A note on Rees algebras of two dimensional local domains

By

Yasuhiro Shimoda

(Communicated by Prof. M. Nagata, Oct. 11, 1977) (Revised March 31, 1978)

§0. Introduction

If R is a Cohen-Macaulay ring (C-M ring for short) and $\{a_1, a_2, \dots, a_r\}$ is a regular sequence, then the Rees algebra $R[a_1^n t, a_1^{n-1}a_2 t, \dots, a_r^n t]$ is a C-M ring for any positive integer n [4]. But even if R is not a C-M ring, the Rees algebra is sometimes a C-M ring (See [5] for example).

Now, our aim of this paper is to give some conditions for R[at, bt] to be a C-M ring in case that (R, m) is a two dimensional local domain and $\{a, b\}$ is a system of parameters of R.

At first, in § 1 we will give some conditions for the kernel of the natural epimorphism $R[X, Y] \rightarrow R[at, bt]$ to have a linear base.

In § 2, using the results in § 1, we will prove the following:

Theorem: Let (R, m) be a two dimensional local domain and $\{a, b\}$ be a system of parameters of R. Then R[at, bt] is a C-M ring if and only if $(aR: b) \cap (bR: a) =$ $aR \cap bR$. Moreover, R[at, bt] is a C-M ring for every system of parameters $\{a, b\}$ of R if and only if R is a Buchsbaum ring.

In § 3, the case of Gorenstein ring will be treated and we will show that R[at, bt] is a Gorenstein ring for every (or equivalently some) system of parameters $\{a, b\}$ of R if and only if R is a Gorenstein ring.

Throughout this paper, we always denote by R or (R, m) a two dimensional local domain with maximal ideal m, by T the subring R[at, bt] of a polynomial ring R[t] where $\{a, b\}$ is a system of parameters of R and by K the kernel of the ring epimorphism $\varphi: R[X, Y] \rightarrow T$ given by $\varphi(X) = at, \varphi(Y) = bt$, where X, Y are indeterminates.

I am grateful to Professor T. Ishikawa for his kind adovices.

§1. Linear base

Proposition (1.1). $K = \sqrt{(aY - bX)R[X, Y]}$.

Proof. $\sqrt{(aY-bX)R[X, Y]} \subseteq K$ is obvious, since K is a prime ideal and $aY - bX \in K$. To prove the opposite inclusion, we have to show that any minimal prime ideal P of (aY-bX)R[X, Y] contains K. If both a and b are contained in P, mR[X, Y] is contained in P and hence ht $(P) \ge 2$, which is impossible. Therefore we may assume $a \notin P$. Let f be any element of K. As the map φ is homogeneous, we may assume that f is a form of degree n. Then, since we have $a^n f \in (aY-bX)R[X, Y]$ $\subseteq P, f$ is contained in P. Thus we have $K \subseteq P$.

Definition (1.2). We say that K has a linear base if K is generated by linear polynomials. Namely K = BR[X, Y], where $B = \{dX - cY; c, d \in R, da = cb\}$. In this case, if we take $(bR: a) = (d_1, d_2, \dots, d_k)R$, $(aR: b) = (c_1, c_2, \dots, c_m)R$, obviously $K = B_1$, where $B_1 = \{d_iX - c_jY; 1 \le i \le k, 1 \le j \le m\} \cap B$.

At first we consider some equivalent conditions that K has a linear base.

Proposition (1.3). For a system of parameters $\{a, b\}$ of R, the following conditions are equivalent:

- (i) K has a linear base
- (ii) $b^{n+1}R \cap a((a, b)R)^n \subseteq ab^n R$ for all $n \ge 0$.
- (iii) $a^{n+1}R \cap b((a, b)R)^n \subseteq a^n bR$ for all $n \ge 0$.

Proof. (i) \Rightarrow (ii): Let r be any element of $b^{n+1}R \cap a((a, b)R)^n$. Then we have

$$r = -r_0 b^{n+1} = r_{n+1} a^{n+1} + r_n a^n b + \dots + r_1 a b^n$$
 $(r_i \in R)$

Put $f(X, Y) = r_{n+1}X^{n+1} + r_nX^nY + \cdots + r_1XY^n + r_0Y^{n+1}$ and we have $f(X, Y) \in K$. Hence, by the assumption

$$f(X, Y) = \sum_{i,j} (d_i X - c_j Y) g_{i,j}(X, Y), \qquad (d_i X - c_j Y) \in B_1$$

Therefore, r_0 is contained in $(c_1, c_2, \dots, c_k) = (aR: b)$ and $r = -r_0 b^{n+1} \in ab^n R$.

(ii) \Rightarrow (i): Let f(X, Y) be any element of K. We will show that f(X, Y) is contained in BR[X, Y]. We may assume that f(X, Y) is a form of degree n+1. We will show $f(X, Y) \in BR[X, Y]$ by induction on n. When n=0, $f(X, Y)=rX+sY \in K$ implies ra+sb=0 and we have $f(X, Y)=rX-(-s)Y \in BR[X, Y]$. Now, let $n\ge 1$ and put $f(X, Y)=r_0Y^{n+1}+r_1Y^nX+\cdots+r_{n+1}X^{n+1}$ and we have $r_0b^{n+1}+r_1b^na+\cdots$ $+r_{n+1}a^{n+1}=0$, hence $r_0b^{n+1} \in b^{n+1}R \cap a((a, b)R)^n \subseteq ab^nR$. Therefore $r_0b^{n+1}=r'_0ab^n$ for some $r'_0 \in R$ and

$$r_0Y^{n+1} \equiv r'_0XY^n \qquad (\text{mod } BR[X, Y]).$$

Now, let $g(X, Y) = (r_1 + r'_0)Y^n + r_2XY^{n-1} + \cdots + r_{n+1}X^n$ and we have $f(X, Y) \equiv Xg(X, Y) \pmod{BR[X, Y]}$. Since K is a prime ideal and $X \notin K, g(X, Y) \in K$. As g(X, Y) is a form of degree n, by induction hypothesis, we have $g(X, Y) \in BR[X, Y]$. Thus $f(X, Y) \in BR[X, Y]$.

The equivalence of (i) and (iii) is proved similarly.

Now, we consider the following several conditions for a system of parameters $\{a, b\}$ of R:

(I) $(aR:b) \cap (bR:a) = aR \cap bR$

(II) 1)
$$(aR:b^n)=(aR:b)$$
 for every $n>0$

2) $(aR:b^n)=(aR:b)$ for some n>1

3)
$$(aR:b^2) = (aR:b)$$

- (III) 1) $(b^{n+1}R:a) \subseteq b^n R$ for every n > 0
 - 2) $(b^{n+1}R:a) \subseteq b^n R$ for some n > 0
 - 3) $(b^2 R: a) \subseteq bR$

Then, we have

Proposition (1.4).

- (i) Three conditions in (II) are equivalent.
- (ii) Three condtions in (III) are equivalent.
- (iii) We have the following hierarchy:

 $(I) \Rightarrow (II) \Rightarrow (III) \Rightarrow K$ has a linear base.

(iv) Three statements that the condition (I), respectively (II) and (III), holds for every system of parameters $\{a, b\}$ of R are equivalent.

Proof. (i) It suffices to prove 2) \Rightarrow 1). It is obvious for m < n, since $(aR: b) \subseteq (aR: b^m) \subseteq (aR: b^n)$. For m > n, it is obtained by induction, since $(aR: b^m) = ((aR: b^{m-1}): b)$.

(ii) It suffices to prove 2) \Rightarrow 1). For m < n, it follows directly from $(b^{n+1}R:a) \supseteq (b^{m+1}R:a)b^{n-m}$. For m > n, let $x \in (b^{m+1}R:a)$ and $xa = b^{m+1}r$ $(r \in R)$. Since $x \in (b^{m+1}R:a) \subseteq (b^{n+1}R:a) \subseteq b^n R$, we have $x = b^n x'$ for some $x' \in R$ and $x'a = b^{m-n+1}r$. Therefore we have $x' \in b^{m-n}R$ by induction and $x = b^n x' \in b^m R$.

(iii) (I) \Rightarrow (II): Take $x \in (aR:b^2)$, $xb^2 = ar$ and we have $xb \in (aR:b) \cap bR \subseteq (aR:b) \cap (bR:a) = aR \cap bR \subseteq aR$. Thus $x \in (aR:b)$.

(II) \Rightarrow (III): Take $x \in (b^2R:a)$, $xa = b^2r$ ($r \in R$) and we have $r \in (aR:b^2) = (aR:b)$. Thus br = as for some $s \in R$ and $x = bs \in bR$.

(III) $\Rightarrow K$ has a linear base: This follows from Proposition (1.3), since we have $b^{n+1}R \cap a((a, b)R)^n \subseteq b^{n+1}R \cap aR = a(b^{n+1}R:a) \subseteq ab^nR$.

(iv) We have only to prove that (I) holds if (III) holds for every system of parameters $\{a, b\}$ of R. Let $x \in (aR: b) \cap (bR: a)$ and xb = ar, xa = bs for some r, $s \in R$. Then we have $a^2r = b^2s$, hence $r \in (b^2R: a^2)$. Since $\{a^2, b\}$ is also a system of parameters of R, by the assumption we have $r \in (b^2R: a^2) \subseteq bR$ and hence x is contained in aR. Quite similarly we have $x \in bR$ since $s \in (a^2R: b^2)$ and $\{b^2, a\}$ is also a system of parameters of R.

§ 2. Cohen-Macaulayness of T = R[at, bt]

Lemma (2.1). ht (a, bt)T = 2.

Yasuhiro Shimoda

Proof. It is well known ht $(a, bt)T \leq 2$, since T is Noetherian. Let \mathfrak{P} be a minimal prime ideal of (a, bt)T. As $b(at) = a(bt) \in \mathfrak{P}$, we have $b \in \mathfrak{P}$ or $at \in \mathfrak{P}$, hence $(m, bt)T \subseteq \mathfrak{P}$ or $(a, at, bt)T \subseteq \mathfrak{P}$. Since $\mathfrak{m}R[X, Y]$ is a prime ideal of R[X, Y] and $K \subseteq R[X, Y]$ by Proposition (1.1), $\mathfrak{m}T$ is a prime ideal of T. Hence, if $(\mathfrak{m}, bt)T \subseteq \mathfrak{P}$, we have $0 \subseteq \mathfrak{m}T \subseteq \mathfrak{P}$. Similarly (at, bt)T is also a prime ideal of T, since $K \subseteq (X, Y)R[X, Y]$ by Proposition (1.1), and we have $0 \subseteq (at, bt)T \subseteq \mathfrak{P}$ if $(a, at, bt)T \subseteq \mathfrak{P}$. Therefore in each cases we have ht $(\mathfrak{P}) \geq 2$ and ht (a, bt)T = 2 is proved.

Lemma (2.2). For a system of parameters $\{a, b\}$ of R, $\{a, bt\}$ is a regular sequence in T if and only if $(bR: a^2) = (bR: a)$.

Proof. Let $(bR: a) \subseteq (bR: a^2)$ and $ra^2 = sb$, $ra \notin bR$ for some $r, s \in R$. Then we have $(rat)a \in (bt)T$ and $rat \notin btT$, which implies $\{bt, a\}$ is not a regular sequence in T and hence $\{a, bt\}$ is not a regular sequence.

Conversely, assume $(bR: a) = (bR: a^2)$. Then K has a linear base by Proposition (1.4). Therefore φ induces an isomorphism $R[X]/(bR: a)XR[X] \cong T/(bt)T$. To prove that $\{a, bt\}$ is a regular sequence in T, it suffices to show that a is nonzerodivisor on R[X]/(bR: a)XR[X]. If $af(X) \in (bR: a)R[X] \cdot X$, the coefficients of f(X) are contained in $(bR: a^2) = (bR: a)$ and we have $f(X) \in (bR: a)XR[X]$.

Corollary (2.3). For a system of parameters $\{a, b\}$ of R, if T is a C-M ring, then $\{a, bt\}$ is a regular sequence in T and K has a linear base.

Proof. Since T is C-M and ht (a, bt)T=2 by Lemma (2.1), we have grade (a, bt)T=2 and hence $\{a, bt\}$ is a regular sequence. And from this, it follows that K has a linear base by Lemma (2.2) and Proposition (1.4).

Now, we give a characterization for T to be a C-M ring.

Theorem (2.4). For a system of parameters $\{a, b\}$ of R, T = R[at, bt] is a Cohen-Macaulay ring if and only if $(aR: b) \cap (bR: a) = aR \cap bR$.

Proof. In both cases when T is a C-M ring and when $(aR; b) \cap (bR; a) = aR \cap bR$ holds, we have $\{a, bt\}$ is a regular sequence and K has a linear base by Corollary (2.3), Proposition (1.4) and Lemma (2.2). Therefore φ induces an isomorphism

$$R[X]/A \cong T/(a, bt, at+b)T$$

where A = aR[X] + (bR: a)XR[X] + (X+b)R[X]. It is easily seen that the formar is a ring of dimension 0. Thus, since dim T=3, T is a C-M ring if and only if $\{a, bt, at+b\}$ is a regular sequence in T, that is, at+b is a nonzero-divisor on T/(a, bt)T, which is equivalent to that X+b is a nonzero-divisor on R[X]/aR[X] + (bR: a)XR[X].

Now we assume that T is a C-M ring. And let $r \in (aR; b) \cap (bR; a)$. Then $r(X+b) \in aR[X]+(bR; a)XR[X]$ and hence we have $r \in (aR[X]+(bR; a)XR[X]) \cap R$ = aR. Since we can proceed all arguments on a and b replaced, r is also contained in bR. Thus $(aR:b) \cap (bR:a) = aR \cap bR$.

Conversely, we assume $(aR:b) \cap (bR:a) = aR \cap bR$. We have only to prove that (X+b) is a nonzero-divisor on R[X]/(aR[X]+(bR:a)XR[X]). Take $f(X)=r_0+r_1X+\cdots+r_nX^n \in R[X]$ such that $(X+b)f(X) \in aR[X]+(bR:a)XR[X]$, and we have

$$r_n, r_i + r_{i+1}b \in aR + (bR; a) \qquad (0 \le i \le n-1)$$

$$r_0 \in (aR; b)$$

From this we get

 $r_i \in aR + (bR:a)$ for $i = 0, 1, 2, \dots, n$

and hence

$$r_i X^i \in aR[X] + (bR:a)XR[X]$$
 for $i = 1, 2, \dots, n$

Furthermore

$$r_{0} \in (aR+(bR:a)) \cap (aR:b) = aR+((bR:a) \cap (aR:b))$$
$$= aR+(aR \cap bR) = aR.$$

Thus $f(X) \in aR[X] + (bR: a)XR[X]$.

We call $\{a, b\}$ a weakly regular sequence if $\mathfrak{m}(aR; b) \subseteq aR$ and (R, \mathfrak{m}) is called a *Buchsbaum ring* (or *I*-ring) if each system of parameters of *R* forms a weakly regular sequence, [2 or 3]. We have

Theorem (2.5). T = R[at, bt] is a Cohen-Macaulay ring for every system of parameters $\{a, b\}$ of R if and only if R is a Buchsbaum ring.

Proof. If R is a Buchsbaum ring, each system of parameters $\{a, b\}$ of R satisfies the condition (II) by [2. Theorem 5]. Theorefore T is a C-M ring for each system of parameters by Proposition (1.4) and Theorem (2.4).

Cnoversely, let T be C-M for every system of parameters $\{a, b\}$ of R. By [2. Theorem 5] it suffices to prove that $(aR: b) = (aR: b_1)$ for any system of parameters $\{a, b\}$ and $b_1 \in R$ such that ht $(a, b_1)R = 2$. There exists integer n such that $b_1^n \in (a, b)R$, for (a, b)R is an m-primary ideal. Then for each $r \in (aR: b) rb_1^n \in aR$, that is $r \in (aR: b)_1^n$. Thus we have $(aR: b) \subseteq (aR: b_1^n)$. Since $\{a, b_1\}$ is also a system of parameters, $T_1 = R[at, b_1t]$ is a C-M ring by the assumption and we have $(aR: b_1^n) = (aR: b_1)$ by Theorem (2.4) and Proposition (1.4). Thus we have $(aR: b) \subseteq (aR: b_1)$. The opposite inclusion follows quite similarly.

§ 3. Gorensteinness of T = R[at, bt]

On Gorensteinness of T, we have the following.

Theorem (3.1). The following conditions are equivalent:

- (i) R is a Gorenstein ring
- (ii) T = R[at, bt] is a Gorenstein ring for every system of parameters $\{a, b\}$ of R.
- (iii) T = R[at, bt] is a Gorenstein ring for some system of parameters $\{a, b\}$ of R.

Proof. (i) \Rightarrow (ii): If R is Gorenstein, R is C-M and we have (aR: b) = aR and (bR: a) = bR. Therefore by Proposition (1.4) and Definition (1.2), T is isomorphic to R[X, Y]/(bX-aY)R[X, Y], which is obviously Gorenstein.

(ii) \Rightarrow (iii): trivial.

(iii) \Rightarrow (i): Let A = aR[X] + (bR:a)XR[X] + (X+b)R[X]. Then we have an isomorphism

$$R[X]/A \cong T/(a, bt, at+b)T = T_{\mathfrak{N}}/(a, bt, at+b)T_{\mathfrak{N}}$$

where \Re is the irrelevant maximal ideal $(\mathfrak{m}, at, bt)T$ of T, and $\{a, bt, at+b\}$ is a regular sequence in T, as we saw in the proof of Theorem (2.4). Therefore R[X]/A is a 0-dimensional local Gorenstein ring and hence A is an irreducible ideal. Now, if we can prove that $\{a, b\}$ is a regular sequence in R, then R is C-M and we have $R/(a, b^2)R \cong R[X]/A$, which is Gorenstein. This implies R is Gorenstein and the proof will be completed.

In the first place, we note:

$$A \cap R = aR + b(bR; a)$$

and the conditions in Proposition (1.4) hold by Theorem (2.4).

Now, put $A_1 = (aR: b)R[X] + A$, $A_2 = (bR: a)R[X] + A$. We claim $A = A_1 \cap A_2$. Because, for any $f \in A_1 \cap A_2$, we can take $c_0 \in (aR: b)$, $d_0 \in (bR: a)$ such that $f \equiv c_0 \equiv d_0$ (mod A), since $(aR: b)X \equiv (aR: b)(-b) \equiv 0 \pmod{A}$ and $(bR: a)X \equiv 0 \pmod{A}$. Then $c_0 - d_0 \in A \cap R = aR + b(bR: a)$ and we have $c_0 - d_0 = ar + bd'$, for some $r \in R$, $d' \in (bR: a)$. So $c_0 - ar = d_0 + bd'$ is contained in $(aR: b) \cap (bR: a) = aR \cap bR$. Thus we get $c_0 \in aR$ and $f \equiv c_0 \equiv 0 \pmod{A}$.

Since A is an irreducible ideal, $A = A_1$ or $A = A_2$. If $A = A_1$, $(aR:b) \subseteq A \cap R = aR + b(bR:a)$. Hence we have $(aR:b) = (aR:b) \cap (aR + b(bR:a)) \subseteq aR + ((aR:b) \cap (bR:a)) = aR + (aR \cap bR) = aR$. Thus (aR:b) = aR is obtained. If $A = A_2$, $(bR:a) \subseteq A \cap R = aR + b(bR:a)$. Hence we have $(bR:a) = (bR:a) \cap (aR + b(bR:a)) = ((bR:a) \cap (aR) + ((bR:a) \cap b(bR:a)) \subseteq ((bR:a) \cap (aR:b)) + bR = (aR \cap bR) + bR = bR$. Thus we have (bR:a) = bR.

TOKYO METROPOLITAN UNIVERSITY

References

- [1] I. Kaplansky, Commutative Rings, Boston: Allyn and Bacon, 1970.
- [2] J. Stückrad and W. Vogel, Ein Verallgemeinerung der Cohen-Macaulay Ringe und Anwendungen auf ein problem der Multiplizitätstheorie, J. Math. Kyoto Univ. 13 (1973) 513-528.

332

Rees algebras

- [3] J. Stückrad and W. Vogel, Uber das Amsterdamer Programm von W. Gröbner und Buchsbaum Varietäten, Monatsh. Math. 78 (1974) 433–445.
- [4] G. Valla, Certain Graded Algebras are Always Cohen Macaulay, J. Alg. 42 (1976) 537-548.
- [5] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen Macaulay, Advances in Math. 13 (1974) 115-175.