On the Gorensteinness o f determinantal loci

By

Shiro GOTO

(Communicated by Prof. M. Nagata, May 9, 1978)

1. Introduction

Let *k* be a field and let $0 < t < n$ be integers. Let $X = [X_{ij}]$ be an *n* by *n* symmetric matrix of indeterminates over the field *k*. We put $S = k[X]$, the polynomial ring generated by $\{X_{ij}\}_{1\leq i\leq j\leq n}$ over *k*. Let $I_i(X)$ denote the ideal of *S* generated by the $t+1$ by $t+1$ minors of the matrix *X*. Finally we put $R = S/I_{t}(X)$. In this situation Kutz **[6]** gave the following nice result: *R is a Cohen-Macaulay domain with* $\dim R = nt - t(t-1)/2$ (c.f. Theorem 1). The aim of our paper is to study farther when *R* is a Gorenstein ring.

Our result is

Theorem (1.1). *R is a Gorenstein ring if and only if* $n \neq t$ (2).

Recently the author [3] has showed that *R* is a normal ring with $Cl(R) = Z/2Z$ (Here $Cl(R)$ denotes the divisor class group of R.), and this fact will play a key role in the present paper.

In case the field *k* has characteristic 0, the ring *R* appears as the ring of invariants. More explicitly, let *U* be a *t* by *n* matrix of indeterminates over *k*. We put $A = k[U]$ and $G = O(t, k)$, the orthogonal group. Let the group G act on the ring A as k-automorphisms by taking U onto MU for every $M \in G$. Then, as is known classically, the ring A^{σ} of invariants is generated by the entries of the *n* by *n* symmetric matrix $Y = {}^{t}U \cdot U$ and the ideal of relations on Y is generated by the $t+1$ by t+ 1 minors and the symmetry conditions (c.f. **[9],** Ch. II, *15* and 17). Thus from (1.1) we deduce at once the following invariant-theoretic result.

Corollary (1.2). *For A and G as above, AG is a Gorenstein ring if and only if* $n \not\equiv t(2)$.

2. Proof of Theorem (1.1)

We put $x_{ij} = X_{ij}$ mod $I_i(X)$ and denote by p the ideal of *R* generated by the *t* by *t* minors of the *t* by *n* matrix $[x_{ij}]_{1 \le i \le t, 1 \le j \le n}$. Note that p is a prime ideal of height 1 (c.f. $[6]$, Theorem 1). Moreover the class cl(p) of p generates the group Cl(R) and has order 2 (c.f. **[3],** Proof of Theorem).

We begin with the following

Lemma (2.1). ϕ *is minimally generated by* $\begin{pmatrix} n \\ t \end{pmatrix}$ *elements.*

Proof. Let $\mathcal F$ be the set of all the subsets of $\{1, 2, \dots, n\}$ with $\sharp J = t$. For $J \in \mathscr{F}$ we put $x_J = \det (x_{\alpha j_\beta})_{1 \leq \alpha, \beta \leq t}$ and $X_J = \det (X_{\alpha j_\beta})_{1 \leq \alpha, \beta \leq t}$, where $J = \{j_1, j_2, \dots, j_t\}$ with $j_1 < j_2 < \cdots < j_t$. (Hence $\mathfrak{p} = (x_J / J \in \mathcal{F})$ and $x_J = X_J \mod I_t(X)$.) Of course, in order to prove the assertion, it suffices to show that $\{x_j\}_{j \in \mathcal{F}}$ is a minimal system of generators of the graded ideal pof *R.*

Assume the contrary and choose an identity $x_j = \sum_{K \neq j} c_K x_K$ for some $J \in \mathcal{F}$ and for some family ${c_k}_{k \in \mathcal{I}^{-1}}$ of elements of k. Then, as $X_J \equiv \sum_{K \neq J} c_K X_K \mod I_{\iota}(X)$, we have actually $X_j = \sum_{K \neq j} c_K X_K$. (Note that each X_K is a homogeneous element of degree t and that the ideal $I_t(X)$ is generated by homogeneous elements of degree *t*+1.) Now put $T = k[(X_{ij})]_{1 \le i \le t, 1 \le j \le n, \text{ and } i \le j}$ and let $\varphi: T \rightarrow S$ be the *k*-algebra map such that

$$
\varphi(X_{ij}) = \begin{cases} \delta_{ij}X_{ij} & (j \in J \text{ and } j \leq t) \\ X_{ij} & (j \in J \text{ and } t < j) \\ 0 & (j \notin J) \end{cases}
$$

for $1 \le i \le t$, $1 \le j \le n$, and $i \le j$. Then clearly $\varphi(X_j) \ne 0$, and $\varphi(X_k) = 0$ for every $K \in \mathscr{F} - \{J\}$. But this is impossible, since $\varphi(X_J) = \sum_{K \neq J} c_K \varphi(X_K)$. Thus we conclude that p is minimally generated by $\begin{pmatrix} u \\ f \end{pmatrix}$ elements.

We put $K_R = \text{Ext}^g_S(R, S)$ ($g \equiv \text{dim } S - \text{dim } R = n(n+1)/2 - nt + t(t-1)/2$) and call it the canonical module of *R*. The fundamental properties of K_R are discussed by the author and Watanabe [5], some of which we shall need to prove (1.1). So we will summarize them with a sketch of proof.

Proposition (2.2). (a) K_R *is contained in R as a divisorial ideal.* (b) R *is a Gorenstein ring if and only if* K_R *is principal.*

Proof. (a) Because K_R is a Cohen-Macaulay *R*-module with dim $K_R = \dim R$, this assertion follows from the facts that *R* is a Noetherian integrally closed domain and that $Q(R) \bigotimes_R K_R \cong Q(R)$ (Here $Q(R)$ denotes the quotient field of *R*.).

(b) See [5], (2.1.3).

Proof of Theorem (1.1). First we will discuss in case $t=1$. Let $P=k[X_1, X_2,$ \cdots , X_n] be a polynomial ring and φ : *S* \rightarrow *P* the *k*-algebra map which takes X_{ij} onto $X_i X_j$ ($1 \le i \le j \le n$). Then Ker $\varphi = I_1(X)$ and Im $\varphi = k[\{X_i X_j\}_{1 \le i \le j \le n}]$. As the latter ring is a so-called Veronesean subring of *P* and as the Veronesean subring of order 2 is a Gorenstein ring if and only if $n \equiv 0$ (2) (c.f. [2] or [7]), we have the assertion.

Now consider the general case. Suppose that *R* is a Gorenstein ring and we

will show that $n \neq t$ (2). Assume that this assertion holds for $t-1$ ($t \geq 2$). We put $S = S[X_{11}^{-1}], k = k[X_{11}^{-1}, \{X_{1j}\}_{1 \leq j \leq n}],$ and $Y_{ij} = X_{ij} - X_{i1}X_{1j}/X_{11}$ ($2 \leq i, j \leq n$). Then $S =$ $\tilde{k}[\{Y_{ij}\}_{i\leq i\leq j\leq n}]$, and $\{Y_{ij}\}_{i\leq i\leq j\leq n}$ are algebraically independent over \tilde{k} . Moreover in this situation the ideal $\tilde{I} = I_l(X)\tilde{S}$ coincides with the ideal generated by the *t* by *t* minors of the new symmetric $n-1$ by $n-1$ matrix $Y=[Y_{i,j}]$ (of indeterminates over \tilde{k}). Hence we see that $n-1 \not\equiv t-1(2)$ by the hypothesis of induction on *t*, because $k' \otimes_{\tilde{k}} \tilde{S}/\tilde{l} \cong k'[Y]/I_{k-1}(Y)$ where k' denotes the quotient field of \tilde{k} and because $k' \otimes_{\tilde{k}} S/I = k' \otimes_{\tilde{k}} R[x_{11}^{-1}]$ is a Gorenstein ring by the standard assumption. Thus we have $n \neq t$ (2).

Conversely suppose that $n \neq t$ (2). If *R* were not a Gorenstein ring, we would choose *t* so that it is minimal among such counterexamples. Of course $t \ge 2$. We regard $K=K_R$ as a divisorial ideal of *R* (c.f. (a) of (2.2)). Then cl(K) \neq 0 by (b) of (2.2), and so $cl(K) = cl(\mathfrak{p})$ because the group $Cl(R)$ has order 2 and $cl(\mathfrak{p}) \neq 0$ (c.f. [3], Proof of Theorem). Let \tilde{S} , \tilde{k} , k' , \tilde{l} , and Y be as above and put $\tilde{R} = k' \otimes_{\tilde{k}} \tilde{S}/\tilde{l}$ $(=k'[Y]/I_{t-1}(Y))$. Then the minimality of *t* guarantees that \tilde{R} is a Gorenstein ring, since $n-1 \not\equiv t-1$ (2) by the standard assumption. On the other hand, we have

$$
K_{\tilde{R}} = \text{Ext}_{k'} \frac{g}{\tilde{k}} \hat{s} \left(\tilde{R}, k' \underset{\tilde{k}}{\otimes} \tilde{S} \right)
$$

\n
$$
\approx \text{Ext}_{\tilde{s}}^{g} (R, S) \underset{\tilde{s}}{\otimes} \left(k' \underset{\tilde{k}}{\otimes} \tilde{S} \right)
$$

\n
$$
= K \tilde{R}.
$$

(Notice that $g \equiv \dim S - \dim R = \dim k' \otimes_k \tilde{S} - \dim \tilde{R} = n(n+1)/2 - nt + t(t-1)/2.$) Hence $K\tilde{R}$ is principal as so is $K_{\tilde{R}}$ (See (b) of (2.2).). Therefore we conclude that $\text{cl}(\mathfrak{p}\tilde{R})=0$, as $\text{cl}(K\tilde{R})=\text{cl}(\mathfrak{p}\tilde{R})$ in $\text{Cl}(\tilde{R})$. But this is impossible. (In fact, $\mathfrak{p}\tilde{R}$ coincides with the ideal generated by the $t-1$ by $t-1$ minors of the $t-1$ by $n-1$ matrix $[Y_{ij}]_{1\leq i\leq t,2\leq j\leq n}$ mod $I_{t-1}(Y)$ and the latter ideal is minimally generated by $\binom{n-1}{t-1}$ (≥ 2) elements. See (2.1).) Thus we have that *R* is a Gorenstein ring and this completes the proof of Theorem (1.1).

Let $m = (x_{ij}) \leq i \leq j \leq n$ be the irrelevant maximal ideal of *R*. We put r(*R*) $\mathcal{L} = \dim_k \operatorname{Ext}^d_R(k, R)$ ($k = R/\mathfrak{m}$ and $d = \dim R$) and call it the type of *R*. This invariant r(R) measures how the ring *R* differs from Gorenstein rings. *R* is a Gorenstein ring if and only if $r(R)=1$.

Corollary (2.3). $r(R) = \binom{n}{t}$ *if* $n \equiv t$ (2).

Proof. Suppose that $n \equiv t(2)$. Then *R* is not a Gorenstein ring by (1.1). Hence $K_R \cong \mathfrak{p}$, as cl(K_R) = cl(p). On the other hand, the cardinality of a minimal system of generators of K_R is equal to the number $r(R)$ (c.f. [5], (2.1.8)). Thus we have $r(R)$ $\binom{n}{t}$ by (2.1).

374 *S hiro Goto*

Remark (2.4). (1.1) and (2.3) have been known by the author and Tachibana [4], in case $t=n-2$ and the field k has characteristic not equal to 2.

Remark (2.5). Let *k* be an arbitrary Noetherian ring and let $0 < t < n$ be integers. Let *X* be an *n* by *n* symmetric matrix of indeterminates over *k.* We put $S = k[X]$ and denote by $I(x)$ the ideal of *S* generated by the $t+1$ by $t+1$ minors of the matrix *X*. Then, as $S/I_i(X)$ is k-free, we can deduce easily from (1.1) that *S*/ $I_t(X)$ *is a Gorenstein ring if and only if k is a Gorenstein ring and* $n \neq t$ (2).

Remark (2.6). Let *k* be a Noetherian ring and *r, s, t* integers such that $0 < t$ \leq min {r, s}. Let *X* be an *r* by *s* matrix of indeterminates over *k*. We put $S = k[X]$ and denote by $I_i(X)$ the ideal of *S* generated by the $t+1$ by $t+1$ minors of the matrix *X*. Then we can prove similarly as the symmetric case that $S/I_i(X)$ *is a Gorenstein ring if and only if k is a Gorenstein ring and* $r = s$. Of course this result has been already known by Svanes **[8]** (The *only if* part is due to the author **[1].),** and so we omit the detail.

NIHON UNIVERSITY

References

- [1] S. Goto, *When do the determinantal ideals define Gorenstein rings?,* Science Reports of the Tokyo Kyoiku Daigaku, Section A, **12** (1974) 129-145.
- [2 1 , *T he Veronesean subrings of Gorenstein rings,* J. Math. Kyoto Univ., **16-1 (** 1976) 51-55.
- [3 1 , *T h e divisor class group o f a certain Krill domain,* J. Math. Kyoto Univ., 17-1 (1977) 47-50.
- [4] S. Goto and S. Tachibana, *A complex associated with a synunetric matrix,* J. Math. Kyoto Univ., **17-1** (1977) 51-54.
- [5] S. Goto and K. W atanabe, *On graded rings I,* J. Math. Soc. Japan, **30** (1978), 179-213.
- [6] R. E. Kutz, *Cohen-M acaulay rings and ideal theory in rin g s o f inv ariants of algebraic groups,* Trans. A. M. S., **194** (1974) 115-129.
- [7] T. Matsuoka, *On an inv ariant of Verotzesean rings,* Proc. Japan Acad., **50 (1974)** 287-291.
- [8] T. Svanes, *Coherent cohomology on S chubert subschemes o f flag schemes an d applications,* Advances in Math., **14** (1974) 369-453.
- [9] **H.** W eyl, *T he classical groups. Their inv ariants and representations,* 2nd ed., Princeton Univ. Press, Princeton, 1946.