A note on Rees algebras o f two dimensional local domains

By

Yasuhiro SHIMODA

(Communicated by Prof. M. Nagata, Oct. 11, 1977) (Revised March 31, 1978)

§ O. Introduction

If *R* is a Cohen-Macaulay ring (C-M ring for short) and $\{a_1, a_2, \dots, a_r\}$ is a regular sequence, then the Rees algebra $R[a_1^n t, a_1^{n-1} a_2 t, \cdots, a_r^n t]$ is a C-M ring for any positive integer *n* **[4].** But even if *R* is not a C-M ring, the Rees algebra is sometimes a C-M ring (See [5] for example).

Now, our aim of this paper is to give some conditions for *R[at, bt]* to be a C-M ring in case that (R, m) is a two dimensional local domain and $\{a, b\}$ is a system of parameters of *R.*

At first, in § 1 we will give some conditions for the kernel of the natural epimorphism $R[X, Y] \rightarrow R[at, bt]$ to have a linear base.

In $\S 2$, using the results in $\S 1$, we will prove the following:

Theorem: *Let (R,* m) *be a two dimensional local domain and {a, b} be a system* of parameters of R. Then R[at, bt] is a C-M ring if and only if $(aR:b) \cap (bR:a) =$ $aR \cap bR$. Moreover, $R[at, bt]$ is a C -M ring for every system of parameters $\{a, b\}$ of *R if and only if R is a Buchsbaum ring.*

In § 3, the case of Gorenstein ring will be treated and we will show that *R[at,bt]* is a Gorenstein ring for every (or equivalently some) system of parameters {a, *b}* of *R* if and only if *R* is a Gorenstein ring.

Throughout this paper, we always denote by R or (R, m) a two dimensional local domain with maximal ideal m, by *T* the subring *R[at, bt]* of a polynomial ring *R[t]* where $\{a, b\}$ is a system of parameters of *R* and by *K* the kernel of the ring epimorphism φ : $R[X, Y] \rightarrow T$ given by $\varphi(X) = at$, $\varphi(Y) = bt$, where *X*, *Y* are indeterminates.

I am grateful to Professor T. Ishikawa for his kind adovices.

§ 1. Linear base

Proposition (1.1). $K = \sqrt{(aY-bX)R[X, Y]}$.

Proof. $\sqrt{(aY-bX)R[X, Y]} \subseteq K$ is obvious, since *K* is a prime ideal and $aY -bX \in K$. To prove the opposite inclusion, we have to show that any minimal prime ideal *P* of $(aY-bX)R[X, Y]$ contains *K*. If both *a* and *b* are contained in *P*. $mR[X, Y]$ is contained in *P* and hence ht (*P*) \geq 2, which is impossible. Therefore we may assume $a \in P$. Let f be any element of K. As the map φ is homogeneous, we may assume that *f* is a form of degree *n*. Then, since we have $a^n f \in (aY - bX)R[X, Y]$ \subseteq *P*, *f* is contained in *P*. Thus we have *K* \subseteq *P*.

Definition (1.2). We say that *K has a linear base* if *K* is generated by linear polynomials. Namely $K=BR[X, Y]$, where $B=\{dX-cY; c, d \in R, da=cb\}$. In this case, if we take $(bR: a) = (d_1, d_2, \dots, d_k)R$, $(aR: b) = (c_1, c_2, \dots, c_m)R$, obviously *K* = *B*₁, where *B*₁ = { $d_i X - c_i Y$; $1 \le i \le k$, $1 \le j \le m$ } $\cap B$.

At first we consider some equivalent conditions that *K* has a linear base.

Proposition (1.3). *For a system of parameters {a, b} of R, the following conditions are equivalent:*

- *(i) K has a linear base*
- (ii) $b^{n+1}R \cap a((a, b)R)^n \subseteq ab^nR$ *for all* $n \ge 0$.
- (iii) $a^{n+1}R \cap b((a, b)R)^n \subseteq a^n bR$ *for all* $n \ge 0$.

Proof. (i) \Rightarrow (ii): Let *r* be any element of $b^{n+1}R \cap a((a, b)R)^n$. Then we have

$$
r = -r_0 b^{n+1} = r_{n+1} a^{n+1} + r_n a^n b + \cdots + r_1 a b^n \qquad (r_i \in R)
$$

Put $f(X, Y) = r_{n+1}X^{n+1} + r_nX^nY + \cdots + r_1XY^n + r_0Y^{n+1}$ and we have $f(X, Y) \in K$. Hence, by the assumption

$$
f(X, Y) = \sum_{i,j} (d_i X - c_j Y) g_{i,j}(X, Y), \qquad (d_i X - c_j Y) \in B_1
$$

Therefore, r_0 is contained in $(c_1, c_2, \dots, c_k) = (aR : b)$ and $r = -r_0b^{n+1} \in ab^n R$.

(ii) \Rightarrow (i): Let $f(X, Y)$ be any element of *K*. We will show that $f(X, Y)$ is contained in *BR[X, Y*]. We may assume that $f(X, Y)$ is a form of degree $n+1$. We will show $f(X, Y) \in BR[X, Y]$ by induction on *n*. When $n=0$, $f(X, Y) = rX + sY \in K$ implies $ra + sb = 0$ and we have $f(X, Y) = rX - (-s)Y \in BR[X, Y]$. Now, let $n \ge 1$ and put $f(X, Y) = r_0 Y^{n+1} + r_1 Y^n X + \cdots + r_{n+1} X^{n+1}$ and we have $r_0 b^{n+1} + r_1 b^n a + \cdots$ $+r_{n+1}a^{n+1}=0$, hence $r_0b^{n+1} \in b^{n+1}R \cap a((a, b)R)^n \subseteq ab^nR$. Therefore $r_0b^{n+1}=r'_0ab^n$ for some $r'_0 \in R$ and

$$
r_0 Y^{n+1} \equiv r'_0 XY^n \qquad \text{(mod } BR[X, Y]).
$$

Now, let $g(X, Y) = (r_1 + r_0')Y^n + r_2XY^{n-1} + \cdots + r_{n+1}X^n$ and we have $f(X, Y) \equiv$ $Xg(X, Y)$ (mod *BR[X, Y]*). Since *K* is a prime ideal and $X \notin K$, $g(X, Y) \in K$. As $g(X, Y)$ is a form of degree *n*, by induction hypothesis, we have $g(X, Y) \in BR[X, Y]$. Thus $f(X, Y) \in BR[X, Y]$.

The equivalence of (i) and (iii) is proved similarly.

Now, we consider the following several conditions for a system of parameters ${a, b}$ of R :

 (I) $(aR:b) \cap (bR:a) = aR \cap bR$

(II) 1)
$$
(aR:b^n)=(aR:b)
$$
 for every $n>0$

2) $(aR: b^n) = (aR: b)$ for some $n > 1$

$$
aR:b^2=(aR:b)
$$

(III) 1)
$$
(b^{n+1}R: a) \subseteq b^nR
$$
 for every $n > 0$

- 2) $(b^{n+1}R: a) \subseteq b^nR$ for some $n > 0$
	- 3) $(b^2R: a) \subseteq bR$

Then, we have

Proposition (1.4).

- **(j)** *T h re e conditions in* **(II)** *are equivalent.*
- *(ii) Three condtions in* **(III)** *are equivalent.*
- *(iii) We have the following hierarchy:*

 $(I) \Rightarrow (II) \Rightarrow (III) \Rightarrow K$ *has a linear base.*

(iv) *Three statements that the condition* **(I),** *respectively (10 and* **(III),** *holds for every system of parameters {a, b} of R are equivalent.*

Proof. (i) It suffices to prove $2 \implies 1$). It is obvious for $m \lt n$, since $(aR:b)$ \subseteq $(aR : b^m) \subseteq (aR : b^n)$. For $m > n$, it is obtained by induction, since $(aR : b^m)$ = $((aR: b^{m-1}): b).$

(ii) It suffices to prove 2) \Rightarrow 1). For $m \lt n$, it follows directly from $(b^{n+1}R: a)$ $\supseteq(b^{m+1}R: a)b^{n-m}$. For $m>n$, let $x \in (b^{m+1}R: a)$ and $xa=b^{m+1}r$ ($r \in R$). Since $x \in (b^{m+1}R: a) \subseteq (b^{n+1}R: a) \subseteq b^nR$, we have $x = b^n x'$ for some $x' \in R$ and $x' a = b^{m-n+1}r$. Therefore we have $x' \in b^{m-n}R$ by induction and $x = b^n x' \in b^m R$.

(iii) (I) \Rightarrow (II): Take $x \in (aR:b^2)$, $xb^2 = ar$ and we have $xb \in (aR:b) \cap bR \subseteq$ $(aR:b) \cap (bR:a) = aR \cap bR \subseteq aR$. Thus $x \in (aR:b)$.

(II) \Rightarrow (III): Take $x \in (b^2 R : a)$, $xa = b^2 r$ ($r \in R$) and we have $r \in (aR : b^2) = (aR : b)$. Thus $br = as$ for some $s \in R$ and $x = bs \in bR$.

 $(HI) \Rightarrow K$ has a linear base: This follows from Proposition (1.3), since we have $b^{n+1}R \cap a((a, b)R)^n \subseteq b^{n+1}R \cap aR = a(b^{n+1}R : a) \subseteq ab^nR$.

(iv) We have only to prove that **(I)** holds if **(III)** holds for every system of parameters $\{a, b\}$ of *R*. Let $x \in (aR : b) \cap (bR : a)$ and $xb = ar$, $xa = bs$ for some *r*, $s \in R$. Then we have $a^2r = b^2s$, hence $r \in (b^2R; a^2)$. Since $\{a^2, b\}$ is also a system of parameters of *R*, by the assumption we have $r \in (b^2R : a^2) \subseteq bR$ and hence *x* is contained in aR. Quite similarly we have $x \in bR$ since $s \in (a^2R : b^2)$ and $\{b^2, a\}$ is also a system of parameters of *R.*

§ 2. Cohen-Macaulayness of *T= R[at, bt]*

Lemma (2.1). ht $(a, bt)T = 2$.

330 *Yasuhiro Shimoda*

Proof. It is well known ht $(a, bt)T \leq 2$, since *T* is Noetherian. Let \mathcal{R} be a minimal prime ideal of $(a, bt)T$. As $b(at) = a(bt) \in \mathcal{R}$, we have $b \in \mathcal{R}$ or $at \in \mathcal{R}$, hence $(m, bt)T \subseteq \mathcal{X}$ or $(a, at, bt)T \subseteq \mathcal{X}$. Since $mR[X, Y]$ is a prime ideal of $R[X, Y]$ and $K \subseteq R[X, Y]$ by Proposition (1.1), mT is a prime ideal of *T*. Hence, if $(m, bt)T$ \subseteq \$2, we have $0 \subseteq \mathfrak{m} \cap T \subseteq \mathfrak{P}$. Similarly $(at, bt)T$ is also a prime ideal of *T*, since $K \subseteq (X, Y)R[X, Y]$ by Proposition (1.1), and we have $0 \subseteq (at, bt)T \subseteq \mathfrak{B}$ if $(a, at, bt)T \subseteq \mathfrak{B}$. Therefore in each cases we have ht $(\mathfrak{B}) \ge 2$ and ht $(a, bt)T = 2$ is proved.

Lemma (2.2). For a system of parameters $\{a, b\}$ of R , $\{a, bt\}$ is a regular sequence *in T if and only if (bR: a²) =(bR: a).*

Proof. Let $(bR: a) \subseteq (bR: a^2)$ and $ra^2 = sb$, $ra \notin bR$ for some $r, s \in R$. Then we have $(rat)a \in (bt)T$ and rat $\notin btT$, which implies $\{bt, a\}$ is not a regular sequence in *T* and hence $\{a, bt\}$ is not a regular sequence.

Conversely, assume $(bR: a) = (bR: a^2)$. Then *K* has a linear base by Proposition (1.4). Therefore φ induces an isomorphism $R[X]/(bR: a)XR[X] \cong T/(bt)T$. To prove that ${a, bt}$ is a regular sequence in *T*, it suffices to show that a is nonzerodivisor on $R[X]/(bR: a)XR[X]$. If $af(X) \in (bR: a)R[X] \cdot X$, the coefficients of $f(X)$ are contained in $(bR: a^2) = (bR: a)$ and we have $f(X) \in (bR: a)XR[X]$.

Corollary (2.3). *For a system of parameters* {a, *b} of R, if T is a C-M ring, then* {a, *bt} is a regular sequence in T and K has a linear base.*

Proof. Since *T* is C-M and ht $(a, bt)T = 2$ by Lemma (2.1), we have grade $(a, bt)T = 2$ and hence $\{a, bt\}$ is a regular sequence. And from this, it follows that K has a linear base by Lemma (2.2) and Proposition (1.4) .

Now, we give a characterization for *T* to be a C-M ring.

Theorem (2.4). For a system of parameters $\{a, b\}$ of R, $T = R[at, bt]$ is a Cohen-*Macaulay ring if and only if* $(aR:b) \cap (bR:a) = aR \cap bR$.

Proof. In both cases when *T* is a C-M ring and when $(aR:b) \cap (bR:a) = aR \cap bR$ holds, we have $\{a, bt\}$ is a regular sequence and K has a linear base by Corollary (2.3), Proposition (1.4) and Lemma (2.2). Therefore φ induces an isomorphism

$$
R[X]/A \cong T/(a, bt, at+b)T
$$

where $A = aR[X] + (bR: a)XR[X] + (X+b)R[X]$. It is easily seen that the formar is a ring of dimension 0. Thus, since dim $T=3$, T is a C-M ring if and only if $\{a, bt, at+b\}$ is a regular sequence in *T*, that is, $at+b$ is a nonzero-divisor on $T/(a, bt)T$, which is equivalent to that $X + b$ is a nonzero-divisor on $R[X]/aR[X]+$ $(bR: a)XR[X].$

Now we assume that *T* is a *C-M* ring. And let $r \in (aR:b) \cap (bR:a)$. Then $r(X+b) \in aR[X] + (bR: a)XR[X]$ and hence we have $r \in (aR[X] + (bR: a)XR[X]) \cap R$ $= aR$. Since we can proceed all arguments on *a* and *b* replaced, *r* is also contained

in *bR*. Thus $(aR:b) \cap (bR:a) = aR \cap bR$.

Conversely, we assume $(aR : b) \cap (bR : a) = aR \cap bR$. We have only to prove that $(X+b)$ is a nonzero-divisor on $R[X]/(aR[X] + (bR: a)XR[X])$. Take $f(X) = r_0 +$ $r_1X + \cdots + r_nX^n \in R[X]$ such that $(X+b)f(X) \in aR[X] + (bR: a)XR[X]$, and we have

$$
r_n, r_i + r_{i+1}b \in aR + (bR : a) \qquad (0 \le i \le n-1)
$$

$$
r_0 \in (aR : b)
$$

From this we get

 $r_i \in aR + (bR: a)$ for $i = 0, 1, 2, \dots, n$

and hence

$$
r_i X^i \in aR[X] + (bR : a)XR[X] \qquad \text{for } i = 1, 2, \cdots, n
$$

Furthermore

$$
r_0 \in (aR + (bR : a)) \cap (aR : b) = aR + ((bR : a) \cap (aR : b))
$$

= aR + (aR \cap bR) = aR.

Thus $f(X) \in aR[X] + (bR: a)XR[X]$.

We call $\{a, b\}$ a *weakly regular sequence* if $m(aR: b) \subseteq aR$ and (R, m) is called a *Buchsbaum ring* (or /-ring) if each system of parameters of *R* forms a weakly regular sequence, [2 or 3]. We have

Theorem (2.5). $T = R[at, bt]$ is a Cohen-Macaulay ring for every system of par*ameters {a, b} of R if and only i f R is a Buchsbaum ring.*

Proof. If *R* is a Buchsbaum ring, each system of parameters $\{a, b\}$ of *R* satisfies the condition **(II)** by [2. Theorem 5]. Theorefore *T* is a *C-M* ring for each system of parameters by Proposition (1.4) and Theorem (2.4).

Cnoversely, let *T* be C-M for every system of parameters $\{a, b\}$ of *R*. By [2. Theorem 5] it suffices to prove that $(aR: b) = (aR: b_1)$ for any system of parameters ${a, b}$ and $b₁ \in R$ such that ht $(a, b₁)R = 2$. There exists integer *n* such that $b_1^n \in (a, b)R$, for $(a, b)R$ is an nu-primary ideal. Then for each $r \in (aR; b)$ $rb_1^n \in aR$, that is $r \in (aR : b)_1^n$. Thus we have $(aR : b) \subseteq (aR : b_1^n)$. Since $\{a, b_1\}$ is also a system of parameters, $T_1 = R[at, b_1t]$ is a *C-M* ring by the assumption and we have $(aR; b_1^n)$ $=(aR:b_1)$ by Theorem (2.4) and Proposition (1.4). Thus we have $(aR:b) \subseteq (aR:b_1)$. The opposite inclusion follows quite similarly.

§ 3. Gorensteinness of *T= R[at, ht]*

On Gorensteinness of *T,* we have the following.

Theorem (3.1). *The following conditions are equivalent:*

- *(i) R is a Gorenstein ring*
- *(ii)* $T = R[at, bt]$ *is a Gorenstein ring for every system of parameters* $\{a, b\}$ *of* R .
- (iii) $T=R[at, bt]$ *is a Gorenstein ring for some system of parameters* $\{a, b\}$ *of* R .

Proof. (i) \Rightarrow (ii): If *R* is Gorenstein, *R* is *C-M* and we have $(aR:b) = aR$ and $(bR; a) = bR$. Therefore by Proposition (1.4) and Definition (1.2), *T* is isomorphic to $R[X, Y]/(bX - aY)R[X, Y]$, which is obviously Gorenstein.

 $(i) \Rightarrow (iii)$: trivial.

 $(iii) \Rightarrow (i):$ Let $A = aR[X] + (bR: a)XR[X] + (X+b)R[X]$. Then we have an isomorphism

$$
R[X]/A \cong T/(a, bt, at+b)T = T_{\mathfrak{N}}/(a, bt, at+b)T_{\mathfrak{N}}
$$

where \Re is the irrelevant maximal ideal (m, *at*, *bt*) T of T, and $\{a, bt, at+b\}$ is a regular sequence in *T*, as we saw in the proof of Theorem (2.4). Therefore $R[X]/A$ is a 0-dimensional local Gorenstein ring and hence A is an irreducible ideal. Now, if we can prove that $\{a, b\}$ is a regular sequence in *R*, then *R* is *C-M* and we have $R/(a, b^2)R \cong R[X]/A$, which is Gorenstein. This implies R is Gorenstein and the proof will be completed.

In the first place, we note:

$$
A \cap R = aR + b(bR: a)
$$

and the conditions in Proposition (1.4) hold by Theorem (2.4).

Now, put $A_1 = (aR : b)R[X] + A$, $A_2 = (bR : a)R[X] + A$. We claim $A = A_1 \cap A_2$. Because, for any $f \in A_1 \cap A_2$, we can take $c_0 \in (aR:b)$, $d_0 \in (bR:a)$ such that $f \equiv c_0 \equiv d_0$ (mod A), since $(aR:b)X \equiv (aR:b)(-b) \equiv 0 \pmod{A}$ and $(bR:a)X \equiv 0 \pmod{A}$. Then $c_0 - d_0 \in A \cap R = aR + b(bR: a)$ and we have $c_0 - d_0 = ar + bd'$, for some $r \in R$, $d' \in (bR: a)$. So $c_0 - ar = d_0 + bd'$ is contained in $(aR: b) \cap (bR: a) = aR \cap bR$. Thus we get $c_0 \in aR$ and $f \equiv c_0 \equiv 0 \pmod{A}$.

Since A is an irreducible ideal, $A = A_1$ or $A = A_2$. If $A = A_1$, $(aR:b) \subseteq A \cap R=$ $aR+b(bR: a)$. Hence we have $(aR:b)=(aR:b)\bigcap (aR+b(bR: a))\subseteq aR+(aR:b)\bigcap aR$ $(bR : a) = aR + (aR \cap bR) = aR$. Thus $(aR : b) = aR$ is obtained. If $A = A_2$, $(bR : a) \subseteq a$ $A \cap R = aR + b(bR: a)$. Hence we have $(bR: a) = (bR: a) \cap (aR + b(bR: a)) = ((bR: a) \cap (aR: a))$ \cap aR) + $((bR: a) \cap b(bR: a)) \subseteq ((bR: a) \cap (aR: b)) + bR = (aR \cap bR) + bR = bR$. Thus we have $(bR: a) = bR$.

TOKYO METROPOLITAN UNIVERSITY

References

- [1] I. Kaplansky, Commutative Rings, Boston: Allyn and Bacon, 1970.
- [21 J. Stiickrad and W. Vogel, Ein Verallgemeinerung der Cohen-Macaulay Ringe und Anwendungen auf ein problem der Multiplizitätstheorie, J. Math. Kyoto Univ. 13 (1973) 513-528.

Rees algebras 333

- 13] J. Stückrad and W. Vogel, Uber das Amsterdamer Programm von W. Gröbner und Buchsbaum Varietaten, Monatsh. Math. 78 (1974) 433-445.
- [4] G. Valla, Certain Graded Algebras are Always Cohen Macaulay, J. Alg. 42 (1976) 537-548.
- [5] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen Macaulay, Advances in Math. 13 (1974) 115-175.

 \bar{z}