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§0. Introduction

Let G be a topological group. The general structure of unitary representa-
tions of G in Pontrjagin spaces has been investigated by M. A. Naimark, e. g., [5].
In this paper we shall consider the relation between cyclic unitary representations
of G in Pontrjagin spaces and quasi-positive definite functions on G. This is the
generalization of Godement’s theory in [3] concerning cyclic unitary representa-
tions of G in Hilbert spaces and positive definite functions on G. In §1 the basic
notions concerning indefinite inner product spaces are introduced, and especially
the elementary properties of quasi-positive spaces and Pontrjagin spaces are
stated without proofs. In §2 we shall give the definition of quasi-positive
definite functions on G, and show that every quasi-positive definite function ¢
on G is given in the form: ¢(g)=(f, U,f) (g€G), where g— U, is a unitary
representation of G in a quasi-positive space {9, (,)} and f=$. Moreover in §3
we shall see that there exists a one to one correspondence between the space of all
quasi-positive definite functions on G and the space of all isometrically equivalent
classes of weakly continuous cyclic unitary representations of G in Pontrjagin
spaces. In §4 we shall generalize the results in R. Godement [3, Chapter II, A]
to the case of unitary representations of G in Pontrjagin spaces. Some examples
of quasi-positive definite functions are given in §5.

Notations. Throughout this paper, G is always a topological group with
the identity e whose generic elements are denoted by the small letters g, &, ---.
C(G) is the space of all continuous functions on G, and P,(G) is the space of all
continuous positive definite functions on G. For any function f on G and heG
we denote by f, the left translate of f by h, i.e, fa(g)=f(h"'g) (g€C).
C [resp. R] is the complex [resp. real] number field.
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§1. Preliminary.

1.1. Inner product spaces. We shall begin with some definitions and
notions concerning inner product spaces. More detailed expositions are found
in [1] and [4]. Let V be a vector space over C with an inner product ().
Here an inner product (,) is a complex valued function on VXV with the
properties that (Ax+py, 2)=24(x, 2)+p(y, 2) and (x, y)=(y, x) for any x, y,z€ V
and 4, uC. We do not require that (,) is positive definite. The pair {V,(,)}
is called an inner product space. Let W be a subspace of V. W is said to be
positive [resp. negative] definite if (x, x)>0 [resp. (x, x)<0] for all x€ W except
x=0. When (x, x)=0 [resp. (x, x)=0] for all x€W, W is said to be neutral
[resp. non-negative]. We now put Wi={xeV;(x, y)=0 for all ye W} and
Wo=WnW+. Then W* is called the orthogonal complement of W and W° is
the isotropic part of W. W is said to be non-degenerate if W°={0}, and other-
wise to be degenerate. For any subsets A and B of V we write AL B if
(x, y)=0 for any x€ A and yeB. Let {W;;1<i<n} be a family of subspaces
of V such that W, LW; for any 1=i<j=n. If V is the direct sum of {W;;
1<i=n}, we say that V is the orthogonal direct sum of {W;;1=i=n} and
denote by V=W,(+)W,(+) - (+)W,. V is said to be fundamentally decompos-
able if V is decomposed as follows :

(1.1) V=W ()W (+)W+,

where W-, W° and W+ are negative definite, neutral and positive definite sub-
spaces of V respectively. Any decomposition of the form (1.1) is called a
Sfundamental decomposition of V. Let W be a degenerate subspace of V and =«
be the canonical map of W onto the quotient space W/W?°. Since (x-+u, y+v)=
(x, y) for any x, yeW and u, veW?’ it follows that W/W° becomes an inner
product space with the inner product given by

1.2) (w(x), =(3))=(x, ») (z(x), z(N)EW/W’).

Let {V,,(, )} and {V,, (, ).} be inner product spaces and consider the product
space VX V,. For any [x;, y,J€ V. XV, (i=1, 2) we put

(1.3) (Cxy, ¥, [xa, ¥ )=(x1, x)i+(31, o)s.

Then V,XV, becomes an inner product space with the inner product given by
(1.3), which is called the product space of inner product spaces V, and V,.

1.2. Linear operators on inner product spaces. Let {V,(,)} be an inner
product space. A linear operator A on V is said to be selfadjoint if (Ax, y)=
(x, Ay) for any x, yeV. A linear operator U on V is unitary if it is bijective
and satisfies (Ux, Uy)=(x, y) for any x, yeV. It is clear that the space of all
unitary operators on V is a group under the multiplication as operators. For
inner product spaces {Vy, (, )} and {V,,(,).} a linear map T of V, to V; is
said to be isometric if (Tx, Ty),=(x, ¥); for any x, yeV,. We note that an
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isometric map of V, to V, is not necessarily injective if V, is degenerate.
We say that {V,, (,),} and {V,, (,),} are isometrically isomorphic if there is
an isometric isomorphism of V, onto V,.

1.3. Quasi-positive spaces. Let {V,(,)} be an inner product space and
W be a finite dimensional subspace of V. Then W admits a fundamental
decomposition: W=W-(+)W°(+)W*. The dim(W~) [resp. dim(W+)] is called
the negative [resp. positive] rank of W, and denoted by »~ (W) [resp. »*(W)].
For any fi, f., -, fo€V let H(f:, fu, -+, fo) be the Hermitian matrix of n-th
order whose (i, j)-element is (f;, f;):

(fl’fl)(flyf2)"'(fl’fn)

(fZ’fl)(fZ’fZ)'"(fZ:fn)
(1'4) H(fl:fz"";fn>:

(fn: fl)(fn’ fZ)'”(fn’ fn)

For any Hermitian matrix H we denote by X~ (H)[resp.X*(H)] the number of
negative [resp. positive] eigenvalues of H. If W is a linear span of {f, f2, -, fa}
CV, then we have

(1.5)  r~ (M=1"(H(f1, fo, = fn)) and r*(W)=X*(H(f1, f2, =, [a))-
Using the relation (1.5), we get easily

Proposition 1.1. Let {V,(,)} be an inner product space and n be a non-
negative integer. Assume that V is spanned by a subset FCV. Then the
following three conditions are mutually equivalent:

(1) V contains at least ome n-dimensional negative definite subspace, and
dim(W)=n for any negative definite subspace W of V.

(2) V contains at least one finite dimensional subspace with the negative
rank n, and v~ (W)<n for any finite dimensional subspace W of V.

(38) There exists a finite subset {f%, f3, -+, fu} of & for which ¥~ (H(f?, 19,
o, fW))=n, and X" (H(f, f2, -+, f))=n for any finite subset {fi, fz, =, [1} C %

Definition 1.2. An inner product space {V,(,)} is called a quasi-positive
space with negative rank n, denoted by QP,-space, if it satisfies the equivalent
conditions in Proposition 1.1. The negative rank n is written by (V).

1.4. Pontrjagin spaces. Let {D,(,)} be a non-degenerate QP,-space (n>0).
According to Proposition 1.1, £ contains an n-dimensional negative definite sub-
space M. Then PL=N"* is positive definite, and $ is the orthogonal direct sum
of ® and PB. So we have a fundamental decomposition :

1.6) O=N(+H)P

and any x<€9 is given in the form:
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(L.7) x=x"+x* (xR, x*P).

For the fundamental decomposition (1.6) there corresponds a positive definite
inner product {, ) on 9 defined as follows:

(1.8) {x, W=—(x7, y)+x*, 1) (x, y€9).

We define the norm by |x||=+/<{x, xp (x9). Let {e,, e,, -+, e,} be a basis of
N such that <e;, ep=—(e;, ¢;)=0;; for 1=<i<j<n. Then we have for any
x, yEH

(1.9) {x, ywo=(x, ¥y)+2 an:)l(x, er)(er, y)=(x, ¥y)+2 éloc, ey <ey, .

Moreover we have (cf. [1, II. Lemma 11.4]).

(1.10) [, =l iyl (x, y€9).

The relations (1.9) and (1.10) are essential to our discussions in §§3 and 4.
It is noted in [4, Theorem 1.3] that, if § becomes a Hilbert space under the
inner product (1.8), then any norm topologies corresponding to fundamental
decompositions of $ are mutually equivalent. So the follwing definition is
reasonable.

Definition 1.3. A non-degenerate QP,-space {9, (,)} is called a Pontrjagin
space with negative rank n, denoted by I ,-space, if § becomes a Hilbert space
under the inner product of the form (1.8) corresponding to a fundamental de-
composition of 9.

If P in (1.6) is not complete in the norm topology and P is the completion
of B, then we get a IT,-space H=N(+)P, which is called the completion of .
For a non-degenerate QP,-space its any completions are mutually isometrically
isomorphic. Any topological concepts in a II,-space $ are always defined by
the Hilbert norm topology induced from the inner product of the form (1.8)
corresponding to a fundamental decomposition of 9.

1.5. Properties of QP,- and I ,-spaces. In order to refer in later sections,
we here collect some properties concerning QP,- and I7,-spaces without proofs.

Lemma 1.4. Let 9, and 9. be inner product spaces and suppose that there
exists an isometric linear map of 9, onto D,. Then 9, is a QP,-space if and
only if so is 9,.

Lemma 1.5. (c¢f. [1, I. Theorem 11.7]). Any QP,-space is fundamentally
decomposable.

Lemma 1.6. Any subspace W of a QPp-space is a QPn-space for some m,
0=m=n, and the quotient space W/W?° is also a QPn-space.
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Lemma 1.7. (¢f. [1, IX. Theorem 1.4]). Let $ be a Il,-space and £, a
dense subspace of . Then D, contains an n-dimensional negative definite sub-
space.

More generally the following is proved by the same method as in Theorem
1.4 in [1, K].

Lemma 1.8. Let  be a normed space with norm | ||, and 9, be a dense
subspace of 9. Assume that  admits a continuous inner product (,), that 1is,
it satisfies |(x, VIS K|x|l |yl for any x, yED, where K is a positive constant.
If {9, (,)} contains an n-dimensional negative definite subspace, then 9, contains
also an n-dimensional negative definite subspace. Especially {9, (,)} is a QP,-
space if and only if so is {9, (,)}.

Lemma 1.9. Let © be a II,-space, & be a closed subspace of 9, and set
m=r"(R)=n. Then we have:

(1) If R is non-degenerate, then ® [resp. ] is a Il [resp. Il,_,]-space,
and 9 is the orthogonal direct sum of & and &*.

(2) If D is the sum of & and &' in the algebraic sense, then & is non-
degenerate.

(3) If & is degenerate, then the quotient space RK/8° becomes a II,-space
and m<n.

Lemma 1.10. The product space of a QP, [resp. Il )-space and a QP,
Lresp. Il ,1-space is a QP, [resp. Il ,]-space, where n=I+m.

Lemma 1.11. Let 9, and 9, be Il ,-spaces, and U be an isometric isomor-
phism of a dense subspace of 9, onto a dense subspace of 9,, then U is con-
tinuous and can be extended continuously to an isometric isomorphism of 9,
onto 9,.

§2. Unitary representations in (@QP,-spaces and quasi-positive definite
functions.

2.1. Unitary representations of groups in inner product spaces. Let
{9, (,)} be an inner product space. By a unitary representation U={U,, $}
of G in ® we mean a homomorphism g— U, of G to the group of all unitary
operators on 9. {U,, D} is said to be (w)-continuous if the function (x, U, y)
on G is in C(G) for any x, ye9. Let M be a U-invariant subspace of 9,
i.e, U, (M) S M for all geG. Then, restricting each U, (geG) to M, we get
a unitary representation {U,, M}, which is called the partial representation of
{U,, ®}. Let U;={Ug, H;} be a unitary representation of G in an inner pro-
duct space ©; for i=1,2. We define a unitary operator U, (g=G) on the
product space 9, X9, as follows:

@n Uglx, y1=LU x, UP y1 ([x, y]EDXHy).
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Then we get a unitary representation {U,, D:X9,} of G, which is called the
product representation of U, and U, and denoted by U,XU,. If there exists an
isometric linear map = of £, onto $, such that UP=UPr for all geG, then
U, is said to be isometric to U,, and denoted by U,;.Uz. Moreover if 7 is
isomorphic, then U, and U, are said to be isometrically equivalent, and denoted
by U,=U, or U, =U,.

2.2. Quasi-positive definite functions. Let ¢ be a function on G such
that

(2.2) #(gH=¢(g) for all geG.
For any {g., gz, -**, gn}C G define an Hermitian matrix @ (g,, g., -+, gm) of
m-th order as follows :

p(gr'g) g (gr'g.) - ¢(gi'gn)

(g7'g1) 9 (g:'g2) - 9 (g32'gn)
(2-3) ¢(g1’ 82 gm)z ¢ ¢ ¢

¢ (gu'g) ¢ (gu'gs) -+ #(gh'gm)
Definition 2.1. A function ¢ on G with (2.2) is called a quasi-positive
definite function with negative rank n if it has the following two properties:
(@QP) X (P (gy, g2 -, gw))=n for some {gi, g, -, gn}C G,
(QP), X (P(gy, & -, gx))=n for any  {g,, &, -, &4} CC.
The negative rank n of ¢ is denoted by »~(¢).

We denote by P,(G) the space of all continuous quasi-positive definite
functions on G with negative rank n and set QP(G)= k_JOP,,(G). Let L(G) be
the linear space of all functions f on G such that {geG; f(g)+#0} is finite,

and let ¢=C(G) satisfy (2.2). Then on L(G) we can define an inner product
(, )y as follows:

(2.4) (f1, 2= g?eafl(g)m)gﬁ(g”h) (f1, f2€L(G)).
For any geG define ¢, €L(G) by

1 (h=g)
(2.5) e () ={

0 (h+#g).

L(G) is spanned by the family {e¢,; g€G}. In the inner product space {L(G),
(, )¢}, using the notation (1.4), we have @ (g, gz, =, En)=H (e Ecg2+ ** ECapd)
for any {g., g2 -+, gm} C G. So comparing Definition 2.1 with Proposition 1.1 (3),
we get immediately

Theorem 2.2. Let ¢=C(G) satisfy (2.2). Then ¢ belongs to P,(G) if and
only if {L(G), (, )¢} becomes a QP,-space.
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2.3. Relation between quasi-positive definite functions and unitary re-
presentations in quasi-positive spaces.

Theorem 2.3. For any ¢<=P,(G) there exists a (w)-continuous unitary
representation {Ug, D} of G in a QPy-space D such that ¢ is given in the form:

(2.6) #(g)=(fo, Usfo) (g€G),
where f,€9.

Proof. Let L(G),={L(G), (,)s}. Then L(G), is a QP,-space by Theorem
2.2. For any g=G define a linear operator U, on L(G) by U,f=f, (f€9).
It is easily seen that each U, (g=G) is a unitary operator on L(G);, and that

{U,, L(G)4} is a unitary representation of G in the QP,-space L(G)s. Further
for any f,, /.€L(G) and geG

2.7 (fh U8f2)(':= h.%eo fl(h)fa(g"k)sﬁ(h"k)

= > LW)LEG (R gh).

h, kEG
In particular for fi=ew, €L(G) (cf. (2.5))
(2.8) (fo, Ug fo)=0(g) (g€6).

Since ¢ is continuous, it follows from (2.7) that {U,, L(G)y} is (w)-continuous,
and from (2.8) that {U,, L(G);} is our desired representation of G.
q.e.d.

Conversely we have

Theorem 2.4. Let {U,, D} be a (w)-continuous unitary representation of G
in a QP,-space . For any f€ let H(f) be the linear span of {U,f; g€G}

in 9 and define ¢(g)C(G) by ¢(g)=(f, Uyf) (g€G). Then ¢ belongs to Pn(G),
where m=r"(H(f))=n.

Proof. 1t is clear that ¢ satisfies (2.2). Let ¢ be a linear map of L(G)
onto H(f) defined as follows:

T L(G)x'———>r(X)=E§Gx(g)Ung£>(f)-
Then for any x, yeL(G)

(), e = 3 x@yWWUsf, Us )
= 3 2@y M=(x, -
This shows that ¢ is an isometric map of {L(G), (,)s} onto the QP,-space

9(f), and it follows from Lemma 1.4 that {L(G), (,)s} becomes a QP ,-space.
So we get from Theorem 2.2 that ¢< P,(G). g.e.d.
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Theorem 2.5. (1) If ¢€P,(G) and 2>0, then ig=P,(G).

(2) The constant function ¢(g)=c (g€G) is in P,(G) if ¢=0, and is in
P,(G) if ¢<O.

(3) If ¢,€P,(G) and ¢.€P,(G), then ¢=¢,+@,€P,(G), where m=n,
+n,.

Proof. (1) and (2) are obvious. Let us see (3). By virtue of Theorem 2.3,
for each i=1, 2 there exists a (w)-continuous unitary representation U,={U$, 9.}
of G in a QP,-space §; such that ¢, is given in the form ¢,;(g)=(fi, UPf:)
(g€G) for some f;€9;. Consider now the product representation {U,, H,XD,}
of U, and U,. Then we have

(2.9) (Lfy, 2, U LA, £2D=(4, UL f)+(fo, U =61 (@) +6.(8) (g€6).

Since D, X, is a QP 4n,-space by Lemma 1.10, it follows from (2.9) and
Theorem 2.4 that ¢ P, (G) for some m=n,+n,.

§3. Cyeclic unitary representations in /7 ,-spaces and quasi-positive definite

functions.

3.1. Characteristic functions of cyclic unitary representations in I7,-
spaces. Let U={U,, 9} be a unitary representation of G in a II,-space
9,(,)}. f=9 is said to be cyclic with respect to U if the linear span of
{Ugf; g=G} is dense in §. If U admits a cyclic vector f€9, then U is called
a cyclic unitary representation of G and is denoted by the triplet {U,, 9, f}.
The characteristic function ¢ of {U,, 9, f} is defined as follows:

C2Y) $(e)=(f, Us f) (g<€GC).

We say that two cyclic unitary representations U,={Ug, 9, fi} for i=1, 2 are
isometrically equivalent if there exists an isometric isomorphism z of £, onto 9,
such that

3.2) thH=f. and UP=UPr for all geG.

T

In this case we denote by U,=U, or U,=U,.

Theorem 3.1. For each i=1,2 let U,={UP, 9, fi} be a cyclic unitary re-
presentation of G in a Il,-space $; with the characteristic function ¢;. Then

U,=U, if and only if ¢,=¢,.
Proof. Suppose that UIT;UZ. Then by (3.2) we have for any g=G

$:(9)=(1f2, UPS)=(cfs, TUPf)=(1f1, UPf)=¢:(8).

Conversely suppose that ¢,=¢,. Let H(f;) be the linear span of {UPf;; g G}

in §; for 1=1,2. For any x= iZjUg;fleeb(fl), where 2;,€C and g,;,eG
Jj=1

(1=£j<m), we put
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m
(x)= j§ ZjUg;fzeg(fz)-

From the hypothesis we have for any x, ye9(f,) and geG

3.3 (x, U f)=((x), UP f2),
G.9 (z(x), e (M)=(x, 3),
(3.5) t(f)=/fe and (U x)=UPz(x).

Since H(f)*'=H(f)*={0}, it follows from (3.3) and (3.4) that r is regarded as
an isometric isomorphism of $(f;) onto H(f,). By Lemma 1.11 z can be ex-

tended continuously to an isometric isomorphism of 9, onto 9., and hence from
(3.5) it follows that U,=U,. q.e.d.

Let U={U,, , f} be a cyclic unitary representation of G in a II,-space
$ (n>0) with the characteristic function ¢, and $, be the linear span of
{Us,f; g=G} in . Then by Lemma 1.7 there exists an n-dimensional negative
definite subspace 9t contained in 9,. As noted in §1.4, putting B=N*, we have
a fundamental decomposition of 9:

3.6) H=N(+)P.

By <, > we denote the positive definite inner product on § corresponding to the
fundamental decomposition (3.6) (cf. ((1.8)) and by || | the norm induced from
<{,>. Let {ey, e, -+, .} be a basis of M such that <e;, e¢;>=—C(e;, ¢;)=0;; for
1=i=j=n. Since U, (g=G) is unitary, from (1.9) we have for any x, yc9
and geG

3.7) Wex, Ugo=(x, )42 3| (x, Ug-ren) I
3.7y =(x, 2)+2 3 KU, x, el
3.8) <x, U 5= (%, Ug )42 3. (x, e)WUg-ren, )
(3.8 =(x, Uy )42 B <x, ed<en, Uy s

Let x:EllliUgif and y=j2m)‘u,~Uhjf be any elements in §,, where 2;, #;€C and
i= =1

g:, h;eG for 1=i=<!] and 1=j=m. Then the function (x, U, y) on G is given
in terms of two sided translations of ¢ as follows:

(3.9) (5, Ugs)= 3 B b (ai'ghy) (g<0).

Using these notations and relations (3.7)-(3.9), we prove the following two
theorems.
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Theorem 3.2. Let U={U,, 9, f} be a cyclic unitary representation of G in
a Il ,-space  with the characteristic function ¢. Then U is uniformly bounded,
t.e., K=sup{|U,|; geG}<oo, if and only if ¢ is bounded.

Proof. 1f K<oo, then it follows from (1.10) that |¢(g)|=K]|f|* for any
geG. Hence ¢ is bounded. Conversely suppose that ¢ is bounded. As ¢j, ¢,
€M, the function (e¢;, Uye,) on G is bounded by (3.9) and so is |U,e.|l* by
(38.7) for each 1=<k<n. Hence we can take a constant M>0 such that
éIIUgekIIZ<M for all geG. From (1.10) and (3.7) we have U, x||2<(1+2M)| x||?
for any x=9 and geG. Therefore U is uniformly bounded. q.e.d.

Theorem 3.3. Let U={U,, 9, f} be a cyclic unitary representation of G in
a Il,-space © with the characteristic function ¢. Then the following conditions
are mutually equivalent:

(1) U is weakly continuous, i.e., the function <x,Uzy> on G is in C(G)
for any x, yE9.

(2) U is (w)-continuous.
(3) ¢ is continuous.

Especially if G is a locally compact group, then the above conditions are equiva-
lent to

(4) U is strongly continuous, i.e., the map Go2g—U,x€9 is continuous
for any x=9.

Proof. From (3.8) and (3.8) it follows immediately that (1) and (2) are
equivalent, and it is obvious that (2) implies (3). Further if G is locally compact,
then it is shown in [2, Theorem 2.8] that (1) and (4) are equivalent. Thus it
remains to prove that (3) implies (2). Suppose that ¢ is continuous. We con-
sider the following subsets of $:

H,={x=9; the function (x, U, y) on G is in C(G) for any yE9H,},
9,={x=9; the function (x, U,z) on G is in C(G) for any z€}.

It is obvious that 9,S%, and H,SH, by 3.9). If H,£9,, then we can conclude
easily that $=9,. This means that (3) implies (2). So it suffices to prove that
H.SH,. Let x€9,, z€9, g,=G and ¢>0. In view of (3.7) the function |U, x|
on G is continuous. Putting M=|U,-1x|+1, we take a neighborhood W, of g,
such that |[U;-1x[|[<M for any geW,. Since £, is dense in £, we can take
yEH, with ||z—yl|<e/3M. Then the function (x, U,») on G is continuous,
and there exists a neighborhood W, of g, such that for all ge W,

|G, Uy )—(x, U )< 5
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So for any ge W, "W, we have
[(x, Ugo2) — (x, Ug 2) IS1(Uge-1x, 2— ) [+ (x, Ug, ) — (x, Ug 3) |
Hl(Ug-1x, y—2)|
<2Mlz—yll+1(x, Ugy ) — (x, Ug y) | <e.

Hence the function (x, Ugz) on G is in C(G). This shows that x=$, and
$,S9,. Thus the proof completes. q.e.d.

3.2. The correspondence between quasi-positive definite functions and
weakly continuous cyclic unitary representations in /7 ,-spaces.

Theorem 3.4. Let U={U,, 9, f} be a weakly continuous cyclic unitary
representation of G in a Il,-space . Then the characteristic function ¢ of U
is in P,(G).

Proof. Let $, be the linear span of {U,f; g€G} in . Then £, is a
QP ,-space by Lemma 1.7. So our assertion is an immediate consequence of
Theorem 2. 4. q.e.d.

Theorem 3.5. For any ¢=P,(G) there exists a weakly continuous cyclic
unitary representation of G in Il ,-space whose characteristic function is ¢.

Proof. Let §, be the subspace of C(G) spanned by the family {¢,; g=G}
and let L(G)y={L(G), (,)s} (cf. §2.2). Now define a linear map z of L(G)
onto 9, by

. L(G)2a— t(a)= ’%:Ga(h)?ﬁhe%o-

For any x=t(a), y=t(f)€D,, where a, B L(G), we put
(3' 10) (x) y):(a’ ‘B)g$-
Then using (2.2) we have

(x. )= % a@F®¢e =3 FWx(= T a(@) 7).

This means that (x, y) depends only on x and y. So the function (x, ¥) on
HoXH, given by (3.10) is regarded as an inner product on £,, and it follows
from (3.10) that ¢ is an isometric linear map of L(G)s; onto {9, (,)}. Since
¢ P,(G), L(G)y is a QP,-space by Theorem 2.2, and so is {$,, (,)} by
Lemma 1.4. The following relations are seen easily :

3.11) (x, ¢g)=x(g) for any x€9H, and geG,
(3.12) (@, p)=¢(g) for any geG.

If x€9,N 9%, then x(g)=0 for all geG by (3.11). This shows that {,, (,)}
is non-degenerate. For any g€G define a linear operator U, on §, by U, x=x,
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(x=9,). Then it is obvious that each U, (g=G) is unitary, and that {U,, D,}
is a unitary representation of G in the non-degenerate QP,-space {9, (,)}.
Let , be the I7,-space obtained from £, by the completion (cf. §1.4). Then
each U, (ge(G) is extended to a unitary operator on £, which is also denoted
by the same letter U,. Thus we get a unitary representation {U,, $,} of G
in the II,-space 4. Since , is dense in Dy, ¢ is cyclic with respect to
{Ug, D4}. So from Theorem 3.3 and (3.12) it follows that {U,, D4, 8} is a
weakly continuous cyclic unitary representation of G with the characteristic
function ¢. g.e.d.

Let ¢=P,(G). By U(p) we denote always the set of all weakly continuous
cyclic unitary representations of G in I7,-spaces with the characteristic function
¢. According to Theorem 3.1, U(¢$) is an isometrically equivalent class in the
space U(G) of all weakly continuous cyclic unitary representations of G in
Pontrjagin spaces. Theorems 3.4 and 3.5 show that the correspondence
$—U(p) is a bijective map of QP(G) onto the space of all isometrically
equivalent classes in U(G). From now on we shall consider only weakly
continuous representations, so that the adjective “weakly continuous” is omitted.

3.3. Subrepresentations and quotient representations. Let U={U,, 9}
[resp. U={U,, 9, fo}] be a [cyclic] unitary representation of G in I ,-space 9,
® be a U-invariant closed subspace of § and set m=r"(8). Then &* and &°
are also U-invariant. First suppose that & is non-degenerate. As noted in
Lemma 1.9 (1), & and &* become II,- and II,_,-spaces respectively, and  is
the orthogonal direct sum of & and 8. Let f, and f, be the orthogonal pro-
jections of f, in & and ®* respectively. Then we say that the partial re-
presentations U,={U,, &} [resp. U,={U,, &, fi}] and U,={U,, 8&*} [resp. U,=
{U,, 8, f,}] are subrepresentations of U={U,, } [resp. U={U,, $, fo}]1, and
that U is the orthogonal direct sum of U, and U,. In this case we denote by
U=U,(+)U,. Any [cyclic] unitary representation U’ of G is said to be
contained in U if U has a subrepresentation which is isometrically equivalent
to U'.

Next suppose that & is degenerate. Then the quotient space £=R/K° becomes
a Il ,-space by Lemma 1.9 (3). For any g&G define a unitary operator U'g
on & by

(3.13) Ue(z(x)=7U,x) (x€8),

where 7 is the canonical map of & onto ®. Then we get a weakly continuous
unitary representation ﬁ:{ﬁg,ﬁ} of G in the IT,-space ®, which is called
the quotient representation of U determined by the U-invariant subspace & The
partial representation {U,, & is isometric to (o, R : {U,, S?};— (0, £}.

Under these terminology, we obtain easily

Theorem 3.6. Let U={U,, 9} be a unitary representation of G in a II,-
space . For any f€9 let D, be the closed linear span of {U,f; g€G} in
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and define ¢<QP(G) by ¢(g@)=(f, U,f) (g€G). If 9, is non-degenerate, then
the subrepresentation {U,, Dy, f} of U belongs to U(g). While if 9, is
degenerate, then the quotient representation (o, cf),, n(f)} of U determined by
O, belongs to U(@), where  is the canonical map of 9, onto H,=9,/90.

§4. Product representations and normal decomposition of quasi-positive
definite functions

4.1. Product representations. Let ¢=P,(G) and {U,, ®, f1€U(¢). By
H(g) we denote the linear subspace of C(G) consisting of all functions x (g) given
in the form: x(g)=(x, U, f) (gG) for some x=§. It is clear that H(¢) does
not depend on the choice of {U,, §, f}€U(4). Further we can see easily

Lemma 4.1. Let ¢=P,(G), {U,, 9, f1€U($), and {Ug 9’} be a (w)-
continuous unitary representation of G in a quasi-positive space {9',(,)}. If
{U,, -‘b’};{Ug, 9} and ©(f)=f for some f'9’, then H(p) coincides with the
space of all functions x(g) given in the form: x(g)=(x',Ugf’) (g€G) for
some x'€9’.

For ¢= P,(G) assume that it is decomposed as follows:
“.1) o=¢+0,

where ¢ P,(G) and =P, (G). Then by Theorem 2.5 (3) we have n=Il+m.
Throughout §§4.1 and 4.2 we use the following notations:

U={Up, 9, f}€UW), U,={UP, D, /}€U®), H,=H(p), H,=H(@),

H=the product I7,,,-space P, XD,, [=[fi, L1ED XD,

{U,, } =the product representation of U, and U,,

f=the closed linear span of {U,f; g€G} in §,

f=the quotient space &/8°,

r=the canonical map of & onto &, f==(f),

{Ug, 8, f}=the partial representation of {U,, §} with the cyclic vector f,

{17,,, 8, f}=the quotient representation of {U,, §} determined by &
with the cyclic vector f

Then {{,, & 7} €U(¢). Indeed for any geG

4.2) (f, U, )= (f), U, N)=(f, Uy f)
=(f1, Ug)fl)‘l'(fz; Ufgm fz):¢(g)+0 (g)=¢ (g).

Since {U,, R, f};.{ﬁg, f?, 7}, it follows from Lemma 4.1 that H(¢) coincides
with the space of all functions x(g) given in the form:

4.3) x(@)=([n1, 1), Ug N=(p1, UP f)+(n2, UP fo) (g€G6),
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where [, »,]€8. In particular, as (y,, U f;)e H; (i=1, 2), we have
(4.4) H(¢)sH,+H,.

In the next theorem we give a necessary and sufficient condition for any representa-
tion belonging to U(¢) to be contained in the product representation {U,, $}.

Theorem 4.2. The following conditions are mutually equivalent:
(1) {U,, 8} is a subrepresentation of {U,, D},
(2) H(¢)=H,+H, (algebraic sense in C(G)),
(3) H,SH(¢) and H,SH(g).
If (1) holds, then {U,, &, f}eU(p).

Proof. Suppose that & is non-degenerate. Then © is the orthogonal direct
sum of & and ®*. Let x;(g)=(;, UY f;)eH;, &9, for i=1,2, and [, 7.]
the orthogonal projection of [£,, &,]1€9 in ® Then by (4.3) we have

11 (@)t x.()=(L&1, &1, Ug NN=(Un1, 721, Ug HEH(P),

and H,+H,SH(p). Therefore it follows from (4.4) that (1) implies (2).

Conversely suppose that (2) holds. For any [, §,]€9 there exists [, 7,18
such that

(L&, &1, Ug =&y, U f)+(&, UR f)=(Iny, 7:], U /) (8€6).

So [&,, &]—[7,, n.]JER*, and we have HD=R-+8*. Hence £ is non-degenerate
by Lemma 1.9 (2). Thus (2) implies (1). From (4.4) it is clear that (2) and (3)
are equivalent. The last assertion follows from (4.2). g.e.d.

4.2. Normal decomposition of quasi-positive definite functions. The
decomposition (4.1) of ¢ is said to be normal if n=I[+m. In this case ¢ and ¢
are called normal components of ¢.

Lemma 4.3. If (4.1) is a normal decomposition of ¢, then & is a Il ,-space,
and K* is a Hilbert space.

Proof. Since ¢e€P,(G) and {U,, ®, fleU(g), & is a I,-space. Suppose
that §°= {0}. Then by Lemma 1.9 (3) ® must be a T ,-space for some k<I+m.
But this contradicts to the assumption n=I[+m. Therefore {&'={0}, R=RN is a
IT ,-space, and &* is a I1,-space, i.e., a Hilbert space. g.e.d.

The next theorem follows immediately from Theorem 4.2 and Lemma 4. 3.
This is a generalization of Theorem 4 in [3].

Theorem 4.4. [f (4.1) is a normal decomposition of ¢, then we have:

(1) The product representation {U,, $} of U, and U, is the orthogonal
direct sum of {Ug, & and {U,, 8&*}, where {Ug, &, f1€U(@) and {Ug, &'} is a
unitary representation in the Hilbert space §*.
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(2) Any unitary representation belonging to U(g) is contained in {U,, D}.
(3) H(¢)=H,+H,, and especially H;.SH(¢) for i=1, 2.

Theorem 8 in [3] holds also for our case as follows.

Theorem 4.5. If (4.1) is a normal decomposition of ¢, then the following
three conditions are mutually equivalent:

(1) f is cyclic with respect to the product representation {U,z, D}, and
{Ug, , f1€U(9).

(2) U, or U, are contained in any unitary representation belonging to U (),

(3) H(¢) is the direct sum of H, and H,, ie, H(¢)=H,+H, and
H, N H;={0}.

Proof. It is obvious that (1) implies (2). Suppose that (2) holds. Let V=
{(Ve, 9, fY€U(¢) and assume that U; is contained in V. Then V has an
orthogonal decomposition as follows :

VZ{V}D, ' ;) fi} (+) {Vg): ‘ é) fé}r
where {V, 9, fi}=U,. Moreover we have for any geG
d(@)=(f", Vo f)=(f1, V@ )+ (f5 V@ f=¢ (@) + (fL, VP 1),

and (f3, V@ fi)=9¢(g)—¢(8)=0(g).
So it follows from Theorem 3.1 that {VY, &), fi}=U,. Thus we get

{Ug, §y={UP, D3 xX{UP, Dot ={VY, D} (H) VP, D} ={V,, 9},

and f=[f, /.19 corresponds to f’€$’ by this isometric isomorphism. Since
f' is cyclic with respect to {V,, 9}, f is cyclic with respect to {U,, $}, and
{Ug, ®, f1€U(¢). Therefore (2) implies (1). By virtue of Theorem 4.3 (3), in
order to prove that (1) and (3) are equivalent, it suffices to show that &*={0}
if and only if H,N\H,={0}. Let [&, —&,] be a non-zero element in &*‘. Then
for all geG

([&1, —&.], Ugf):<51: U,(g])fl)_(gz; U?)fz):'o-

So x(g)=(&,, UP fi)=(&,, UP f,)e H N H,. As f, and f, are cyclic, x(g)=0 for
some g=G, and hence H, N\ H,# {0}. Conversely if x€H, \H, and x=0, then
there exists a non-zero [§,, §,]€9 such that x(g)=(&;, U f;) for all geG and
t=1, 2. Hence ®* contains [£,, —&,1#0. Thus ®+={0} if and only if H,NH,
={0}. q.e.d.

4.3. Normal components of quasi-positive definite functions. Let ¢<
P.(G) and U?={U,, 9, f}=U(¢). By N(#) we denote the set of all normal
components of ¢, that is, ¢€QP(G) is in N(¢) if and only if ¢=P,(G) and
¢p—¢pEP,_,(G) for some 0=m=n. Let A be a selfadjoint operator on 9, and
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set B=]—A (I=the identity operator on ). On $ we define new inner pro-
ducts (x, y)4 and (x, ¥)s (x, y€9) as follows:

(x; y)A:(Ax’ y):(x: Ay)
(x, y)=(Bx, y)=(x, y)—(x, ¥)a.

Then A is called a quasi-positive operator with negative rank m, 0<m=<n, if
{9, (,)4} is a QP,-space and {9, (, )z} is a QP,_n-space. The negative rank
of A is denoted by 2~ (A). Let us denote by A(U?) the set of all quasi-positive
operators A on § with X" (A)=n commuting all U,, gG. The next is a
generalization of Theorem 5 in [3].

Theorem 4.6. For any ¢€P,(G) and U?={U,, D, f}€U($) there exists a
bijective map p of A(U?) onto N(¢) such that for any A€ A(U?) p=p(A)e N(¢p)
s given in the form:

(4.5) P(@=(Af, Us ) (g€G).
Proof. Let AcA(U?), B=I—A, m=X"(A), and put [=n—m. Then
WUgx, Ug y)a=(AU, x, Uy y)=(U,; Ax, Uy 3)=(Ax, y)=(x, y)a,
Uex, Uy »)p=Usx, Ug y)—(Ug x, Ug y)4=(x, 3)—(x, y)a=(x, ¥)z,

where x, y€9 and g G. Hence each U, (geG) is unitary with respect to the
both inner products (, ), and (,)z. Let &, be the linear span of {U,f; g=G}
in . Since $, is dense in 9, it follows from Lemma 1.8 that {§,, (, )}
becomes a QP,-space and {9, (,)s} a QP,-space. Applying Theorem 2.4 to
the (w)-continuous unitary representations {U,, 9} of G in {9, (, ). and
{9, (, )5}, we have for any geG

¢ (g)=(f, Uy fla=(Af, Uy )€ Pn(G),
0(g)=(1, U Ne=(f, Ug ))—(1, Us Na=9(8)—¢(g)€ P.(G).

Thus ¢=N(¢) and we get a map p of A(U?) to N(¢) defined by (4.5). For
A, A’ A(U?) assume that (Af, U, f)=(A'f, U, f) for all geG. Then for any
x=24U,, f€9,, where 2,&C and g,eG (1<i<k), we have (Ax, U, f)=
A ;é:lUgf) for all geG, and it follows that A=A’, because A and A’ are
continuos and §, is dense in $. Thus it is proved that p is injective. Finally
we show that p is surjective. Let ¢ =P, (G) be in N(¢) and =¢—¢<P,(G),
where /[=n—m. By Theorem 4.4 (3) there exists h€® for which ¢(g)=(h, U, f)
(geG). Let us define two linear maps z and 7/ of L(G) (cf. §2.2) to , and
respectively by

T L(G)Ba'——w'(a):ggaa(g) Uy €9,

. L(G)D2a— r’(af)ZEEZGoz(g)U,z hed.
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Then we have (z(a), U; h)=(z'(a), U, f) for any a€L(G) and g€G. If 7(a)=0,
then 7/(a)e9i=1{0} and hence z'(a)=0. So there exists uniquely a linear
map A of D, onto 7/(L(G)) defined by Ar(a)=t'(«) for any a€L(G), that is,

AT a(@U, =X a(@Uyh (asL(()).
8EG 8EG
Then we have for any geG
4.6) AU,=U;A on £,,

4.7) ¢(@)=(h, Uy N)=(AS, Ug f).

Moreover putting B=I—A, we have for any x=z(a), y=7(p)eD, (a, f€L(G))

(4.3) (x, M)a=(Ax, y)=(x, Ay)=g_;eaa(g)73(—1@¢(g"k)=(a, By

4.9 (x, y)s=(Bx, y)=(x, y)—(x, y)Fg'kEeaa(g)ﬁ_(—le_)ﬁ(g“k):(a, Bs-

(4.8) [resp. (4.9)] shows that ¢ is an isometric map of {L(G), (,)s} [resp.
{L(G), (, )%}] onto {D, (, )a}Lresp.{H, (, )s}]. Since ¢ P,(G) and € P,(G),
it follows from Theorem 2.2 and Lemma 1.4 that {9, (, ).} is a QP,-space
and {9, (,)s} a QP,-space. Suppose that A is bounded on £,. Then A can
be extended to a selfadjoint operator of §, denoted also by A, and {9, (, )} and
{9, (,)s} become QP,- and QP,-spaces respectively by Lemma 1.8. Further
from (4.6) and (4.7) it follows that A€ A(U?) and p(A)=¢. So p is surjective.
Thus it suffices to prove that A is bounded on §,. If n=m=I[=0, then 0=
(Ax, x)=(x, x)=|x|* for any x€9,, so that A is bounded. So we may assume
without loss of generality that n=m>0. Let M be an n-dimensional negative
definite subspace of §, and P the orthogonal complement of N in £,. We denote
by <,> the positive definite inner product on £, corresponding to the funda-
mental decomposition RN(+)P of H,, and by || | the norm induced from <, >
(cf. (1.8)). We take a basis {e;; 1=i=n} of % such that (e;, ¢;)=—0;; for any
1<i<j=<n. Then by (1.9) for any x€9,

(Ax, x>=(Ax, x)+2 él(x, Aey) (e, x).

So by (1.10) we have for any x9,
(4.10) [<Ax, x>|=1(Ax, x)|+ K| x|l?,

where K, is a positive constant. On the other hand, since £4={9D,, (, ) is a
QP ,-space and is fundamental decomposable by Lemma 1.5, 94 is decomposed
as follows:

@g=mA('i‘)AiBA,

where M, is an m-dimensional negative definite subspace and P, a non-negative
subspace. For any x€$, we put x=x"+zx* (x~ R, x*€PB,). Then for any



88 Kokichi Sakai

x€9, (Ax, x)=(Ax*, x*)+(Ax", x7) and (Ax*, x*)=0. As N, is finite dimen-
sional, we can find a positive constant K, with the properties :

4.11) [(Ax, x)|=(Ax*, )+ K| x]2 (x€9,),
(4.12) [x*I=Kllxll (x€9y).

Similarly using the fact that {9, (, )s} is a QP,-space, we can take a positive
constant K, such that for any xeP,

(4.13) 0=(Ax, X)=K;|x|*

Combining the inequalities (4.10), (4.11), (4.12) and (4.13), we have [{Ax, x)|<
K| x|I* and hence [<Ax, y>|=2K| x| Iyl for any x, y9,, where K is a positive
constant. Therefore A is bounded on $,. This completes the proof.

g.e.d.

§5. Examples of quasi-positive definite functions

5.1. Bounded quasi-positive definite functions. Let ¢=C(G) be a positive
definite, i.e., ¢ Py(G). If the linear span {¢,; geG} in C(G) is finite dimen-
sional, say n-dimensional, ¢ is said to have positive rank n, and we put
r*(¢)=n. It is obvious that ¢ P,(G) has the positive rank » if and only if
the cyclic unitary representation of G in a Hilbert space with the characteristic
function ¢ is n-dimensional, and that —¢e€P,(G) for any ¢<P,(G) with
r*(¢)=n. So from Theorem 2.5 we have

Theorem 5.1. Let ¢€P,(G) with n=r*(¢)<co. Then for any < P,(G)
the difference ¢=0—¢ is a bounded quasi-positive definite function with r (¢)=n.

The converse of Theorem 5.1 holds for amenable groups, e.g., commutative,
solvable or compact groups.

Theorem 5.2. For an amenable group G any bounded ¢&P,(G) is given in
the form: ¢=0—¢, where 0, $p<Py(G) with r*(P)=n.

Proof. Let U={U,, », /}€U(¢). Since U is uniformly bounded by
Theorem 3.2, it follows from Theorem 1 in [6] that U is decomposed as
follows: U={U,, R, fi} (+){U,, B, fo}, where N is an n-dimensional negative
definite subspace and P a positive definite subspace. Put 6(g)=(f,, U, f.) and
—¢(@)=(f1, U fi) (g€G). Then € Py(G), —¢=P,(G) and ¢=0—¢. As N is
negative definite, the inner product space {?t, —(, )} is an n-dimensional Hilbert
space, and {U,, N, f,} is regarded as a cyclic unitary representation of G in the
Hilbert space {R, —(,)}. So ¢=P,(G) and r*(¢)=n. qg.e.d.

5.2. Unbounded quasi-positive definite functions. Now consider the
2-dimensional vector space C? with inner product (, ) defined by

GRY)] (u, V)=u, Dyt us v, for =%uy, us), v="%vy, v,)=C
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Then 9!={C? (,)} becomes a II,-space. Let X(g)eC(G) be a non-unitary
character on G, that is, it satisfies the following conditions:

(5.2) X(gh H=x(g)/X(h) for any g, heG,
(5.3) X(g ) #X(g) for some geG.

For any g€G we define a linear operator U, on $} by

for u="%(u,, u,)eC®.

@ul ]
X(g™Hus

Then it is easily seen that each U, (g=G) is a unitary operator on ${ and that
U,={U,, 3} is a weakly continuous unitary representation of G. Moreover
u=%u,, u,)€C? is cyclic with respect to Uy if and only if u,u,#0. Hence by
Theorem 3.4 the function ¢(g)=(u, U,u) (g=G) belongs to P,;(G) for any
u="(uy, u,) with u, u,#0. Putting &, u,=a+i8 (a, BER), we have

¢(@)=, Uguw)=a@(g)+x(g")N)+pi((g)—x(g™)) (g€0).

Theorem 5.3. Let X(g) be a non-unitary character on G. Then the follow-
ing function ¢ belongs to P,(G), and is unbounded:

$(@=a(g)+x(g™))+pi(x(g)—x(g™)) (g€G),
where a, € R with a*+ B2=+0.

Ugu———[

Now let X(g) be a unitary character on G and f(g)eC(G) be a non-zero
real character on G, that is, f(g) is a non-zero real function with the following
property :

(5.4) f(gh)y=f(g)+f(h) for any g, heG.

Using X(g) and f(g), we define a linear operator U, (g€G) on H} by
)Tg) ul—im)f(g) Uy ]
)Tg)uz

Then U, is unitary and U, ,={U,, 3} is a weakly continuous unitary repre-
sentation of G. Moreover u="%u,, u,)e€C? is cyclic with respect to Uy, ; if and
only if u,#0. For any u=%u,, u,) and g G we have

Ugus[ for u="u,, u,)eC?

(u, Ugu)=(u, u)X(g)+u,u1,iX(g) f(g).
Thus we get

Theorem 5.4. Let X(g) be a unitary character and f(g) be a non-zero real
character on G. Then the following function ¢ belongs to P,(G), and is un-
bounded :

$(&)=X(g)(at+pif(g)) (g€6),
where a, BER with B>0.
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In the author’s paper [7], we shall give the general form of quasi-positive

definite functions on commutative groups corresponding to indecomposable cyclic
unitary representations in I7,- and I7,-spaces.
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