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In the theory of haormonic spaces, C. Constantinescu and A. Cornea [3] intro-
duced the concept of harmonic mapping between harmonic spaces as a generalization
of analytic mapping between Riemannian surfaces. A harmonic space is a locally
compact Hausdorff space on which it is given a sheaf of continuous functions, called
harmonic functions, satisfying Brelot's axioms [2], and roughly speaking a harmonic
mapping is a mapping of harmonic spaces which preserves harmonic functions.

As a Riemannian manifold with usual harmonic functions is a harmonic space,
we can define a harmonic mapping of Riemannian manifolds. H. Imai [10] studied
the value distriburion of harmonic mappings between Riemannian manifolds of the
same dimension. The main purpose of this article is to give a  characterization of
harmonic mappings between Riemannian manifolds of the same dimension or dif-
ferent ones from the differential geometric point of view.

Later on in the paper, a harmonic mapping of C. Constantinescu and A. Cornea
will be called a mappng which preserves harmonic functions, for we would like to
use the term "harmonic mapping" in the sense of Eells and Sampson [4], and the
concept of harmonic mapping in this sense plays an important roll in the present
paper.

Let A, (resp. AO be the Laplacian on a Riemannian manifold M  (resp. N ) .  S.
Helgason [9] proved that a diffeomorphism f: M— >N is an isometry if it is a La-
placian commuting mapping, i.e., f*LI N =  4 f * .  B. Watson [13] extended this result
to the following; f: M— >N is a  Laplacian commuting mapping if it is a harmonic
Riemannian submersion. S. I. Goldberg and T. Ishihara [8] gave a more generali-
zation. T h u s  a  harmonic Riemannian submersion is a  mapping which preserves
harmonic functions. Moreover it is evident that a Laplacian commuting mapping
preserves not only harmonic functions but also all of eigenspaces of the Laplacian.
Hence it may be conjectured that a set of mappings which preserve harmonic func-
tions is much larger than that of Laplacian commuting mappings, but our main re-
sult (Theorem 5.1) asserts it is not so . In  fact f: M— >N is a mapping which pre-
serves harmonic functions if it is a constant mapping or its restriction to the open
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submanifold M '=  {p e M , ( f* ), #0} of M  is a Riemannian submersion after some
conformal change of the natural Riemannian metric on M '.

In § 1, we will review briefly the basic facts on harmonic mappings and Rie-
mannian submersions for the later use. Our problems are described explicitly in § 2.
It will be proved in  § 3 that a  mapping preserves convex functions if it is totally
geodesic (Theorem 3.2). To prove this we have to construct local convex functions
satisfying certain conditions (Lemma 3.1). The lemma leads us to the following
characterization of harmonic mapping; f: M—>N is a harmonic mapping ifff * maps
every local convex function in N  into a local subharmonic function in M .  In order
to deal with a  mapping which preserves harmonic functions, we need the fact that
there are sufficiently many local harmonic functions, which is shown in § 4 as a gen-
eralization of Lemma 5.1 in L. Bers [1]. The last section is devoted to the proof of
our main results, Theorems 5.1, 5.2 and 5.7.

The author wishes to express his hearty thanks to Professor M. Matsumoto for
his valuable advice and encouragement.

§  1 .  Harmonic mappings and Riemannian submersions

Let M  and N  be smooth Riemannian manifolds of dimension m and n  respecti-
ve ly . The Riemannian metrics of M  and N  are denoted by d s 2„,, and ds 2,  respectively
which are written locally as

(1.1) d s =a)± • • • + Om , ds„ =  cor ±  •  •  •  +  4 2 ,

where oi a (a = 1, • • • , m) are local 1-forms in M  and cuP(i= 1 , •  •  •  ,  n ) are local 1-forms
in N .  The structure equations in M  are

171,

dw a = E cobAwba,
b=1

(1.2) I da) = E coac A w cb — RabcdOic A w d ,
c=1 2  c d

where the co  are the components of the connection form of the Riemannian metric
ds 2,  and the Ra „ ,  are the components of its curvature tensor. Similar equations are
valid in N  and we will denote the corresponding quantities in the same notations
with asterisks. (Throughout the paper, indices a, b , c, •  ••  run from 1 to in, and i,
j, k , •  •  •  from 1 to n).

Let f : M  ---> N  be a smooth mapping of M  into N  and

(1.3) f * ( 4 ) - =  f a cua , i = 1 ,  •  •  •  ,  n .
a=1

Let f - ' T (N ) denote the bundle induced by f  from the tangent bundle T (N ) over N.
The differential f * of f is regarded as a f 'T ( N ) - v a lu e d  1-form on M .  The bundle
f  - 7 (N )  has the covariant differential operator compatible with the metric deduced
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naturally from the  Riemannian metric M T . The components f i „  of the covariant
differential of f ,  are given by

nin n i
(1.4) E fiabC0 b—  df ia+ E f i a f * W * i t  E fibWba•

b =1j = 1 b = 1

From (1.2) and (1.3), it follows that r ,ba• The mapping f  is called harmonic
(resp. totally geodesic) i f  E,7= f a .  = 0 (resp. f i a b  =  0) [6].

In the sequel of this section, we assume n _<m . A mapping f: M-->N is said to
be a Riemannian submersion if it satisfies

(1.5) E f i a f j a ô i r
a=1

Although a Riemannian submersion is sometimes assumed to be surjective [13], it is
not in the paper.

It is known that f: M—>N is a  Riemannian submersion if we can choose local
forms wa  in  M  and ce in N  in (1.1) such that the equations (1.3) are reduced to

(1.6) * *
J  ( - 0  —  t , i =1, • • •,n,

that is, f i a = 3i a  [8].
When f: M— ÷N is a  Riemannian submersion, we always take local 1-forms wa

and ce satisfying (1.6), which we call canonical bases of the Riemannian submersion.
We denote the f i a , with respect to canonical bases by F l a b. Then they satisfy

(1.7) w1i— f*a4i= E F i j a W a , wia= E Fi„awa,
a=1 a=1

and are called the components of the structure tensor of  the Riemannian submersion
f : M — >N . (In the paper, the indices a, p ,  •  •  •  run from n +1  to m if n < m .  On
the other hand for m =n, terms with indices a, p ,  •  •  •  ,  for example F i  vanish.)
From (1.7) it follows

(1.8) =  0 ,  F i i , =

For any point of f (M ), its inverse image by f  is said to be a fibre of f  From
the property of canonical bases, it follows that 0 1 = • • • —04,= 0 on each fibre. L e t
p be a point of f ( M ) .  Then the fibre f  - 1 (p) is a closed submanifold of M  of dimen-
sions m — n, when m > n .  The restriction of E,7_,, 1 (02„ to the fibre gives the induced
Riemannian metric. The restriction of the F,„p  to the fibre may be regarded as the
components of the second fundamental forms of the submanifold f  - 1 ( p ) .  Hence,
when m >n, a Riemannian submersion f: M—>N is said to be minimal (resp. totally
geodesic) if  E 7_7, 1 F,„ = 0 (resp. 0 ) .  Since = 0, it holds E , , Ln + ,

F , .  Therefore a Riemannian submersion is harmonic if it is m inim al. The
horizontal distribution, which is defined by N n + 1

=
 •  •  •  —  com  = 0, is integrable
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2 .  Harmonic, suharmonic and convex functions

Let h be a smooth function on N .  Put

d l =  h i a,„

E It1 j a4  =dh ,±  En  h i N t ,
j =1 5=1

that is, h, (resp. ho ) are the components of the first (resp. second) covariant deriva-
tive of the function h. The Laplacian on the functions on N  is defined to be

(2.2) 4
N

h
 =  hii.

J ,  also denotes the Laplacian on M .  A  function h  is said to be harmonic (resp.
subhamonic) if ZIN h= 0 (resp. 0).

A function h  on N  is called (geodesically) convex if for every geodesic C(t) pa-
rametrized by arc-length and defined for all t E [t 1 , t2 ] ,  it holds

(2.3) h(C(2t1± (1 — 2)0) < 2h(C(t 1)) + (1 — 2)h(C(t2))

for all A E  [0, 1]. If the right hand side of (2.3) is always greater than the left, h is
called strictly conv ex . It is well known that a C 2 -function h is convex (resp. strictly
convex) i f  the second covariant derivative (h1 j )  is non-negative (resp. positive) de-
finite. A l l  of the functions in the paper are smooth.

Let h be a local function in N, that is , a  function on an open subset U of N.
We call h a local harmonic function if it is harmonic on the open Riemannian sub-
manifold U of N .  Similarly we can define local subharmonic functions and local con-
vex functions.

As it is described in the preface, we would like to study mappings which pre-
serves harmonic functions. Hence we define the set

f: M— ›-Nlf is a smooth mapping such that f *h  is
(2 ,(M , N )= a local harmonic function in M  for every local

harmonic function in N.

Similarly, (2 „(M , N ), S 2,(M , N ) and (2 „(M , N ) denote the sets of mappings which
preserve subharmonic, convex and strictly convex functions, respectively.

Let f: M--)-N be a smooth mapping. The components of 
f *

 are f i c , as in (1.3).
For a local function h on an open set U of N, we have on f - 1 (U)

( f * h ).= E

where the h1 are the components of the local 1-form d h .  It follows from (2.1)

n/

E (f*Mabcob f i= E  . ( dh i +  E  f *0 )+  E hi(d.fi a+ E f  f  *(oli + E fibwb.)•
b=1 1=1 5=1 1=1 5=11 =1

(2.1)
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Thus using (1.4), we obtain the following fundamental relations

Lemma 2 . 1 .  Let f: M— >N be a smooth mapping. For any function h on an open
set of N,

(2.4) (fh)ab E
i , j 1i 1

(2.5)
n  m

d m f * h = h• f f , .+ E  E  h i f ia a •
i,k =1 a=1 1= 1 a= 1

If f: M— >N is a  harmonic Riemannian submersion, that is , 7 an'- 1 f i  a a 
=  0  a n d

(2.5) is reduced to 4 m f * h = f * 4 , h .  Moreover it is known that
4 2,f * =f *Z I N  if  f  is a harmonic Riemannian submersion [9]. Hence we get

Proposition 2 .2 .  If f : M — >N is a  harmonic Riemannian submersion, it is con-
tained in „(M , N ).

§  3 . Mappings which preserve convex functions

Using Lemma 2.1, we will investigate the set D (M , N ) and f28 (M , N ) in the
section. We need to prove there are sufficiently many local convex functions. In
fact we have

Lemma 3 . 1 .  L et C, and Co  be any  constants such that (C o ) is sym m etric and
positive def inite. For any point q of N , there exists a strictly convex function h defined
near q whose covariant derivatives satisfy

(3.1) h i(q )=C „ h,i(q)=

P ro o f . Fix an arbitrary point q E N .  We use a normal coordinate system
{U, y', • • • , yn} about q. Let h be any smooth function defined near q. Put

(3.2) _ ah
n t  ay, '

avi _ n ah  r k

ayay k= 1 y k

where P are the components of the Riemannian connection on N  with respect to
{U, y 1}. We will show that for any constants C „ Co  with (C, i ) >O, there exists a
strictly convex function h defined near q and satisfying

(3.3) Tti(q)= C„ llij(q)=

Now there is a  neighborhood V of q contained in U, where p.,„ are expanded
in the following way (for example, see [11]);

(3.4) E E  A ijkihY 1Y h ,
1=1 1,h=1

where Aii k ,  are constants and A k t h  smooth functions on V. Defined a function h
on V by
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1 n
h = E Ci y '± —  E  Co y'yi

i=1 2 =1

It is easy to check that the function h satisfies (3.3). Using (3.2) and (3.4), we may
expand i a s  follows

Êr i i i =  C i f —  E  c k At i y i+ -
1

 E  B i j k l Y k Y I ,
1 ,k =1 2  k ,1 =1

where Bi j k , are smooth functions on V .  Since (Cj i ) is positive definite, it is evident
that is positive in some neighborhood of q.

Theorem 3.2. f  is an element of  0,(M , N) j f f  it is a totally geodesic mapping.

P ro o f  Assume that f  is totally geodesic. For any local smooth function h, it
follows from (2.4)

( f *11).b= h i i f i a f , b .
1 , j= 1

If h is convex, that is, (ho ) is non-negative, ((f*h) a b ) is non-negative.
Conversely, let f  e f l c (M ,N ) .  Suppose for some point p of M  and some integer

i0(1 < i o _<n), the matrix ( f i o d p ) )  is non-zero . Then for some ordered m-tuple X =
{X', • • • , X"'} of real numbers, Z  i f o abXaXb is non-zero. PutE b .  

in
A= fio.df a X b ,p — Ê fiaX a ).

a ,b =1 1= 1  a = 1

Applying Lemma 3.1 in the case C io =  —(p-1- 1)/2, C ,=0 (i#4 ), we get a
strictly convex function h defined near p and satisfying

(f*h)ab(p)= Ê fia(P)fib(p) P +1 ( 1 3 )
'a b •i=1

Hence we have

2 (f*h)(p)X aX b = — 1.
a ,b =1

Thus ((f *h) a ,) is not non-negative. But this is contrary to the fact that f €  0,(M , N )
and h is strictly convex . Therefore we proved f,,, b = 0  on M.

Theorem 3.3. W hen m>n, Q s ,(M , N )=Ø. W hen  m n, a mapping f is contained
in (2 se(M , N ) f f

 it is a totally geodesic immersion.

P ro o f  If f  is a  totally geodesic immersion, it is easy to prove that for any
strictly convex function h, ((f*h)„,)=(E;',./ = 1 hi i f i a f i b ) is positive.

We will prove the converse. Applying Lemma 3.1 when C ,= 0  and C i i =8, j ,
for any point p  of M , we have a local strictly convex function h such that (f*h) a b (p)
— E % ,f, a (p )fi b ( p ) .  A s ((f*h) a b (p)) is positive, (f* ),, should be injective. This is
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true at any point of M .  Hence if m > n , p s c (M , N )= 0 , and if m < n ,  f  is  an im-
mersion. On the other hand, we have already proved in the proof of Theorem 3.2
that f i a b = 0 on M.

Another application of Lemma 3.1 is given in the following theorem which is a
characterization of harmonic mappings.

Theorem 3 .4 . f: M -4•N  is a  harmonic mapping if for any open subset U of N,
it maps any convex function defined on  U into a subharm onic function on f  A U ).

P roo f. If f  is harmonic, for any convex function h  on an open set U, it holds
zim f *h=  E i ,,,„hj i a f i a .  Thus we get zlm f *h_>._ 0 on f  - ( U), for (120 ) is non-negative.

The convese is given without difficulty. If for some point p  E  M  and some
i 0(1 < i0 < n), E ant_i f j o a a (p )  is non-zero, we put

nin  m
2 =  E foaa(P) ,E  Ej—i a = 1

We use Lemma 3.1 when Ci o = — (p + 1)/2, C i  0 ( i#  4 ) , 80, and get a strictly
convex function h such that

o f i f f .h x p ) - - -  Ê a2 (fa—  11 + 1 J ;  ( p ) =  — 1.= i 2 .--.1 ' a  a

Thus we proved Egt= ,f„ a (p)= 0 for any i and any point p  E  M.

§  4 .  The existence of local harmonic functions

In order to study ,(2,(M , N ) we need the following

Lemma 4 . 1 .  F or any p o in t q E N  and any con stan ts C ,  Co  with C = C  and
C = O, there exists a harmonic function h on a neighborhood o f  q  which satisfies

h i (q)=  C 1 , h ii(q )= C i.„

Proof. Take a normal coordinate system {U, y ', • • , yn} about q  such that
yi(q)= • • • = yn(q)=- O. A function h on U is harmonic if

(4.1)
2h n ah

ay ay k  =1 a y k

where are the contravariant components of the Riemannian metric on N  and P i k

are the components of the Riemannian connection with respect to the normal co-
ordinate {y1}. We will prove the follow ing; For any constants Ci , C i j  satisfying
Co = C11 and E':= , C11 0 , there is a solution h of the equation (4.1) which is defined
near y = 0  and satisfies



222 Toru Ishihara

ah a2h(0)— C„ (0)— C1 5 .
ay i a y ia

But this is true because for n 2, it is a special case of Lemma 4.2 given below, and
for n = 1 , the equation (4.1) is an ordinary differential equation.

Before describing Lemma 4.2, we must make some preparations. From now
on in the section, we use the same notations as in [1]. Compare it for d e ta ils . Let
x = (x „  • • • , xn ) be a point of Euclidean n-space (n_ 2). Let 0(x) be a function de-
fined for l x l< R .  We set, for 0 < a < 1 ,

IP:(95)= I•u•b• 95(x') — 95(x") VI —  x "la-1,1."KR

D'95 =
au0(x) 

ax1' •  •  •  axin .

 

if the derivatives exist. F or an  integer l 0 and for 0 < a < 1 ,  we set

110 R 1 R1 "Ir+„—   maximum IHR  

1=0 1 ..). 1!(1±ot) (axil • • •ax;',. 11•
Let B r+ )„ denote the set of functions q5 for which the norm l!ollr.„ is defined and

finite. BM, is a banach space with respect to the norm.
Let

(4.2) Lq5(x)= E E . a %/5 — o
v=o i,+••••,•,„=. a x p — a 4 -

be a linear partial differential equation of order /(_2) and of elliptic type which is
defined near the origin x = 0 .  Now we can give a slight extension of Lemma 5.1 in
[1].

Lemma 4.2. A ssume that the  coefficients in  (4.2) belong to .V . )  f or som e
a ( 0 < a < l )  and R 0 ( > 0 ) .  For any  constants C l i ... i .(0 1,+ • • • -fi n < l )  which are
symmetric in i„ • • • , in  and satisfy

(4.3) E
(),).+•••+i„t

there exists a solution 0 of (4.2) defined near the origin and satisfying

(4.4) a'95 (o )—  c
axli • • • axi;,-

0 < i 1 d - • • • ±in < l.

Pro o f : We will follow substantially the method used for the proof of Lemma
5.1 by L. Bers. Let 2(x) be a smooth function such that 0_< 2(x)< 1 for all x, 2(x)
= 1 for Ix l<1/4, 2(x)=0 for Ix  1 / 2 .  For O <R,<R, consider the linear mapping
Afr= TO of Bp.:?, into itself defined by the relation
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ik(x)=- — e)2(e I R)[Loge) —  Lge)lcle,
lel<n

where J(x) is the fundamental solution of the osculating equation

(4.5) LoO(x)-= E atO —o.
axi,i• • •ax„in

From the fact di p .. E  B ( 1 2 ) , it follows that there is a constant A , such that

(4.6)

where 11 sup 7 '56 11/R1-J1i 11P Let R  be so sm all that TH <1 . For every h(x)
E  BM the equation

(4.7) 95-= h— TO

has a unique solution Oh = h—  Th+ Ph—  • • • +(-1) 177m h+ • • • . The property of
the fundamental solution J(x ) of the elliptic equation L 0 O(x)=0 implies

LoOh(x)=Loh(x)+2(x/R)[Logx) - 45(x)i•

Hence if L 0h(x )=0, it holds

LO,(x)--- 0, Ix I < R/4.

If follows from (4.5) that

(4.8)

For 4+ • • • it holds

R THMT Or+ „ 
I+ --M TM

(4.9) xil • • • 4. lir+ , (2 R ) i '+'"+'..

Let V  be the vector space generated by • • • 4., • • • +4,51 over the
real num ber. The dimension of V is given by

(n+1)• • • ( n +r-1 )d = l +
r=1

Put

V ,= E • • • x l„ E V, E = 01,
i , + • • • + i n ,

vz ={ E c „ . . . , „ x t i  •  • •E  V, E
0 5 , , + • • • + i n ,

Then, VI and V, are (d— 1)-dimensional vector subspaces of V.
Let h = E a , , , . . . + i , c„...,„xii  • • • x.„i  be an elements of V,. It is a solution of

the equation (4.5). Hence the corresponding solution q5„ of (4.7) is a solution of the
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equation (4.2) for ix KR/4. From (4.6) (4.8) and (4.9) we get

(4.10) 110h(x)—h(x)11<A2R' E I
o5.ix+•••+i„gz

where A, is a positive constant.
Let 0 : V 1—>V, be a  linear mapping defined by

0 (h )= E  6 '0 4 (0).x.i • • •
a.x. • • • ax;:,-

Assume 0 (h )= 0, i.e.,

a'vsh • ( 0 ) - 0, • • •ax. • •ax,7

Let A „ A, be some constan ts. From (4.10) we have for 

kii+•••+.in
j 1 !!  I Ci i ...J „1 213R ' E

• • • +in) (:■ .i.+•••+,;„5t

Combining this with (4.10), we get

E  I ci1•••.i.1 E  c i p..„ I Rii+"• -"-.

If  R  is so small that A ,R ' < 1, this implies that all of the vanish. Thus we
have shown that 0 : V 1 —>V2 is bijective.

§ 5. Mappings which preserve harmonic functions

Let f  belong to QH (M , N ) .  Firstly we will prove that it is a harmonic mapping.
In fact, for any point p  E  M  and any integer io (l_.<i o n ) , Lemma 4.1 in the case
where C,o = 1, C 4 =O (i * i o)  and Co  = 0  assures that there is a  harmonic function h
defined near f ( p )  such that

4m (f*h)(p)=

This is true for any i, and any p  e M.
Next, for any p  E  M  and any constants Co  w ith  Co = Cj ,  andC  =  0,

there is a harmonic function h defined near f ( p )  such that

4 .(f*h )(p )—  Ê  c i i xi i (p)— 0 ,
i, j= 1

where Xo =  Egi_ l f i a f i a . Thus, for any constants Co  satisfying Co = Cj , and E 7 = ,

= 0 ,  we get

C iiX ii(p)± t (X „(p)—  X „(p))C „---.- 0,
i * j i= 1
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so that

x „ (p)= x . (p)= •  •  •  = xn .(p ), X (p )= O

Put 2(p)= X  ii(P). Then we have

(5.1) f i a ( p ) f , a ( p )= 2 ( p ) a i i .
a=1

This gives

(5.2) 2 ( p ) = . . a2, ( f . ( 0 2 .

At any p e M , (5.2) is v a lid . Hence 2 is a non-negative function globally defined
on M .  If there is a point p E  M  with 2(p)#0, (5.1) implies

rank (f ia )-  rank (a ii)

at p .  Hence we have n/_. n.
We are now in the position to give the following definition.

Definition. Assume that m _ n .  Let f: M— >N be a  smooth mapping. f  is
called a conformal submersion (resp. pseudo-submersion) with function 2 if it satisfies
(5.1) at every point p  of M  for some positive (resp. non-negative) function À on M.

Remark that every smooth mapping f: M-->N is a conformal pseudo-submersion
when n= 1.

From Lemma 2.1 it follows easily that a  harmonic conformal pseudo-submer-
sion f: M—>N preserves local harmonic functions. Thus, we have obtained

Theorem 5.1. When n, a mapping f belongs to 2 „(M,N)  i t  i s  a harmonic
conformal pseudo-subm ersion. In particular, for n=1, Q H (M , N ) is the set of  all
harm onic m appings f : M — .N . W hen m <n, H (M, N) consists of  constant mappings
of  M  into N.

Similarly we can get

Theorem 5.2. „(M , N )= Q H (M, N).

P ro o f  W e w ill p rove H (M , N )c ,(2  „(M , N ). This is  trivial when m <n.
Hence we assume that If f : M -->N  is a  harmonic conformal pseudo-sub-
mersion, for any local subharmonic function h we have 4,(f *h)=-2 I  h 1 >0.

Conversely, let f  E  Qsa(M, N ) .  For any point p E  M , any integer i0 (1 % <n )
and any constant C , applying Lemma 4.1 in the case when Ci o = C , C1 = 0  (i 10 )
and Cj i = 0, we have a local harmonic function h satisfying

4 m ( f* h ) ( p )=  c  f i o . . ( p )  0.
a=1
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This is true for any constant C .  Thus f  is harmonic.
For any point p E M  and any constants Ci i  with C =  C 11 and Eli= , C11 = O, we

apply Lemma 4.1 and get

where f ,  f ,, a
 as in the proof of Theorem 5 .1 . This also gives (5 .1 ). Thus1., .a,

fE f2 „(M, N).

In the argument above, we have practically proved

Proposition 5.3. If  f: M--›-N maps every local harmonic function into a local
subharmonic function, it is contained in i i (M, N).

As it was described in §2, all of minimal Riemannian submersions are harmonic
conformal submersions. Let U be an open subset in complex Euclidean 2-space
C 2 --={(z1, z2)} . f  denotes a holomorphic function on U .  Take the natural metrics
on U and complex Euclidean space C .  Then f: U—>C is a  harmonic conformal
pseudo-submersion with function 2 =1af/az,12 -Flaf/az 2 12 .

We proceed to study relations between Riemannian submersions and conformal
submersions. To begin with, let f: M—›-N be a conformal pseudo-submersion with
function 2 .  Then the restriction off to the open submanifold e  M, 2(p)>O1
is a  conformal submersion. Hence we assume that f  is a  conformal submersion
originally. Let 2 denote the Riemannian manifold with Riemannian metric d§ 23/

= 2d.Sif. Then f : is a Riemannian submersion. We call this the Riemannian
submersion corresponding to f : M — ›-N . Let Riemannian metrics ds 2

m  and  ds1  be
written locally as in (1.1). We may assume that local 1-forms (0,,, coP satisfy

(5.3) f  * 049= e P E
a=1

where p=1. log A. T h en  dS2,  is given locally by dg =  aEm. O a . Here we set (Da =
ePwa . Let (Da , be the connection forms of the Riemannian metric dg2„ .  Then

( i ) ab
—

 W a b +  p a w b  P b O a ,

where we put dp= Ena L D1 a0- a• Let F i a b  be the components of the structure tensor
of the Riemannian submersion f : — >N . Then we know

Lemma 5.4 [6].

(5.4) f l a b  e 2 P F 1 a b —  e (
8

abP z
—

a i a p t
—

a i b i o . ) .

This yields

Lemma 5.5. Let f: M--›.N be a conformal subm ersion. It is harmonic ill'

771

(5.5) E  F,„,,=(m -2)e -  p,.
a=n+1
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For a function h on M , put dh= d„hd- 411, where

7m

di i h= E  hi w„ 4 1 1 = E  h
4=1 =n+1

It is evident that this definition is independent of the choice of local forms (06, satis-
fying (5.3). (Compare d„ with Vaisman's foliated exterior derivative [12].) Now
we get

Proposition 5.6. Let f: M--->N be a conformal submersion with function 2. As-
sume that the corresponding Riemannian submersion is harm onic . Then f  is harmonic
01'4 2 =0 .

Let R 2 -={(y„ y2)} be Euclidean 2-space with standard metric ds1= E!, = , (dy i )2

and 124 ={(x 1 , x 2 , x 3 , x4)} be Euclidean 4-space with metric dec.= Ax3, x4) El=i(dxa) 2 ,
where 2(x 3 , x4) is a smooth positive function depending only on variables x„ x4 .  Let
P: R'---3R 2 be the natural projection, i.e., P(x„ x„ x 3 , x 4 ) =(x 4 , x 2 ). From Proposi-
tion 5.6 it follows that P: R 4 — R 2 is an example of harmonic conformal submersion
which are not Riemannian submersions.

Let vc : S 3 —>S2 be the Hopf mapping, where S3 ={(x 1, x„ x„ x4 ) e R4, El = , xza = 1}
and S2 = {(y„ y„ E 123 , y!=. (1/2)2}. We introduce a local coordinate system
01, 02, 03 in S ' such that

x 1 = cos 0, cos 02, X 2 =  COS 0
1
 sin 02, X 3 =  sin o, cos 03 ,  x4 = sin 63 sin 0

3

and a local coordinate system *„ *, in S ' such that

y,= I- cos * „  y 2 =  sin *, cos *  y 3 =1 sin *, cos * 2.

Then is given locally by * , =  2 6  *  6  6'1, 1  2
=

 r  
3 —

 r  1. Let dA and ds1 be the standard
Riemannian metrics on S ' and S2 of constant curvatures 1 and 4 respectively. Put

oh= 0101 , W I =  sin 6,(d0,—  450, oh= sin2 6,dØ3 + cos2 6 1d62 ,
cot = 441/11 , w =  4-sin /11diJr2 .

Then it holds locally d4= E3a ., w2a , ds1= cur and 1.),(coP)=E 3„= , i a co a . It is
well known that p c : S 3 —>S2 is a harmonic Riemannian submersion. Now let d.i2 be
a Riemannian metric on S3 conformally related to ds3, i.e., c/g2 =2ds3. Then we have

a2 a2 a2 42— o), ± ( cot 95, —tan 0, )(02 .
aqi, asb2

Hence 42=-0  if is constant. Thus va : S 3 —›S2 is an only harmonic conformal sub-
mersion with the corresponding Riemannian submersion vc : S 3 —>S2 up to a homo-
thetic change of the metrics on S'.

Lastly we would like to consider [2 „(M , N ) in the equidimensional case . H.
Imai states in Lemma 4 [10] that a harmonic mapping (of C. Constantinescu and A.
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Cornea) between Riemannian manifolds of the same dimension is a local isometry
on its non-singular points. It seems however there is a  gap in his proof of the
lemma. But the following theorem asserts that his lemma is true up to homothetic
changes of metrics, and moreover that a mapping of this kind has no singular point
if it is not a constant mapping.

Theorem 5 .7 .  Assume that dim M = dim 3, and M  is connected. L et f : M
—>N be a harmonic, conformal pseudo-submersion with function A . Then it is a  con-
stant mapping or f: M— >N' is a Riemannian covering after some homothetic change of
the metric on M , where N' -=f(M).

P ro o f . Let M '= {p e M , 2(p)> 01. If M '= Ø ,  f  is a constant mapping. As-
sume 0 .  Then it is an open submanifold o f  M .  Applying Lemma 5.5 to the
restriction of f  to M ', since in this case the left hand side of (5.5) vanishes, we get

d2=2e 2 PE p,w i = O.

Hence A is a positive constant function on M '.  Since A is continuous on M , we
obtain M ' =M .

When dim M = dim N =2, it follows from Lemma 5 5 that all conformal pseudo-
submersions are harmonic. Moreover if M  and N  are oriented, they are regarded
naturally as complex manifolds, and f : M —>N is a conformal pseudo-submersion i f
it is holomorphic or antiholomorphic.
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Added in proof.

After submitting this paper, the author was noticed that the theorems 5.1 and
5.5 had been shown independently by Bent Fuglede by a different method (Ann.
Inst. Fourier, Grenoble 28, 107-144, 1978).


