g}}^{\text{\tiny(2)}},\,\mathfrak{H}'_2\}=\{V_{\mathbf{g}}\,,\,\mathfrak{H}'\}\,,
$$

and $f = [f_1, f_2] \in \mathfrak{H}$ corresponds to $f' \in \mathfrak{H}'$ by this isometric isomorphism. Since *f'* is cyclic with respect to $\{V_g, \mathfrak{H}'\}$, *f* is cyclic with respect to $\{U_g, \mathfrak{H}\}$, and $\{U_g, \, \mathfrak{H}, f\} \in U(\phi)$. Therefore (2) implies (1). By virtue of Theorem 4.3 (3), in order to prove that (1) and (3) are equivalent, it suffices to show that $\mathbb{R}^1 = \{0\}$ if and only if $H_1 \cap H_2 = \{0\}$. Let $[\xi_1, -\xi_2]$ be a non-zero element in \mathbb{R}^1 . Then for all $g \in G$

$$
([\xi_1, -\xi_2], U_g f) = (\xi_1, U_g^{(1)} f_1) - (\xi_2, U_g^{(2)} f_2) = 0.
$$

So $x(g) = (\xi_1, U_g^{(1)} f_1) = (\xi_2, U_g^{(2)} f_2) \in H_1 \cap H_2$. As f_1 and f_2 are cyclic, $x(g) \neq 0$ for some $g \in G$, and hence $H_1 \cap H_2 \neq \{0\}$. Conversely if $x \in H_1 \cap H_2$ and $x \neq 0$, then there exists a non-zero $[\xi_1, \xi_2] \in \mathfrak{H}$ such that $x(g) = (\xi_i, U_g^{(i)} f_i)$ for all $g \in G$ and i=1, 2. Hence \mathbb{R}^1 contains $\left[\xi_1, -\xi_2\right] \neq 0$. Thus $\mathbb{R}^1 = \{0\}$ if and only if $H_1 \cap H_2$
= {0}, q, e, d, q. e. d.

4.3. Normal components of quasi-positive definite functions. Let $\phi \in$ $P_n(G)$ and $U^{\phi} = \{U_g, \, \Phi, \, f\} \in U(\phi)$. By $N(\phi)$ we denote the set of all normal components of ϕ , that is, $\phi \in QP(G)$ is in $N(\phi)$ if and only if $\phi \in P_m(G)$ and $\phi - \phi \in P_{n-m}(G)$ for some $0 \leq m \leq n$. Let *A* be a selfadjoint operator on \mathfrak{H} , and

set $B = I - A$ (*I*=the identity operator on \mathfrak{H}). On \mathfrak{H} we define new inner products (x, y) _{*A*} and (x, y) _{*B*} $(x, y \in \mathfrak{H})$ as follows:

$$
(x, y)A = (Ax, y) = (x, Ay)
$$

$$
(x, y)B = (Bx, y) = (x, y) - (x, y)A.
$$

Then A is called a *quasi-positive* operator with negative rank m , $0 \le m \le n$, if $\{\mathfrak{D}, (\, ,\,)_{A}\}$ is a QP_m -space and $\{\mathfrak{D}, (\, ,\,)_{B}\}$ is a QP_{n-m} -space. The negative rank of *A* is denoted by $\chi^-(A)$. Let us denote by $A(U^{\phi})$ the set of all quasi-positive operators *A* on Φ with χ ⁻ $(A) \leq n$ commuting all U_g , $g \in G$. The next is a generalization of Theorem 5 in [3].

Theorem 4.6. For any $\phi \in P_n(G)$ and $U^{\phi} = \{U_s, S_{\phi}, f\} \in U(\phi)$ there exists a bijective map ρ of $A(U^\phi)$ onto $N(\phi)$ such that for any $A\!\in\!A(U^\phi)\,\,\psi\!=\!\rho(A)\!\in\!N(\phi)$ *is given in the form:*

$$
\varphi(g) = (Af, U_g f) \quad (g \in G).
$$

Proof. Let
$$
A \in A(U^{\phi})
$$
, $B=I-A$, $m=\mathcal{X}^{-}(A)$, and put $l=n-m$. Then
\n $(U_{g} x, U_{g} y)_{A} = (AU_{g} x, U_{g} y) = (U_{g} Ax, U_{g} y) = (Ax, y) = (x, y)_{A}$,
\n $(U_{g} x, U_{g} y)_{B} = (U_{g} x, U_{g} y) - (U_{g} x, U_{g} y)_{A} = (x, y) - (x, y)_{A} = (x, y)_{B}$,

where *x*, $y \in \mathfrak{H}$ and $g \in G$. Hence each U_g ($g \in G$) is unitary with respect to the both inner products $(,)_A$ and $(,)_B$. Let \mathfrak{H}_0 be the linear span of $\{U_g f; g \in G\}$ in \mathfrak{D} . Since \mathfrak{D}_0 is dense in \mathfrak{D} , it follows from Lemma 1.8 that $\{\mathfrak{D}_0, (\ ,\)_A\}$ becomes a QP_m -space and $\{\mathfrak{D}_0, \langle , \rangle_B\}$ a QP_l -space. Applying Theorem 2.4 to the (w)-continuous unitary representations $\{U_g, \, \phi_0\}$ of G in $\{\phi_0, \, , \, \}_A$ and $\{\mathfrak{H}_0, \langle , \rangle_B\}$, we have for any $g \in G$

$$
\phi(g)=(f, U_g f)_A = (Af, U_g f) \in P_m(G),
$$

$$
\theta(g)=(f, U_g f)_B = (f, U_g f) - (f, U_g f)_A = \phi(g) - \phi(g) \in P_l(G).
$$

Thus $\phi \in N(\phi)$ and we get a map ρ of $A(U^{\phi})$ to $N(\phi)$ defined by (4.5). For A, $A' \in A(U^{\phi})$ assume that $(Af, U_g f) = (A'f, U_g f)$ for all $g \in G$. Then for any $x = \sum_{i=1} \lambda_i U_{g_i} f \in \mathfrak{H}_0$, where $\lambda_i \in C$ and $g_i \in G$ ($1 \leq i \leq k$), we have $(Ax, U_g f) =$ $(A' \tilde{x}, U_g f)$ for all $g \in G$, and it follows that $A = A'$, because *A* and *A'* are continuos and \mathfrak{H}_0 is dense in \mathfrak{H} . Thus it is proved that ρ is injective. Finally we show that ρ is surjective. Let $\phi \in P_m(G)$ be in $N(\phi)$ and $\theta = \phi - \phi \in P_l(G)$, where $l=n-m$. By Theorem 4.4 (3) there exists $h \in \mathfrak{D}$ for which $\phi(g)=(h, U_g f)$ $(g \in G)$. Let us define two linear maps τ and τ' of $L(G)$ (cf. § 2.2) to \mathfrak{H}_0 and respectively by

$$
\tau: L(G) \ni \alpha \longmapsto \tau(\alpha) = \sum_{g \in G} \alpha(g) U_g f \in \mathfrak{H}_0,
$$

$$
\tau': L(G) \ni \alpha \longmapsto \tau'(\alpha) = \sum_{g \in G} \alpha(g) U_g h \in \mathfrak{H}.
$$

Then we have $(\tau(\alpha), U_g h)= (\tau'(\alpha), U_g f)$ for any $\alpha \in L(G)$ and $g \in G$. If $\tau(\alpha)=0$, then $\tau'(\alpha) \in \mathfrak{H}_0^{\perp} = \{0\}$ and hence $\tau'(\alpha) = 0$. So there exists uniquely a linear map *A* of \mathfrak{D}_0 onto $\tau'(L(G))$ defined by $A\tau(\alpha) = \tau'(\alpha)$ for any $\alpha \in L(G)$, that is,

$$
A\left(\sum_{g\in G} \alpha(g) U_g f\right) = \sum_{g\in G} \alpha(g) U_g h \quad (\alpha \in L(G)).
$$

Then we have for any $g \in G$

$$
(4.6) \t\t\t AU_g = U_g A \t on \t \mathfrak{D}_0,
$$

(4.7)
$$
\psi(g)=(h, U_g f)=(Af, U_g f).
$$

Moreover putting $B = I - A$, we have for any $x = \tau(\alpha)$, $y = \tau(\beta) \in \mathfrak{H}_0$ $(\alpha, \ \beta \in L(G))$

$$
(4,8) \qquad (x, y)_{A} = (Ax, y) = (x, Ay) = \sum_{g, k \in G} \alpha(g) \overline{\beta(k)} \phi(g^{-1}k) = (\alpha, \beta)_{\phi},
$$

$$
(4.9) \qquad (x, y)_B = (Bx, y) = (x, y) - (x, y)_A = \sum_{g, k \in G} \alpha(g) \overline{\beta(k)} \theta(g^{-1}k) = (\alpha, \beta)_\theta.
$$

 (4.8) [resp. (4.9)] shows that τ is an isometric map of $\{L(G), (\cdot, \cdot)_{\phi}\}$ [resp. ${L(G), (\cdot, \phi)}$ onto ${\{\mathfrak{H}_0, (\cdot, \phi)\}}$ [resp. ${\{\mathfrak{H}_0, (\cdot, \phi_B)\}}$]. Since $\phi \in P_m(G)$ and $\theta \in P_l(G)$, it follows from Theorem 2.2 and Lemma 1.4 that $\{\delta_0, \langle , \rangle_A \}$ is a QP_m -space and $\{\mathfrak{D}_0, \langle , \rangle_B\}$ a QP_t -space. Suppose that *A* is bounded on \mathfrak{D}_0 . Then *A* can be extended to a selfadjoint operator of \mathfrak{D} , denoted also by A, and $\{\mathfrak{D}, (\ ,\)_A\}$ and $\{\mathfrak{H}, (\ ,\)_B\}$ become QP_m and QP_l -spaces respectively by Lemma 1.8. Further from (4.6) and (4.7) it follows that $A \in \mathcal{A}(U^{\phi})$ and $\rho(A) = \phi$. So ρ is surjective. Thus it suffices to prove that *A* is bounded on \mathfrak{D}_0 . If $n=m=l=0$, then $0 \leq$ $(Ax, x) \leq (x, x) \leq ||x||^2$ for any $x \in \mathfrak{D}_0$, so that *A* is bounded. So we may assume without loss of generality that $n \ge m > 0$. Let \Re be an *n*-dimensional negative definite subspace of \mathfrak{H}_0 and \mathfrak{B} the orthogonal complement of \mathfrak{R} in \mathfrak{H}_0 . We denote by \langle , \rangle the positive definite inner product on \mathfrak{D}_0 corresponding to the fundamental decomposition $\Re(\dot{+})\Re$ of \Im ₀, and by $\|\cdot\|$ the norm induced from \langle , \rangle (cf. (1.8)). We take a basis $\{e_i; 1 \le i \le n\}$ of \Re such that $(e_i, e_j) = -\delta_{ij}$ for any $1 \leq i \leq j \leq n$. Then by (1.9) for any $x \in \mathfrak{H}_0$

$$
\langle Ax, x \rangle = (Ax, x) + 2 \sum_{k=1}^{n} (x, Ae_k)(e_k, x).
$$

So by (1.10) we have for any $x \in \mathfrak{H}_0$

$$
|\langle Ax, x\rangle| \leq |(Ax, x)| + K_1 \|x\|^2,
$$

where K_1 is a positive constant. On the other hand, since $\mathfrak{H}_0^4 = {\phi_0, (\; ,\;)_4}$ is a QP_m -space and is fundamental decomposable by Lemma 1.5, \mathfrak{H}_0^4 is decomposed as follows:

$$
\mathfrak{H}_0^A=\mathfrak{N}_A(\dot{+})_A\mathfrak{P}_A,
$$

where \mathfrak{N}_A is an *m*-dimensional negative definite subspace and \mathfrak{P}_A a non-negative subspace. For any $x \in \mathfrak{D}_0$ we put $x = x^- + x^+$ ($x^- \in \mathfrak{N}_A$, $x^+ \in \mathfrak{P}_A$). Then for any

 $(Ax, x) = (Ax^+, x^+) + (Ax^-, x^-)$ and $(Ax^+, x^+) \ge 0$. As \mathfrak{N}_A is finite dimensional, we can find a positive constant $K₂$ with the properties:

(4.11)
$$
|(Ax, x)| \leq (Ax^+, x^+) + K_2 ||x||^2 \quad (x \in \mathfrak{H}_0),
$$

(4.12) $||x^*|| \le K_2 ||x|| \quad (x \in \mathfrak{H}_0).$

Similarly using the fact that $\{\Phi_0, \langle , \rangle_B\}$ is a QP_t -space, we can take a positive constant K_3 such that for any $x \in \mathfrak{P}_4$

(4.13)
$$
0 \le (Ax, x) \le K_{3} ||x||^{2}
$$
.

Combining the inequalities (4.10), (4.11), (4.12) and (4.13), we have $|\langle Ax, x \rangle| \le$ $K||x||^2$ and hence $|\langle Ax, y \rangle| \le 2K||x|| ||y||$ for any $x, y \in \mathfrak{H}_0$, where *K* is a positive constant. Therefore A is bounded on \mathfrak{H}_0 . This completes the proof.

q. e. d.

§ 5. Examples of quasi-positive definite functions

5.1. Bounded quasi-positive definite functions. Let $\psi \in C(G)$ be a positive definite, i.e., $\psi \in P_0(G)$. If the linear span $\{\psi_g : g \in G\}$ in $C(G)$ is finite dimensional, say *n*-dimensional, ϕ is said to have positive rank *n*, and we put $r^{+}(\phi) = n$. It is obvious that $\phi \in P_{0}(G)$ has the positive rank *n* if and only if the cyclic unitary representation of *G* in a Hilbert space with the characteristic function ϕ is *n*-dimensional, and that $-\phi \in P_n(G)$ for any $\phi \in P_0(G)$ with $r^+(\phi)=n$. So from Theorem 2.5 we have

Theorem 5.1. Let $\psi \in P_0(G)$ with $n = r^+(\psi) < \infty$. Then for any $\theta \in P_0(G)$ *the difference* ϕ *=* θ *-* ϕ *is a bounded quasi-positive definite function with* r ϕ *)* \leq *n.*

The converse of Theorem 5.1 holds for amenable groups, e. g., commutative, solvable or compact groups.

Theorem 5.2. For an amenable group G any bounded $\phi \in P_n(G)$ is given in *the form:* $\phi = \theta - \phi$, where θ , $\phi \in P_0(G)$ with $r^+(\phi) = n$.

Proof. Let $U = \{U_g, \, \delta, f\} \in U(\phi)$. Since U is uniformly bounded by Theorem 3.2, it follows from Theorem 1 in $[6]$ that U is decomposed as follows: $U = \{U_g, \Re, f_1\}$ $(\frac{1}{r})$ $\{U_g, \Re, f_2\}$, where \Re is an *n*-dimensional negative definite subspace and \mathfrak{B} a positive definite subspace. Put $\theta(g)=(f_2, U_g f_2)$ and $-\psi(g)=(f_1, U_g f_1)$ $(g \in G)$. Then $\theta \in P_0(G)$, $-\psi \in P_n(G)$ and $\phi = \theta - \psi$. As \Re is negative definite, the inner product space $\{\Re, -\langle , \rangle\}$ is an *n*-dimensional Hilbert space, and $\{U_g, \mathcal{R}, f_1\}$ is regarded as a cyclic unitary representation of G in the Hilbert space $\{\Re, -(\ ,\)\}.$ So $\psi \in P_0(G)$ and $r^+(\psi)=n$. q.e.d.

5. 2. Unbounded quasi-positive definite functions. Now consider the 2-dimensional vector space $C²$ with inner product (,) defined by

$$
(5.1) \qquad (u, v) = u_1 \bar{v}_2 + u_2 \bar{v}_1 \qquad \text{for} \quad u = (u_1, u_2), \quad v = (v_1, v_2) \in \mathbb{C}^2.
$$

Then $\mathfrak{H}_1 = \{C^2, , , \ldots \}$ becomes a Π_1 -space. Let $\chi(g) \in C(G)$ be a non-unitary character on G , that is, it satisfies the following conditions:

(5.2)
$$
\chi(gh^{-1}) = \chi(g)/\chi(h) \quad \text{for any } g, h \in G,
$$

(5.3)
$$
\chi(g^{-1}) \neq \overline{\chi(g)}
$$
 for some $g \in G$.

For any $g \in G$ we define a linear operator U_g on \mathfrak{H}^2 by

$$
U_g u = \left[\begin{array}{c} \chi(g) u_1 \\ \chi(g^{-1}) u_2 \end{array} \right] \quad \text{for} \quad u = (u_1, u_2) \in \mathbb{C}^2.
$$

Then it is easily seen that each U_g ($g \in G$) is a unitary operator on \mathfrak{H}^2_1 and that $U_{\mathcal{I}} = \{U_{\mathbf{z}}, \mathbf{\hat{P}}_1^2\}$ is a weakly continuous unitary representation of *G*. Moreover $u = (u_1, u_2) \in \mathbb{C}^2$ is cyclic with respect to U_χ if and only if $u_1 \, u_2 \neq 0$. Hence by Theorem 3.4 the function $\phi(g) = (u, U_g u)$ $(g \in G)$ belongs to $P_1(G)$ for any $u = (u_1, u_2)$ with $u_1 u_2 \neq 0$. Putting $\bar{u}_1 u_2 = \alpha + i\beta$ ($\alpha, \beta \in \mathbb{R}$), we have

$$
\phi(g)=(u, U_g u)=\alpha(\chi(g)+\overline{\chi(g^{-1})})+\beta i(\chi(g)-\overline{\chi(g^{-1})}) \quad (g\in G).
$$

Theorem 5.3. Let $\chi(g)$ be a non-unitary character on G. Then the follow*ing function* ϕ *belongs to* $P_1(G)$ *,* and *is unbounded*:

$$
\phi(g) = \alpha(\chi(g) + \overline{\chi(g^{-1})}) + \beta i(\chi(g) - \overline{\chi(g^{-1})}) \quad (g \in G),
$$

 $where \alpha, \beta \! \in \! \mathbb{R} \; with \; \alpha^2 \! + \! \beta^2 \! \neq \! 0.$

Now let $\chi(g)$ be a unitary character on *G* and $f(g) \in C(G)$ be a non-zero real character on G, that is, $f(g)$ is a non-zero real function with the following property :

(5.4)
$$
f(gh)=f(g)+f(h) \quad \text{for any } g, h \in G.
$$

Using $\chi(g)$ and $f(g)$, we define a linear operator U_g ($g \in G$) on \mathfrak{H}^2 by

$$
U_g u = \left[\frac{\overline{\chi(g)} u_1 - i \overline{\chi(g)} f(g) u_2}{\overline{\chi(g)} u_2} \right] \quad \text{for} \quad u = (u_1, u_2) \in \mathbb{C}^2
$$

Then U_g is unitary and U_{χ} , $\psi = \{U_g, \hat{\psi}\}\$ is a weakly continuous unitary representation of *G*. Moreover $u = (u_1, u_2) \in C^2$ is cyclic with respect to $U_{\mathcal{Z}, f}$ if and only if $u_2 \neq 0$. For any $u = (u_1, u_2)$ and $g \in G$ we have

$$
(u, U_g u) = (u, u)\chi(g) + u_2 \bar{u}_2 i \chi(g) f(g).
$$

Thus we get

Theorem 5.4. Let $\chi(g)$ be a unitary character and $f(g)$ be a non-zero real *character on G*. Then the following function ϕ belongs to $P_1(G)$, and is un*bounded:*

$$
\phi(g)=\chi(g)(\alpha+\beta if(g))\quad (g\in G),
$$

where α , $\beta \in \mathbb{R}$ *with* $\beta > 0$.

In the author's paper $[7]$, we shall give the general form of quasi-positive definite functions on commutative groups corresponding to indecomposable cyclic unitary representations in Π_1 - and Π_2 -spaces.

> DEPARTMENT OF MATHEMATICS, KAGOSHIMA UNIVERSITY.

References

- Bognár, J.: Indefinite inner product spaces. Springer–Verlag, 1974.
- $[2]$ De Leeuw, K. and Glicksberg, I.: The decomposition of certain group representations, J. d'analyse Math., 15 (1965), 135-192.
- [3] Godement, R.: Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc., 63 (1948), 1-84.
- $[4]$ lohvidov, I.S. and Krein, M.G.: Spectral theory of operators in spaces with an indefinite metric. J, Trudy Moskov Math. Obšč., 5 (1956), 367-432. (Russian).
- [5] Naimark, M. A.: Structure of unitary representations of locally compact groups and symmetric representations of algebras in the Pontriagin space Π_k , Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 1111-1132. (Russian).
- [6] Sakai, K.: On J-unitary representations of amenable groups, Sci. Rep. Kagoshima Univ., 26 (1977), 33-41.
- [7] --------- Indecomposable unitary representations of locally compact abelian groups in π_n -spaces, ibid., 27 (1978), 1-20.