A note on characteristic numbers of *MSp.*

By

Mitsunori IMAOKA and Kaoru MORISUGI

Dedicated to Professor A. Komatu on his 70th birthday

(Communicated by Prof. H. Toda, Nov. 7, 1977)

Introduction

Let MSp denote the Thom spectrum of the symplectic group, so that $MSp_{n} = \pi_{n}(MSp)$ is the symplectic cobordism ring. In this note we study some relations among KO-characteristic numbers of a class of MSp_n by considering the stable Adams operation $\varphi^2 : KO^*(MSp) \to KO^*(MSp)[1/2]$.

In (2.6) *we obtain the following commutative diagram;*

where τ_{KO} is the Thom map, x is the generator of KO_4 and $S^{i\textbf{d}_1}(KO)$ is an *element of* $KO^{ii}(MSp)$. Using (2.6), if $a \in MSp_{4k}$, then we have

(2.7) $(\tau_{KO})_*(S^{(k-|R|)A_1}(MSp)S^R(MSp))(a) \equiv 0 \mod 8,$

for any $R=(r_1, r_2, \cdots)$ such that r_i is a non-negative integer and $|R| = \sum i r_i < k$, *where S^R (MSp) is a certain Landweber-Novikov operation in MSp-theory.*

 (2.6) and (2.7) are some generalization of the result of Floyd $\lceil 1 \rceil$.

We consider the map ϕ : $KO_*(MSp) \to KO_*(MSp)[1/2]$, which is the dual of φ^2 . Let $h^{KO}: MSp_* \to KO_*(MSp)$ be the *KO*-Hurewicz homomorphism. For $a \in MSp_{4k}$, set $h^{K0}(a) = \sum_{i} \lambda^{R}(a) b^{R}(KO)$. Then we have

(2.12)
$$
\phi(h^{K0}(a)) = \sum_{R} 4^{k-|R|} \lambda^R(a)^{k} (KO),
$$

(2. 13)
$$
4^{k-|R|}\lambda^{R}(a) = \sum_{|T|\geq |R|} \lambda^{T}(a) \left[\phi(b^{T}(KO))\right]_{R}(x/8)^{|T|-|R|},
$$

where $[\phi(b^T(KO))]_R$ is the integral coefficient of $(x/8)^{|T|-|R|bR}(KO)$ in t expansion of $\phi(b^r(KO))$.

20M . *Im aok a and K . A lorisugi*

We consider in $MSp_*\otimes Q$ the subalgebra W_*^{0} all KO-characteristic numbers of which are integral. In (3.1) we prove that an element $\beta = \sum_{R} \lambda^R b^R(KO)$ of $KO_{4k}(MSp)$ satisfies the relation (2.12), i.e., $\phi(\beta) = \sum_{p} 4^{k-|R|} \lambda^p b^R(KO)$, if and only if β is a $h^{K0} \otimes Q$ -image of an element of W_{*}^{α} . In a sense this implies that W_{*}^{KO} is characterized by the relation (2.12). As an extension of the forgetful map $MSp_{4k} \rightarrow MO_{4k}$ we can consider a map $W_k^{KO} \rightarrow MO_{4k}$. In connection with (3.1) we have in (3.3) that Image $(W_{*}^{KO} \rightarrow MO_{*})=P_{*}^{s}$, where P_{*} is a subalgebra of MO_* defined by E.E. Floyd [1], who proved that Image $(MSp_* \to MO_*) \subseteq P_*^*$.

From $(2, 13)$ we have the following.

(2.14)
$$
\sum_{|T|=k} \lambda^{T}(a) [\phi(b^{T}(KO))]_{R} \equiv 0 \mod 8,
$$

for all R such that $|R| < k$.

Applying this relation and (2.7) , we obtain the following.

 (4.5) *For* $\alpha \in W_n^{KO}$, { mod. 8 $if \quad n = 2^m - 1,$ $\lambda^{i\textbf{1}+1\textbf{1}}$ $\lambda^{i\textbf{1}+1\textbf{1}}$ α = 0 $\left\langle \text{mod. 4 } \right.$ *if* $n=2^m$ *or* $2m-1$, $mod. 2$ *if* $n=2m$, *for* $0 \leq i \leq n$.

 (4.5) is some generalization of the result of R. Okita [2]. Applying (2.14) we also have

 (4.7) *For* $\alpha \in W_n^{KO}$, $2^{j} \lambda^{i} 4_{1} + j 4_{2} + k 4_{3}$ $(\alpha) \equiv 0 \mod 8$,

 $for i+2j+3k = n.$

This paper is organized as follows.

In §1 we prepare some preliminary properties on cohomologies and homologies of HP^{∞} and MSp and on the complex stable Adams operation ψ_e^2 . In §2 we show the diagram (2.6) obtained by applying ψ^2 on the Thom class. We also define ϕ in this section and obtain some relations on characteristic numbers of MSp_* . In §3 we prove that the relation in §2 also satisfied by classes of $W_{\mathcal{X}}^{\alpha}$ and vice versa. In §4 by using the relations in §2 and §3, we consider some divisibility conditions on some characteristic numbers of W^{co}_{*} .

§ 1. Preliminaries

Let $E = MSp$, KO , K or HZ which is the representative spectrum of the symplectic cobordism theory, real K -theory, complex K -theory or ordinary cohomology theory with integral coefficients. E_* denote its coefficient ring. Then symplectic vector bundles are E^* $($)-orientable. We denote the Thom map by τ_E : $MSp \to E$. Notice that $\tau_K = c\tau_{KO}$, where $c : KO \to K$ is a complexification. The following proposition is well known. Our notations are usual ones.

(1 . 1) Proposition.

 (1) $E^*(HP^{\infty}) = E_*[[e(E)]]$, where $e(E)$ is the Euler class of the canonical *symplectic line bundle over HP - , i.* e., *the first Pontrjagin class.*

(2) $E_*(HP^{\infty})=E_*(\beta_1(E), \beta_2(E), \cdots)$, where $\beta_i(E)$ is the dual of $e^i(E)$.

Let $i: HP^{\infty}=MSp(1) \rightarrow MSp$ *be the inclusion and set* $i_*(\beta_{i+1}(E))=b_i(E)$.

(3) $E_*(MSp) = E_*[b_1(E), b_2(E), \cdots],$ where dim. $b_i(E) = 4i$.

(4) $E^*(MSp)$ is the dual of $E_*(MSp)$ over E_* . We denote the dual of $b^{R}(E) = b_1(E)^{r_1}b_2(E)^{r_2}\cdots$ by $S^{R}(E)$, where $R = (r_1, r_2, \cdots)$ is an exponent sequence *of non-negative and almost zero integers.*

(5) The coproduct $\Delta_E : E^*(MSp) \to E^*(MSp) \underset{E*}{\otimes} E^*(MSp)$ is given by the *following formula;*

$$
\Delta_E(S^R(E)) = \sum_{R_1 + R_2 = R} S^{R_1}(E) \otimes S^{R_2}(E).
$$

(6) $MSp*(MSp)$ and $MSp*(MSp)$ are Hopf algebras over $MSp*$. In $MSp*(MSp)$, the coproduct μ^* is given by

$$
\mu^*(b_n(MSp)) = \sum_{j\geq 0} \left(\underline{b}(MSp))_{n-j}^{j+1} \otimes b_j(MSp)\right),
$$

where $\underline{b}(MSp)=1+b_1(MSp)+b_2(MSp)+\cdots$ *and* $(\underline{b}(MSp)^{i+1}_{n-j})$ *is the* $4(n-j)$ -*dimensional homogeneous part o f (b(MSp))i+, .*

(7)
$$
(\tau_E)_*(e(MSp)) = e(E),
$$

$$
(\tau_E)_*(\beta_i(MSp)) = \beta_i(E),
$$

$$
(\tau_E)_*(b_i(MSp)) = b_i(E),
$$

$$
(\tau_E)_*(S^R(MSp)) = S^R(E).
$$

Let ψ_{ϵ}^2 : $K^*(\) \rightarrow K^*(\)[1/2]$ be the stable Adams operation.

(1.2) Lemma. $In K^*(HP^{\infty})$,

$$
\phi_e^2(e(K))=e(K)+(t^2/4)(e(K))^2,
$$

where $t \in K_2$ *is the Bott-periodicity element.*

Proof. It is known that $e(K)=t^{-2}(c'(\xi)-2)$, where ξ is the canonical symplectic line bundle over HP^{∞} and $c'(\xi)$ is the complexification of ξ . Let η be a canonical complex line bundle over CP^{∞} , and $\pi : CP^{\infty} \to HP^{\infty}$ be a canonical projection. Then $\pi^*(c'(\xi))=\eta+\bar{\eta}$, where $\bar{\eta}$ is a complex conjugate of η . From the properties of ϕ_c^2 , we have

22 M. *Imaoka and K. Morisugi*

$$
\varphi_e^2 \pi^* (t^{-2}(c'(\xi)-2)) = (t^{-2}/4) \varphi_e^2(\eta+\bar{\eta}-2) = (t^{-2}/4) (\eta^2+\bar{\eta}^2-2)
$$

=
$$
(t^{-2}/4) (\eta+\bar{\eta}-2)^2 + t^{-2} (\eta+\bar{\eta}-2)
$$

=
$$
(t^2/4) \pi^* (e(K))^2 + \pi^* (e(K)).
$$

Since $\pi^*: K^*(HP^{\infty}) \to K^*(CP^{\infty})$ is monomorphic, we have the required result. Q. E. D.

§2. Relations on K and KO -characteristic numbers of MSp_* .

In this section we first consider the complex stable Adams operation ψ_c^2 on $K^*(MSp)$. In order to compute ϕ_c^2 on $K^*(MSp)$, consider the following operation ϕ_c : $K_*(MSp) \rightarrow K_*(MSp)[1/2]$, which is the dual of the stable Adams $\phi_c^2: K^*(MSp) \to K^*(MSp)$ [1/2].

(2.1) Definition. *For* $\alpha \in K_*(MSp)$, put

$$
\phi_c(\alpha) = \sum_{\alpha} \langle \alpha, \phi_c^2(S^R(K)) \rangle b^R(K) \in K_*(MSp)[1/2],
$$

where < , > denote the Kronecker pairing.

(2. 2) Lemma.

 ϕ_c *is a morphism of K*^{*}-algebra.

Proof. The linearity is clear. Let α , $\beta \in K_*(MSp)$. Then

$$
\begin{split} \phi_{\epsilon}(\alpha \beta) &= \sum_{R} \langle \alpha \beta, \varphi_{\epsilon}^{2}(S^{R}(K)) \rangle b^{R}(K) \\ &= \sum_{R} \langle \alpha \otimes \beta, \varDelta_{K} \varphi_{\epsilon}^{2}(S^{R}(K)) \rangle b^{R}(K) \\ &= \sum_{R} \left(\sum_{R_{1}+R_{2}=R} \langle \alpha, \varphi_{\epsilon}^{2}(S^{R_{1}}(K)) \rangle \langle \beta, \varphi_{\epsilon}^{2}(S^{R_{2}}(K)) \rangle \right) b^{R}(K) \\ &= \phi_{\epsilon}(\alpha) \phi_{\epsilon}(\beta), \end{split}
$$

where $\Delta_K(S^R(K)) = \sum_{R_1 + R_2 = R} S^{R_1}(K) \otimes S^{R_2}(K)$.

Q. E. D.

(2. 3) Proposition.

$$
\phi_{\epsilon}(b_n(K)) = \sum_j \binom{j+1}{n-j} (t^2/4)^{n-j} b_j(K).
$$

Proof.

$$
\phi_c(b_n(K)) = \sum_R \langle i_*(\beta_{n+1}(K)), \psi_c^2(S^R(K)) \rangle b^R(K)
$$

$$
= \sum_R \langle \beta_{n+1}(K), \psi_c^2 i^*(S^R(K)) \rangle b^R(K)).
$$

Recall that

$$
i^*(S^R(K)) = \begin{cases} e^{j+1}(K) & \text{if } R = \Delta_j, \\ 0 & \text{otherwise,} \end{cases}
$$

where \mathcal{A}_j is an exponent sequence of which *j*-th part is 1 and others are zero, i. e., $\Delta_j = (0, 0, \dots, 1, 0, \dots)$. Using (1.2), we have

$$
\phi_c(b_n(K)) = \sum_j \langle \beta_{n+1}(K), \phi_c^2(e^{j+1}(K)) \rangle b_j(K)
$$

=
$$
\sum_j \left(\frac{j+1}{n-j}\right) (t^2/4)^{n-j} b_j(K).
$$
 Q. E. D.

(2. **4) Theorem.** *The following diagram commutes.*

Proof. Let $\phi_c^2(\tau_K) = \sum_{\mathbf{E}} \lambda^R S^R(K)$. Then

$$
\lambda^R = \langle b^R(K), \phi_c^2(\tau_K) \rangle = \langle \phi_c(b^R(K)), \tau_K \rangle.
$$

From $(2, 2)$ and $(2, 3)$, we have

$$
\lambda^{R} = \begin{cases} \langle \phi_e(b_1(K))^{j}, \tau_K \rangle = (t^2/4)^j & \text{if } R = j\Delta_1, \\ 0 & \text{otherwise.} \end{cases}
$$

Q. E. D.

(2.5) **Corollary** *(E. E. Floyd [1]).*

$$
\phi^2_c(S^R(K)) = \sum_{j\geq 0} (t^2/4)^j(\tau_K)_*(S^{j4_1}(MSp)S^R(MSp)).
$$

Now, we consider *KO*-characteristic numbers. Recall that $KO_{4} = Z[x, y]/x^2$ $x = 4y$, where $x \in KO_4$ and $y \in KO_8$, and that the complexification homomorphism $c: KO_* \to K_*$ carries x, y to $2t^2$, t^4 , respectively. Let ϕ^2 be the stable KO Adams operation. It is well-known that $c\phi^2 = \phi_c^2 c$. So we have

(2. 6) **Theorem.** *The following diagram commutes ;*

Let $|R| = \sum_i ir_i$ for $R = (r_1, r_2, \cdots)$.

(2.7) Theorem. Let $a \in MSp_{4k}$. Then for each R such that $|R| < k$, $(\tau_{KO})_*(S^{(k-|R|)A_1}(MSp)S^R(MSp))(a) \equiv 0 \mod 8,$ $(\tau_{HZ})_* (S^{(k-|R|)}4_1(MSp)S^R(MSp))(a) \equiv 0 \mod 8.$

Proof. From (2.6), we get the following commutative diagram;

Recall ϕ^2 : $KO_{4k} \to KO_{4k}[1/2]$ is the multiplication by 4^k . So we have the equation ;

$$
4^k(\tau_{KO})_*(a) = \sum_i (x/8)^i(\tau_{KO})_*(S^{i4_1}(MSp)(a)).
$$

Hence we have $(\tau_{KO})_* S^{kA_1}(MSp)(a) \equiv 0 \mod 8$. It is obvious that $(\tau_{KO})_* S^{kA_1}(MSp)(a) = (\tau_{HZ})_* S^{kA_1}(MSp)(a)$. So we get the results for $R = (0, 0, ...)$ The general case is easily obtained replacing *a* by $S^R(MSp)(a)$ for *R* such that $R \leq k$. Q.

 (2.8) **Remark.** *E. E. Floyd proved the following in* $[1]$;

$$
(\tau_{HZ})_* S^{(k-|R|)d_1}(MSp)S^R(MSp)(a) \equiv \begin{cases} 0 & \text{mod. } 4, \\ 0 & \text{mod. } 8 \text{ if } k \text{ is even,} \end{cases}
$$

for each R *such that* $|R| < k$.

In order to obtain more explicite relations of characteristic numbers of sympectic manifolds, we consider the KO -analogy of $(2, 1)$.

(2.9) **Definition.** Let $\alpha \in KO_*(MSp)$, set

$$
\phi(\alpha) = \sum_{R} \langle \alpha, \phi^2(S^R(KO)) \rangle b^R(KO).
$$

Then we have the analogous properties with $(2, 2)$ and $(2, 3)$.

- (2.10) **Lemma.** ϕ is a morphism of KO_* -algebra.
- **(2 . 11) Proposition.**

$$
\phi(b_n(KO)) = \sum_j \binom{j+1}{n-j} (x/8)^{n-j} b_j(KO).
$$

Let h^{K0} : $MSp_* \rightarrow KO_*(MSp)$ be the *KO*-Hurewicz homomorphism.

(2.12) Theorem. Let $a \in MSp_{1k}$. Let $h^{KO}(a) = \sum_{n} \lambda^R(a) b^R(KO)$. Then we *have the following relation ;*

$$
\phi(h^{KO}(a)) = \sum_{R} 4^{k-|R|} \lambda^R(a) b^R(KO).
$$

Proof. If we put $\phi(h^{K0}(a)) = \sum_{p} m^{R} b^{R}(KO)$, it holds

$$
m^{R} = \langle \phi(h^{K0}(a)), S^{R}(KO) \rangle = \langle h^{K0}(a), \phi^{2}(S^{R}(KO)) \rangle
$$

= 4^{k-|R|} \langle h^{K0}(a), S^{R}(KO) \rangle = 4^{k-|R|} \lambda^{R}(a),

by using the fact that ϕ^2 : $KO_{4i} \rightarrow KO_{4i}[1/2]$ is the multiplication by 4^i

Let $[\phi(b^T(KO)]_R$ be the integral coefficient of $(x/8)^{|T|-(R)} b^R(KO)$ in the expansion of $\phi(b^T(KO))$. We can restate (2.12) as follows.

(2. 13) C orollary. *Uuder the notations of* (2. 12), *we have*

$$
4^{k-|R|}\lambda^R(a) = \sum_{|T|\geq |R|} \lambda^T(a) \left[\phi(b^T(KO))\right]_R(x/8)^{|T|-|R|}.
$$

The proof of $(2. 13)$ is clear from $(2. 10)$ and $(2. 11)$. From $(2. 13)$ and $(2. 11)$, we also have

(2. 14) C orollary. *Under the above notations,*

 $\sum_{|T| = k} \lambda^T(a) \left[\phi(b^T(KO)]_R \equiv 0 \mod 8$ *for any R* such that $|R| < k$.

(2. 15) R em ark. *Com pairing* (6) *in* (1. 1) *w ith* (2. 11), *it is easily obtained that*

$$
S^{i4_1}(MSp)S^R(MSp) = \sum_{|T|=i+|R|} \left[\phi(b^T(KO)]_R S^T(MSp)\right].
$$

So (2.14) *is only the restatement of* (2.7) .

§ 3. A subalgebra W^{KO}_{*} of $MSp_{*} \otimes Q$.

In $KO_{*}(MSp) \otimes Q$, we consider all elements that satisfy the relation (2.12) and (2. 13). Set

$$
V_{k} = \{ \alpha = \sum_{iR \leq k} \lambda^{R}(\alpha) b^{R}(KO) \in KO_{4k}(MSp) | \phi(\alpha) = \sum_{R} 4^{k-|R|} \lambda^{R}(\alpha) b^{R}(KO) \}.
$$

From (2.12) $V_k \supset h^{K0}(MSp_{4k})$ holds. Now consider $h^{K0} \otimes Q : MSp_{4k} \otimes Q \rightarrow$ $KO_{4k}(MSp) \otimes Q$, and define

$$
W_k^{\kappa o} = (h^{\kappa o} \otimes Q)^{-1} (KO_{4k} (MSp)).
$$

 $W_k^{\kappa o}$ consists of elements all KO-characteristic numbers of which are integral. It holds $MSp_{4k}/Tor \subset W_{k}^{\kappa o}$. We have the following, which implies that the KO-Hurewicz image of $W_k^{\kappa o}$ is characterized by the relation (2.12).

26 *M . Im aok a and K. M orisugi*

 (3.1) Theorem. $(h^{K0} \otimes Q)(W^{KO}_k) = V_k$.

Proof. For $v \in W_k^{\kappa o}$, we take an integer m such that $mv \in MSp_{4k}$. Since $h^{KO}(MSp_{4k}) \subset V_k$, we have the equation $\phi(h^{KO}(mv)) = \sum_{k=1}^{\infty} 4^{k-|R|} \lambda^R(h^{KO}(mv)) b^R(KO)$. It holds $\phi(h^{KO}(mv))=m\phi((h^{KO}\otimes Q)(v))$ and $\lambda^R(h^{KO}(mv))=m\lambda^R((h^{KO}\otimes Q)(v))$ Since $KO_{4k}(MSp)$ is a free module, $(h^{K0} \otimes Q)(v)$ satisfies the relation $\phi((h^{K0} \otimes$ $Q)(v)) = \sum\limits_{R} 4^{k-|R|} \lambda^R ((h^{KO} \otimes Q)(v)) b^R(KO)$, and so, belongs to V_k .

Conversely, let $a = \sum_{i} \lambda^{i} (a) b^{i} (KO)$ be an element of V_{k} . We remark that any element of V_k also satisfies the relation (2.13). So the following relation is satisfied;

(1)
$$
4^{k-|R|}\lambda^{R}(a) = \lambda^{R}(a) + \sum_{|R| \leq |T|} \lambda^{T}(a)(x/8)^{|T| - |R|} \left[\phi(b^{T}(KO)) \right]_{R}.
$$

If $|R|=k-1$, this relation implies that $3\lambda^{R}(a) = \sum_{|x|=k} \lambda^{T}(a)(x/8)[\phi(b^{T}(KO))]_{R}$ By induction on $|R|$, we have from (1) that $\lambda^R(a)$ for any *R* can be represented as a $Q[x]$ -linear combination of $\lambda^T(a)$ such that $|T| = k$. Let $\tilde{a} = \sum_{|R| = k} \lambda^R(a) b^R(HZ)$ be an element of $H_{4k}(MSp)$, where we identify the coefficients $\lambda^{R}(a)$ with integers. Then there exists some element α of $MSp_{4k} \otimes Q$ such that $(h^H \otimes Q)(\alpha)$ $=\tilde{a}$. If we take an integer m such that $m\alpha \in MSp_{4k}$, then $h^{K0}(m\alpha) \in V_k$. Hence in $KO_{4(k-1R)} \otimes Q$, it holds that

$$
(2) \t4^{k-|R|}\lambda^{R}((h^{K0}\otimes Q)(\alpha))
$$

= $\lambda^{R}((h^{K0}\otimes Q)(\alpha))+\sum_{|R| \leq |T|}\lambda^{T}((h^{K0}\otimes Q)(\alpha))(x/8)^{|T|-|R|}[\phi(b^{T}(KO))]_{R}$

for any *R* such that $|R| \leq k$. When $|R| = k$, $\lambda^R(a) = \lambda^R((h^{K0} \otimes Q)(a))$ from the definition of α . Therefore, $\lambda^R(a) = \lambda^R((h^{K0} \otimes Q)(\alpha))$ holds for any *R*, because from (1) and (2) both $\lambda^R(a)$ and $\lambda^R((h^{K0} \otimes Q)(\alpha))$ can be written as the same $Q[\![x]\!]$ -linear combination of $\lambda^T(a)$ and $\lambda^T((h^{K0} \otimes Q)(\alpha))$ such that $|T|=k$ respectively. Hence $a = \sum_{\alpha} \lambda^R ((h^{K0} \otimes Q)(\alpha)) b^R (KO) = (h^{K0} \otimes Q)(\alpha)$, and so, a is an element of $(h^{R0} \otimes Q)(W^{RO}_k)$. Q. E. D.

By (3.1), an element of $W_k^{\kappa o}$ also satisfies the relation (2.14). Especially, we have

(3.2) Corollary. Let α be an element of W_k^{KO} , and set $(h^{KO} \otimes Q)(\alpha) =$ $\sum_{P} \lambda^{R}(\alpha) b^{R}(KO)$. Then it holds $\lambda^{kA_1}(\alpha) \equiv 0 \mod 8$.

Proof. From (2.11) $\phi(b_n(KO))$ that has $b_0(KO)$ with non-zero coefficient in its expansion is only $\phi(b_1(KO))$ which equals to $(x/8)+b_1(KO)$. So by (2.10) we obtain $[\phi(b^T(KO))]_0=1$ if $T=t\Lambda_1$, and 0 if otherwise, where <u>0</u> is the zero sequence $(0, 0, \cdots)$. Therefore $(2, 14)$ in the case $\underline{0}$ implies λ^{k} ¹ $(\alpha) \equiv 0$ mod. 8. Q. E. D.

We remark that (2.7) also holds for an element of W^{K0}_* by (3.2).

The homomorphism $MSp_* \to MU_*$ induced by the inclusion $Sp \to U$ can be extended to the homomorphism $W^{KO}_* \to MU_*$ by the Hattori-Stong theorem.

We denote by $r: W^{KO}_* \to MO^*$ the composition of $W^{KO}_* \to MU^*$ and $MU^* \to MO^*$. E. E. Floyd [1] has considered a subalgebra P_* of MO_* and proved Image (MSp_*) MO_*) is contained in P_*^* . On the other hand following F.W. Roush [3] *Image*($MSp_* \rightarrow MO_*$) contains MO_*^{16} . By selecting a polynomial base x_i , $i \neq 2^k-1$, of MO_* , P_* can be represented as the polynomial algebra $Z_2[(x_{2i})^2,$ $(x_{2j-1})^2$, x_{2j} for any *i* and *j* such that $j \neq 2^k$ for any *k*, and so it holds $P_* \equiv MO_*^2$. We remark the following.

$$
(3.3) \quad \textbf{Corollary.} \quad \text{Image}(r: W^{KO}_* \to MO_*) = P_*^8.
$$

Proof. Considering the method of E.E. Floyd's in [1], Image($r : W^{K0}_* \rightarrow$ $MO_*\subset P_*^*$ holds from $(3, 2)$. Following D.M. Segal [4], there exists some Sp -manifold for each dimension $8j$, $j\neq 2$ ^{*k*}, and its symplectic cobordism class y_{2j} satisfies $S^{J_{2j}}(MSp)(y_{2j}) \equiv 2 \mod 4$. Such a Sp -manifold was defined by R.E. Stong [5], and by [5, Th. 4] all *K*-characteristic numbers of y_{2i} are multiples of 2. Therefore, the K-Hurewicz image of $(1/2) y_{2j}$ is integral and so $(1/4) y_{2j}^2$ is an element of $W_{ij}^{\kappa_0}$. We can select x_{2j} , $j\neq 2^k$, as satisfying $r((1/4) y_{2j}^2) = x_{2j}^s$. Hence $\{r((1/4) y_{2j})|j\neq 2^k\}$ and MO_*^{\ast} generate P_*^{\ast} and this is the required result. $Q.$

 (3.4) **Remark.** In fact the above (3.3) can be proved without using (3.2) *by considering merely the structure of* $W_2^{\kappa o}$ *and* $W_4^{\kappa o}$ *, if we use the essential part of Floyd's method. W*^{*k*}^{*o*} *is precisely studied by R. Okita* [2] *for* 1 $\leq k \leq 7$.

§ 4. Applications.

In this section, we investigate some divisivility conditions on characteristic numbers of W^{k0}_{*} . We denote in this section $h^{k0} \otimes Q$ merely by h^{k0} .

(4.1) Theorem (R. Okita [2, Prop. 4.2]). Let α be an element of $W_{n_{n-1}}^{KO}$ *and let* $h^{KO}(\alpha) = \sum_{n} \lambda^R(\alpha) b^R(KO)$. Then $\lambda^{d_2n-1}(\alpha) \equiv 0 \mod 8$.

Proof. In the case $n=1$, it is clear from $(3, 2)$. Now inductively supposing that $\lambda^{d_2n-1}-1}(\beta) \equiv 0 \mod 8$ holds for any $\beta \in W^{KO}_{2^{n-1}-1}$, we prove $\lambda^{d_2n-1}(\alpha) \equiv 0 \mod 8$. For any integer *k* such that $0 \le k \le 2^{n-1}$, it holds

(1)
$$
S^{k,l_1}(MSp)S^{l_2n-k-1}(MSp)=\sum_{i=0}^k {2^n-k \choose k-i} S^{i,l_1+l_2n-i-1}(MSp).
$$

By using $(2, 7)$ and (1) , we have the following;

(2)
$$
\sum_{i=0}^k {\binom{2^n-k}{k-i}} \lambda^{i \, d_1 + d_2 n_{-i-1}}(\alpha) \equiv 0 \mod 8 \quad \text{if} \quad k \geq 1.
$$

From (2) for each $k=1, 2, \dots, 2^{n-1}$, we have

$$
(3) \qquad \lambda^{k}4_{1}+4_{2}n-k-1}(\alpha) \equiv m_{k} \lambda^{4_{2}n-1}(\alpha) \mod 8 \quad \text{for} \quad 1 \leq k \leq 2^{n-1},
$$

where m_k is some integer. Next we consider the equation

(4)
$$
S^{J_{2^{n-1}-1}}(MSp) S^{2^{n-1}J_1}(MSp)
$$

= $2 \cdot S^{(2^{n-1}-1)J_1+J_2n-1}(MSp) + S^{2^{n-1}J_1+J_2n-1-1}(MSp)$.

Since it holds λ^{J_2n-1} \cdot $(S^{2n-1}$ ¹ \cdot $(MSp)(\alpha))\equiv 0 \mod 8$ by our inductive hypothesis, it holds from (4) that

(5)
$$
\lambda^{2^{n-1}J_1+J_2n-1-1}(\alpha) \equiv -2 \cdot \lambda^{(2^{n-1}-1)J_1+J_2n-1}(\alpha) \mod 8.
$$

Considering the equation (2) in the case $k=2^{n-1}$ and using (3) and (5), we obtain

$$
\left(1+\sum_{i=1}^{2^{n}-1-1} {\binom{2^{n-1}}{i}} m_i-2\cdot m_{2^{n-1}-1}\right)\lambda^{J_{2^{n-1}}}(\alpha)\equiv 0\mod 8.
$$

Since $\begin{pmatrix} 7 \\ i \end{pmatrix} \equiv 0 \mod 2$ for $1 \le i \le 2^{n-1}-1$, we have $\lambda^{J_2n-1}(\alpha) \equiv 0 \mod 8$.

Q. E. D.

 (4.2) **Corollary** *(Segal* [4] *or Okita* [2, *Prop.* 4.1]). Let α_1 and α_2 be *classes* of $W_{2^n}^{KO}$ and $W_{2^n-1}^{KO}$ respectively. Then, we have $\lambda^{A_{2^n}}(\alpha_1)\equiv 0$ mod. 4 and $S^{2n-1}(\alpha_2) \equiv 0 \mod 4.$

Proof. We consider the following equation ;

$$
S^{J_1}(MSp) S^{J_2n-1}(MSp) - S^{J_2n-1}(MSp) S^{J_1}(MSp) = (2^n - 2) S^{J_2n}(MSp)
$$

for $n > 1$, and

$$
(S^{J_1}(MSp))^2=2\cdot S^{J_2}(MSp).
$$

From these equations, (2.7) and (4.1), we have $\lambda^{J_{2}n}(\alpha_{1})\equiv 0 \mod 4$ for $n\geq 1$. We also consider the following relation;

$$
S^{J_2}(MSp) S^{J_{2n-1}}(MSp) - S^{J_{2n-1}}(MSp) S^{J_2}(MSp) = (2n-3) S^{J_{2n+1}}(MSp)
$$

for $n \ge 1$. By using this equation and $\lambda^{J_2}(\alpha_1) \equiv 0$ mod.4, we have inductively $-c_1(\alpha_2) \equiv 0 \mod 4.$ Q. E. D.

(4.3) **Proposition** (R. Okita [2, Prop. 4.1]). For any $\alpha \in W_n^{\kappa o}$, $\lambda^{d_n}(\alpha) \equiv 0$ mod. 2.

Proof. This is clear from $\text{Image}(r: W^{KO}_* \to MO_*) \subset MO_*^8$ by (3.3).

Q. E. D.

 $\ddot{}$

We apply (2.14) in the case $R=1$ _r. For this, we first consider the following lemma.

(4. 4) **Lemma.**

$$
\left[\phi(b^T(KO))\right]_{d_r} = \begin{cases} {r+1 \choose j} & \text{if } T = iA_1 + A_{r+j}, \\ 0 & \text{otherwise.} \end{cases}
$$

Proof. From (2.11), all $\phi(b_i(KO))$ that have $b_r(KO)$ with non-zero coefficients in their expansions are only $\phi(b_{r+i}(KO))$ for $0 \leq j \leq r+1$, and all $\phi(b_i(KO))$ that have $b_o(KO)$ with non-zero coefficients are only $\phi(b_i(KO))$. By this and (2.10), we have that all $\phi(b^T(KO))$ that have $b_r(KO)$ with non-zero coefficients in their expansions are only $\phi(b^T(KO))$ such that $T\text{=}iA_1\text{+}A_{r+j}$ for $0 \leq j \leq r+1$, and we can easily deduce the required relation from (2.10) and $(Q. 11)$. $Q. E. D.$

(4.5) Theorem. Let α be an element of $W_n^{\kappa o}$ and set $h^{\kappa o}(\alpha) = \sum_{\alpha} \lambda^{\beta}(\alpha) b^{\beta}(\alpha)$. *For* any *i* such that $0 \le i \le n$, we have $\lambda^{iA_1 + A_{n-i}}(\alpha) \equiv 0 \mod 8, 4, 4 \text{ or } 2 \text{ if } n = 2^m - 1$, 2^m , $2m-1$ *or* $2m$ *for some m, respectively.*

Proof. In the case $i=0$, this is just $(4, 1)$, $(4, 2)$ and $(4, 3)$. By using $(4, 4)$, we have the following relation from (2.14) for $R = \mathcal{A}_r$;

$$
(*)\qquad \sum_{j=0}^{r+1} \binom{r+1}{j} \lambda^{(n-r-j)\Delta_1+\Delta_{r+j}}(\alpha) \equiv 0 \mod 8
$$

for $0 \le j \le r+1 \le n$. Inductively supposing that the result holds in the case $0 \le i \le k < n$, we can prove the result in the case $i = k+1$ by using the relation (*) for $r=n-(k+1)$. Q. E. D.

Next we consider (2.14) in the case $R=rA_1$.

 (4.6) Lemma.

$$
\left[\phi(b^T(KO))\right]_{r\Delta_1} = \begin{cases} \begin{pmatrix} i \\ \|T\| - r \end{pmatrix} 2^j & \text{if} \quad T = i\Delta_1 + j\Delta_2 + k\Delta_3, \\ 0 & \text{otherwise,} \end{cases}
$$

where $||T|| = i + j + k$ *for* $T = iA_1 + jA_2 + kA_3$.

Proof. From (2.11), $\phi(b_i(KO))$ that has $b_i(KO)$ with non-zero coefficient in its expansion is only $\phi(b_1(KO))$, $\phi(b_2(KO))$ or $\phi(b_3(KO))$. Therefore, by using (2.10) and (2.11), we have that all $\phi(b^T(KO))$ which have $(b_1(KO))^r$ with non-zero coefficients in their expansions are only $\phi \left(b^T(KO) \right)$ such that $\; T\! =\! i \Delta_1 +$ $j\Delta_2 + k\Delta_3$, and we can easily obtain the required relation by using (2.11).

Q. E. D.

(4.7) Theorem. Let α be an element of $W_n^{\kappa o}$ and set $h^{\kappa o}(\alpha) = \sum_{\alpha} \lambda^R(\alpha) b^R(KO)$. *It holds*

$$
2^j \cdot \lambda^{i\,d_1 + j\,d_2 + k\,d_3}(\alpha) \equiv 0 \mod 8
$$

 if $i+2j+3k=n.$

Proof. We may suppose $j=0, 1$ or 2. The following relation holds from (2.14) for $R=r\Delta_1$ by using (4.6) ;

(1)
$$
\sum_{i+2j+3} \binom{i}{i+j+k-r} 2^{j} \cdot \lambda^{i} 4_{1} + j4_{2} + k4_{3}(\alpha) \equiv 0 \mod 8,
$$

for any $\alpha \in W_n^{\kappa o}$. The binomial coefficients $\binom{\kappa}{i+j+k-r}$ are zero unless the following cases ;

(2)
$$
n-r\geq j+2k
$$
 and $r\geq j+k$.

For fixed *n*, we prove the theorem by induction on $j+k$. In the case $j+k=0$, it holds from (2.7). Now inductively we suppose that it holds $2^j \cdot \lambda^{i} A_1 + j A_2 + k A_3(\alpha)$ \equiv 0 mod.8 if $0 \leq j+k < t$ for any $\alpha \in W_n^{\kappa o}$ and for $i+2j+3k=n$. We prove the theorem in the case $j_0+k_0=t$.

Case (i) $j_0=2$. In this case we consider the relation (1) for $r=n-2t+2$. If there exist *j* and *k* which satisfy that $j+k \geq t$ and that the binomial coefficient $j+k-(n-2t+2)$ is non-zero, then it must be $j=2=j_0$ and $k=k_0$ from (2). So using the inductive hypothesis, we have from (1) for $r = n - 2t + 2$

$$
4 \cdot \lambda^{(n-3t+2)\Delta_1+2\Delta_2+(t-2)\Delta_3}(\alpha) \equiv 0 \mod 8
$$

for any $\alpha \in W_n^{\kappa o}$. Hence the required result holds in this case.

Case (ii) $j_0 = 1$. We consider (1) for $r = n - 2t + 1$. If there exist *j* and *k* which satisfy that $j+k \geq t$ and that the binomial coefficient $\binom{t}{i+j+k-(n-2t+1)}$ is non-zero, it must be $j=1=j_0$ and $k=t-1=k_0$ or $j=2$ and $k=t-2$. So using the inductive hypothesis, we have from (1) for $r = n - 2t + 1$

$$
4(n-3t+2)\cdot \lambda^{(n-3t+2)\Delta_1+2\Delta_2+(t-2)\Delta_3}(\alpha)+2\cdot \lambda^{(n-3t+1)\Delta_1+\Delta_2+(t-1)\Delta_3}(\alpha) \equiv 0 \mod 8
$$

for any $\alpha \in W_n^{\kappa o}$. The former term is 0 mod.8 by the case (i), where we consider the former term is zere when $t=1$. Hence we have the required result in this case.

Case (iii) $j_0 = 0$. We consider (1) for $r = t$. If there exist *j* and *k* which satisfy $j+k \geq t$ and that the binomial coefficient $\binom{t}{j+t-k-t}$ is non zero, then it must be $j+k=t$. So using the inductive hypothesis, we have from (1) for $r=t$

$$
4 \cdot \lambda^{(n-3t+2)} \cdot 1_{1} + 2 \cdot 1_{2} + (t-2) \cdot 1_{3}(\alpha) + 2 \cdot \lambda^{(n-3t+1)} \cdot 1_{1} + 1_{2} + (t-1) \cdot 1_{3}(\alpha) + \lambda^{(n-3t)} \cdot 1_{1} + 1_{2}(\alpha) \equiv 0 \mod 8
$$

for any $\alpha \in W_n^{\kappa o}$. The former two terms are 0 mod.8 by cases (i) and (ii), where we consider the first term is zero when $t=1$. Hence we have the required result in this case and it completes the proof. $Q.E.D.$

> DEPARTMENT OF MATHEMATICS COLLEGE OF EDUCATION, WAKAYAMA UNIVERSITY.

References

- [1] E.E. Floyd Stiefel-Whitney numbers of quaternionic and related manifolds, Transaction of the Amer. Math. Soc., 155 (1971), 77-94.
- [2] R. Okita: On the MSp Hattori-Stong problem, Osaka J. Math., 13 (1976), 547-566.
- [3] F.W. Roush: On the image of symplectic cobordism in unoriented cobordism, Proc. of Amer. Math. Soc., 38 (1973), 647-652.
- [4] D.M. Segal: Divisibility condition on characteristic numbers of stably symplectic manifold, Proc. of Amer. Math. Soc., 27 (1971), 411-415.
- [5] R.E. Stong: Some remarks on symplectic cobordism, Ann. of Math. (2), 86 (1967), 425-433.