J. Math. Kyoto Univ. (JMKYAZ)
20-1 (1980) 125-140

The local solvability of partial differential
operator with multiple characteristics
in two independent variables

By

Takashi OKAJI

(Received Nov. 7, 1978)

1. Introduction.

Let 2 be a neighborhood of the origin in R? and a(x, {) be an infinitely
differentiable real-valued function defined in 2 of the form

(1.1 alx, )=at*ayx, t) for (x, 1)ef.

where a is a non-zero real number, £ is a positive integer and a,(x, t) is an
infinitely differentiable real-valued function defined in £ with a0, 0)=1.
We are concerned with the operator P of the form

2 P(x 1, 53; —%):(—aa;—ia(x, t)%)ermgL_l be. (x, t)(_a%_)f< % ¥y,

where b;,,(x, t) are infinitely differentiable functions defined in £.

It is well-known that for m=1, P is locally solvable if and only if & is even
(C11, [91). For m=2, there are some works [2], [4], [7] which treat more
general operators. In particular, from the result of [2] it follows that for m=2,
if k is odd, then P is not locally solvable at the origin. And for m=3, from
the result of [4] it follows that when % is odd, P is not locally solvable at the
origin if by, »-1(0, 0)=0. On the other hand in the case when % is even, in [10]
there is given a necessary and sufficient condition for local solvability of P for
m=2 when its coefficients depend only on variable ¢ and b, ,(x, t)=0.

In this paper we will give a necessary and a sufficient condition for local
solvability of P when m is two or three. In the proof of necessary part we
shall use ideas of Ivrii [7] and Cardoso-Treves [2] and the proof of sufficient
part relies on the result of Grusin [5].

2. Statement of results.

Let 2, be a neighborhood of the origin R! such that £2,x{0}c£. For
b;,;€C=(2) and x,=£2, let d; {x,) be a non-negative integer for which the fol-
lowing representation holds: In some neighborhood 2'C2 of (x,, 0)
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2.1) bi, (x, 1)=1%.7%0R (x, t) for (x, e, b, ;€C(2")

where b, ,(x, 0) is not identically zero in every small neighborhood of (x,, 0).
If such an integer does not exist, we define d;, ;(x,) to be 4oo.
Now we state our theorems.

Theorem 2.1-0. Let P be the operator of (1.2), and m be less than or equal to
three. Then P is locally solvable at the origin if k is even and d; ;0)=i+j(1+k)
—m for every i, j such that i+j<m—1.

Remark 2.3. The condition of the theorem 2.1-0 is invariant if we replace
P by 'P.

In this paper we will give the proof in only the case when m=3 because
the proof of the case m=2 is essentially the same as m=3 and is easier than
m=3. Henceforth we assume m=3.

Concerning the necessity of the condition in th 2.1-0, we have the follow-
ing theorem.

Theorem 2.1-1. P is not locally solvable at the origin if there exists (i, j)
such that d;, {0)<i+j(1+%)—3, and the condition A), B) or C) holds, where A),
B), C) is given in §4.

Theorem 2.1-2. P is not locally solvable at the origin if k is odd and for
every (1, j) such that i+j=<2, d, ;0)=i+j1+k)—3 holds.

Remark 2.4. In theorem 2.1-1 and 2.1-2, if £ is odd, then we can weaken
the hypothesis on a.(x, t). Namely, in place of a0, 0)=1, it is enough to
assume that a.(x, 0) is not identically zero in every small neighborhood of the
origin.

In section 3, 4, 5, we will prove the non local-solvable result, i.e. theorem
2.1-1, 2.1-2. In the last section we will prove theorem 2.1-0.

3. Basic inequality.

We will prove the non-solvability of P by contradiction. The method relies
on the following lemma.

Lemma 3.1. (See [6].) Svppose that ‘P is locally solvable at the ovigin. Then
there are a neighborhood V of the origin, and constants C, M such that the
inequality

3.1) ‘ng(x, Hu(x, Ddxdt|ZClf(x, )lulPv(x, )| n

(%)i 7%)’”("' D by

is valid for all f, veCy(V). In (3.1), we denote supig;u
[ulx, t)|x.
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Now as in [2], we are going to perform an analytic approximation of coeffi-
cients of P. Let J be a positive integer. We replace each coefficient of P by
its finite Taylor expansion of order /+ M about (0, 0). For simplicity of nota-
tion we will continue to denote the approximated operator by P. Then the
inequality (3.1) becomes

(32) |[§roaxat|=Cirldi PolutC supxl 1111 ]asak

Here we make use of asymptotic change of variables. (c.f. see [7].) Let us
introduce new variables (y, s) as follows:
(3.3) s=p*t, y=p*x,

where 4 and g are the positive real number which are suitably chosen later in
various ways, and p is a large parameter. Then in new variables (v, s) we have

Lemma 3.2. Suppose that ‘P is locally solvable at the origin. Then for every
open set in R* whose closure is compact, there exist constant C, M, M’ and p, such
that the inequality

Go  |([rvdyds|sCom171u A1 Pwl+C sup (o751 + 10725 1) 10 ss)

is valid for f, veC5(U) and p=p(U), where P, is obtained from the analytic ap-
proximated operator P after change of variables (3.3):

0 . 0 \3
(3.5) p 2P, (y, S)=(—a?—p‘"°zas"ao(p'/‘y, p‘ls);,).;)

+§+2m p-ni,jsdi,j(o)bg.j(p..'uy, p_}s)<a;as>i(a_;}),

ai
ne=14+k)A—pu, ng, 7=(d, 0)+3—DA—ju.

We note that in (3.5) a,(v, s) and b? ,(y, s) are polynomials in y, s.

4. Proof of theorem 2.1-1.

In this section, for simplicity of notation, we denote d;, 0) by d;,;
Now we will construct f and v for which (3.4) does not hold. But its con-
struction depends on what lower order terms have the strongest influence.

Lemma 4.1. If there exists (i, j) such that d;, ;<i+j(14+k)+3, then at least
one of the following conditions i)-iii) holds.
i) di<k—1,d,+k=do. and 2d,,=d,.+k
i) do2<2k—1, do,.<dy+k and 2d,.=d, .+3k
iii) do1<k—2, do,+k<2d,,, and d, +3k<2d,,,

Proof. For simplicity of notation, we write d;=d,,,, d»=d, . and d;=d, ..
Lemma is easily shown because we can define a totally order relation < as
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follows:
d<d; 1=1, 2, 3.

d<d, if d,+k=d,.

] (=]
d.<dy if 2d,<3k-d,.
C~] (=]
d<Ld; if 2d,=d,+k.
-] =

From this lemma, it is sufficient to prove that for each case of i)-iii) ‘P is
not locally solvable at the origin, if some additinal condition holds.

First, we consider the case i). In this case the term % % has the

important influence. So in view of (3.5) we take 2, p of (3.3) in such a way that
ne=1/2, n,,=0:
A=1/2(k—1—d,,,)

4.1
ﬂ:(dl. 1+2)/2(k—1—d,, ).

Then we note that the number A, p are positive by hypothesis. Let P,’,:p‘“P,,.
We are going to construct the approximate null solution u} of P,u=0 of the
form.

) N )
(4.2) ul(y, s)y=etwd o where wd(y, s)=pz,y+ Z} 0 2hi(y, s).
£

In the above, z, which is a nonzero real number and Aj(y, s)eC*(U) which are
bounded as p—-+oco are determined later, and U is also determined later.
For simplicity of notation, we define ¢; (j=1, 2, 3) as follows:

¢;=b}, .0, 0)

{ bg, 20, O) if do.=d,,+k i
if do.>d,+k.

Co=

{ bg, 1(0, 0) if do.1:2d1,1'—k ’
Cy—=

o it doy>2dy1—k .
By calculation, we have

. N+1 L
(4.3) e"wll’VP,’;ufJ": rg p(3/2)-JA‘])(h;1, . h;1+j)+P(N_1)/2Bp(h;1, 7%
where Aj and B, are nonlinear differential operators acting on A%, --- hz'*/ and
hgY, -, hY, respectively, and A¥(hz', -+, hz'*?) and B,(h;?, -, h¥) are bounded
as p—-+oco. More precisely,
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@) A ={i( 2 hi") zastao ry, o))
0
+(_Clsd1’lzo+P-T‘Hp(J’y 5))‘6?}151
— 8011tk e, stk g 4 p 2 GY(y, )
(.f O 2
45) A, -, = 3ifi(5- A )+ zastadpry, pis)}
d -r a —1+7F
+(—c1z?t1z0+p " H  (y, s))]gh,,

+Giy, s, ha, -, ha®t),

where 7, and 7, are some positive numbersm and H,(y, s) and G{y, s, hs?, -,

hp?*) are smooth in U in which hp?, ---, hp?*/ are smooth and are uniformly
bounded in U as p—+oo.

We want to determine hp?, -+, hY in such a way that e"'wévP,’,u=0(p'<N“>’2).
Hence we are going to determine Ak} such that
(4.6) Aj(ha)y=0(p=V-07%)
4.7) Af(hs?, -+, hg'*7)=0

First we consider the equation (4.6). Let us define X,(y, s) as follows.

/0
4.8) X, (3, s)=1(5§—h;1>+as"ao(p"‘y, 015)z,.
Then for some >0, (4.4) becomes

4.9) 3 (p()+ o H, (3, s) X, +9(s)+p7G (9, s)

where p(s)=ic,s%.1z,, and g(s)=—(icia+cy)s% 1423 4ic 5?9017 %2z, and ﬁp(y, s).
CN;p(y, s) are smooth and bounded as p—+oco. Then we are going to determine
X, such that (4.6) holds having the form

N
(4.10) X,(y, s)= X°(s)+§,1 pTXN(Y, ),

where N, is a positive integer such that »N,>1/2(N—1). Substitute (4.10) into
(4.9). Then we get

No
(@.11) (X4 POX () 3 o™ B X+ EYX®, -, X4

+p WD EROI(XS, e, X0}

where E4(X,, ---, X;-;) are bounded as p—-+co. Therefore if X° and X} are the
roots of the equations

(4.12) (X' ()X *+4(s)=0
(4.13) SXPXi+ENX®, -, X§H=0,
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then (4.6) holds.
Now let us analyze the equation (4.12) for s>0. We assume (C.1);

(C.1) There exists a non-zero real number z, which satisfies the following
three conditions.

i) Either cs#0 or ¢;=0 and ic,z,& R,.
il) (aze)>0.
iii) the discriminant D of the equation (4.12) is not zero for every s>0.

where by calculation we have

D=—27{g*+4(p/3)%}
= —27{Ci(2os2~ 41 1)24 Cylzo574~ 1.1)4-Cy} 235401724

where C,=(—ic,a—c,)?, C,=2ics(—ic,a—c,)+4(ic,/3)?, and C;=(ic;)®.. We remark
that if |c,|+|c.|+]csl #0, then C,, C, and C, are not simultaneously zero.

Lemma 4.3. There exists a simple root X° of the equation (4.12) such that
4.14) Re X%(s)=cs®(1+o0(s))  for sufficiently small s>0
4.15) | Xo(s)| Zc’s¥ for sufficiently large s>0,
where ¢ and ¢’ are positive constants and 0=d, d’'<k.

Proof. First we consider X(s) for small s>0. In the case ¢;=0, we set
X(s)=s®?41,1Y (5)., Then Y,(s) satisfies the equation

(Y()) iz Yi(s)+(—icia—cy)zds® - a11=(

From this, we can choose Y (s) such that Re Y,(0) is positive because ic,z, is
not in R,. In the case ¢;#0, we set X(s)=sW/»d1,1-®Y,(5), Then

(Yo(8))P4icizo8 %911 5(s)Ficszo+(—ic,a —cp)s2* - 41128=0

In this case too, we can choose Y,(s) such that Re Y,(0) is positive.
On the other hand, for large s>0, we set X(s)=s¥/®@L1*B7(s) Then

(Z(8))2+ic 205~ * Z(s)+(icra—cy)zo+icss 1172k z,=0,

Since d,.,—2k is negative, all the roots of this equation are bounded as s—--co.
These considerations and (C.1) give the proof of lemma.

Let X°s) be the simple root of (4.12) which satisfies (4.14) (4.15). Let us
consider the following continuous function:

— a k _ $
(4.16) 1(5)= < Re zus*** Re{SoX"(t)dt}.
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Then from (4.14), (4.15), it follows that /,(s) has a negative minimum value m,
at 5,>0 in s>0. Let U, be a neighbourhood of s, contained in {s>0} in which
I,(s) is negative and I,(s)—m,>0 except for s=s,, We note that the existence
of such a neighborhood is insured by the analyticity of I,(s) for s>0. Then
X°(s) does not vanish in U, Therefore by (4.13) we can determine Xi(y, s)
which is smooth in R*'X U, (j=1, -+, Ny).

Now we determine h;' which satisfies the equation

4.17) %h"‘=ias"ao(p'/‘y, p 8)z,—1X,(y, ).

Since a(y, s) is a polynomial in y, s, there exists a positive number »’ for which

(4.17) can be written as follows:

4.18) 565—h"=ias"zo—iX°(5)+p"'K,a(y, 5,

where K, is uniformly bounded in U’'XU, as p—+oo, (U’ is any compact set
in R*). So that h; are determined as follows:

1 k+l —_ 0, -7/ .2
@19) kG, =y —if X0t +p S K,(y, )dt+iy®.

Let U, be a sufficiently small neighborhood of y=0, and we set U=U, X U,.
Then Az (y, s) is smooth in U.

Now we are going to determine A} (j=0, 1, ---, N). Since X° is a simple
root, there exists p,>0 such that for p>p,, the coefficient of k;'*’ in equation
(4.5) does not vanish in U. So we can determine h;'*/ inductively by the equa-
tion (4.5). Then hz'*¥(y, s) is smooth in U.

Now as in [2], let us consider the following function I(y, s).

(4.20) I(y, s)=p(m zo)y+p® Im hz'(y, s)
:p(xlz){f,(s)'+yz+p57' Im [Ss K. (y, t)dt]} .
So
Then I(y, s) has a minimum value m(p) at (yo(p), se(p)) in U. Moreover
4.21) (30(0), si(p)) converges to (0, s)) as p—> +o,
and for sufficiently large p, we have
(4.22) I(y, $)=m(p)>Cp®'®»  for (y, )E{(y, $)EU; |y|+|s—so| >¢},

where C, ¢ are some positive constants.
We define v, f as follows:

(4.23) w(y, s)=g(y, s)ud(y, s)
(4.24) f(y, $)=F(py, p(s—s«0))),

where g(y, s) is a smooth function defined in R? with compact support contained
in U and equals to one in a subneighborhood of (0, s,), and F(y, s) belongs to
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C%(R?) and satisfies SSe”WF(y, s)dyds=1.

Then in the usual way, by (4.3), (4.6), (4.7), (4.21), (4.22) we can show that
for v, f of (4.23), (4.24),

the right hand side of (3.4)=<0(p=7"¥:-)e-m |
where J'(N, J) tends to 4+ as N, J—-+oo, and
the left hand side of (3.4)=Cp2e ™,

where the constant C is not zero. (c.f. see [2]). Therefore if we choose J and
N such that J’(J, N)>2, the inequality (3.4) never holds.
In other cases of lemma 4.1, the proofs are essentially the same as the
case i). Therefore we will outline them and the detail is omitted.
In the case ii), we take A, ¢ such that n,=1/3, n,,,=0:

=2
T 3Q2k—1—d,.0)
dO. 2+3

ek —1—d, )’
and we will construct the approximate null solution u) of Pju=0 of the form
) N .
ud(y, s)=e@s @ where wl(y, )=pzy+ X o~ hy, 5).

In the case iii), we take A, ¢ such that n,=2/3, n,,=0:

_ 2
T 3(k—2—d,.,)

_ 2Ade 3
B3k —2=4d, )’

and we will construct the approximate null solution u) of Pju=0 of the form

2

. N ; .
uf(y, s)y=e™¥(y, 5),  where wj(y, =pzey+ 2 p~Vhi(y, 5).

Summing up the above arguements, we have,

Theorem 2.1-1. ‘P is not locally solvable at the origin if the following
condition A), B) or C) holds.

A) i) of lemma 4.1 and (C.1) hold.

B) 1ii) of lemma 4.1 holds and either 03,00, 0)#0 and ic,/b} .00, 0)& aR, or
03,50, 0)=0 and c;+0.

C) iii) of lemma 4.1 holds and b}, ,(0, 0)50.
where c¢;=0 if 2d,,,<d, +3k and c;=5 (0, 0) if 2d, .=d,, ,+3k.

5. Proof of theorem 2.1-2.

In this section we will prove that ‘P is not locally solvable at the origin
if P satisfies the hypothesis of theorem 2.1-2. Then in view of remark 2.3, this
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proves theorem 2.1-2.
Suppose P is locally solvable at the origin.. Then by lemma 3.2, there exist
C, M, M’ and p, such that the inequality (3.4) holds for f, veC3(U) and p= p,.
In this case we set

(5.1) p=(1+k)A, where 21 is a large positive number determined later.

Then by the hypothesis of theorem 2.1-2, P} can be written as follows:
_a_ 8 i+j(1+k)-3 ;a,g ! a_ J
(.2) Pi=(55 —ias ay> 2, Cs (55) (ay)
d 0
-7T(2) I
+P Qp(y; S, ay; as)y

where c;,; are constants,r(1) tends to +oo as 2—+oco and @, is a differential
operator of order 3 with analytic coefficients which depend on p but are
uniformly bounded in every compact set as p—+oo.

We take A such that

(5.3) r()—1>3/(k+1).

Here we remark that without loss of generality we may assume a is positive.
Now we are going to construct the approximate null solution uy of the equation
Piu=0. We require that u) has the form:

(5.4) uf(y, s)=etrrw:» ﬁ pol(y, s),
j=o
.a g+l gh+1 2
wy, )= +yi( 2 rsy)

Then it is easily seen that
PN S —'[ 0w ON o 9 o
(5.5) Piuj _]; p? (as ias 6y> oh+s A,(y, s, 3y’ p) P
0 0
2k-1 R k-2 o J
+{S AZ(y) S, ayr P)'I"S As(y, S, ayy P)}?o
+p TPNCy, s so,’a")]ei”“’+p"’“’*”’Gz¥“(y, s, pi)ete,
where A, (n=1, 2, 3) has the form
(556) An=ci(y, o+, s)-a"’— for n=1,3,
A=)y, $)p*+ci(y, s)p- a +ci(y, s)(a )
and Gi(y, s, g3 H)=e*vQ[e***pi~']. In (5.6), ci(y, s) are polynomials in y, s.

We show now how the analytic function ¢} is chosen. Let ¢i(y, s) be a
solution of the following equation
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G.7), ( O _ias* ) RS 1A17~¢g+(s“ Ay st 2 Aol

+o 7 PMGHy, s, ph)=0.

Moreover we require that (0, 0)=1, ¢#(0, 0)=0 for ;>O0.
Here we consider (y, s) as complex variables, and we perform a holomorphic
change of variables from (y, s) into (z, s) as follows:
— ia k+1 —
(5.8) z= Pl sttty s=s.

Then in new variables (z, s), (5.7) becomes

(.9), (~a~as—)3go,f,+sk-IB,aisgo,f,+(s2k-132+sk-zBs)go{;er-”bHG.f:(z, s, 0i)=0

where for simplicity of notation we denote the transformed ¢} by ¢} and

B.lz, s, —a—, p) has the similar form to A,:
0z
0
(5.10) B,=b4(z, s)p+bi(z, s) o for n=1, 3,

B,=bi(z, s)p*+0bi(z, s)pa +bi(z, S)( )2
In order to fulfill the requirement for ¢}, we require
0 0 \? 0\t .
G gbs 0=1, 5 ¢z, 0=(55) e, 0=0, (5-) ¢ilz, =0,

(=0, 1, 2).
Then we have

Proposition 5.1. Let ¢(z, s) be a solution of equation (5.9); with initial data
(5.11). Then for a sufficiently small neighborhood of the origin VCC?, and for
every e>0, there exists a constant C;, ;.. such that the following estimate holds:
for every i, 1,

(5.12) (—;;)1('382> @ i(z, S)‘ =<C;; 1/(k+1)esms|k+1 for (z s)EV.

Proof. First we consider ¢°(z, s). We define ¢ (n=0, 1, 2, ---) as follows:
pi=1

(5.13) 1 ¢g:1+g:—%(8—t)z{tk—lBl_887902-1+(t2k_132+tk-zBs)?’?z-l}dt .

Here we note that ¢%(z, s) is analytic. Let ¢)=¢%—¢’-;. Then ¢ satisfies the
following equations.

=1
(5.19) [ 2:5:%(3 t)z{fk lBlaa ‘,’,_1+(t“”Bz+tk'zBa)gbg_,}dt
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Let Vg be a neighborhood {x€C;|x|<R}, and we denote Vg X Vg, by
Vr, ke Let R be a positive number such that for some positive constant ¢, the
following inequality hold:

[bi(z, s)| <c (n=1, 3 and i=1, 2)
[bi(z, s)|<c?  (1=1,2,3) for (z, s)€Vipur.

(5.15) 1 5
- k+1 = k+1
R3c|s| <1, R23cls| <l1.

Lemma 5.2. (Cauchy’s inequality) Suppose that f(z, s) is analytic in {(z, s)E
C%;|z—2'|<ry, |s—s'|<rs}. Then the following inequality holds.

v Q@) e

Then from this lemma, for an analytic function f(z, s) in V,z.r We get

1471
é el Sup [f(z, )

Iz zl rl
—s'1<rg

l(a )f(z s)'_g sup | f(z, s)| for (2, )€ Var

’( "z, s)|_52— swp 1f(z ) for (s 9 Van.

Then from (5.10), (5.14), (5.15) and this inequality, it is easily shown that
the inequality

! 1
0 < n: k+1ya
G171 1¢n(z, o)l = %E nilnglnglnglnglng!ng! (3n—nl—ng)!(cplsl "
ny=n

i=1
nyg

4 n 4
X(‘ﬁnzlsl k+1) 2(62p2|s|2("“))"3(cp|sl k+1_R_n4|s[ k+1)

7

X( Zsz n |S|2<k+1)> (cpls| k+1))ne(_ nal s k+1)

holds for (z, s)€ Vg r Since j7<3’j!, for ¢>0, the right hand side of (5.17) is

less than

n!@2n)! 2ng)! 2ny)! Cne)! ns! (c/e)*™ (cp|s|**H™
nllne!(sn'—‘nl—nz)! n3! (2”1)!

(€p|$[k+1)2u3 (cpsk+1)n4 (C‘osk+1)ns

(2ny)! 2ng)! (2ng!

Therefore we obtain for (z, s)E Vg, g,

0 2, 11(2))!
(5.18) | (=, 3)1_02 n!(zj)l 2

(Cp | s| k+1)n1 (ep || #+1)2ns (CpISI k+1yng (CP|S| k+1yng
ny+ng+ng+tng=j (2711) ! (2ng)! 2ny)! (2ne)!

—(n—j+2)(n—j+1)

X
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2 (Llyi 1 Al ol B+ : +1 +1\2
gc';(f) ’W(x/cplsl"“-I—ep[sl"”-r-\/cPISIk +/Cpls|Fy

tnl2l-17 1 \n-j k4l n 1 . |
<C’’ il 4cpisIR+ k+1 k+1y2j
<c{"8 (3) et B @Verls T epl sl

7 l[nlzl—z _1—_ ol k¥ E+1\2rn/21| jaepisi R +1
=C {(2) -I—(Z[n/z])!(Bx/cplsl +epls| k) }e e .

In the above inequality, we use the fact that for sosme constant ¢’ the inequality
x<ex®*+c¢’ holds for x>0.

From (5.18), ¢z, s)= +Zjogb‘,’,(z, s) is a solution of the equation (5.9), with the

initial condition (5.11), and we derive from (5.18): fore>0,
(5.19) |0z, s)| L Cepisik! for (z, )€ Vg r.

Then by lemma 5.2 and (5.19), it is seen that for a sufficiently small r,>0, the
estimate

20 GG e o] =) swp, o

hold for (z, )€ Vgs, ri2. Let €’ be a positive number such that ¢>¢ and let
ro=p"**1. Then there exist constant C and p, such that

(5.21) ’(%)K%)“ S00(2’ s)‘ §C‘0i’ (k+1) peplsik+l

holds for (z, s)€ Vgys ri2 and p=p,.
For ¢(z, s), in the same way we obtain

@iz, s)| <Cete ™" sup p= O+ |GH(z, 1)) .
zléV.gl}szj

Therefore by induction on j from (5.3) it follows that the estimate (5.12) holds
for (z, )€ Vg, r; andp=pjs..

Let N be a large positive number such that

(5.22) N>M' +2M~+4+32.

Then if we revert to variables (y, s), proposition 5.1 implies that the estimate
_a__ AN j i/ k+1,epsk+1
62 (Y@ 0 o] scommer

holds for (y, s)eV which is a sufficiently small neighvorhood of the origin in
R? and p=p,.
Not let us define v and f as follows:

{ Wy, $)g(y, Hud(y, s)
(5.24)

f(z, s)=F(py, ps),
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where g(y, s) is a smooth function defined in R? with compact support contained
in V and equals to one in a subneighborhood of the origin, and F(y, s) belongs

to C3(R? and satisfies SSe”’F(y, s)ydyds=1.
By (5.23) we get (shrinking V if necessary); for some 7>0
Piuf =0(p~ V)

(aas )i<aa ) ul (v, s)‘ SCple-rasktiu®

ifj=L

holds for (y, s)€V and p=p, Therefore by the standard method (c.f. see [6])
we know that the right hand side of (3.4) is less than 0(p=7"), where J'>2 if
we take J large. On the other hand the left hand side of (3.4) is greater than
¢”% where ¢ is a non-zero positive constant. This is not compatible with
lemma 3.2. Therefore ‘P is not locally solvable at the origin This prove
theorem 2.1-2.

6. Proof of thorem 2.1-0.

In this section we will prove the theorem 2.1-0. Our proof relies on the
result of Grusin [5].

Let P be an operator of (1.2) which satisfies the hypothesis of theorem
2.1-3, and let P, be an operator induced from P:

60 Pt )=+ are) + B Buio, 0oL ey,

where we denote b;, ;(x, £)/t?*73*®-3 by B, (x, t) which is a smooth function in
a certain neighborhood of the origin by hypothesis.
Now we restate theorem 5.1 of [5] for the operator P.

Lemma 6.1. P is hypoelliptic in some neighborhood of the origin if for all
E==+1. the equation Pyu=0 has no non-zero sulutiin in S(R). Here we denote by

S(R) the space {fEC“(R); Ya, 'n, (1+]xl)"(~j—x)af(x)—>0 as x—»i—oo}.
There is a following relation between local solvability and hypoellipticity.

Lemma 6.2. (see [11]) If the operator *P is hypoelliptic in V, then P is
locally solvable at every point of V.

From the fact that if P satisfies the condition of theorem 2.1-0, then *P
also satisfies its condition and the above two lemmas, in order to prove theorem
2.1-0 it is sufficient to prove the following proposition.

Proposition 6.3. Let Q be an operator of the form;

(6.2) Q(t, —;}—):(_gt—_atk)s+bltk—l%b2t2k-l+b3tk—2
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where a€ R'— {0}, b;&C'. Suppose that k is even, then the equation Qu=0 has no
non-zero solution in S(R).

We start from a lemma.
Lemma 6.4. Suppose that k is even and a is a non-zero real number. If

u, f€S(R) satisfy the equation (—gt——at")u=f, then u can be written as follows

St ea(lk"'l‘3k+1)/(k+1)f(s)ds if a<0
6.3) un=\
¢ eaUkH-skth D (s if a>0

+oo

Proof. wu can be written:
6.4) u(ymertt s fpmeth iy (g [ ook eicng(gas),
0

where t, is an arbitrary real number. We assume that a¢<0. For ¢>0, we can
prove it in the same way. Divide (6.3) by e2***"/¢+D then we have

e-u5k+1/<k+1)u(t)=e—at’5+1/(k+1)u(t0)+gt e_ask+ll(k+l)f(3)ds .
to

In this equation, let t——oo, then the left hand side converges to 0 because k&
is even. Therefore we get

me“”""l""“"f(s)afs.

k+1
,”(to)__. eato /(k+l)S
to

Proof of proposition 6.3. We assume that a<0. For a>0, we can prove it
in the same way. Let ueS(R) satisfy Qu=0. Then by lemma 6.4, we get

(6.4) u(t):St_ %(l‘—S)zea(tk“‘skﬂ)/(”“)f(s)ds ,
where f(s)=—b,s*? Z? —bys?* 'y —b,s*-2y. (6.4) is integrated by parts to obtain

l(t—s)zs”'le““k“"k“’/("“)u(s)ds

65  wt=—(ab+b)| 3

t
—b’S (t—s)sk-leath¥l-skh/cktny (o) 4 g

+ {(k—l)bl—bs}g %(t—5)25"‘ze““““s"“”"'“)u(s)ds .

3
Let <0, then
¢ 1 B+l gk+l
S ?(t_s)zszk—lea(l +1.g )/(k+1)ds

t

=[_;_(t_s)25k—1(__L)ea(tk+1-sk+1)/(k+1)]
a

-0
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_l_t i AN TS k-2_ (4 __ k-1l jactk+l-sk+ly/cr+1)
as_m{z(t Sk —)s*2—(t—s)s*fe ds

-0

+
o __1__ l _ Vet (4 Ne-1ljactktioskly ke |©
—-[ 2{z(k D(t—s)2s"2—(t—s)s }e ]
+

»—512 St {s7'—(k—2)(t —s)s™*—(k—1)(t —s)2s™3} eactF*1-stthick+n g

:_‘]._S‘— {s"——(k—Z)(t—S)s_z—(k—1)(t—5)23_3}ea(tk“'skﬂ)/(k“)ds.

aZ
Since s<t<0, we have |s|>]|t|. Therefore we obtain

(6.6) 0<_SL l(t_s)zszk_lea(,k+1-slz+l)/(k+|)d5<|‘cll__ ¢ ea(lk+l_sk+1),(k+l)ds
) —w 2 = |t J-e ’

In the same way, we get

2 rt
6.7) 0<—S‘ (t—s)sk-tgeatttiskrbicken g C 7 gactktioskriychan g
) -e = |t

(6.8) 0<St %(t—s)zs"‘Ze““’”""’“”"”"dsé‘l%slfst ea(‘k“‘sk“”("“’ds.

Since k is even and a<0, from (6.5)-(6.8) it follows that there exists a
positive number 7 >0 such that the inequality

SuP Iu(t)é sup _ | u(t)]
E(-00, -T]

holds. From this inequality, we get

sup [u(t)] =0

te(-

Therefore by the uniqueness of solution of ordinary differential equation, we
obtain u(¢)=0 for all teR".
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