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§ O. Introduction

L e t  G  be a  topological g ro u p . T h e  general structure  of unitary representa-
tions o f G  in  Pontrjagin spaces has been investigated by M. A. Naimark, e. g., [5].
In  this paper we shall consider the relation between cyclic unitary representations
o f G  in  Pontrjagin spaces and quasi-positive definite functions o n  G . T his is  the
generalization of Godement's theory in  [ 3 ]  concerning cyclic unitary representa-
tions o f G  in H ilbert spaces and positive definite functions on G. In  §1  the basic
notions concerning indefinite inner product spaces a re  introduced, and  especially
t h e  elementary properties of quasi-positive spaces a n d  Pontrjagin spaces are
stated  w ithout p roofs. I n  § 2  w e  sh a ll g iv e  t h e  definition of quasi-positive
definite functions o n  G , an d  sh o w  that every quasi-positive definite function 95
on  G  is given in  th e  fo rm  : g5(g)=(f , U  g  f )  ( g e  G ) ,  where g ,—> U, is a  unitary
representation o f G  in a quasi-positive space {el, ( , )} and  f  E  .  Moreover in §3
we shall see that there exists a one to one correspondence between th e  space of all
quasi-positive definite functions o n  G  and  the  space o f all isometrically equivalent
classes of weakly continuous cyclic unitary representations o f  G  i n  Pontrjagin
spaces. In  §4  we shall generalize th e  results in  R. Godement [3, Chapter II,  A ]
to the  case  of unitary representations o f G  in  Pontrjagin spaces. Some examples
of quasi-positive definite functions a re  given in  § 5.

Notations. Throughout this paper, G  is  a lw a y s  a  topological group with
the  identity e  whose generic elements a re  denoted by th e  sm all letters g , h , ••-.
C (G ) is  th e  space of all continuous functions o n  G , and P o (G ) is  th e  space of all
continuous positive definite functions o n  G .  F o r any function f  o n  G  and  he G
w e denote b y  f,, t h e  le f t  t ra n s la te  o f  f  b y  h ,  i. e., f h (g)= f  (h - ig )  (g e  G ) .
C  [resp. R ] is  th e  complex [resp. real] number field.
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§ 1. Preliminary.

1. 1. Inner product spaces. We shall begin with some definitions and
notions concerning inner product spaces. M ore detailed expositions are found
in  [ 1 ]  a n d  [ 4 ] .  L e t  V  be a  vector space over C  with a n  inner product ( , ).
Here a n  inner product (  ,  )  i s  a  complex valued function o n  V x  V  w ith  the
properties that (2x±tty ,z)=2(x, z)±,a (y , z) and (x, y) , (y , x ) fo r any  x, y, zE V
and A, p e C .  We do  not require that ( , )  is positive definite. T h e  p a ir  {V, ( , ) }
is called a n  inner Product space.  L e t  W  be a  subspace o f  V. W is said to be
positive [resp. negative] definite if  (x , x )> 0  [resp. (x , x)< O ] fo r all xE W except
x = 0 .  When (x , x )= 0  [resp. (x, x) 0 ]  f o r  a l l  x e  W , W  is said to be neutral
[resp . non-negative]. W e now  put W - 1 =  {xe  (x , y )= 0  fo r  a ll ye  IV }  and
W ° = - W W .  Then WI is called th e  orthogonal complement o f  W  a n d  W °  is
th e  isotropic part o f  W . W  is said to be non-degenerate if  W °=  IC  a n d  other-
w ise to  be degenerate. F o r  any subsets A  a n d  B  o f  V  w e w rite  A_L B if
(x , y )= 0  fo r  any x e  A  and y e  B. L e t  { W i ; be a  family o f  subspaces
o f  V  such that W ; f o r  any I f  V  is  th e  d irec t sum of { W ;

w e say that V  i s  t h e  orthogonal direct sum  o f  {W.i ; l i n }  and
denote by V=W 1 (4 - )W ,(-1 - )• • • (- )W . V  is said to be fundamentally decompos-
able if  V  is decomposed a s  follows:

(1.1)V = W - ( 4 - ) W ° ( - . 0 W + ,

where W - ,  W °  a n d  W +  a re  negative definite, neutral and positive definite sub-
spaces o f  V  respectively. Any decomposition o f  t h e  form  (1 .1 )  is  ca lled  a
fundamental decomposition o f  V .  L et W  be a  degenerate subspace of V  and  7 r
be th e  canonical map of W  onto the quotient space W/W°. Since (x+u, yd-v)=
(x , y )  fo r  an y  x, y e  W  a n d  u , vE W°, it follows that W /W ° becomes a n  inner
product space with th e  inner product given by

(1.2)( 7 r  ( x ) ,  r(Y ))=-(x , Y )  (7r (X ) ,  7r(y) W/W
°
).

Let 1V1, )11 and { V2, ( , )2} be inner product spaces and  consider the  product
space V,X V , .  F or an y [x i, Y ]E  V, X V2 ( i= 1 , 2 )  we put

(1.3)( [ x l ,  Y i i ,  [ x 2 ,  Y 2 ] ) = - ( x 1 ,  x 2 ) 1 - l- (Y1, Y2)2.

Then V, X V2 becomes a n  inner product space with th e  inner product given by
(1 .3), which is called th e  product space of inner product spaces V, and V ,.

1 .  2 .  Linear operators on inner product spaces. L e t  {V, ( , )}  be a n  inner
product space. A  linear operator A  o n  V  is said to be selfadjoint i f  (Ax. y).=
(x , A y ) fo r any x, y e  V . A  linear operator U  o n  V  is unitary  if  it is  bijective
a n d  satisfies (U x ,U y )= (x , y ) fo r any x, y e  V. It is clear that th e  space of all
unitary operators o n  V  is  a  group under the m ultiplication as operators. For
inner product spaces 11/1, ) 1 1  and  {V 2 , ( , ) 2 } a  linear map T  o f  V , to V, is
said to be isom etric i f  (T x , T y ),= (x , y ), f o r  a n y  x, y e  V 1 . W e  note that an
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isometric map o f  V ,  to  V , is not necessarily in je c t iv e  if  V , is degenerate.
W e say that { 17 1, ) 1 }  a n d  { V 2 , , )2 }  a re  isometrically isomorphic if  there is
a n  isometric isomorphism o f  V, onto V2.

1. 3. Quasi-positive spaces. L e t  { V, (  , ) }  be a n  inner product space and
W  b e  a  finite dimensional subspace o f  V .  T hen W  adm its a  fundamental
decomposition : W =  W -  ( 'OW° (4-)W + . T h e  dim (W - )  [re sp . dim (W + )] is called
th e  negative [resp . positive ] rank o f  W, and denoted by r -  (W ) [resp . r -?( W )].
For any f1, f2 , ••• ,./e „  V  l e t  H ( f I, f2, • •., fn) be the Hermitian matrix o f  n-th
order whose (i, j)-element is ( f „  f , ) :

(fi, f i ) — (fi,

( f i ,
(1.4)f . ) =

(fn, f . ) )

F or any Hermitian matrix H  we denote by X -  (H )[resp. X+ (H ) ]  th e  number of
negative [resp. positive] eigenvalues of H. If W is a  linear span of

 { f 1 ,  f„ •••,
c  V, then we have

(1.5) r ( f — , fa )) a n d  r + ( W ) = x + ( H ( f i , • • • ,  f r i ) ) •

Using the relation (1 .5 ), we get easily

Proposition 1. 1. L e t  IV , (  , ) 1  be an inner product space and n be a non-
negativ e  in teger. A ssum e that V  is  spanned  by  a  subset ,z̀ c . V .  T hen  the
follow ing three conditions are mutually equivalent:

( 1 )  V  con tains at least one n-dimensional negative def inite subspace, and
d im (W )n  fo r  any negative definite subspace W  of V.

( 2 ) V  con tains at least one f inite dim ensional subspace w ith the negative
rank  n, and r -  ( W )In  fo r  any finite dimensional subspace W  of V.

( 3 ) There exists a f inite subset If?, A ,  •••, f 1  of  f  f o r  which r ( H ( f 7 ,  f?,
•••, fl))=n, and X-  (H (fi, f2 , f  k ) ) . . n  fo r  any  f inite su b se t I f 1 ,  f 2 ,  •  " ,  f } c .

Definition 1.2. A n  inner product space IV, ( ) 1  is called a quasi-positive
space with negative rank n, denoted by QP n -space, i f  it satisfies th e  equivalent
conditions in Proposition 1 .1 .  T h e  negative rank n is written by r -  ( V ).

1. 4. Pontrjagin  spaces. Let (, )1  be a non-degenerate QPn -space (n >0).
According to Proposition 1 .1 , k ) contains a n  n-dimensional negative definite sub-
space 91. Then 43=911 i s  positive definite, and i s  the  orthogonal d irec t sum
of 1  and 13. So we h av e  a  fundamental decomposition :

(1.6)t o = ( - - . h ) q 3

and any x is given in  th e  form :
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(1.7) x =x ---Px + (x -  c91, x4 e43).

For the fundamental decomposition (1. 6) there  corresponds a positive definite
inner product < , > on defined as follows :

(1.8) <x, y>=—(x, y - )± (x +, y +) (x ,

We define the norm  by 11x11-= A/<x, x >  ( x E ) .  L e t {e1 , e 2 , •••, e n }  be a  basis of
su ch  th at <e i , e•>=— (e i , e i )=-6 0  fo r  1 i j n .  T h e n  w e  h ave  fo r any

X , yE

(1.9)< x ,  Y >=(x, 3))+2 (x, ek)(ek , Y )=(x, .Y )+2 <x, ek> <e h , y>.
k =1 k =1

Moreover we have (cf. [1, II. Lemma 11.411).

(1. 10) 1(x, Y)1-__11x11113'11 (x , Y e ) .

The relations (1 .9 ) a n d  (1. 10) a r e  essen tia l to  our discussions in  § 8 3  and  4.
It is noted in  [4, Theorem 1.3] th a t, if 4  b eco m es  a H ilbert space under the
inner product (1.8), then  any norm  topologies corresponding to fundamental
decompositions of a r e  m utually  equ ivalen t. So  th e  follwing definition is
reasonable.

Definition 1. 3. A non-degenerate QP-space ( , )1 is called a  Pontrjagin
space with negative rank n , denoted by H a -space, i f  S", ,  becomes a Hilbert space
under th e  inner product o f the form (1.8) corresponding to a  fundamental de-
composition of

If £3 in  (1.6) is not complete in the norm topology and l  i s  the completion
o f $, then we get a  H n -space 6---3t(4-)$, which is called the completion of
F o r  a  non-degenerate QP,j -space its any completions are  mutually isometrically
isomorphic. Any topological concep ts in  a  /1„-space are always defined by
the Hilbert norm topology induced from th e  inner product of the form (1.8)
corresponding to a  fundamental decomposition of

1. 5. Properties o f  Q P -  and / in-sp aces. In order to refer in later sections,
we here collect some properties concerning QP„- and H a -spaces without proofs.

Lemma 1. 4. Let S:.?, and be inner product spaces and suppose that there
ex ists an isom e tric  lin ear m ap  of onto Then is  a QP„-space if and
only  i f  so is

Lemma 1.5. (c f . [1 , I . Theorem  11.7]). A ny  Q P n -space is fundam entally
decomposable.

Lemma 1. 6. A ny  subspace W  o f  a  QP n -sPace is  a Q P,space  fo r  some m,
(]I .m _ n , and the quotient space W IW ° is also a QP,,-sPace.
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Lemma 1.7. (c f . [1, 1X. Theorem 1 .4 ]). L e t 0  b e  a  H a -space and 0 0 a
dense subspace of 0 .  T hen 0 ,  contains an n-dimensional negative definite sub-
space.

More generally th e  following is proved by th e  same method a s  in  Theorem
1.4 in  [1, LX].

Lemma 1. 8. Let 0  be a normed space w ith n o r m II, a n d  0 0 b e  a denseII 
subspace of 0 .  Assume th at  0  admits a continuous inner product (  , ) ,  th at  is,
it satisf ies 1(x, 3 ) 1-1C11x1111Y11 f o r an y  x, y e ,  w h e re  K  is  a positive constant.
I f  {0 , ( ,)} contains an n-dimensional negative definite subspace, then 0 , contains
also an n-dimensional negative def inite subspace. Especially  {0 , ( ,)1  i s  a  QP n -
space if and only i f  so  is {0 a , ( ,)}.

Lem m a 1. 9. L e t 0  b e  a  11 a -space, g  be a closed subspace o f  0 , and set
m=r -  (g) n. Then we have:

(1) I f  g  is non-degenerate, then g [resp. R I] is  a  H a,  [resp. 11,1-space,
and 0  is  the orthogonal direct sum  o f g  and gu-.

(2) I f  0  i s  the sum  o f  g  and R I  in the algebraic sense, then g  is non-
degenerate.

(3 )  I f  g  is degenerate, then the quotient space •T/R° becomes a  H m -space
and m<n.

Lem m a 1. 10. The product space o f  a  QP, [resp. 1]-space and a QP n i

[resp. 11, ] -space is a QP„ [resp. H ] - s p a c e ,  w here n=-ld-m.

Lem m a 1. 11. L e t 0 , and 0 2 b e  H a -sPaces, and U  be an isometric isomor-
phism of a dense subspace o f  0 ,  onto a dense subspace o f  0 2 , th en  U  is con-
tinuous and can be ex tended continuously  to an isom etric isom orphism  o f  0,
onto •

§ 2 .  Unitary representations in Q P n -spaces and quasi-positive definite
functions.

2. 1. Unitary representations o f  groups i n  inner product spaces. Let
( , )1 be an  inner product space. By a  unitary representation U=- {Ug ,

o f  G in  0  we mean a  homomorphism g  U ,  o f  G  to th e  group o f all unitary
operators o n  0 . lU g , 01 is said  to  be (w)-continuous i f  th e  function (x, U, y)
o n  G  i s  i n  C (G ) f o r  a n y  x, y E 0 . L e t  arc be a  U-invariant subspace of 0,
i. e., U , O R ) 9Tc fo r a ll g e G .  Then, restricting each U , (g E G ) to  93t, we get
a  unitary representation {U g , V}, which is called th e  partial representation of
{U g , 0 } .  L e t  U,=- 1U1!>, 0,1 be a  unitary representation o f  G  in  a n  inner pro-
duct space 0 , f o r  i=-1, 2. W e define a  unitary operator U , (g E G ) on  the
product space 0 1 X0, a s  follows :

(2.1)U g [ x ,  y ] : = [ U T  x , .Y] ( Dc, X
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T hen  w e  ge t a  unitary  representation fUg , x W  o f  G , w h ich  is  c a lled  the
product representation o f  U , a n d  U , and denoted by LT, X U2 . If there  ex ists an
isom etric linear m ap z• o f  t ) ,  onto s u c h  t h a t  z /4 ) -- -UT z- fo r a ll g E G , then
U , is  s a id  to  b e  isom etric t o  U2 ,  a n d  deno ted  by  U 1 U 2 . Moreover if  r  is
isom orphic, then U , and 11 2 a r e  sa id  to  be  isometrically equivalent, and denoted
b y  U ,  U2 o r  U, —= U2 .

2 . 2 .  Quasi-positive defin ite functions. L e t  0  b e  a  function o n  G  such
that

(2.2) 1)- 0 (g) fo r a l l  g e G .

F or a n y  { g„ g„ -••, g„,} c  G  define a n  H erm itian m atrix
m-th order a s  follows :

0 (gi, g2 , gin) of

(2.3)0  (g1, g2, • • gm) =

/ çb (gT1 g 1 ) 0 (gi- 1 g 2 ) (g.TIgm)

(g i- Ig i) (g :2 - ' g2) (g:2-Ign2)

   

(z-,,Ig i ) ( g Vg 2 ) (gVg.)

Definition 2. 1. A  function  0  o n  G  w ith  (2 .2 )  is  c a lle d  a quasi-positive
definite function with negative rank n  if  it  h a s  th e  following two properties :

(QP)i X-  (0  (g„ g 2 , •••, g„1) ) - = 7 /  fo r s o m e  { g„ g 2 , ••• , g } c  G,

(QP)2 X-  (0  (g„ g 2 , g k )) n  fo r any {g1, g2, ••-, gk} E G.
T he  negative rank n  o f  0  is denoted by r -  (0).

W e denote  by  P ( G )  t h e  sp a c e  o f  a ll co n tin u o us quasi-positive definite
functions o n  G w ith  neg a tiv e  ran k  n  a n d  s e t  Q P ( G ) =  1 3 „( G ) .  L et L (G ) be

n=0
th e  linear space o f  a ll fu n c tio n s  f  o n  G  s u c h  th a t  fgeG  ; f (g)7E0}  is finite,
a n d  le t  0 C ( G )  sa tisfy  ( 2 .2 ) .  Then o n  L ( G )  we can define a n  inner product
( , ) 0  a s  follows

(2.4)f 2 ) = g, f l  ( g ) f 2 (h )0 (g -  1  h ) ( f 1 ,  f 2 e L (G )) .

F o r any  g e G  define r ( g ) L (G ) by

1 ( h = g )
sc o (h)-={

0  (h # g ) .

L (G ) is spanned by th e  fam ily  {E( g )  ; g e  G }. In  th e  inner product space IL (G),
( , ) 0 1, using the notation (1 .4 ), w e have 0 (g„ g 2 , •••, g m )=H (sc g o, ( g 2 ) .  C ( g m ) )

fo r any { g „  g 2 , •-•, g m } c  G. So comparing Definition 2 .1  w ith  Proposition 1.1(3),
we get immediately

Theorem 2. 2. Let 0 C (G ) satisfy  ( 2 .2 ) .  Then 0  belongs to P 71 (G ) if and
only i f  IL (G),( becomes a QP„-space.

(2.5)
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2. 3. Relation between quasi-positive definite functions and unitary re-
presentations in quasi-positive spaces.

Theorem 2.3. F o r  a n y  0 P ( G )  th ere  ex is ts  a  (w )-continuous unitary
representation {11,, of G in a QP 7,-space such that 0  is given in the form:

(2.6) 0(g)----(f 0,Ugfo) (gEG ),

where f o E •

Pro o f . L et L (G ),= IL (G ), ( )01. Then L(G), 5 i s  a  QP-space by Theorem
2.2. F o r  an y  g E G  define a  linear operator U ,  o n  L (G )  b y  U g f = f ,  ( f  E ) .
It is easily seen that each U , ( g E G )  is a  unitary operator on L (G )„ and that
W g , L (G )4  is  a  unitary representation o f  G  in  th e  QP-space L (G) 0 . Further
for any f „  f 2 E L (G ) and g E G

(2.7)U g f 2 V = h, f  i (h) 1.
2 (g - 1  k) 0 (12 - ' k)

=  E  f 1 (h ) f 2 (k)0(12 - ' gk).
h. k EG

In particular for f o =e ( e ) E L (G ) (cf. (2. 5))

(2.8)( f o ,  g  f o )=çb (g ) (g E G ).

Since 0 is continuous, it follows from (2.7) that {Lig , L ( G ) }  is (w)-continuous,
and  from  (2 .8) that {/./g ,  L (G )4  is our desired representation o f  G.

q. e. d.

Conversely we have

Theorem 2. 4. L e t { U , , }  be a (w)-continuous unitary  representation of G
in a QP n -space 4 .  For any let ) ( f )  be the linear span  o f  {U, f  ; gEG}
in and define 0 (g )E C (G ) by  0 (g )=- ( f ,  U , f )  (g E G ) . Then 95 belongs to P,„(G),
where m =r - ( (f )).5.n.

Pro o f . It is clear that 0  satisfies (2. 2). L e t r  be a  linear map o f  L(G)
o n to  ( f )  defined as follows :

r : L (G )x z-(x)= g a x ( g ) U ,  f E ( f ) .

Then for any x , y EL (G )

(7(x ), 7(Y ))--- E  x(g)Y (h)(Ug .1; Uhf)
g .h E G

=  E  x (g) y (h)0 (g -  1  h)=(x  , y ) 0
g ,  / tE G

T his show s that 1- i s  a n  isometric map o f  IL (G), ( ,) 6 1 onto th e  QP.-space
( f ) ,  and it follows from Lemma 1.4 that IL (G ),( , )01 becomes a  QP„,-space.

So we get from Theorem 2.2 that g5E P n ,(G). q. e. d.
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Theorem 2.5. (  1  )  I f  0 P (G )  and 2>0, then 20EP„(G).

( 2 ) The constant f u n c tio n  0 (g )=c  (g E G ) is  in  P o (G ) i f  c O ,  and  is in
P i (G) i f  c<0.

( 3 ) I f  0 1 EP„ 1 (G )  and 0 2 e13 „2 (G ), th en  0 =0 ,+0 2 E P.(G ), w h ere  m -n i
+n2.

Pro o f . (1) and (2) are obvious. Let us see (3). By virtue of Theorem 2.3,
for each i=1, 2 there exists a  (w)-continuous unitary representation Ui = {UT,
o f  G  in  a  QP-space kY i such  that 0 ,  is given in the form 0 1 (g )=( f „ W f i )
( g E G )  for some f,Ee• i . Consider now the product representation t i g , 1>< 2}
of U , and U 2 .  Then we have

(2 .9 ) (CA, f2J, Ug [f i, f2])=(f1, UV ) f i)+(f2, f 2)=01(g)+02(g) (gEG ).

Since 1 X 2 i s  a  QP„ 0 . 2-space by Lemma 1.10 , it follows from (2.9) and
Theorem 2 .4  that OE P ( G )  for some m  ni+ n2.

§  3 . Cyclic unitary representations in /i n -spaces and quasi-positive definite
functions.

3 . 1 . Characteristic functions o f  cyclic unitary representations in H - -

spaces. L e t U=IU g , b e  a  unitary representation o f  G  in  a  H a -space
( , )1 . f  E k )  is  sa id  to  b e  cyclic with respect to  U  if th e  linear span of

{LIg  f ; gE G }  is dense in If U  admits a  cyclic vector then U  is called
a  cy clic unitary  representation o f G  and is denoted by the triplet {Ug ,
The characteristic function 0 of {U ,, f l  is defined as follows :

(3.1)( g ) = - ( f ,  , U g  f ) (g E G).

We say that two cyclic unitary representations tf i =1U,V ) , k)i , f a  for i=1, 2 are
isometrically equivalent if there exists an isometric isomorphism or of S), onto
such that

(3.2)r f 1 = f 2  an d  rU1P= z- for all gEG.

In this case we denote by U,'L U2 or U 1 U2 .

Theorem 3 .1 .  F o r each i=1, 2  let U i = {111". ) , f,}  be a cyclic unitary re-
presentation o f  G  in  a  H a -space w ith the characteristic function g5i . Then

if and only if 01-=02.

Pro o f . Suppose that U,-= U2 . Then by (3.2) we have for any gEG

02(g)=(f2, Pr.f2)=(rf1, r U T A )= ( f i ,  UTA )=01(g).

Conversely suppose that 0 1 =0 2 . Let k )(f i) be the linear span o f  IUT f i ; gEGI
in fo r i=1, 2. F o r a n y  x = 2 ./L 12 ) fi t i ( A ) ,  where 2 C  an d  g i EG

j_<m ), we put
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7 (X ) = 2 j UT f2 G ( ) (12)*
J= ,

From  the hypothesis we have for an y  x ,  y G ( f i )  and gG G

(3. 3) (x , U (
9

1,) A)=-(r (x), f .2) ,

(3. 4) (r (x ), r (Y ))= (x , y ),

(3.5)( A ) = - / -2 an d  T. (UT x)=U7T- (x).

Since (i2) = IC  it fo llo w s fro m  (3 .3 )  and (3 .4 )  th a t  7  is regarded as
an isometric isomorphism o f .V ( f 1 )  o n to  , ) ( f2 ).  By Lemma 1.11  r  can be ex-
tended continuously to an isometric isomorphism of onto  k)2, and hence from
(3.5) it follow s that U1

---1=- U2. q. e. d.

L et U= {L/ 9 , f l  b e  a  cyclic unitary representation o f  G  in  a //,space
(n >0) w ith  th e  charac teristic  func tion  0 , and b e  th e  lin e a r  sp a n  of

{U, f ; g G G } in T hen by  L em m a 1 .7  there  ex ists an n-dimensional negative
definite subspace 91 contained in tio . As noted in  § 1. 4, p u ttin g  13-=%i, w e have
a  fundamental decomposition of :

(3.6)< = 9 Z  ( 2F )

B y < , > w e denote the positive definite inner product on S  corresponding  to  the
fundamental decomposition (3. 6) (cf. ( (1. 8)) and b y  I I  il the norm induced from
< , >. L e t  { o, e2 , en } be  a  basis of 91 su c h  th a t  <ei , e,>= —(e„ e,)=3, 1 fo r

j - n .  Since U , (g G G ) is  u n ita ry , f ro m  (1 .9 )  w e  have for a n y  x, yE ,V
and gE  G

(3.7)< U ,  X , U ,x> = (x , x )+ 2 (x, U 9 -1e0 12

(3. 7)' = (x ,  x )+ 2 g x, e 1>12 ,k =1

(3.8)< x , U 9 y > = ( x , ( 1 9 y ) + 2 ek)(11.9-1ek, y)

(3. 8)' = (x, U, y)+2 e9><e1, U, y>.

Let x = 21 U 9 1 f  a n d  y =  dui  U h i f  be any elem ents in k!oo , w here Ai , p i EC  andi=1
g i , hi G G  for 1. i 1  and 1 j m .  T hen the function (x , U , y) on G is given
in term s of tw o sided translations of

 Ø
 a s  follows :

(3.9)( x ,  U ,  y ) = 21 1.-1; 0(gT 1 gh i ) ( g E G ) .i=1 i=1

U sin g  th e se  notations and relations (3. 7) - (3. 9), w e  p ro v e  th e  following two
theorems.
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Theorem 3.2 . Let U= {U g , f }  be a cyclic unitary  representation of G  in
a H a-space 0 w ith the characteristic function 0. T hen U is uniform ly  bounded,
i.e., K=sup { II Ug  II ; g EG} < 0 0 ,  if and only i f  0  is bounded.

Pro o f . I f  K <c o , th e n  it  fo llo w s fro m  (1.10) t h a t  10(g)I- KlIf 112 f o r  any
g E G .  H ence 0  is bounded. C onversely suppose that 0  is  bounded . A s  e„ ek
eVt, t h e  function  (es , U g e k )  o n  G  is bounded by (3.9) a n d  s o  i s  IlUg e k liz b y
(3.7) f o r  each 1 k n .  H e n c e  w e  c a n  t a k e  a  c o n s t a n t  M > 0  su c h  th a t
±  Ug e k 112 <.,11 fo r a ll g E G . From  (1.10) and (3.7) we h av e  II Ug  xlI 2 <(1±2M)11x112

k=1
fo r  a n y  xE0 and g E G .  Therefore U  is uniformly bounded. q. e. d.

Theorem  3.3 . Let U = { U ,, 0 , f }  be a cyclic unitary  representation of G in
a H a-space  0  w ith  the characteristic function 0. T hen the following conditions
are mutually equivalent :

(1) U  is weakly  continuous, i. e., the function <x, U „ y> on  G  is  in  C(G)
fo r  any  x , yGO.

(2) U  is (w)-continuous.

(3) 0 is continuous.

Especially  i f  G  i s  a  locally compact group, then the above conditions are equiva-
lent to

(4) U  is strongly  continuous, i. e., the m ap  G D g  U , x E 0  is  c o n tin u o u s
fo r  any  x E0.

P ro o f . F ro m  (3.8) a n d  (3.8)' it follow s im m ediately that (1) a n d  (2) are
equivalent, and it is  obv ious tha t (2) implies (3). Further i f  G  is locally compact,
th e n  it  is  sh o w n  i n  [2, Theorem 2.8] th a t  (1) and (4) a re  equivalent. Thus it
rem a in s  to  p ro v e  th a t (3) im plies (2 ). Suppose th a t  0  is continuous. W e con-
sider th e  following subsets of 0:

,t)1= I x 0 ;  th e  function (x , U, y ) o n  G  is  in  C(G) fo r  an y  yG0,1,

0 2 =  {:rE ; th e  function (x, U ,z )  o n  G  is  in  C(G) fo r any  zE01.

It is obvious that 2g 0 i an d  OoçOi by  (3.9). If 1.-g02, then we can conclude
easily  that 0=4, 2 . T h is  m ean s th a t (3) implies (2 ). So it suffices to prove that
01ç-02. L e t xE0 i , go G  and  s>0. In  view  o f (3.7) th e  function IIUg  x11
o n  G  is  con tinuous. P u tting  M-=11U90 -14 + 1 , w e take  a  neighborhood W1 o f  g o

such that II U9 -1 xII < M  f o r  a n y  gE Wi . Since 0 , is  dense in w e can take
yE 0 w i t h  Ilz—yll<e/3M. T h e n  t h e  function  (x, U g y )  o n  G  is continuous,
and there  exists a  neighborhood W, o f g o su c h  th a t fo r  a ll gE W2

1(x, U90y)— (x,U9y)1<-y.
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So for any gG W i  nW , w e have

(x , Ug o z) —  (x , U g z)I I(U g o -i X , z — y )H - 1(x, Ug o Y) — (x, Y)I
y—z)1

Y11+ 1(x, U go—  ( x ,  U g  y )l< E.

Hence th e  function (x, U g  z )  o n  G  i s  in  C ( G ) .  This shows th a t  x E a n d

Thus the proof completes. q. e. d.

3 . 2 .  The correspondence between quasi-positive definite functions and
weakly continuous cyclic unitary representations in f1-spaces.

Theorem 3.4. L e t  U =  { U 9 , f }  be a  weakly continuous cyclic unitary
representation o f  G  in  a  H a -space Then the characteristic function çb o f  U
is in P ( G ) .

P ro o f. Let b e  th e  linear span  o f  {U g  f  ; g e G }  in Then is  a
QP n -space b y  L em m a 1 .7 . So  o u r assertion i s  a n  immediate consequence of
Theorem 2. 4. q. e. d.

Theorem 3.5. F o r  any ç5E P ( G )  there exists a  weakly continuous cyclic
unitary representation of  G  in  H a -space whose characteristic function is 0.

P ro o f. Let k),, be the subspace o f C (G ) spanned by the fam ily  {çbg  ; gEG}
an d  le t L ( G ) ,  (  ,  ) 0 } (c f . §  2 .2 ) . Now define a  linear m ap  7  o f  L (G)
onto k),, by

r : L(G)D a z (a):= h G a  (h ) Q i hE  0  •

For any x=z- (a ), y=z-( 13)E 0 ,  where a, ISE L ( G )  w e put

(3.10) (x , y )-=(a,

Then using (2.2) we have

(x , y ).= g a  (g) p (h)0 h)-= h , 13(h)x(h)-= g a a(g )y (g ) .
hEG

T his m eans that (x , y )  depends only o n  x  an d  y .  So the function (x , y )  on
,)>( g iven  by (3 .10 ) is  regarded  a s  an  inner product on and it follows

from (3.10) that T  is  an  isom etric linear m ap of L (G) 0  onto ( , )1. S in c e
E P „(G) , L  (G),,, i s  a Q P„-space by T heorem  2 .2 , an d  so  is ( , )1  by

Lem m a 1.4. The following relations are seen easily

(3.11) (x, çb g )= x ( g )  for a n y  x a n d  gE G,

(3.12) (0, ç79 )= 0 ( g )  for a n y  gE G .

If x E . o n o l ,  then x (g)-=0 for a ll g  G  by (3 .11) . This shows that ( ,
is non-degenerate. For any gE G  define a  linear operator U g  on b y  If, x-= x,
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(x E0o). Then it is obvious that each U , (g E G ) is unitary, and that {rig , 0 0}
i s  a  unitary representation o f  G  in  th e  non-degenerate QP n -space {00, ( )}
Let 00  be the  /1n -space obtained from 00 b y  th e  completion (cf. §1.4). Then
each U , (gE G ) is extended to a  unitary operator on 00 , which is also denoted
by th e  sam e letter Ug . Thus we get a  unitary representation {rig  0 0 } of G
in  th e  /1n -space 0 0 . Since 0 o i s  dense in • 0 ,  0  is  cyc lic  w ith  respect to
Iti g , 00 1. So from Theorem 3.3 a n d  (3.12) it fo llow s that {U,  0 }  i s  a
weakly continuous cyclic unitary representation o f  G  w ith  th e  characteristic
function 0. q .  e .  d.

Let 0 E  (G ). By U(0) we denote always the  se t o f all weakly continuous
cyclic unitary representations of G in  //n -spaces with th e  characteristic function
0. According to Theorem 3.1, U(0) i s  a n  isometrically equivalent class in the
space U(G) o f  all weakly continuous cyclic unitary representations o f  G  in
Pontrjagin spaces. T h e o re m s  3.4 a n d  3.5 s h o w  th a t  t h e  correspondence

U(0) i s  a  b ijec tive  map o f  QP (G) onto t h e  space o f  all isometrically
equivalent c la sse s  in  U ( G ) .  From now o n  we shall consider only weakly
continuous representations, so that the adjective "weakly continuous" is omitted.

3.3. Subrepresentations a n d  q u o tie n t representations. L e t  U= 1U,, 01
[resp. U-=-{Ug , f o l ]  be a  [cyclic] unitary representation o f  G  in H a -space
R be a  U-invariant closed subspace o f  0  a n d  se t m =r - (R ) . Then R I  a n d  a°
a r e  also  U-invariant. F irst suppose that R  is non-degenerate. A s  noted in
Lemma 1.9 (1), R  and a' becom e 117 n - and /1„-spaces respectively, and  0  is
the orthogonal direct sum of R  and a l .  L e t f ,  and f ,  be the orthogonal pro-
jections o f  f o i n  a  a n d  a l respective ly . T hen  w e say  that th e  p a rtia l re-
presentations U1 = {Ug , al [resp. U 1-= f i l ]  a n d  172-=

 { U g ,  a l l  [resp. U,-=
{Ug , a l , f 2 } ]  a r e  subrepresentations o f  U= fUg , 01 [resp. U= {Ug , 0, f o }] ,  and
that U  is  the orthogonal direct sum of U, and U ,.  In this case we denote by
U=U, ( 20 U2 . Any [cyclic] unitary representation U ' o f  G  is  sa id  to  b e
contained in  U  i f  U  h as a  subrepresentation which is isometrically equivalent
to  U'.

Next suppose that R is degenerate. Then the quotient space = R  /R0 becomes
a  /17n-space by Lemma 1.9 (3). F o r  an y  g E G  define a  unitary operator 17g

on A by

(3.13) Og(z(x))=-7r(Ug x ) (x

where r  is the canonical map o f  R onto A. Then we get a  weakly continuous
unitary representation U.= {Ûg , k }  o f  G  in  t h e  /17n-space A, which is called
the quotient representation of U determined by the U-invariant subspace R . The
partial representation {U,, al is isometric to {Cig , : {U,, al =--'n  A l .

Under these terminology, we obtain easily

Theorem 3.6 . Let U-= {U,, 0}  be a unitary  representation o f G  in  a  177,-

space 0 .  For any  1 E 0  let O f  be the closed linear span o f  { U, f ; gEG}  in  0
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and defineQ P ( G )  by çb(g)=( f, f )  ( g E G ) .  I f is non-degenerate, then
the subrepresentation {U g , f }  o f  U  belongs to U(0). W hile i f  S .t' is

degenerate, then the quotient representation { 1. 7,, 6 f , 7 r(f )}  o f  U  determined by
t ) f  belongs to U (0 ) , where 7r is the canonical map of 1  o n t o  f -= f 1(11.

§ 4. Product representations and normal decomposition of quasi-positive
definite functions

4.1. Product representations. Let E P ( G )  an d  {Ug , f}  E U (0 ). By
H (q) we denote the linear subspace of C(G) consisting of all functions x (g) given
in the form : x (g )=(x , U  f )  (g E G ) for some x E e . .  It is clear that H (0) does
not depend on the choice of {UR , U (95). Further we can see easily

Lemma 4.1. L e t  95 E P.(G ), { U  g , f}  E U ( 0 ) ,  a n d  {U'g , V }  b e  a  (w)-
continuous unitary representation o f  G  in  a  quasi-positive space ,  (  ,  ) 1 .  I f
{U'g , k)'} -= {Ug , and r(  f ')= f  fo r  some t h e n  H(çb) coincides with the
space o f all functions x (g )  given in  the form :  x ( g ) =( x ',  U 'g  f ') /  (g E G )  fo r
some x 'E V.

For OE P„(G) assume that it is decomposed as follows :

(4.1)1 5 = 0 + 0 ,

where sbEP / (G ) and OEP„,,(G). Then by Theorem 2 .5  (3 ) we have n ld - m .
Throughout §§4.1 and 4 .2  we use the following notations :

u i = {UT , f il E  U (0 )  , U 2 =  {UT, 2, f2} U(0) H2=H(0),
to=the product H + ,, -space ,t)2 X4* f  r f  f l  . 9 0.2y

} . .= t h e  product representation of U, and U2 ,
=the closed linear span of {U, f  ; gEG }  in

.4=the quotient space ST/a°,

7= the canonical map of onto ST, 1=7c(f ),

{LIg , ST, f} =the partial representation of g i g , S.)} with the cyclic vector f ,

g , ,  f l  =the quotient representation of {Ug , determined by St
with the cyclic vector

Then W g , a, E U(95). Indeed for any gEG

(4.2)( 1 ,  C / 2  j)---(7r(f), 7r(U g  f ))=( f , U g  f )

.=(f1, f1)+(f2, f 2 )=0(g)+0(g)=95(g).

Since l Ug , S , f l  ; 1 0 , ,  ST', f l ,  it follows from Lemma 4 .1  th a t H(95) coincides
with the space of all functions x (g) given in the form :

(4.3)x ( g ) = ( [7 2 1 ,  7 ;2 1 ,  Ug  f)-(77i, ullr)  f i)+(i7„ u2) f2) (g E G),
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where [7),, 72 2] E A .  In particular, as (77,, P g i.) f,)E Hi  ( i= 1 , 2 ) , w e have

(4. 4) H(çb)_ÇH,-HH,.

In the next theorem we give a necessary and sufficient condition for any representa-
tion belonging to U (0) to be contained in  th e  product representation l Ug ,

Theorem 4.2. T h e  follow ing conditions are m utually  equivalent:

( 1 )  f t  g , a l  i s  a subrepresentation o f  IL Ig , S:)},
( 2 ) H(0)=- 111 ± H 2 (algebraic  sense  in C(G)),
( 3 ) H1 _H (0) and H2EH(0)•

I f  (1) holds, then W g , f l  G U ( ) .

P ro o f .  Suppose that Q is non-degenerate. Then is  the orthogonal direct
sum of S  and R .  Let x i (g)=( j , U  f i )EH i , f o r  i = 1 , 2 , a n d  [721, )22]
the orthogonal projection of 2 ] m  in  A . T hen  by (4 .3 ) w e have

x i(g )+x 2 (g )=(R i, e 2 1 , u g  f )— ([i, 7 2 2 1  U g  f ) e l l ( 0 ) ,

a n d  H1 - i- H2 H(0). T herefore it fo llow s from  (4 .4 )  th a t  (1 )  im plies (2).
Conversely suppose that (2) ho lds. For any R I , e21Eto there exists [71, 772] A
such that

( R1, 2 1 ,  U g [ J ( )  f , ) + ( 2 ,  U ` P f 2 ) = ( D 2 i ,  7 7 2 1  U g  f )  (g E G ) .

S o  R ,  e21 — D21, )221E A ',  a n d  w e  h a v e  = A H -.9 '. Hence is non-degenerate
by Lemma 1 .9  (2 ) .  Thus (2) implies (1). From (4 .4) it is c lear that (2) and (3)
a re  equivalent. T h e  last assertion follows from (4.2). q. e. d.

4. 2. Norm al decomposition of quasi-positive definite functions. The
decomposition (4.1) o f  0  is said to be normal i f  n = l + m .  In  this case 0  and 0
a re  called normal components of 0.

Lemma 4. 3. I f  (4. 1) is  a normal decomposition o f 0 ,  then is a 11r -space,
and a l  i s  a Hilbert space.

P ro o f .  Since OE (G ) a n d  10 g , A, >7.1 U ( 0 ) ,  'A  is a J1-space. S u p p o se

that .90 # IC  T hen  by L em m a 1.9 (3) ^A m ust be a  i l k -space fo r  some k <l± m .
B ut this contradicts to th e  assumption n--=/+ m. Therefore Se= {0}, A = A  i s  a
H„-space, and a l  is  a  H o-space, i. e., a H ilbert space. q. e. d.

T h e  next theorem follows immediately from Theorem 4 . 2  a n d  Lemma 4. 3.
T his is  a  generalization o f Theorem 4  in  [3 ].

Theorem 4.4. I f  (4.1) i s  a normal decomposition o f 0 , then w e have:

( 1 )  The Product representation IL/g , o f  IT , and U , i s  the orthogonal
direct sum  o f  {L g , a l  and { U g , ,  where { U g , ,  f l  1 _ 1 ( 0 )  and 1,, a i l  i s  a
unitary  representation in the Hilbert space
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( 2 )  A ny unitary  representation belonging to U(0) is contained in  {U,,

( 3 ) H(0)=11 1 -FH2 ,  and especially H i _ç_H(0) fo r  i=1, 2.

Theorem 8  in  [3 ] holds also for our case as follows.

Theorem 4. 5. I f  (4 .1 ) i s  a  normal decomposition o f 0 , then the following
three conditions are mutually equivalent:

( 1 )  f  is  c y c lic  w ith  respect t o  the product representation { U,, and

{Ug, 0, f }  U(0).
( 2 ) U , or U 2 are contained in any unitary representation belonging to U(0),

( 3 ) H ( 0 )  i s  th e  d ire c t s u m  o f  H ,  and H 2 , j .  e . ,  H ( 0 ) =- H 1 +H 2  a n d
H 1 n11 2 = {0}.

Pro o f . It is obvious that (1) implies ( 2 ) .  Suppose that (2) holds. Let V=
{ V, , f '}  E  U ( 0 )  and assum e th a t U , is contained i n  V .  Then V  h as an
orthogonal decomposition as  follows :

17 -= {vT f } ( 4- ) tv,r, oç:, ,

where {VIP, Moreover we have for any gEG

(g)=(f ' , V , f ') .=(f , V P f D + V 2) fP= (g) -F (f , 1/ (,j )  f ) ,

and ( f f  çb  (g )—  (g )=0  (g) .
So it follows from Theorem 3 .1  that {1q, f }  =- 1j2. Thus we get

Iti g , 01= IUT, 0,1 X {14 ) , 02} '="- { V T, Oa ( -i- ) {v,V, 0}={17,,

and f  =C1-1, f2 7 E 0  corresponds to  f ' E 0 '  by this isometric isomorphism. Since
f '  is cyclic with respect to {V g , f  is cyclic with respect t o  {Ug , S,j} , and
{Ug , EU (0) . Therefore (2) implies ( 1 ) .  By virtue o f Theorem 4. 3 (3), in
order to prove that (1) and (3) are equivalent, it suffices to show th a t R -`= {0}
if and only i f  Hi  n H 2 -= W I. L e t [ e i ,  b e  a non-zero element in  a ' .  Then
for all gEG

(Ce1, — U g f)= (ei, ulF) f2 )=o.

So x (g)=(ei, UT fi)-=(e2, n 1 /2 . As f i  and f ,  a re  cyclic, x (g)=O  for
some g EG , and hence H ,  H 2 #  {0}. Conversely i f  x E H ,  H ,  an d  x  0, then
there exists a non-zero [e,, e,]E such that x (g )=( 1 , f i )  for a ll  g E G  and
i= 1 , 2 . Hence al contains Lei, —e21*0. Thus .i/J- = 101 if and only i f  Hi  n1/2

q. e. d.

4 . 3 . N orm al components of quasi-positive definite functions. L e t  OE
P ( G )  an d  U0 -- - {Ug , 0 , f }  U (0 ). By N (ç5 ) we denote the set o f all normal
components of 0 , that i s ,  OE Q P(G ) is  in  N (0 )  if and  only i f  OE P„,(G ) and
0 - 0 E  P ,, , , ( G )  fo r  some 0 . 7r/ n .  Let A  be a  selfadjoint operator on .Si, and



86 K ôk ichi Sakai

s e t  B =I — A (/=the identity operator on ,t ,). On we define new inner pro-
ducts (x, Y )A  and (x , .3).8 (x , y e t) )  as follows :

(x , 3)A =(A x , .Y )=(x , Ay)

(x, Y )B=-(Bx, Y )=(x, Y)A.

T hen A  is called  a  quasi-positive operator with negative rank in, O m n , i f
( )A 1  is  a  Q P,space and ( ).5.1 is  a  QP„_„,-space. The negative rank

of A  is denoted by 2L- (A ) .  Let us denote by A (U0 )  the set of all quasi-positive
operators A  on w ith  r (A ) n  com m uting all U , ,  g E G .  The n e x t  is  a
generalization of Theorem 5 in [3].

Theorem 4.6. F o r  any 0 E P„(G )  an d  U 0 = {Us , f }  U (.75) there exists a
bijective map p  of  A (U 0 )  onto N (0) such that f o r any A EA (U P) 0=p(A )EN (0)
is given in the form:

(4.5)0 ( g ) = ( A f ,  U ,  f )  ( g  G ) .

P roo f. Let A E A (U 0 ), B =I —  A, m =X -  (A ), and put i=n — m . Then

(LT, x , U, y ) A -=(A U, x , U, y )-=(U,A x , U, y )=(A x , y )-=(x , y )A ,

(Ug  x , U g  y ) B -=(U, x , U, y )— (U, x , U, y )A =(x , y )— (x , 3)A =(x , 3)s,

where x ,  y E  and ge  G .  Hence each U , (g E G )  is unitary w ith respect to the
both inner products ( , ) 2 1  and ( )L3 Let be the linear span o f  {U, f  ; gEG}
in  S). Since k.),, i s  dense in it fo llow s from  Lem m a 1.8 th a t  1, 0, ( , )A1
becomes a  Q P,space and (  ,  )1  a  QP i -space. Applying Theorem 2.4 to
th e  (w)-continuous unitary representations {L/9 , o f  G  in ( ) A l  and

( )./31, w e have for any gE G

0 (g )=( f , U , f ) A =(A f , U , f )E P .(G ) ,

e (g )=( f , U g f)B = ( f , U , f )— (f , U , f ) A =0 ( g ) - 0 ( g ) E P I (G).

Thus O N ( )  and w e get a  m ap p  of A (U Ø )  to  N ( 0 )  defined by (4 .5 ). For
A , A 'E A (U 0 )  assume th a t  (A f , U , f )-=(A f f , U , f )  for a l l  g E G .  Then for any
x gz-= i 2 t U  f E . 0 , w here 21 E C  and  g z E G  (1 ,- _ir k ) ,  w e  have (A x , U , f )=
(A' x ,  U , f )  for a l l  g E G ,  and it fo llow s that A =A ',  because A  and A ' are
continuos and is  dense in Thus it is proved that p  is  in jective. Finally
w e show that p  is  surjective. Let O EP,„(G ) be in  N ( 0 )  and 8-=q5-0EP L (G),
where 1=n — m . By Theorem 4.4 (3) there exists h E  for which 0 (g )=(h , U , f )
( g E G ) .  Let us define two linear maps r  and Zi  o f L (G ) (cf. § 2.2) to and
respectively by

r : L (G )D oci--).r(a) ,
 g a(g )U ,

r' : r'( a ) =R ;a( g ) U ,
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Then we have (z-(a), U, h)=(z- ' (a), U g  f )  fo r any a E L (G ) and g E G . If  r(a ) ,=-0,
then r/(a)Et.=-{0} a n d  hence v i ( a ) = 0 .  So there exists uniquely a  linear
map A  of onto r i(L (G )) defined by A r(a)-=z-/(a) fo r  any a E L (G ), that is,

A (  a (g )U  g  f)=-- a ( g ) U g  h  (a E L (G )) .
g e G gE G

Then we have  fo r any gEG

(4.6)A U g = U g A  on

(4.7)c p ( g ) = ( h ,  U ,  f ) - = ( A f ,  U g  f ) .

Moreover putting B=I— A, we have for any x=z-(a ), y -=---z- (P)E , c, (a, P E L (G ))

(4.8) (x , Y )A = (A x , Y )-= (x , A y )=  E  a(g)13(k)0(g 1 k)=(a, 3 ) ,
£1 , keG

(4.9) (x , Y)13=-- (Bx, Y )=- (x , y) — (x, E
gkeG

a (g)p(k )0(g - lk )=(a, 13)0 .
, 

(4 .8 ) [resp . (4 .9 )] sh o w s th at z- i s  a n  isometric map o f  {L(G), ( , ) 0 1 [resp.
IL(G), ( , onto )A}Cresp.{0, ( )13}]. Since O E  P n , (G ) and O E  P i ( G ) ,

it follows from Theorem 2 .2  a n d  Lemma 1 .4  that {k)o, ( )A }  is  a  Q P-space
a n d  1 , ( , ).B1 a  Q Pi-space. Suppose that A is bounded on Then A  can
be extended to a  selfadjoint operator of k), denoted also by A, a n d  { , ( )A }  and

( , )131 become Q P m  a n d  QP i -spaces respectively by Lemma 1 .8 .  Further
from (4.6) and (4.7) it follows that AEA(U 0 )  and  p (A )= 0 .  So p  is surjective.
Thus it suffices to prove that A  is bounded o n  k)o . I f  n=m =1=0, then
(A x , x )(x , x ):‹11 .0 2 f o r  any x so that A is bounded. So we may assume
without loss o f  generality that m > 0 . L et 91 be a n  n-dimensional negative
definite subspace of and  43 the  orthogonal complement of 91 in We denote
b y  < , th e  p o sitive  definite inner product o n  k)o corresponding to the  funda-
mental decomposition 91(-1-)13 of and by II II th e  norm induced from < , >
(cf. ( 1 .8 ) ) .  We take a  basis {ei ; l_ i_ < n }  of 91 such that (e t , e , )= -5 1 ,  fo r any

j _ n .  Then by (1.9) fo r  any xEk)c,

<Ax, x>=(Ax, x)+2 (x, Ae k )(e k , x).
k  1

So by (1.10) we have for any x E , ,

(4.10)< A x ,  x> (Ax, x)I +K1llx11 2 ,

where K , is  a  positive  constan t. O n  the  other h a n d , since W = Ik)o , ( )A l is  a
QP.m -space and is fundamental decomposable by Lemma 1.5, 1 is decom posed
as follows:

W = 9 1 A W A $ A 1

where 91, is a n  m-dimensional negative definite subspace and q3A  a  non-negative
subspace. F o r an y  xE o w e  p u t  x = x - -Fx+ (x - G91A , x+E13A ). Then fo r any
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(A x, x )=(A x+, x+)±(A x - , x - )  and ( A x ,  x+) 0. As 9ZA  is finite dimen-
sional, we can find a positive constant K, with the properties :

(4.11) I (A x , x )15(A x + , x + )+K21Ix11 2 ( x e ,N ,
(4.12) 11-015.K211x11 ( x Œ ) .

Sim ilarly using the fact that 1 , ( ) B 1 is a  QP i -space, we can take a positive
constant K , such that for any x E13A

(4.13) 05(A x , x) /(311x112 -
Combining the inequalities (4.10), (4.11), (4.12) and (4.13), w e have <Ax, x>I
KM 4 2 and hence <A x, y>1 21(112c11 113, 11 for any x, where K  is  a positive
constant. Therefore A  is bounded on T h is completes th e  proof.

q. e. d.

§ 5. Examples of quasi-positive definite functions

5 . 1 .  Bounded quasi-positive definite functions. Let 0 C ( G )  be a positive
definite, i.e., OE P o ( G ) .  If the linear span 10, ; gE G1 in  C(G) is finite dimen-
sional, say n-dim ensional, 0  i s  s a id  to  have positive ra n k  n ,  an d  w e  put
r+(0 )=n . It is obvious that O e P,(G )  h as  the positive r a n k  n  if and only if
the cyclic unitary representation of G in a Hilbert space with the characteristic
function 0  is n-dimensional, an d  that — 0 P ( G )  fo r  a n y  0 E P 0 (G ) with
r+(çb)-=n. So from Theorem 2.5 we have

Theorem 5 . 1 .  L e t  sbEP0 (G ) with n =r+(0 )<0 0 . Then f o r  any OEP,(G)
the difference çb= 0 - 0  is a  bounded quasi-positive definite function with r - (q5).- n.

The converse of Theorem 5.1 holds for amenable groups, e. g., commutative,
solvable or compact groups.

Theorem 5.2. F o r  a n  amenable group G any bounded g5EP„(G ) is given in
t h e  f o r m :  0 = 0 - 0 ,  where 0, OEP0 (G) with r+(0)=n.

P ro o f. L e t  U= {Ug , f } U(0). S in c e  U  is un iform ly bounded by
Theorem  3.2, it fo llow s from  Theorem  1 in  [ 6 ]  th a t  U  is decomposed as
follow s : U =IU g , (-■-) f21, w here 91 is an n-dimensional negative
definite subspace and 13 a positive definite subspace. P u t 0 (g)=( Uz  f , )  and
— 0(g)=( f i )  ( g e G ) .  Then OE P 0 (G ) , — 0 13 (G) and 0 = 0 - 0 .  As Sit is
negative definite, the inner product space —( , )1 is an n-dimensional Hilbert
space, and {U R , Sit, f 1} is regarded a s  a  cyclic unitary representation of G in the
Hilbert space IT, — ( , )1. So OE P o (G) and r+ (0)=n. q. e. d.

5. 2. Unbounded quasi-positive d e fin ite  fu n ctio n s. N ow  consider the
2-dimensional vector space C 2 with inner product ( , ) defined by

(5.1)( u ,  v ) - - = u , D 2 + u ,  Di f o r  u = t ( u „ v2)EC2.
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T h e n  i.=-1C 2 ,  (  ,  )1  becomes a  H 1- s p a c e . L e t  X (g)E C (G ) b e  a  non-unitary
character o n  G, that is , it satisfies th e  following conditions :

(5.2)X ( g h - 1 ) = X ( g ) I X ( h ) fo r  a n y  g, hEG ,

(5.3)X ( g ' ) # X ( g ) fo r som e gE G .

F or any g E G  we define a  linear operator U g  o n  4 b y

X (g)u,
U f o r  u=t( 2 )EC 2 .

[ X (g ' )
it„ it

u2

Then it is easily seen that each U g  ( g E G )  is  a  unitary operator o n  i a n d  that
U = {U ,  i s  a  weakly continuous unitary representation o f  G .  Moreover
u = t (u i , u 2)c C 2 is cyclic w ith respect to Ux  i f  a n d  only i f  u i  7./2 0. Hence by
Theorem 3 .4  t h e  function 0 (g) -- - (u, U g  u )  ( g E G )  belongs to P 1 (G )  f o r  any
u = t (u i , 722 )  with u i  u 2 # 0 .  Putting R1 u2 =a-H P  (a, P E R ), we have

0 (g)=(u, U g  u)=a(X (g)+X (g"))+ pi(X (g)— X (g - 1 ) )  ( g E G ) .

Theorem 5. 3. Let X (g) be a non-unitary character on G. T h e n  the follow-
ing function 0  belongs to P,(G ) , and is unbounded:

0(g )=a(X (g )+X (g - 1 ))+pi(X (g)— X (g - 1 ) )  ( g E G ) ,

where a, p E R  with a 2 +13 2 #0.

Now l e t  X (g) be a  unitary character o n  G  a n d  f (g )E C (G )  be a non-zero
real character o n  G, that is , f ( g )  is a non-zero real function with th e  following
property :

(5.4)f  ( g h ) =  f  ( g ) +  f  ( h ) fo r  a n y  g, h E G.

Using X (g) and f ( g ) ,  we define a  linear operator U g  ( g E G )  on by

X (g) u 1 —i X (g) f(g) u 2

f o r  u = t (Tt i , u 2)EC 2Ug [  x ( g) u 2

Then U g  is  u n ita ry  a n d  UX, W g, is a  weakly continuous unitary repre-
sentation o f G .  Moreover u = t (it i , u 2 )EC 2 is cyclic w ith  respect to Ux , f  if  an d
only if u 2 z O. F o r  any u = t (u i ,  it,) and g E G  we have

(u, U g  u)=(u, u)X (g)-k u 2 f i,iX (g)f (g).

Thus we get

Theorem 5.4. L e t  X (g) be a unitary character and f ( g )  be a non-zero real
character on G . T h e n  the following function 0  belongs to P ,( G ) ,  and is un-
bounded:

(g )=X  (g )(a+ f (g ))  (g  E G ) ,

where a, IS E R  with p>0.
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In  the author's paper [ 7 ] ,  w e shall give th e  general form of quasi-positive
definite functions on commutative groups corresponding to indecomposable cyclic
unitary representations in  111 -  and /72 -spaces.
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