On the Gorensteinness of determinantal loci

By

Shiro Goto

(Communicated by Prof. M. Nagata, May 9, 1978)

1. Introduction

Let k be a field and let 0 < t < n be integers. Let $X = [X_{ij}]$ be an n by n symmetric matrix of indeterminates over the field k. We put S = k[X], the polynomial ring generated by $\{X_{ij}\}_{1 \le i \le j \le n}$ over k. Let $I_i(X)$ denote the ideal of S generated by the t+1 by t+1 minors of the matrix X. Finally we put $R = S/I_i(X)$. In this situation Kutz [6] gave the following nice result: R is a Cohen-Macaulay domain with dim R = nt - t(t-1)/2 (c.f. Theorem 1). The aim of our paper is to study farther when R is a Gorenstein ring.

Our result is

Theorem (1.1). R is a Gorenstein ring if and only if $n \not\equiv t$ (2).

Recently the author [3] has showed that R is a normal ring with Cl(R) = Z/2Z (Here Cl(R) denotes the divisor class group of R.), and this fact will play a key role in the present paper.

In case the field k has characteristic 0, the ring R appears as the ring of invariants. More explicitly, let U be a t by n matrix of indeterminates over k. We put A=k[U] and G=O(t, k), the orthogonal group. Let the group G act on the ring A as k-automorphisms by taking U onto MU for every $M \in G$. Then, as is known classically, the ring A^{G} of invariants is generated by the entries of the n by n symmetric matrix $Y={}^{t}U \cdot U$ and the ideal of relations on Y is generated by the t+1 by t+1 minors and the symmetry conditions (c.f. [9], Ch. II, 15 and 17). Thus from (1.1) we deduce at once the following invariant-theoretic result.

Corollary (1.2). For A and G as above, A^G is a Gorenstein ring if and only if $n \not\equiv t$ (2).

2. Proof of Theorem (1.1)

We put $x_{ij} = X_{ij} \mod I_t(X)$ and denote by \mathfrak{p} the ideal of R generated by the t by t minors of the t by n matrix $[x_{ij}]_{1 \le i \le t, 1 \le j \le n}$. Note that \mathfrak{p} is a prime ideal of height 1 (c.f. [6], Theorem 1). Moreover the class $cl(\mathfrak{p})$ of \mathfrak{p} generates the group

Cl(R) and has order 2 (c.f. [3], Proof of Theorem).

We begin with the following

Lemma (2.1). \mathfrak{p} is minimally generated by $\binom{n}{t}$ elements.

Proof. Let \mathscr{F} be the set of all the subsets of $\{1, 2, \dots, n\}$ with $\sharp J = t$. For $J \in \mathscr{F}$ we put $x_J = \det(x_{\alpha j\beta})_{1 \le \alpha, \beta \le t}$ and $X_J = \det(X_{\alpha j\beta})_{1 \le \alpha, \beta \le t}$, where $J = \{j_1, j_2, \dots, j_t\}$ with $j_1 < j_2 < \dots < j_t$. (Hence $\mathfrak{p} = (x_J/J \in \mathscr{F})$ and $x_J = X_J \mod I_t(X)$.) Of course, in order to prove the assertion, it suffices to show that $\{x_J\}_{J \in \mathscr{F}}$ is a minimal system of generators of the graded ideal \mathfrak{p} of R.

Assume the contrary and choose an identity $x_J = \sum_{K \neq J} c_K x_K$ for some $J \in \mathscr{F}$ and for some family $\{c_K\}_{K \in \mathscr{F} - \{J\}}$ of elements of k. Then, as $X_J \equiv \sum_{K \neq J} c_K X_K \mod I_t(X)$, we have actually $X_J = \sum_{K \neq J} c_K X_K$. (Note that each X_K is a homogeneous element of degree t and that the ideal $I_t(X)$ is generated by homogeneous elements of degree t+1.) Now put $T = k[\{X_{ij}\}_{1 \leq i \leq t, 1 \leq j \leq n, \text{ and } i \leq j}]$ and let $\varphi: T \rightarrow S$ be the k-algebra map such that

$$\varphi(X_{ij}) = \begin{cases} \delta_{ij} X_{ij} & (j \in J \text{ and } j \leq t) \\ X_{ij} & (j \in J \text{ and } t < j) \\ 0 & (j \notin J) \end{cases}$$

for $1 \le i \le t$, $1 \le j \le n$, and $i \le j$. Then clearly $\varphi(X_J) \ne 0$, and $\varphi(X_K) = 0$ for every $K \in \mathscr{F} - \{J\}$. But this is impossible, since $\varphi(X_J) = \sum_{K \ne J} c_K \varphi(X_K)$. Thus we conclude that \mathfrak{p} is minimally generated by $\binom{n}{t}$ elements.

We put $K_R = \operatorname{Ext}_S^g(R, S)$ $(g \equiv \dim S - \dim R = n(n+1)/2 - nt + t(t-1)/2)$ and call it the canonical module of R. The fundamental properties of K_R are discussed by the author and Watanabe [5], some of which we shall need to prove (1.1). So we will summarize them with a sketch of proof.

Proposition (2.2). (a) K_R is contained in R as a divisorial ideal. (b) R is a Gorenstein ring if and only if K_R is principal.

Proof. (a) Because K_R is a Cohen-Macaulay *R*-module with dim $K_R = \dim R$, this assertion follows from the facts that *R* is a Noetherian integrally closed domain and that $Q(R) \bigotimes_R K_R \cong Q(R)$ (Here Q(R) denotes the quotient field of *R*.).

(b) See [5], (2.1.3).

Proof of Theorem (1.1). First we will discuss in case t=1. Let $P=k[X_1, X_2, \dots, X_n]$ be a polynomial ring and $\varphi: S \rightarrow P$ the k-algebra map which takes X_{ij} onto $X_i X_j$ $(1 \le i \le j \le n)$. Then Ker $\varphi = I_1(X)$ and Im $\varphi = k[\{X_i X_j\}_{1 \le i \le j \le n}]$. As the latter ring is a so-called Veronesean subring of P and as the Veronesean subring of order 2 is a Gorenstein ring if and only if $n \equiv 0$ (2) (c.f. [2] or [7]), we have the assertion.

Now consider the general case. Suppose that R is a Gorenstein ring and we

372

will show that $n \not\equiv t$ (2). Assume that this assertion holds for t-1 ($t \ge 2$). We put $\tilde{S} = S[X_{11}^{-1}], \tilde{k} = k[X_{11}^{-1}, \{X_{1j}\}_{1 \le j \le n}]$, and $Y_{ij} = X_{ij} - X_{i1}X_{1j}/X_{11}$ ($2 \le i, j \le n$). Then $\tilde{S} = \tilde{k}[\{Y_{ij}\}_{2 \le i \le j \le n}]$, and $\{Y_{ij}\}_{2 \le i \le j \le n}$ are algebraically independent over \tilde{k} . Moreover in this situation the ideal $\tilde{I} = I_t(X)\tilde{S}$ coincides with the ideal generated by the t by t minors of the new symmetric n-1 by n-1 matrix $Y = [Y_{ij}]$ (of indeterminates over \tilde{k}). Hence we see that $n-1 \not\equiv t-1(2)$ by the hypothesis of induction on t, because $k' \otimes_{\tilde{k}} \tilde{S}/\tilde{I} = k'[Y]/I_{t-1}(Y)$ where k' denotes the quotient field of \tilde{k} and because $k' \otimes_{\tilde{k}} \tilde{S}/\tilde{I} = k' \otimes_{\tilde{k}} R[x_{11}^{-1}]$ is a Gorenstein ring by the standard assumption. Thus we have $n \not\equiv t$ (2).

Conversely suppose that $n \not\equiv t$ (2). If *R* were not a Gorenstein ring, we would choose *t* so that it is minimal among such counterexamples. Of course $t \ge 2$. We regard $K = K_R$ as a divisorial ideal of *R* (c.f. (a) of (2.2)). Then $cl(K) \neq 0$ by (b) of (2.2), and so cl(K) = cl(p) because the group Cl(R) has order 2 and $cl(p) \neq 0$ (c.f. [3], Proof of Theorem). Let $\tilde{S}, \tilde{k}, k', \tilde{I}$, and Y be as above and put $\tilde{R} = k' \bigotimes_{\tilde{k}} \tilde{S}/\tilde{I}$ $(=k'[Y]/I_{t-1}(Y))$. Then the minimality of *t* guarantees that \tilde{R} is a Gorenstein ring, since $n-1 \not\equiv t-1$ (2) by the standard assumption. On the other hand, we have

$$K_{\bar{R}} = \operatorname{Ext}_{k' \bigotimes_{\bar{k}}^{g}} \left(\widetilde{R}, k' \bigotimes_{\bar{k}}^{g} \widetilde{S} \right)$$
$$\cong \operatorname{Ext}_{S}^{g} (R, S) \bigotimes_{S} \left(k' \bigotimes_{\bar{k}}^{g} \widetilde{S} \right)$$
$$= K\widetilde{R}.$$

(Notice that $g \equiv \dim S - \dim R = \dim k' \bigotimes_{\bar{k}} \tilde{S} - \dim \tilde{R} = n(n+1)/2 - nt + t(t-1)/2$.) Hence $K\tilde{R}$ is principal as so is $K_{\bar{R}}$ (See (b) of (2.2).). Therefore we conclude that $cl(\tilde{p}\tilde{R})=0$, as $cl(K\tilde{R})=cl(\tilde{p}\tilde{R})$ in $Cl(\tilde{R})$. But this is impossible. (In fact, $\tilde{p}\tilde{R}$ coincides with the ideal generated by the t-1 by t-1 minors of the t-1 by n-1 matrix $[Y_{ij}]_{2\leq i\leq t,2\leq j\leq n} \mod I_{t-1}(Y)$ and the latter ideal is minimally generated by $\binom{n-1}{t-1}$ (≥ 2) elements. See (2.1).) Thus we have that R is a Gorenstein ring and this completes the proof of Theorem (1.1).

Let $\mathfrak{m} = (x_{ij}/1 \le i \le j \le n)$ be the irrelevant maximal ideal of R. We put $r(R) = \dim_k \operatorname{Ext}_R^d(k, R)$ $(k = R/\mathfrak{m} \text{ and } d = \dim R)$ and call it the type of R. This invariant r(R) measures how the ring R differs from Gorenstein rings. R is a Gorenstein ring if and only if r(R) = 1.

Corollary (2.3). $r(R) = {n \choose t}$ if $n \equiv t$ (2).

Proof. Suppose that $n \equiv t$ (2). Then R is not a Gorenstein ring by (1.1). Hence $K_R \cong \mathfrak{p}$, as $\operatorname{cl}(K_R) = \operatorname{cl}(\mathfrak{p})$. On the other hand, the cardinality of a minimal system of generators of K_R is equal to the number r(R) (c.f. [5], (2.1.8)). Thus we have $r(R) = \binom{n}{t}$ by (2.1).

Shiro Goto

Remark (2.4). (1.1) and (2.3) have been known by the author and Tachibana [4], in case t=n-2 and the field k has characteristic not equal to 2.

Remark (2.5). Let k be an arbitrary Noetherian ring and let 0 < t < n be integers. Let X be an n by n symmetric matrix of indeterminates over k. We put S = k[X] and denote by $I_t(X)$ the ideal of S generated by the t+1 by t+1 minors of the matrix X. Then, as $S/I_t(X)$ is k-free, we can deduce easily from (1.1) that $S/I_t(X)$ is a Gorenstein ring if and only if k is a Gorenstein ring and $n \neq t$ (2).

Remark (2.6). Let k be a Noetherian ring and r, s, t integers such that $0 < t < \min\{r, s\}$. Let X be an r by s matrix of indeterminates over k. We put S = k[X] and denote by $I_i(X)$ the ideal of S generated by the t+1 by t+1 minors of the matrix X. Then we can prove similarly as the symmetric case that $S/I_t(X)$ is a Gorenstein ring if and only if k is a Gorenstein ring and r=s. Of course this result has been already known by Svanes [8] (The only if part is due to the author [1].), and so we omit the detail.

NIHON UNIVERSITY

References

- [1] S. Goto, When do the determinantal ideals define Gorenstein rings?, Science Reports of the Tokyo Kyoiku Daigaku, Section A, 12 (1974) 129–145.
- [2] —, The Veronesean subrings of Gorenstein rings, J. Math. Kyoto Univ., 16-1 (1976) 51-55.
- [3] —, The divisor class group of a certain Krull domain, J. Math. Kyoto Univ., 17-1 (1977) 47-50.
- [4] S. Goto and S. Tachibana, A complex associated with a symmetric matrix, J. Math. Kyoto Univ., 17-1 (1977) 51-54.
- [5] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30 (1978), 179-213.
- [6] R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Trans. A. M. S., 194 (1974) 115–129.
- [7] T. Matsuoka, On an invariant of Veronesean rings, Proc. Japan Acad., 50 (1974) 287-291.
- [8] T. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and applications, Advances in Math., 14 (1974) 369-453.
- [9] H. Weyl, The classical groups. Their invariants and representations, 2nd ed., Princeton Univ. Press, Princeton, 1946.