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Introduction

The present paper is a direct continuation of our previous work (Mochizuki-
Uchiyama [11]) and deals with a spectral theory for the Schridinger operators
—4+V(x), in exterior domain £ of R", with some real “oscillating’’ long-range
potentials V(x). Throughout this paper, the same notation as in [11] will be
used (the list of the notation is given in §1 of [11]), and formulas, lemmas, etc.
given in [11] will be quoted as (1.2.3), Lemma I.2.3, etc..

Let L be a selfadjoint realization of —4-+V (x) in the Hilbert space 4 =L?(2),
and €(1), AR, be the spectral measure for L (the conditions on V(x) required
in this paper will be summarized in §1). Then, as is proved in [11], there
exists a real number A; depending on the asymptotic behavior at infinity of
V(x) such that the operator L restricted in &((A4;, o)) 4 is absolutely continu-
ous. Our purpose of the present paper is to obtain a spectral representation for
this (or more restricted) part of L. Namely, we shall establish the existence of
a unitary operator F. from &((45, ©))H onto I 5=L*((As, o0); L*(S"™?))
(S™~! being the unit sphere in R®) which diagonalizes L. In general A;=A4;
(cf., §4).

Spectral representations (or eigenfunction expansions) for the Schriodinger
operators were initiated by Povzner [13], [14] and Ikebe [2]. In these few
years, their results have been generalized to short-range potentials by Jiger [6],
Agmon [1], Kuroda [7] and Mochizuki [10], and to “non-oscillating ’ long-range
potentials by Ikebe [3], [4] and Saitd [15], [16] (cf., also Pinchuk [12] and
Isozaki [5]). Among these works, this paper is on the same line with Jiager [6],
Ikebe [3], [4] and Saitd [15], [16], and will generalize results of these works
to “oscillating” long-range potentials.
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In Jdger’s theory, the operator &. is obtained in the following way.

S Rl AT (R £) (1), 20,

0.1 (.NHQ& 0=

where u=®R;.;,f is the outgoing [incoming] solution of
0.2) (—44+V(x)—Du=f(x) in 2

verifying the outgoing [incoming] radiation condition

n—1
2r

0.3) UELL (@) and But(Fiv T+ YuE Lt ron(@)
for some ¢>0. Here L:(£2), p=R, denotes the space of functions f(x) such
that (14 |x|)*f(x)eL?(2). Of course u is required further to satisfy a suitable
(Dirichlet or Robin) boundary condition on 02 if £2+R" This result was
modified by Ikebe and Saitd in the case of “non-oscillating” long-range potentials
(cf., Remark 5.2). They find, roughly speaking, appropriate real modifiers
X(x, A) and obtain F. by (0.1) with e*i¥ir replaced by e iWir+X¥vZ.b1  For
“oscillating”” long-range potentials, however, the radiation condition (0.3) does
not work well, and it becomes difficult to obtain %. by the above type of
modification of e*var,

In the previous paper [11] we have obtained a new formulation of the
radiation condition which is applicable to a wider class of potentials. It has
the form

0.4) UELL —ay(2) and 0, u+tk(x, Ziio)uEL(z—Hﬁ)/?(Q)

for some «, 8>0, where k(x, 1+10) solves the Riccati type equation

©.5) 3, b+ i—r‘—lk—kur V(x)—2=0 (r-1%) (5>0)

for r=|x| large (the concrete form of k(x, A+70) will be given in §1). In this
paper we shall make use of this new radiation condition to modify the above
mentioned results, that is, we shall show that the operator <. can be obtained
in the form

(0.6) (F./)4 %)= \/]» lim eJbsd2eiv s (R, o f) (r%)

T

for 2> /4;. The principle of limiting absorption established in [11] will guarantee
the existence and some convenient properties of Rj.;, f-

Note that [4;, o) does not in general cover the essential spectrum of L.
In this sense it remains some ambiguousness in our theory. The difficulty is
caused by some bad influence of the oscillation at infinity of the potential V(x).
In fact, in our case, the operator L may have positive eigenvalues though V(x)
itself behaves like O (r~') at infinity (see examples of [11]). On the other hand,
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our theory includes a new result for ‘“non-oscillating” long-range potentials
(Corollary 5.3). This is the case that we can choose 4;=0.

The contents of this paper are as follows. In §1 we first summarize the
main results of [11] in Proposition 1.1, and then prepare some additional
propositions which easily follow from Proposition 1.1. In §§2 and 3 we con-
struct the operator . and prove its isometry. The unitarity of <. is proved
in §4. In §5 we give several corollaries. Finally, in §6 we prove the unitary
equivalence between L restricted in £((A45, c0))% and the selfadjoint realization
L, of —4+ 15 in the Hilbert space 4,=L*(R").

§1. Assumptions and Preliminaries

Let 2 be an infinite domain in R™ with smooth compact boundary 0% lying
inside some sphere S(R.)={x;|x|=R,}. We consider in £ the Schrodinger
operator —Jd+V(x), where 4 is the Laplacian and V(x) is a potential function.
We assume :

Assumption 1. V(x)=V,(x)+ V,(x), where V,(x) is a real-valued function
belonging to a Stummel class Q, (#>0), and V,(x) is a real-valued bounded
measurable function in £2. Moreover, the unique continuation property holds for
both —4+V(x) and —4+V,(x).

Assumption 2. V,(x) is an “oscillating” long-range potential such that for
some a=0 and 1/2<4,;<1 (j=1, 2),

(1) Vi(n)=0(),

(i) 3, Vi(x)=0(@™"),

(i) 82V (x)+aV (x)=0(@"1%),

(iv) (V—%3,)V,(x)=0 (r~1"%),

(v) (V—%0,)0,V,(x)=0("1"%),

(Vi) —r AV, (x)=(V—23,)-(V—%3,)V,(x)=0 (r~1-2%)
as r=|x| - oo, where #¥=x/|x|, 3,=d/d|x|, V is the gradient and A is the

minus Laplace-Beltrami operator on the unit sphere S™-!. On the other hand,
Vs(x) is a short-range potential such that for some 0<d,<1

(vil) V(x)=0(@17%) as r=|x|—oo.

In the following we put d=min{d,, d,, o}. Note that the condition ;<1
(j=0, 1, 2) does not restrict the generality.
We put

(1.1 E(p)=lim sup % o, Vi()+TV (1)} for 730,

and define 4,, >0, as follows:

(1.2) A,=E (min{de, 2})+a/4,
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where a=0 is the constant given in (iii) of Assumption 2. As is discussed in
[11;88], A4, is non-increasing and continuous in ¢>0. Especially, we have

(L.3) A;z4,,=E@2)+a/4  for any ¢>0.

Let k(x, 2+10) be a smooth function of (x, )€ B(R,)X(A,/, ), B(R))=
{x;|x|>R,} (R,>R, should be chosen sufficiently large, see [11; §8]),
defined by

'—7787‘V1 (X) .
42— Vi(0)} 7

1.4, k(x, A% i0)=Fi/I—7V,(x) + ”2:1 +
(1.5) p=42/(42—a).

Further, for any g€ R and GC 2, let L2(G) denote the space of all functions
f(x) such that

(L.6) 1A 0e=, (el f(0ld e <oo.

If p=0 or G=4, the subscript ¢ or G will be omitted.
Now let @, 8 be a pair of positive constants satisfying

(L7 0<a+p=20 and O0<a=p=l.

Let 2> 4g, (=4;5) and f€Li.p,(2), and let us consider the exterior boundary-
value problem

(—4+V(x)—Du=f(x) in 2
(1.8)

u or
Buz[ ]=O on 08,
v-Vu+d(x)u

where v=(y,, -+, v,) is the outer unit normal to the boundary 02 and d(x) is
a real-valued smooth function on 92.

Definition 1.1. For solutions u€H2.(2) of (1.8), the outgoing (+) [or
incoming (—)] radiation condition at infinity is defined by

1.9). wEL —wp(2) and O,utk(x, 2£i0uc L yp.(B(RY)),

where a, 8 are any constants satisfying (1.7). A solution u of (1.8) which also
satisfies the radiation condition (1.9), [or (1.9).] is called an outgoing [or
incoming] solution.

Remark 1.1. If §>1/2, i.e., §,>1/2, we can choose f=1.

The main results of our previous paper [11] can be summarized in the
following proposition.
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Proposition 1.1. (a) Let K be a compact set of (Ag., ). Then for any
2€K and f€Liipp(2), (1.8) has a unique ouigoing [incoming] solution u=
u(x, A+£i0)=R,.4 f, which also satisfies the inequalities

(1.10) ol -1-a 2= Cll flaepy res
(1.11) [Vu+ 2k (x, 22100 ull c14p /2. Brp =Cll flla+ 225
where C=C(K)>0 is a domain constant independent of f.

(b)) u=Ru.if is continuous in L, ), (2) with respect to (A, f)E (A, o)
X Li1py2(2).

(c) Let Rfnp: Li+arn(2) — Ly p12(R2) be the adjoint of R;.s. Then we have
(1.12) R¥nf=Razinf for f€ L(21+p)/2(9)-

(d) Let L be the selfadjoint operator in the Hilbert space H=L*(2) de-
fined by
D(L)y={uc H*(2); Bulag=0}

1.13
( ) { Lu=—4du+V(x)u for ue (L),

and let {€(2); A€ R} be its spectral measure. Then for any Borel set e € (Agz, )
and f, g€ L5, (2) C K, we have

(.14 (€@, D=5z | Raviof~Riosof, £)dR
1
=5 | {(Ranf, D~ Rico@)}dh

Here (,) denotes the inner-product in H, or more generally the duality between
Ly 02(2) and Lyay(2):

(1.15) (. 9=, /(gCDdx.

(e) The part of L in &€((A;, )% is absolutely continuous, i.e., (EQ)f, f)
for fedt is absolutely continuous with respect to the Lebesgue measure on
A>A4;.

Remark 1.2. In this proposition we summarized results of [11] in a slightly
modified form. In [11] the pair «, B was chosen for each compact set K of
(45, 00) so as to satisfy (1.7) and the inequality min{2;2€K}>4g,. On the
other hand, in this proposition we apriori gave «, § satisfying (1.7) and assumed
K& (4g),, ). Note that there exists no essential difference between these two
formulations. In fact, by the continuity and non-increasingness of A, in ¢>0,
it follows that for any N>0 there exists a pair a=a(N), B=p(N) satisfying
(1.7) and the inequality (A;=) Ag, < A;+N"1
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Remark 1.3. By (b) and Proposition 1.2.1 we easily have Yu, and hence,
(V—X%0,)u being also continuous in L2, .,,(2) with respect to (1, (s, )
X Laspn(2).

As a corollary of the above proposition we can prove the

Proposition 1.2. Let A>Ag,, fE€L{pn(R) and u=u(x, 2+£i0)=R; f-

Then there exists a sequence ry,=r,(4, f)>R, (p=1, 2, ---) diverging to oo as
p — oo such that

(1.16) lim Ss< <l T b (x, 20)ul*) dS=0,
p

pooo

and we have for this {r,}

A1) R~ s )

— lim [, VIV @ utx, 2xiokds
Srpd

P T
.1 )
=lm—r 2= Vi(rp )} urpe, 2£i0) IR,

where | |» is the norm in the Hilbert space h=L*(S™"') of all square integrable
Sfunctions over the unit sphere S™ 1.

Proof. The existence of the sequence »,=7r,(4, f) satisfying (l.16) is obvi-

ous from (a) of Proposition 1.1. By the Green formula in 2(r,)={x€2;
|xl<rp},

* Smr,,)(“f_fﬁ)dx: —T_Ss«p) {u (0, @)—@,u) @t} dS
:—SS( A @, kB (x, TET0) u)— (@ urbk (x, 21 0) @) dS
p

q:S {k(x, 2 0) — F(x, AET0)}|u|?dS.
Srpd

Since «=p in (1.16), the first term of the right side tends to 0 as p— co.
Thus, noting

[ (W~ dx=(Rerif~ Re-sn, )

and FIm k(x, 2+10)=+"2—»V,(x), we obtain (1.17). g.e.d.

Our spectral representation theorem will be based on the relation (1.17).

Definition 1.2. We define the smooth function p=p(x, 2+i0) in B(R,)
X (A,;,, o0) as follows:
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(1.18) o (x, 2+i0)

= rrig; VI=yV,(sZ)ds+ l;—l log r+ % log{A—7V,(x)}.
1

Lemma 1.1. We have

(1.19) 0-p(x, 2+i0)=k(x, 2£10),

(1.20) p(x, A+i0)=p (x, A=10),

(1' 21) Iep(z.liiO)i:eRe{l(z’.ZiiO):r(n—l)IZ {1__7] Vl (x)} 1/.1’

(1.22) e-"("“i“):r""{X—r)Vl(x)}"2 e-F(z,z—;ttof,

(1.23) 3o+ ":1 3, 0—(@0, o+ V()—A=0 ("),  as r— oo,
(1.24) (V—%5,) p=0 (r"%), as r— oo,
(1.25) —r2Ap=(V—£3,)-(V—£3,)p=0 (r-*%2), as 7 — oo

Proof. (1.19)~(1.22) are obvious from the definition of o(x, 1+:0). (1.23)
follows from (i), (ii), (iii) and (vii) of Assumption 2. As for the details, see
Proposition 1.8.2. (1.24) follows from (iv) of Assumption 2. In fact, we have
noting d,<1

(V_far).o

r ZoLV—29)ViI(sD)s o, = (V29 Vi(x)
Ry 2{A—nV,(sx)}V? 4H{a—qV,(x)}

=¢ir"§

=[0G sdst0 @ m=00%).
Ry

Finally, (1.25) can be proved by use of (iv) and (vi) of Assumption 2:

—r?Ap
(T psPAVI(sE)  p*l(VN—%0,)V.[*(s%) 7.,
= SRl[Z{Z—r)V,(sfc')}”z L=V, (s2)} " ]Sds
i pr AV, (x) 7 |(N—%0,)V,(x)|*

42—V (x)} 4a—pVi(x)}?
=r2{ 0G40 (574 stds

+0 (r~17%2)40 (r~2"22)=0 (r~-%%), g.e.d.
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Proposition 1.3. Let 2, f, u and {r,} be as in Proposition 1.2. Then
we have

(1.26) })im%lle""’l’"““’u (rpe, A£i0) |2

:2—]7:[;(9{14.1'0](_911—1'0.}‘! f)'

Proof. Obvious from (1.17) and (1.21). g.e.d.

It now follows that

—lnfe"‘"ﬂ')u(r,y): ep(rp«,ZLiO)u(rp.’ 2+10) (p=1, 2, --)

T

is bounded in h, and hence, contains an h-weakly convergent subsequence. In
the next §2 we shall consider the special case that §,>1/2, i.e., 6>1/2, and

ey (rp-)} strongly converges without taking any subsequence.

show that { \/17_7
However, it seems difficult to show the strong convergence of this sequence for
the general case d,>0.

In the rest of this section, we shall show that if we choose a<49,—2 in

1

.7, { 7=
does not depend on the choice of {r,} satisfying (1.16) (Proposition 1.4). These
properties will play an important role in §§3 and 4 to show the existence and
unitarity of the generalized Fourier transformation &, (cf, Lemma 3.2). Note
that (vi) of Assumption 2 is used only to show (1.31) of Lemma 1.2 and
Proposition 1.4, and hence, in §2 we do not make use of this condition.

For ¢=¢(%)eh and A>4,,; let us put

ef‘<’p"u(7‘p~)} itself weakly converges in h, and the limit function

1.27)  wgx, A£i0)=( VT et G (X)p(r), Ixl=r>R,
: o (x, 1i0) =

0! |x[=7’§R17

where ¢(r) is a smooth function of r>0 such that 0=¢(#)=1, ¢()=0 for
r<R,+1 and =1 for r>R,+2.

Lemma. 1.2. Let 2> A,;,,. Then we have for ¢<h

(1.28) V=0 (r~""1/%), as 7 — oo,
(1.29) 0,v4+k(x, A£i0)v;=0 in B(R,+2),
(1.30) Byg=0 on 0£.

Movreover, we have for ¢ D(A)Ch
(1.31) 2s=(— A4+ V()= vy=0 (r-+1+2drz) as 7 — oo,

where §=min {0, 26,—1}.
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Proof. (1.28), (1.29) and (1.30) are obvious from the definition (1.27) of v,.
By a simple calculation we have

(1.32) g¢=g¢,1+r'zz‘lv¢,
(1.33) gon= {00+ "0, 0@, 0+ V—2}v,
o9+ 10,0200 0,00 | e
r r 7 r0)\0r »\/71'— .

gp.1=0 (r-®+1+2012) by (1,23) and (1.28). On the other hand,
1

NE

— ((V—%0,) 0)? $+2(V—%3,) p-Vg}.

Thus, by (1.21), (1.24), (1.25) and the fact V¢=0O(r"!) we have r*Avs=
O (r~»-1+492/2)  These prove (1.31). q.e.d.

rtAvg= e ?Pp{—r ¥ Ap)p+rtA¢p

Lemma 1.3. Let ¢=D(A). Then the following relation holds for any
A>Ay and vp> R, 42,

(1. 34) (\/1; e u(ry), ¢) = VIVi(E) uvgdS

S(rp)
=t A ugg—sopdx—{,  @uthwi,as)
T2 Uaep uEy ¢ ) rUTRWIVg )

Further, this relation can be extended to ¢=D(AY?) if we understand

(1.35) S.mrp) ugedx= X.o(r,n {ugy.,+(—2%0,) u-(V—x&,)w,} dx.

Proof. The first equality of (1.34) follows from the relation

\/IF eug=riV I Vi@ uv; in B(RA2).

If we note (1.29) and (1.30), the second equality is a direct consequence of the

Green formula (cf., the proof of Proposition 1.2). (1.35) is obtained by means
of (1.32) and an integration by parts. q.e.d.

Proposition 1.4. Suppose that the pair &, B satisfies the following stronger
condition:

(1.36) 0<a+f<20, a<46,—2 and 0<a<j=l.
Let 2, f, u and {r,} be as in Proposition 1.2 with a=a, p=f. Then

{\/l_ ef’“p')u(rp-)} weakly converges in h. In particular, we have for
T

oD (A)Ch



56 K. Mochizuki and J. Uchiyama

. 1 o . . L — =
(1.37) lim (= 72 ury), ), = %57 | (g —fo)dx.

Thus, the limit function is independent of the choice of {rp}.

Proof. By (1.28) and (1.31) we see that fvs and ug, are integrable in Q.
Moreover,

limS @, u-+ku)v, dS=0.
rpd

Do

Thus, letting p — co in (1.34), we obtain (1.37). Since D(A) is dense in h, the
first assertion follows from (1.37) and Proposition 1. 3. q.e.d.

§2. Spectral representation (isometry): Special case 3,>1/2

Throughout this section we assume 6,>1/2 in (vii) of Assumption 2. Then
6=min{d,, 0z, 0;} >1/2, and we can choose f=1>2—29, in (1.7). We shall show
the existence of an isometry F.:&((Ay, 00))H — A4y, =L*((Ay)s, 0); R),
which diagonalizes the operator L.

We begin by showing

Lemma 2.1. Let f>2-26, in (1.7), and let 2, f, u and {r,} be as in
Proposition 1.2 with this B. Then there exists a constant ¢(p)>0 independent of
P D(AY*)C h such that e(p)— 0 as p— oo and for ry>r,>R,+2

@.1) | (e2a? u(rg-)—e* "2 u(ry+), P)xl
Se(P)rpf +ry o2 B || llatryP 2 A2 BlIa}.
Proof. 1t follows from (1.34) that

21
g3

+

(e_o(rq-) u (rq.)_eP(Tp') u (rp.), ¢)h

(wgs—fipdr—| |, - Ss(rp)](a, U+ k)7, dS.

SB(rp,rq) S

By the Schwartz inequality,

l Ss(rp)(a,wkumdsl

< const r;ﬂ/z(ss( 10, u+ku|2ds)”2 Il
p
and

fogdx|

SB(rp‘r@

1/2

éCOnSt(SB( )7’1+43|f|2dx)”2(58( )r-n-‘3]¢l2dx)
Tp T

= const 7,2 || fl 4 12, B ll@la.
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On the other hand, if we note the inequalities

igqs‘ 11 _S_const r-(n+l+25)/2 l ¢| ,

| (T—23,) vy Sconst {r=<n= 149012 § [ 4 p= iz, [T |},

it follows from (1.35) that

ugs 1+ (V—3%0,) u-(V—30,)v4|dx

‘ SB(rp.rq) ué;dx’é gsup,rq)
=const [l ullccr-are 8o 737 [ Blla
HIVu—%0, ull 14 12 5o Iry P2 | gllat+ 1?2 | AV B4} ].
Here —26+a=—p by (1.7) and |Vu—%0,u|=|Vu+Zku|. Thus, choosing

1/2

s(p)=const[sllzlg(s {r- | ul*+ 7% | Tut eul?) dS)

S

F S letsoin o 1l cae s e 1Tk 2ol s e |
we obtain (2.1). g.e.d.

Lemma 2.2. Let B, 2, f, u and {rp} be as in the above lemma. Then

{\/IE eP"p"u(rp-)} weakly converges in h. In particular, we have for ¢&
DAYV

2.2 Liﬁ( \/1? e* Ty (r,e), ¢>:.

= i%i—sg (ugg+ (T—20,) u-(T—£0,) 75 — fog )} dx.

Thus, the limit function is independent of the choice of {rp}.

Proof. Obvious from Lemma 2.1, Proposition 1.3 and Lemma 1.3.
q.e.d.

Lemma 2.3. We have for u=R;.i0 f

2.3) e’ ™ y(r-)e D(AY*) (r>R,),
@2.4) 1eeTp? u(r xS M<oo  (p=1,2, -,
(2.5) | A2 0Tpd y (r ) Se (p) (ry P24 ryoeral?),

Proof. (2.3) is obvious since p(x) is smooth and u€Hf, (2). (2.4) follows
from Proposition 1.3. Finally, (2.5) is proved as follows:
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[| A1/2 gocrp® u(rp.)",%:S r;n+l]Al/2 2P p®) u(rp #)12dS

S(rp)

— ~-n+3 -4 04,12 < -n+3 0 2
st,,)’ |(V—25,) e u| a’S_SS(fp)r |9 (e? ) [2dS

<const | 7 Vut Zhut(Tp—50, 0) ul*dS
p

S e (p)2(ry bryweta), g.e.d.

Proposition 2.1. Let A>A4,,, feL}(2) and u=u(-, 2+i0)=R,.; f. Then

1 . . .
{\/7 e’ Tp" u(rp-)} strongly converges in h, where {r,} is any sequence specified
in Proposition 1.2 with B=1.

Proof. Let

p-oo

2.6) h=weak lim \/l? e? P y(rp,e) in h.

Then it follows from Lemma 2.1 (by letting ¢ — oo) that

l(h— \/17 "2 u(ry), ¢)h\ée<z>><||¢n,.+r;@’2uA”2¢llh>

for g€ D(AY?). Here we put ¢= V3 A RETI (Y Then by virtue of (2.4)

and (2.5), we have

Kh— \/1’7-5_ e y (r,e), \/1? 277D u(rp.))h\

Se(p) {M+e(p) (ry Brioerarz-fizy}
Since 1—8=0 and 1—0,+a/2—/2=(1—-2d,+a)/2<0, letting p — co, we have

1 1
H _ 0(Tp*) . 0(Tp*) . o
Llﬂ h Vi e TPy (rpe), v e’ TPy (r, )>;. 0,
that is,
i P(Tp%) I =
lim | = er ur, )Hh Ihlla.
1 . .
Hence, we see that { e e’ u(rp')} strongly converges in h. qg.e.d.

Definition 2.1. For A>A4,,, let F.(2) : L}(2) — h be defined by

@7 &, (1) /=strong lim —.
Y

Ta ep(rp'.Z:iO) (gz’liio f) (Tp');

where {r,} is any sequence specified in Proposition 1.2 with g=1.
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Remark 2.1. &F.(4) is independent of the choice of {r,} since the weak
limit (2.6) does not depend on the choice of {r,} (see Lemma 2.2).

By Proposition 1.3 we have for f€Li(2) and A>4,,,
1
2.8) H-‘L(l)fllﬁzz—ﬂ(ﬂznof—gh-iof, .

Thus, for any 2 in a compact set K (A4,;,, o) we have from (a) of Proposi-
tion 1.1

2.9) 17D f1Z=CEISIT.

This implies that F,.(2), 2>4,,,, is a bounded linear operator from L3(£2) into
h:F.(ADeBLi(2), h).
Moreover, we have the

Lemma 2.4. F.(A)f€h depends continuously on (A, f)e(A,,,, o)X L3(2).

Proof. By (2.8) and (b) of Proposition 1.1 we see that [|F.(A)f|l» is
continuous in (4, f)e(A,,,, )X L3¥(£2). Thus, we have only to show that for
any smooth ¢€h, (F.(2)f, ¢)» is continuous in the same domain. We return to
the relation (2.2) of Lemma 2.2. Since g4,€L3(2), (V—%0)vyseL*(2) and
vgeL2,(2) are continuous with respect to A>4,,, we then have the desired
continuity of (F.(2)f, ¢)» also by (b) of Proposition 1.1 (cf., Remark 1.3).

q.e.d.

In virtue of this lemma, (2.8) and (d) of Proposition 1.1 we see F.(2)fe
._92/11/2 and

(2.10) e ((Ayre, 00))f||2=||ﬂ"1(-)fllfqu1/2=S:”allft'z(l)fll%dl-
Hence, we have the
Lemma 2.5. Let F, : L}(2)— 4y, be defined by

2.11) (FHD=F.ADf  for 2>Ap.

Then F. can be extended by continuity to a partial isometric operator from I
into H4,, with initial set &((A,;,, o)), which will be denoted by F. also.
Movreover, we have for any Borel set e C (A, ) and f, g9

(2.12) e f, g)—"—Se((EFt @), (F.g)N))ada.

We are now ready to prove the following spectral representation theorem
associated with the Schrédinger operator L.
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Theorem 2.1. Let §,>1/2 in (vii) of Assumption 2, and let F.:H — K,
be as given in the above lemma.

(a) (Diagonal representation of L) For any bounded Borel function a(R)
on R and fed we have

2.13) (Fea))D=a@)(F: HQA)  for a.e. A>Ayp.

(b) (nversion formula) Let F%: % y,,,— I be the adjoint operator of F..
Then we have for fedy,,

2.14) F* f=strong lim S” F. . FNdA i 4
N =oo Ayje+1/N

where F.(A)* . h— L2, (2) is the adjoint of F.(2). In particular, the following
inversion formula holds for fE 4.

2.15) &((4,12, 0)) f=strong lim S’:

Apjetl

Ly F O (F. N dA.

(c) (FEigenoperator) F.(A)* is an eigenoperator of L with eigenvalue
A(>A,,) in the sense that

(2.16) (F.()*¢, L—D)u)=0
for any ¢€h and ueC3(2) satisfying the boundary condition Bulgo=0.
Proof. (a) We have only to show the assertion for a(2)=2.(1), the

characteristic function of any Borel set e in (A;/,, ). We note % (L)=¢&(e).
By (2.12) we have for any eC(4,/,, ) and fe4H

le@s 1= 1. NWIi da.

It then follows that

0=lle(e) (e (=D fI*= Se I(F.(€(@=1))A) i da

=[ 1@.e@nw-@. nWIidz

and
o=le@)e@f = 1. e@NWIidz

where e¢’=(4,,,, ©)\e. These relations show that

{ (F.HQA) for a.e. Ace

for a.e. A€¢’,

(F.€()f)A)=

which was to be proved.
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(b) To show (2.14) we first note that the integral of the right side makes
sense since F,(A)* is measurable (cf., Lemma 2.4). Let ey=(A4,,+1/N, N).
Then for every fe %4, and geL}(2)

|, - @@, D d={, G, F. D ghmd2

={, G, (@.0@ndz.

As is proved in (a), %, F.g=%. € (en)g. Hence,
|, (@@ fW, 9 di=(], F. N1y, =€ en) L], 2).
Since Li(2) is dense in 4, this shows that
€(en)Ftf= LN &, (* (D) da.

Thus, letting N — oo, we obtain (2. 14) since the final set of ¥ is &((4,;,, ).
(2.15) directly follows from (2.14) if we note F*¥F, f=&((A,s,, 0))f by (2.12).

(c) Let f=(L—2A)u. Then f=L3}(2), and hence,

(¢, (L= u)=(p, Fo(D)Sn.

Moreover, we have u=R;, s f (=R f) since ueC3(2) satisfies the outgoing
(as well as incoming) radiation condition. Thus, in view of the definition of
F.(2) and the fact usC%(2), we have F,(A)f (=F_(2) f/)=0, which implies
(2.16).

The proof of the theorem is now complete. q.e.d.

§ 3. Spectral representation (isometry): General case 3,>0

In this section we return to the general case 6,>0. We shall construct the
operator . by use of a perturbation method (cf.,, Ikebe [4]), and prove a
spectral representation theorem for the operator L restricted in &((A4;, 00))4.
Note that in general 4;=4,,..

Let L,=—144V,(x) be the selfadjoint operator in 4 with domain 2(L,)=92(L),
and let {€;(1); A=R} be its spectral measure. Since V,(x) is assumed to be
bounded in 2, L is then a perturbed operator of L,:

3.1 L=L+V,.

Let R, ;.;, and &, . (2) denote, respectively, the operator R;.;, and &,.(2) with
V(x)=V,(x) (since V,(x)=0 in this case, we can admit §,>1/2, and %, .(Q),
A>A,,,, is well defined by (2.7) with R, replaced by R, .:0)-
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Lemma 3.1. For any N>0 there exists a pair a=a(N), f=f(N) satisfying
the conditions
(3.2) 0<a+f<24, a<dd,—2, 0<a=p=l1
and A;=App<A;+N7

Proof. The assertion follows from the continuity and non-increasingness of
A, in ¢>0. g.e.d.

Now let A>A;, and a=a&(N), f=B(N) be the pair given in the above
lemma, where N should be chosen large so that A>A;+N-'. Then for fe
L&i5(2), uy=Ry, 240 f is the unique outgoing [incoming] solution of (1.8) with
V=V,:

(—4+V(x)—Du,=f in Q2

(3.3)
{ Bu,=0 on 082,

(3.4). W €L 42(R2) and 0, u;+k(x, Ziio)u1EL(2—1+1§)/2(B(Rl))-

Lemma 3.2. If 2> A4;, the operator F, .(2): L}(2)— h can be extended to
a bounded linear operator from L3.5,.(2) to h. Denoting the extended operator
by ZF,..(2) again, we have for f€L%if.(2) and p€h,

3.5) 12 D7 13= g (Rseia f— R 1),
(3.6) (F1 2D, Pw=lim (= o2 1 (r,7), 6)
. 1, ’ h pesce »\/7 1 p ) h’

where u,; =R, .40 f and {r,} is any sequence diverging to oo such that
3.7) Limgs( a8 | Ty R (x, 2£10) % dS=0.
o JSrp

Proof. The extensibility of &, .(2) and the relation (3.5) easily follow from
(2.8) and Proposition 1.1 (a). (3.6) follows from (1.37) of Proposition 1.4 since
we have for feLi(2) and ¢=9D(A) (which is dense in h)

3.9) (@D f, == | (s~ o) dx,

g, being the function defined by (1.31) with V=V,, and the both sides are
continuous in f€L315.(2). qg.e.d.

Lemma 3.3. &, . () f€h depends continuously on (4, f)E(Agsa, )X Li+f12(8).

Proof. The assertion is obvious since the right hand sides of (3.5) and (3.8)
are both continuous in (2, f)E(Aj/s, ©0)X L34 52(2) (cf., the proof of Lemma 2.4
and (1.31)). q.e.d.
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Lemma 3.4. (a) V,€B(Lt1-wn2(2), Lisppn(2)) and VE¥f=V,f for fe
LE #2(2), where V:‘EB(LE—x—ﬁm(Q)» Liia2(2)).

(b) ViRieto€ B(Lispp2(2), L<21+/§)/2(-Q)) for any 2> A;+N™
Proof. Obvious from (vii) of Assumption 2 and the condition (3.2) on &, J.
q.e.d.
Now, for 2>4; and fE€ Li+252(2) (C L&+42(2)) let u=Rpus f. Then we
have from (1.8)
{ (—d+ Vi ()= Du=(1—V,Rui)f in 2
Bu=0 on 04.

(3.9)

1=V Rz.10) fE€LE+j . (2) by Lemma 3.4, and u satisfies the outgoing [incoming]
radiation condition (3.4).. Thus,

(3.10) uzgzltiof:-ch.X:io(l_Va-(RZzio)f-
Definition 3.1. For A>4; let F,(A)€ B(L&125/.(2), h) be defined by
(3.11) F.(A=F, . (AU—=V, Ryss0)

Remark 3.1. If §,>1/2, F.(2) defined above coincides with the operator
given by Definition 2.1. In fact, for A>4,,, and f=L3i(2) we have from (3.10)

(3.12)

strong lim e?22 (R .4 ) (rp+)

1
VT P
:gl.t(x)((l_vsgzliio)f)
since (1—V,R,.;) f€L}(R2) in this case.

Lemma 3.5. For any Borel set e &(A;, ) and f, g€ L 125,/.(£2) we have

(3.13) €@f =] (F.0f, F.Dmdx

Proof. By Proposition 1.1 (c), Lemma 3.4 (a) and (3. 10),

(Raurio [—Ri-iof, )= {(Rusiof, 8)—(f, Rasi08)}
=+[(Ru2:00{l= Vs Raciol f, 8)—(fi Ruzeioll— Vs Risiol £)]
=4[ (R 2:00{1 =V Raesod f, 1=V, Rieiol g)

—({1=V; Raziotfy Ruaeio{l— Vs Rasio} 2)]
=({Ry2r00— R ot {1= Vs Rawiod f, {1=Vs Ranio} 2).

Here {1—V,Ruiotfs {1— Vs Rau1o € La+52(2) by Lemma 3.4. Thus, it follows
from Lemma 3.2 that
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1
z—ﬂ({gzxno—-‘kz-io}f, g

- (ﬂrl.i (2){1_ Vs thio}fr Frx ('2){1—‘ Vs galtio}g)h
=(F. A f, F+(A)gn.

Integrate both sides over e with respect to A (the measurability of ZF.(2) in
A>/; is guaranteed by Lemma 3.3 and Proposition 1.1 (b)). Then by means
of Proposition 1.1 (d) we obtain (3. 13). q.e.d.

With the aid of Lemma 3.5 we can now prove the following spectral
representation theorem for L.

Theorem 3.1. (a) (Diagonal representation of L) Let F. . Liins(2)—
4 45 be defined by

(3.14) (F.NAQ=F.Af A>45 and fE€Lasunin(2)).

Then F. can be extended by continuity to a partial isometric operator from K
into A 4; with the initial set €((A;, ))%. Further, for any bounded Borel
Sfunction a(2) on R and f€ 4 we have

(3.15) (Fea)YD=aAN(F. A  for a.e. 1>4;.

(b) (Inversion formula) Let F*: 4 ,,— 9 be the adjoint operator of F..
Then we have for fe 4 45

. ¥ i
*f H * ;
(3.16) 7t f=strong lim SAMN F. A fR)dr  in &,
where F.(A)* I h— L, _45,,(R2) is the adjoint of F.(R). In particular, the follow-
ing inversion formula holds for f< 4.
(.17 A = fim ("
17) &((4;, w))f—stro)g_gm im SA"+

a

- (D*(F. HA) dA.
(c) (Eigenoperator) F.(A)* is an eigenoperator of L with eigenvalue 2
(>A45) in the sense that
(3.18) (F.(D*p, L—Du)=0
for any ¢€h and ueCYR2) satisfying the boundary condition Bu|so=0.

Proof. As we see in the proof of Theorem 2.1, the assertions (a) and (b)
are easily proved by use of the relation (3.13). To show (c), let f=(L—2)u.
Then f is of compact support, and hence €Lg,.5,,(£2). Thus,

(F.D*¢, (L=Dw)=(F,,.D*@, {1—V, Ruuio} f)
- (EFI © (2)* ¢! (Ll"'z) 'LI) :0

by (3.11), (3.9) and Theorem 2.1 (c). g.e.d.
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§4. Unitarity of &,

We want to show that the ranges R(F,) of ¥, and R(F.) of F_ coincide
and are equal to 4 4. In this section we shall give a partial answer to this
problem. Our results will be satisfactory to some restricted cases (cf., the
corollaries of the next section).

We can prove the following

Theorem 4.1. (a) We have
4.1) R(F)D{fed4y; FO=0 for a.e. A&(4;, A5)}
or equivalently
@2 wFH={(fedsy; FL=0}
C{feds; FQ=0 for a.e. A=(4;, )},

where ¢=min {0, 26,—1}.

(b) Both F, and F_ map E((A5, ©))H onto H,3=L*((A;5, c0); h), that
is, F. restricted in €((As, ))H are unitary operators.

Remark 4.1. If §,=(5+1)/2, we have 6=4.

Lemma 4.1. For ¢ D(A)C h and 2> A, let vy be the function given by
(1.27), and let gi=(—d+V,(x)—vg. Then gi€Li,p(2) for any 0<F<26.
Moreover, if 2> A4y, vy coincides with the outgoing [incoming] solution of (3.3)
with f=g}, that is, vs=R, 1:i08%-

Proof. Obvious from Lemma 1.2. q.e.d.

Lemma 4.2. For any N>0 there exists a pair a=a&(N), f=F(N) satisfy-
ing the conditions
4.3) 0<a+f<25, a<46,—2, 0<a=<jf=l1
and (A=) A= Agp<As+N'

Proof. The assertion is proved by the same argument as in the proof of
Lemma 3. 1. -q.e.d.

Proof of Theorem 4.1. The assertion (b) is easily proved by (a) of this
theorem and (a) of Theorem 3.1. Thus, we have only to prove (a).

Let fe:TZ(EFi), namely, let f be orthogonal to R(F,). By Theorem 3.1 (a)
we have for any Borel set e € (4;, ) and gE 4,

(E:Xef’ g):(f’ Xe g:g)j,,‘;:(f, fft&'(e)g)ﬁ/'b,:o,

which implies F*X, f=0, i.e., X f€9(F*). In view of Theorem 3.1 (b), we
then have
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szrtxefzg F.()*f()da=0  for any e&(d;, o).
e

Thus, it follows that F.()* f()=0 for a.e. 1> /,.
By Definition 3.1 and the “resolvent” equation

gzi:io_gsziio:‘_gz:.z:iovs Qz:io:—ﬂziiovs -(Rl.ltiO:
we have &, ,(D)=F.A)(1+V R, 2.:), and hence,
I, 1(2)*2(14’&1‘.1:1'0 VHF, ('D*

Therefore, to complete the proof, we have only to show that &, .(2)*/f()=0
for a.e. 2> A, implies f(A)=0 for a.e. A>4;.

For 2> /4;+N"* (N>0) let & f be as in Lemma 3.1, and let g&€Li,4/,.(2)
and v=R,,:508. Then by Lemma 3.2 we have

4.4) 0=(Z,, . *F (D), D=(F (), F1.. D

— 11 7 1
=lim (f@), —=

ep(Tp')v(rp-))h fOr a.e. 1>A5+N—1'

Here, we restrict ourselves to the case A>A4;+N~' and choose & [ as in
Lemma 4.2. Then by Lemma 4.1, gy€L%.5,.(2) and vy=R, ;. 8¢. Putting
g=gi in (4.4), we have

1
— &P 0y ()

0=1lim (f(D),

— },iIE (f(l), % 0°Tp) g=pCTpD ¢)/.='71? (f(]), A

for a.e. A> A5+ N1 = D(A) being arbitrary, this implies F)=0 for a.e. 1>4;
4+ N-1, Letting N — oo, we have the assertion (a) of the theorem. q.e.d.

§5. Some corollaries of the above results

Corollary 5.1. If 6,=1/2 and 8,=3/4 in Assumption 2, F. is a unitary
operator from €((Ay, o)) I onto K 4, ,,.

Proof. Since é6=min{d, 25,—1}=1/2 by condition, the assertion is obvious
from Theorems 3.1 and 4.1. qg.e.d.
Corollary 5.2. If V,(x) satisfies, in place of (ii) of Assumption 2, the
following stronger condition:
(ii)’ 0, Vi(x)=0(@") as r— 0o,

then F. is a unitary operator from E((A, o)) onto H4, where A=lim sup
Vi(x)+a/d
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Proof. In this case, E (y)=lim sup V,(x) for any 7>0 in (1.1). Thus, we
see A,=lim sup V,(x)+a/4 for any o¢>0, and the assertion follows from
Theorems 3.1 and 4. 1. qg.e.d.

Remark 5.1. As an example which satisfies the condition stated in the
above corollary, we have
V (x)=sin (log (log ) )+ O (r~*~%) as r — oo,
The potential sin(log(logr)) satisfies the conditions (i), (ii)’ and (iii) with a=0.
Thus, in this case we have A=Ilim sup [sin(log(logr))]=1.

Corollary 5.3. If V,(x) satisfies, in place of (i), (i) and (iii) of Assumption 2,
the following stronger conditions:

(iy Vi(x)=o0(l),
(iiy 0.V (x)=0(r "),
(iii) 2V (x)=0 (") (6,>1/2)

as r—oo, then F. becomes a unitary operator from the absolutely continuous
subspace Ho.=&E((0, 00)) 9 for L onto H,=L*((0, c0); h).

Proof. Note that, in this case, the essential spectrum of L consists of the
non-negative real axis [0, ). On the other hand, by (1.2), 4,=0 for any ¢>0.
These show that &((4;5, o)) coincides with the absolutely continuous subspace
o= (0, c0)) 4 for L. q.e.d.

Remark 5.2. The above result is a partial generalization of results of
Ikebe [3], [4] and Saito [15], [16]. Corollary 5.3 includes the following type
of potentials:

comst ., (x)= const
log B Jog (log 7)

Vi(x)=
However, these potentials are not covered by the results of Ikebe and Saita.
Roughly speaking, their assumptions on V,;(x) are as follows:

WV, (x)=0 (%) (6,>0), v=0,1, -, m,
where m=2 if §,>1/2 and m >2/§, if 1/2=0,>0.

§6. Unitary equivalence between &((45, c0))L and L,=—d4+A4;

Let L,=—4+A; be the selfadjoint operator in the Hilbert space 9(,=L*(R™)
with domain @ (L,)=H?*(R"), and let {&,(1); AR} be its spectral measure.
In this section we shall show the existence of unitary operators U. from J{o to
&((As, o)) 4 which intertwine the operators L, and L.
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We denote by %,(2) the operator F.(2) corresponding to L=L,. Namely,
for 2>45 and feL}(R™) let

6.1) T, (l)f:str%rlg lim j? PP A (R i [)p)ER;
(6.2) po(r, 2+i0)=—i(VA—=A5)r + 71;1 Iogr+%log(2—A3),

where u,=®R, 11 f is the outgoing solution of (—4d+A;—A)u,=f in R*, and
{rp} is any sequence diverging to oo as p — oo such that

6.3 lim Ss(rp){r'“luol?+r(wo+£(—i«/T-A_5+ "Yu

“Fas=0

for some 0<a<l. Let &F,:L}(R") — 4 ,;=L*((4;5, ) ; h) be defined by
6.4) (Foe HD=F, (D f.

Then, as is proved, F, can be uniquely extended to a unitary operator from
&Eo((Aj, 0)) =9, to 5?,,3, which diagonalizes L,. We denote the extended
operator by &, again.

Definition 6.1. Let U.€ B(%,, £€((Aj, o)) %) be defined by
(6.5) U.=F%F,.

Theorem 6.1. U. : %, — &((Aj;, 0)) I are unitary operators which inter-
twine L, and &€((As, o)) L:

(6.6) e((4s, ) L=U. L U%;
6.7) Li=Ute((45, 00))LU,.

Proof. It follows from Theorems 3.1 and 4.1 that for any Borel set
e C (A5, =)

FEhe Fo=E,(e) in I, Fo &y (e) FE=X, in 5?/15,
F*YL, F=¢€(e) in K, and FE()F*=A, in S 4;.

The above assertions are obvious from these relations if we note &,((A45, o))=TI
(the identity in 4). q.e.d.

Remark 6.1. U. may be said the stationary wave operators (cf., Pinchuk
[12] and Isozaki [5]).

Remark 6.2. The operator &, is essentially the Fourier transformation,
that is, for any feC;(R™) we have
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(6.8) [Fo (D)
1 Jy—
= Cn) — Q= Ay @y |15 5 () dy

for A> 45, where C(n)=e #=m-3/4,
(6.8) can be verified in the following way (for details, cf., e.g., Matsumura
[8] and Mochizuki [9]). By the Fourier inversion formula,

— -niz; e”":f(f)
(R0 S1 =)o lim | &l ae

in L&y w2 (R™), where

F@=en | s dy.
Applying the asymptotic form

[, ev= f(gla) ds.,

— Fl1&1 % _2_”__ =DI2 L nz—ain-1y14
=f0eD(5a) e
N . 27 \(r-D/2 - -
+f(—I§]%) TIET e HIRITR DN 4 (I6]X) ;

W q(x)=0 (r-*»2) (y=0, 1, --+) as 7 — oo,
we then have
[Ro, 1410 [1(rZ)=2m) Y2 g ixtn-D14

R I T AU A A
x| T A—(tie)

digi+0 @ 7).

Hence, by (6.1) and (6.2),
[F.D) fIE)=C(n) v2 A—A45)"* 2ri)™*

X lim ¢T3 ra lim (7 1722 (SR T

c10 J-o  |EE—(A—A5+ie) dl{:l]

poo

1

=C) vz A=A A= Ag)™ ! 5

F(NI=5 3).

This is what is to be shown.
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