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Introduction.

Let 2 be an algebraically closed field of characteristic zero, and let X be
an affine surface defined over % such that XX A,= A4}, where A7 denotes the
n-dimensional affine space. A cancellation problem asks whether or not X is
isomorphic to A}; we call this problem Zariski’s problem. It is easily ascer-
tained that X is a nonsingular rational surface and the affine coordinate ring
of X is a unique factorization domain without non-constant units. In [5; Th.
2] one of the authors proved that X is isomorphic to A} provided we can
derive the following condition from the given isomorphism:

X has a nonempty open set U such that U is isomorphic to CXAL, where C
is an affine nonsingular curve; we then say that X has a nonempty open set
with a structure of trivial A'-bundle or that X contains a cylinderlike open set.

On the other hand, litaka and Fujita proved in [2] that, under the condi-
tion XX A,= 4}, X has the logarithmic Kodaira dimension #(X)=—oco. This is
equivalent to the following condition:

Embed X into a nonsingular projective surface V as an open set so that each
irreducible component of the boundary set V—X= i&:JICi 1s nonsingular and ig}l C;
has only normal crossings. Let D= zZ:}lCi, which is a reduced effective divisor.
Then |m(D+Ky)| =¢ for every integer m>0, where Ky is the canonical divisor of V.

Then we may ask the following problem:

Let V be a nonsingular projective (not necessarily rational) surface and let D
be a reduced effective divisor on V such that V—Supp (D) is affine. Assume that
|m(D+Ky)| =¢ for every integer m>0. Does there exist a nonempty cylinderlike
open set in V—Supp (D)?

If each irreducible component of D is nonsingular and Supp (D) has only
normal crossings the converse is true. Namely, if V—Supp (D) contains a non-
empty cylinderlike open set then |m(D+Ky)|=¢ for every integer m>0 (cf.
Lemma 1.3). If the irregularity ¢:=dim HYV, Oy) is positive then the answer
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to the above problem is affirmative (cf. Theorems 2.1 and 2.2). When ¢=0 then
V is a rational surface because |2K|=¢ is a consequence of the assumption.
A main part of this atircle is devoted to solving the above problem when V is
rational. The answer we obtained so far is affirmative (cf. Corollaries 4.3 and
4.5, Theorems 5.1, 5.9, 5.10 and 5.11). The case in which we cannot solve the
problem is the following:

There exists an exceptional curve E of the first kind on V such that
|E+D+K|+¢ and the (E+4D+K)-dimension x(E+D+K) equals 2; moreover,
we may assume that (D+K))<—2. (Cf. the assertion (A) in 6.1 and Remark 6.2.)

Finally we shall notice an analogy between our problem and a classical
criterion of ruledness; the condition that [mKy,|=¢ for every integer m>0
implies that V is a ruled surface. Indeed, some useful results, e.g. Lemma 3.2,
are proved after the ideas effective in proving Castelnuovo’s criterion of ra-
tionality (cf. [4; Th. 497]).

In this article the ground field % is assumed to be an algebraically closed
field of characteristic zero. Let V be a nonsingular projective surface and let
D be a divisor on V. Then |D| denotes the complete linear system defined by
D. If P, -+, P, are points (including infinitely near points) on V and if m,, -,
m, are positive integers then |D|—(m,P,+ --- +m,P,) denotes the linear sub-
system of |D| consisting of members of |D| which pass through P;’s with
multiplicity=m;. Let f: V— W be a finite morphism of nonsingular projective
surfaces. For a curve C on V, f(C) denotes the set-theoretic image of C on
W; for a curve C’ on W, f~(C’) denotes the set-theoretic inverse image of C’;
for a divisor D on V, f«(D) denotes the direct image (as a cycle) of D by f;
for a divisor D’ on W, f*(D’) denotes the total transform of D’ by f and f/(D’)
denotes the proper transform of D’ by f. The other notations are as follows:

pe (or p(V)): the geometric genus of V,

g (or ¢(V)): the irregularity of V,

K (or Ky): the canonical divisor of V,

P, (or P,(V)): the m-th pluri-genus of V, i.e. Pp,=dim|mK|+1
(D-D"), (D*: the intersection multiplicity of divisors,

D~D’: a divisor D is linearly equivalent to a divisor D’,

po(D): the arithmetic genus of D, i.e, pa(D)z%(DD—I—K)—!—l,
hi(V, D) (or hi(D)): =dim H(V, ©y(D)).

If D is an effective divisor such that every irreducible component of D is
nonsingular and Supp (D) has only normal crossings the dual graph of D is
obtained by assigning a vertex to each irreducible component of D and by
connecting two vertices by an edge if the corresponding components meet each
other; we assign one edge for each intersection point. In this article, an ex-
ceptional curve of the first kind means always an irreducible curve E with
po(E)=0 and (E®)=-—1.
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§1. Preliminaries.

Let us begin with the following

2.1. Lemma. Let V be a nonsingular projective surface and let D=§)Ci be a
=1

reduced effective divisor on V. Let m be the number of connected components of
Supp (D). Assume that each irreducible component of D is nonsingular. Then we
have

e(D):=m—r+ 2 (C;-C;)=0.
i<

Movre precisely, the equality holds if and only if D has only normal crossings and
the dual graph of D is a tree. ‘

Proof. Let D+ --- + D, be the decomposition of D into connected com-
ponents. Then e(D)=e(D)+ --- +e(D,). Hence we may assume that D is con-
nected.

Let ¢: V/— V be a quadric transformation with center P which lies on
Supp (D). Set E:=o¢"Y(P), Ci:=0'(C;) for 1=i<r and D’':=E+¢’(D). Then D’
is a connected reduced divisor. We shall show that e(D)=e(D’) and the equality
holds if and only if there are at most two irreducible components of D passing
through P. Indeed, we assume after a change of indices that C,, ---,C, are
all irreducible components of D passing through P. If n=1 we have clearly
e(D"Yy=e(D). Suppose that n>1. Noting that (Ci;-Cj)=(C;-C;)—1 for 1=i<j=n
and (Ci- E)=1 for 1<i<n, we have

e(D’)ze(D)—(Z)-I—n—l.

Thus e(D)=e(D’), and e(D)=e(D’) if and only if n=<2.

Let p: V — V be the shortest composition of quadric transformations such
that the set-theoretic inverse image D:=p~'(D) has only normal crossings.
Then D is a connected reduced divisor, and e(D)=e(D), where the equality
holds if and only if D itself has only normal crossings. Thus we may assume
that D has only normal crossings.

Let I" be the dual graph of D. Then » is the number of vertices of I.
Let M be the number of edges of I, and set e(I"): =1—r+M. Then e(D)=e(l).
We shall prove by induction on M+7 that e(I")=0 and e(/")=0 if and only if
I' is a tree. If I' contains a loop (=a cyclic chain) then take one edge off the
loop. The obtained graph I” is connected and e(/")=e(l")—1, which is non-
negative by inductive assumption. Thus we may assume that I" contains no
loops. Then I is a tree. Let I'” be the graph obtained from I” by deleting a
terminal vertex and an edge connecting it to some other vertex. Then e(I™”)
=e(I"), which is zero by inductive assumption. Q.E.D.

1.2. Lemma. (cf. Kodaira [3; Th. 2.2]). Let V and D be as in Lemma 1.1. Then
we have:
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dim| D+ Ky |=po(D)+p,—q+m+1t—2

= 3 palCo+pe—g+e(D)+1—1,

where g=dim H(V, Oy) and t=dim Ker ¢, ¢ being the canonical homomorphism
HYV, 0y)— HY (D, Op) induced by

0'—>0V(_D)_‘)OV-“>OD""_>O.

1.3. Lemma. Let V be a nonsingular projective surface and let D be a reduced
effective divisor such that V—Supp (D) is affine. Consider the following four con-
ditions:

(1) There exists a nonempty open set U in V—Supp (D) such that U has a
structure of trivial A'-bundle;

(2) there exists an irreducible curve C on V such that C& Supp (D) and
(C-D+K)<0;

(3) for any divisor A on V, |A+m(D+K)|=¢ for any sufficiently large
integer m;

@) |m(D+K)|=¢ for every positive integer m.
Then we have the implications: (2)=> (3) > (4). If D has at worst nodal double
points as singularities then we have: (1) > (2).

Proof. (3)=> (4) is clear. (2) > (3): Since C¢ Supp (D) and V—Supp (D) is
affine we have (C-D)>0, whence (C-K)<—2 and (C*)=2p.(C)—2—(C-K)=0.
Since (A+m(D+K)-C)<0 if m>—(A-C)/(D+K-C) we know that | A+m(D+K)|
=¢ if m>—(A-C)/(D+K-C).

Assuming that D has at worst nodal double points as singularities, we shall
show the implication: (1) 2 (2). Since U has a structure of A!-bundle, let C, be
one of its fibers; C, is then isomorphic to A! Let C be the closure of C, in
V and let P:=Cn\D. Let v be the multiplicity of C at P and let g be the
multiplicity of the curve D at P. Then p=<2 by assumption. Let o: V' -V
be a quadric transformation with center P, and let E:=¢"!(P). Then we have:

d*C)=ad'(C)+vE, ¥ D)=0'(D)+uE
and Ky ~ o*(K,)+E.

Let C':=0¢'(C) and D’':=¢'(D)+E. Then D’ is a reduced effective divisor
such that V’—Supp (D’)=V—Supp (D), which is, therefore, affine, and D’ has at
worst nodal double points as singularities. Moreover we have:

(€ D'+ Ky )=(C- D+ K)+u(2—p).

Since p=2 we have: (C-D+Ky)=(C’'-D'+Ky.). Hence, by repeating this process
if necessary we may assume that (C-D)=1 and (C-C')=0 if C’ is the closure in
V of another fiber Cj(#C,) of the A'-bundle U. Then C moves in an algebraic
pencil 4 on V, which has no base points. Thus C is a nonsingular rational
curve, and we have:



Affine surfaces 15
(C-D+K)=(C-C+D+K)=(C-D)+(C-C+K)=-1.
Hence we get (C-D+Ky)<0 in general. Q.E.D.

1.4. In the previous lemma, assume that V is relatively minimal and D=0. Then
the four conditions are equivalent to each other, and they are, in fact, different
characterizations of a ruled surface (cf. Mumford [7; pp. 326-330]). In the section
below, we shall consider when the four conditions in Lemma 1.3 are equivalent
to each other.

§2. Case of irrational ruled surfaces.

2.1. Theorem. Let V be a nonsingular projective surface with irregularity ¢>1
and let D be a reduced effective divisor on V such that |D+K|= ¢ and |mK]|
=@ for every integer m>0. Then V—Supp (D) has a nonempty open set U which
has a structure of trivial A*-bundle.

Proof. Since P,(V)=0 for every integer m>0, V is a ruled surface. Let
f: V—-B:=f(V)S Alb(V) be the Albanese mapping of V; then B is a non-

,
singular curve of genus ¢, and the ruling of V is given by f. Write D= iglci.

Suppose that (D-I)=0 for a general fiber I" of f. Then every irreducible
component C; of D is contained in a fiber of f. In this case, the existence of
a nonempty open set U as stated as above is clear. Thus we assume that
(D-I')>0. Then there exists an irreducible component, say C;, of D such that
(C,-I">0; we have then ¢=<geometric genus of C,<p,(C,). By virtue of
Lemma 1.2 we have:

qééll pa(Ci)=g—t—e(D)=q—t,

whence we conclude the following:

(1) C; is a nonsingular curve of genus ¢, and other components C,, -+, C,
are contained in fibers of f;

(2) D has only normal crossings and the dual graph of D is a tree.

Now consider the morphism ¢:=f|¢,: C,— B, which is a surjective mor-
phism. Applying Hurwitz’s formula to ¢ we know that ¢ is an isomorphism.
Hence C, is a cross-section of f, and the existence of a nonempty open set U
as stated as above is clear. Q.E.D.

2.2. Thorem. Let V be a nonsingular projective surface with irregularity 1
and let D be a reduced effective divisor on V such that |m(D+K)|=¢ for every
integer m>0. Then there exists a nonempty open set U in V—Supp (D) such that
U has a structure of trivial A*-bundle.

Proof. Since P,(V)=0 for every integer m>0, V is a ruled surface, whose
ruling is given by the Albanese mapping f: V— A:=Alb(V), where A is a
nonsingular elliptic curve. As in the proof of Theorem 2.1 there are two cases
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to be considered. Write D= ﬁ:lci. If every irreducible component C; of D is

contained in a fiber of f, then the existence of a nonempty open set U as stated
as above is clear. Assume that not all irreducible components of D are con-
tained in fibers of f. Then there exists a unique irreducible component, say
C,, such that ¢:=f|¢,: C;— A is a surjective morphism of nonsingular elliptic
curves and that the other components C,, ---, C, are contained in fibers of f.
The morphism ¢ is, in fact, an unramified morphism of degree n>0. If n=1
then C, is a cross-section of f, and the existence of a nonempty open set U as
stated as above is clear. Thus we shall assume below that n>1.

Set A’:=C,. Since A’ is an abelian variety of dimension 1, we may assume
that ¢ is a homomorphism of abelian varieties. Let G:=Ker ¢, and let V’:
:Vi(A’. Then V’ is a nonsingular projective surface; indeed, if ¢: V' -V

and f’: V' — A’ are the first and second projections, respectively, we have the
following cartesian diagram,

%4 d 4
r f
Al ¢ A ’

where ¢ is a finite unramified morphism. More precisely, G acts freely on V’
via translations on A’ and V is isomorphic to the quotient variety V’/G.
Therefore we know that Ky =¢*K, and P,(V’')=0 for every integer m>0.
Hence V’ is a ruled surface whose ruling is given by the Albanese mapping
f': V'— A’. Let C’ be a cross-section of f’ defined by

C':={(a’, a"); a’€A’}.
Then ¢*(Cy)= ;GU(C/), where
o(Ch={(a’, a’+0); a’€ A"}

for o€ GCA’. Hence a(C’)N7(C")=¢ for distinct o, z€G. Since |m(C,+Kyp)l
=¢ for every integer m>0 we know that |m(¢*(C,)+Ky.)| =¢ for every integer
m>0. Thus we obtain

—1=dim| gGU(C"HKV’I =Pa(0§6U(C’))+Pg—q+n+l"—2
=n+t'—2,
where n=|G|, pa(aga o(C)=1 and t’'=dim Ker (H V', 0y.) = H}( a(C"), Ossccry)

(cf. Lemma 1.2). Hence we have n-+t’=1, which is a contradiction because
n>1 and t'=0. Q.E.D.

2.3. By virtue of Theorems 2.1 and 2.2, we know that the four conditions of
Lemma 1.3 are equivalent to each other.
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§3. Case of rational surfaces-1I.

In this section, V denotes a nonsingular projective rational surface and D
denotes a reduced effective divisor on V.

3.1. Lemma. Assume that |D+K|=¢. Then every irreducible component of D
is a nonsingular rational curve, D has only normal crossings, and the dual graph
of D is a tree. Conversely, these three conditions imply | D+K|=¢.

Proof. Write D= ﬁlci. Then, with the notations of Lemma 1.2, we have:

Z a(Co=—e(D),

where =0 because ¢=0. Since e¢(D)=0 we have: p,(C;)=0 for 1=i<r and
e(D)=0. Then our assertions follow from Lemma 1.1. The converse follows
from Lemmas 1.1 and 1.2 Q.E.D.

3.2. Lemma. Let V and D be as above. Assume that the following conditions
are satisfied:

(1) V—Supp (D) is affine;

(2) there exists an irreducible curve C such that (C®)=0 and |C+D+K|=¢.

Then V—Supp (D) has a nonempty open set U which has a structure of trivial
A'-bundle.

Proof. (Cf. Kodaira [4; Th. 49]). Our proof consists of several subparagraphs.

3.2.1. Since |C+K|=¢, C is a nonsingular rational curve (cf. the above lemma).
Then the Riemann-Roch theorem implies

dim [C|=(CH+1=1.

Replacing C by a general member of |C| if necessary, we may assume that
C¢Supp (D). Since V—Supp(D) is affine, we have (C-D)>0, whence C+D is
connected. By virtue of Lemma 3.1, we have, in fact, (C-D)=1. Namely C
meets only one irreducible component, say D,, of D transversally at a single
point.

3.2.2. Set
N:={C; irreducible curve with (C®)=0 and |C+D+K|=¢}.
Then N+¢ by assumption. Let mo:—cl}éi;l (C%», and set
M:={CeN; (CH=m,}.
Now fix a very ample divisor A and let ¢: =Cr'x;i£ (C-A). Let C, be a member
of M with (C,- A)=4. Then we claim that the following assertion holds:

Every member C’ of |C,| is either a nonsingular rational curve or a reducible
curve C'= 3 n:C; such that p.(C;)=0 and (CH<O0 for every i and that at least
one irreducible component of C’ is an exceptional curve of the first kind.



18 Masayoshi Miyanishi and Tohru Sugie

Proof. Write C’=$lnici. Since

dim | 33C,+K| <dim [Co+ K| =—1,

we know that p.(C;)=0 for every i (cf. Lemma 3.1). Assume that one irredu-
cible component, say C,, of C’ has (C})=0. Then, since dim|C;+D+K|=
dim|C,+D+K|=—1 we have C,€N, whence (C))=m, Moreover, we have

moz(cg):.z n(Ci-Co)=zn(C,-Co)= ? n31m4(Cy-C)Z ni{(CH = nim, .
Hence we have (C}))=m,, which implies C,eM. Then we have

(4-CHzo=(A-C)=m(A-C)+ X ni(A-Cy).

i#1

Since (A-C;)>0 for every i, we know that C’'= i‘iniCz:Cl. Therefore, if C’ is

irreducible then C’ is a nonsingular rational curve; if C’ is reducible then
$.(C:)=0 and (CH<O0 for every irreducible component C; of C’. On the other
hand, since

gm(K-Ct):(K'Co):—2—(C%)§—2,

there exists an irreducible component, say C,, of C’ such that (K-C,)<0. Since
(C$)<0 if C’ is reducible, C, is an exceptional curve of the first kind.

3.2.3. Note that dim|C,|=(C})+1=1. We claim that dim|C,| =2.

Proof. We shall show that the union of the supports of reducible members
of |C,| is a proper closed subset R of V. Let C'= i}lniCi be a reducible mem-

ber of |Co|. Then p.(C;)=0, (C)<0 and 0<(A-C;)<0=(A-C,) for 1<i<r. For
an irreducible component C; of C’, let 4 be an irreducible component of the
Chow variety of nonsingular rational curves on V with degree (C;-A) such
that C;e4. If dim 4>0 then (C)=0, which contradicts (C?)<0. Hence, dim 4
=0. Thus, there exist only finitely many reducible members in |C,|, and R is
a proper closed subset of V. Suppose that dim |[C,|=3. Let P be a point not
in R, and let C” be a member of |C,| such that C” passes through P with
multiplicity=2. Then C” is a singular irreducible curve, which contradicts the
assertion in 3.2.2. Therefore, we have dim|C,| <2.

3.2.4. By virtue of 3.2.3, we have
0=(C)H=dim|C,| —1=<1.,

Thus, replacing C by C, if necessary we may assume that (C®)=0 or 1. We
consider these two cases separately.

Case A. If (C*)=0 then [C| has no base points, and the morphism ¢:=@;:
V — P has the following properties:
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(1) General fibers of ¢ are nonsingular rational curves;

(2) D has an irreducible compenent D, such that (D,-C)=1 and (D—D,-C)
=0; this implies that D, is a cross-section of ¢ and D—D, consists of com-
ponents contained in fibers of ¢. Then it is easy to see that there exists an
open set U(#¢) in V—Supp (D) such that ¢ly: U— o(U) is a trivial A'-bundle.

Case B. Suppose that (C*)=1. Then dim|C|=2. Since (C-D)=1 there
exists an irreducible component D; of D such that (C-D,)=1 and (C- D—D,)=0.
Let P be a general point on D, and let L:=|C|—P. Then dim L=1. Let o:
V’— V be a quadric transformation of V with center P, let E=0¢"(P) and let
L'=¢’L. Then dim L’=1 and (C’?)=0 for a member C’ of L’. Then the mor-
phism ¢’: =@, : V' — P! has the following properties:

(1) General fibers of ¢’ are nonsingular rational curves;

(2) E is a cross-section of ¢’;

3) V'—(EVe'(D)=V—-D.

Hence there exists a nonempty open set U in V—Supp (D) such that ¢’|y: U—
¢’(U) is a trivial A'-bundle. This completes a proof of Lemma 3.2.

3.3. Lemma. Let V be a nonsingular projective vational surface and let D be a
reduced effective divisor such that |D+K|=¢ and V—Supp (D) is affine. Assume
that there exists a terminal component C of D with (C®)=0. Then V—Supp (D)
has a non-empty open set U which has a structure of trivial A'-bundle.

Proof. Note that p,(C)=0 and dim|C|=(C*»+1. Let P,: =C~\(D—C) when
D+C; let P, be any point on C when D=C. Let n:=(C%. If n>0, let Py, ---,
P,_; be points on C such that P; is an infinitely near point of P,_; of order
one for 1=<i<n. Let A be the linear subsystem of |C| consisting of members
which pass through P, Py, -+, Pa-y, 1. €,

A:=|C|—=(Py+P,+ - +P,-y).
Then dim 4=1.

Let V,:=V and let o;: V;— V,;_, be the quadric transformation with center
P,_, for 1=i=n. Let g:=0,- 04, let E;:=(0i4, 0,)(07'(P;i-y) for 1=i<n,
and let C’':=¢'(C). Then (C’>=0 and C’'e¢’4. Hence dim A=1, i.e, 4 is a
linear pencil. Let D’':=¢'(D)+E,+ - +E,. Then D’ is a reduced effective
divisor on V’: =V, such that V'—Supp (D)= V—Supp (D). Note that (C’-D")=1.
This is clear if n>0; if n=0, D is reducible because (D? >0 otherwise and we
get (C-D)=1 by virtue of Lemma 3.1. Let ¢':=®, ,: V'— P Then ¢’ has
the following properties:

(1) General fibers of ¢’ are nonsingular rational curves;

(2) there exists an irreducible component D) of D’ such that D] is a cross-
section and D’— D] consists of components contained in fibers of ¢’.

It is now clear that V—Supp (D) has a nonempty open set U which has a
structure of trivial A'-bundle. Q.E.D.

3.4. Lemma. Let V be a nonsingular projective rational surface and let D be a
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reduced effective divisor such that |D+K|=¢ and V—Supp (D) is affine. Assume
that Supp (D) contains a chain of curves, ’

where:

(1) There are no other curves in Supp (D) which intersect some of A, Cy, Co
Ty Cn;

2) a:=(A)=0 and a;: =—(C)H>0 for 1=i1=n.
Then V—Supp (D) has a nonempty open set U which has a siructure of trivial A'-
bundle.

Proof. By virtue of Lemma 3.1 we know that every irreducible component
of D is a nonsingular rational curve, D has only normal crossings and the dual
graph of D is a tree. Let P,:=ANB, and let P, -, P, be points on the
curve A such that P; is an infinitely near point of P;_, of order one for 1=:
<a. Let ¢:V’— V be the composition of quadric transformations with centers
P, P,, ---, P,, and let E; be the proper transform on V’ of the exceptional
curve which arises from the quadric transformation with center P;., for 1=i
<a+1. Then (E)=-2 for 1=<i<a and (F2,;)=—1. Let A’:=0'(4). Then
(A’%)=—1. Let z: V'’ — V be the contraction of A’, and let A:=r(E...), B:
=¢(E,) and C,;:=t(¢’(C;)) for 1<i=n. Then we have the following chain of
curves,

Let D: =(zo"Y)'(D)+ :‘Z‘;r(Ei). Then it is easy to show that:

(1) V—Supp (D)= V—Supp (D), whence V—Supp (D) is affine;

(2) |D+Ky|l=¢ (cf. Lemma 3.1).

We repeat the above process a;-times, after which the proper transform of
C, has self-intersection multiplicity 0 and we obtain a similar situation as the
one we started with; however, the number of curves C,, -+, C, is one less than
the original one. Hence, proceeding by induction on n we obtain a nonsingular
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projective rational surface ¥ and a reduced effective divisor D such that:

(i) V—Supp (D)= V—Supp (D), which is affine;

(i) |D+Kyl=¢;

(iii) Supp (D) has a terminal component with non-negative self-intersection
multiplicity.
Then our assertion follows from Lemma 3.3. Q.E.D.

§4. Case of rational surfaces-II.

In this section, let V be a nonsingular projective rational surface and let
D be a reduced effective divisor such that [2(D+Ky)|=¢ and V—Supp(D) is
affine.

4.1. Lemma. Let V and D be as above. Then the following assertions hold true.
(1) dim|—(D+K)|=(D+K)»)+1. Hence dim| —(D+K)| =0if (D+K)»)=—1.
(2) Suppose that | —(D+K)|#¢. Let D'e|—(D+K)|. Then D'>0; every

irreducible component of D’ is a nonsingular rational curve; D’ has only normal

crossings; the dual graph of any connected component of Supp (D’) is a tree.

Proof. Since V—Supp (D) is affine, D is connected. Then, p.,(D)=0 by
Lemma 1.2. Hence (D+K-D)=—2. Since |2K+D|+Dc|2(D+K)|=¢, we have
|D+2K|=¢. Then the Riemann-Roch theorem yields

dim| —(D+K)| = 3 (D+K-D+2K)=((D+K))+1.

Suppose that | —(D4+K)|#¢. Let D’e|—(D+K)|. Then D’>0 because | D+K |
=¢. Furthermore, |D’4K|=|—D|=¢. Then the remaining assertions follow
from Lemma 3.1. Q.E.D.

4.2. Theorem. Let V and D be as above. Assume that dim|—(D+K)|>0. Then
V—Supp (D) has a nonempty open set U which has a structure of trivial A'-bundle.

Our proof consists of several subparagraphs below.

4.2.1. Suppose that dim|—(D+K)| >2. Then the assertion holds.

Proof. Let D'e|—(D+K)|. Then D’>0. Let F be the fixed part of the
linear system |D’|, and write |D’|=|D”"|+F. Suppose that |D”| is composed
of a pencil 4. Then A is a linear pencil, and D”~rL for L&/ and an integer
r=2. Since (L?)=0 and |L+D+K|=|—(r—1)L—F|=¢, the assertion follows
from Lemma 3.2. Thus we may assume that general members of |D”| are
irreducible ; by virtue of Lemma 4.1, irreducible members of |D”| are nonsin-
gular rational curves. Suppose that > n,C; is a reducible member of |D”|. If
(CH=0 for some ¢ then we have '

|Ci+D+K|=|— j‘gi n,C;—(n;—1)C;—F|=¢,

and the assertion follows from Lemma 3.2. Thus, the remaining case is this:
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If Z)niCi is a reducible member of |D”| then (C})<0 for every i. This implies

that |D”| has finitely many reducible members (cf. the proof of 3.2.3). Since

irreducible members of |D”| are nonsingular, we have dim|D”| <2, which is a

contradiction. Thus the assertion of Theorem 4.2 holds if dim|—(D+K)|>2.
Q.E.D.

In the following we may assume that dim|—(D+K)|<2; thence (D+K)?
<1. Let d:=1—((D+K)?%»; then d=0. Since (D+K-D)=—2 (cf. Lemma 1.2)
we obtain

(K*)=(D®+5—d.

Since V is rational we have (K?=9; (K*=9 if and only if V is isomorphic to
P?; (K*)=8 if and only if V is a Hirzebruch surface F,:=Proj(0pP0Opi(n))
with n=0.

4.2.2. If (K*=9 then V is isomorphic to P? and D is a conic. In this case
the assertion of Theorem 4.2 holds.

Proof. V is isomorphic to P? as remarked above, and (D?=4+d. Write
D~aH for an integer a>0 and a hyperplane H on P% Then a<3 because
| D+K|=¢, whence we obtain 4<4+d=a?<9. Then d=0 and a¢=2. Thus D
is a conic. If D is reducible, D=I[,+[, with distinct two lines [/, and {,. If D
is irreducible then p,(D)=0 and (D?*=4. In both cases, Lemma 3.3 shows that
V—Supp (D) has a nonempty open set with a structure of trivial A4'-bundle.

Q.E.D.

4.2.3. We consider next the case where (K?=8. Then V is a Hirzebruch
surface F, with n=0. Let n: V— P! be the fibration by P! which defines a
ruling on V. Let M and [ be the minimal section and a fiber of r, respectively ;
for n=0 we fix one fibration by P! and a cross-section for = as M. Then
(M¥D=—n, (M-1)=1 and ([)=0; Ky~—2M—(n+2)l. Write an effective divisor
D as D~aM+bl with integers a, b=0. Since (D?»)=3+d and p,(D)=0, we obtain

(D¥H=ab—an)=3+d,
2pa(D)y=(a—1){2(b—1)—an}=0.
Hence either a=1 or 2b—an=2.
4.23.1. If a=1 the assertion of Theorem 4.2 holds.

Proof. If a=1 we have b=(n-+34d)/2. Then

DNM_|_(ﬁi3id_>[ and D+K~—M—-(.n+;‘d )l.
Note that (#)=0 and |1+D+K|='_M_(_";12—_d>,|=¢ because (14 D+ K)

—=—1. Hence the assertion of Theorem 4.2 follows from Lemma 3.2. Q.E.D.
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4.2.3.2, Assume that 2b—an=2. Then either n=0 or d=1, and the assertion of
Theorem 4.2 holds.

Proof. We have a=(3+d)/2, b=@4+3n+dn)/4 and

D~ —3+i)M+{(—3—+~‘1)n+1}

Hence d=1 (mod 2). Since d=0 we have d=1. Since (D-M)=1—

31’d )71 we

know that (D-M)<0 if n=1 and (D-M)=1 if n=0. If n=0 we may change
the roles of [ and M and assume that D~M+( )l then the assertion of

Theorem 4.2 follows from Lemma 3.2 because (12)=0 and |[+D+K|=¢. Thus
we assume that n=1. Assume that d>1. Then D is of the form D=M-+4M’,
where M’ is a reduced effective divisor such that

(5 (54

Since D is a reduced connected divisor we must have:

4—(d—Dn

4
which is impossible because d>1, n>0 and (M-M’) is an integer. Therefore
d=1 if n=1. Then a=2, b=n+1 and D~2M-+(n+1).. Note that (D-M)=1—n
<0 if n=2 and (D-M)=0 if n=1. Since V—Supp (D) is affine by assumption
we have D=M+D’, where D’ is a reduced effective divisor such that D'~ M
+(n+1)l. Let r be the number of irreducible components of D. Then r=2.
If =3 it is easy to see that »=3 and D=M+I[+M’, where M’ is an irreducible
prime curve such that M’'~M+-nl; the dual graph of D is given by

(M-M")= >0,

—n 0 n
[e] o o

M l M

If =2 then D=M-+M’, where M’ is an irreducible curve such that M’'~M--
(n+1)!; the dual graph of D is given by
—n n+2

o o

M M

In each of these cases the assertion of Theorem 4.2 follows from Lemma 3.3.
Q.E.D.

4.2.4. If (K®)<8 the assertion of Theorem 4.2 holds.

Proof. Let s:=8—(K?*. Then s=—1. We shall prove the assertion by
induction on s+d. The assertion holds in the following cases: d<0 (cf. 4.2.1),
s=—1 (cf. 4.2.2) and s=0 (cf. 4.2.3). By assumption we have s>0. Then V is
obtained from some Hirzebruch surface F,(n=0) by a composition of s quadric
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transformations. Hence there exists an exceptional curve E of the first kind.
We shall show that |E4+D+K|=¢. In fact, if |E4+D+K|+¢ then |E|D|E+
D+K|+|—(D+K)|, which is absurd because dim|—(D-+K)|>0. Since p,(D)
=po(E)=0 the Riemann-Roch theorem gives

—2=(E+D+K-E+D)=—4+2(D-E),

whence (D-E)<1. On the other hand, if E¢#Supp(D) then (D-E)>0 because
V—Supp (D) is affine; if ECSupp (D) and E is not a terminal component of D
then (D-E)=(E)+(D—E-E)>0; if ECSupp(D) and E is a terminal component
of D then (D-E)=0. Therefore we have (D:-E)=0or 1, where (D-E)=0 if and
only if E is a terminal component of D.

Let g: V— V be the contraction of E and let D=g4«(D). Then D is a
reduced effective divisor on V such that

_ (D if (D-E)=0
o¥(D)=
D+E if (D-E)=1.
Furthermore, since Ky~o*(K3)+E we have
o¥(D+Kyp)+E if (D-E)=0

D+KVN{ =
o*(D+K7) it (D-E)=1.

We shall consider the cases (D-E)=0 and (D-E)=1 separately.

4.2.4.1. If (D-E)=0 we have the following:

(i) |2(D+Ky)|=¢ and V—Supp (D)= V—Supp (D), which is affine;

(ii) dim|—(D+K7)| >0 since —o*(D+Ky)~—(D+Ky)+E;

(i) (D+K»))=((D+Ky))+1=2—d, (K})=(K})+1 and (D?)=(D?, whence,
if we put 5: =8—(K%) and d: =1—((D+K%)?), we have §+d=s+d—2.
By inductive assumption, V—Supp (D) (hence V—Supp (D)) has a nonempty open
set which has a structure of trivial 4'-bundle. Thus the assertion of Theorem
4.2 holds in this case.

4.2.4.2. 1f (D-E)=1 we have the following:

(i) |2(D+K7)|=¢ and V—Supp (D) V—Supp (D), where V—Supp (D) is
affine*;

(ii) dim|—(D+Ky)|>0;

(i) (D+EK»)H=((D+Ky))=1—d, (K;)=(K})+1 and (D)=(D®+1, whence
§+d=s+d—1.
Then we know by inductive assumption that V—Supp (D) (hence V—Supp (D))
has a nonempty open set which has a structure of trivial A!-bundle. Thus
the assertion of Theorem 4.2 holds. This completes a proof of Theorem 4.2.

* This is clear if ECSupp (D). If E¢ Supp (Dl, let A be an effective ample divisor
on V such_that Supp (A) =Supp(D). Let Aio*(A). Then, by Nakai’s criterion of
ampleness, A is an effective ample divisor on V such that Supp(A4) =Supp(D).
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4.3. Corollary. Le! V be a nonsingular projective rational surface and let D be
a reduced effective divisor such that V—Supp (D) is affine, |2(D+K)|=¢ and
((D+K))=0. Then V—Supp (D) contains a nonempty open set which has a struc-
ture of trivial A'-bundle.

Proof. Follows from Lemma 4.1 and Theorem 4.2.

4.4. Corollary. Let V be a nonsingular projective rational surface and let D be
a reduced effective divisor on V such that |2(D+K)|=¢. Assume that D is ample.
Then V—Supp (D) contains a nonempty open set which has a structure of trivial
A'-bundle.

Proof. Since D is ample V—Supp (D) is affine. If (D+K)*)=0 then we
are done by virtue of Corollary 4.3. Thus we may assume that ((D+K)*)<0.
We shall show that, for any effective ample divisor A on V, we have

[A+m (D+K)|#¢ and |A+(ms+1)(D+K)|=¢

for some integer m,>0. Indeed, take an integer m>0 so that m>—(A-D+K)/
((D+K)%. Then (A+m(D+K)-D+K)<0. Suppose that | A+m(D+K)|#¢. Let
> n;:C; be a member of | A+m(D+K)|. Since Xn;(C;- D+K)<O0 there exists an

irreducible component, say C,, such that (C,- D+K)<0. Then we have
(A4+m'(D+K)-C)<0  for m'>—(A-C)/(D+K-C,).

Besides, (C,-D)>0 because D is ample. Since (C,-D+K)<0 we obtain (C,- K)=<
—2, whence (C)=0. This implies that |A+m'(D+K)|=¢ for m'>—(A-C))/
(D+K-C,). Thus we find an integer m, as claimed above.

Suppoose that A+m,(D+K)~0 for every effective ample divisor A. Then
we can see easily that every divisor is a multiple of D4+K up to linear equi-
valence. Namely, Pic(V)=Z[D+K]. Since V is rational this implies that V
is isomorphic to P? and D+ K~—H, where H is a hyperplane. Then ((D+K)?
=1 which contradicts the assumption (D+K)?)<0. Thus we have an effective
divisor D, in |A+4+mu(D+K)| for some effective ample divisor A. Write D,
=2¢’“Ci' If (CH=0 for some i then the stated assertion holds true because

| Ds+D+K|=¢ implies |C;+D+K|=¢ (cf. Lemma 3.2). Therefore assume that
(CH<O for every 1.
By a simple computation we have

mi(D+K))=2m4+1)(D+ K- Do) — (D) —(D+K-D)+(A%.

Note that C; is a nonsingular rational curve for every i. Since (C?)<0 we have
(C;-K)=—2—(C?)»=—1. On the other hand, (D-C;)>0 because D is ample. Hence
we have

(D+K-C)=0 for every 7, and (D+K-D,)=0.

Furthermore, the Riemann-Roch theorem gives
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—1=dim|Da+D+K| 2~ (Dt D+K-D)+(Ds- DY} —1,

whence we obtain
—(Da+D+K-D)=(D4 D)= n;(C;- D)>0.

Since (A%>0 we obtain mi((D+K)%»>0. This contradicts the assumption
(D+K)¥»<0. Q.E.D.

4.5. Corollary. Let V be a nonsingular projective rational surface and let D be
a reduced effective divisor. Assume that V is relatively minimal, V—Supp (D) is
affine and |2(D+K)|=¢. Then V—Supp (D) contains a nonempty open set which
has a structure of trivial A'- bundle.

Proof. We may assume that (D+K)?)<0 since our assertion follows from
Corollary 4.3 in case ((D+K)*=0. Since p,(D)=0 we have (K?*)<4+(D?.
Suppose that V is isomorphic to P2 Write D~aH for a hyperplane H and an
integer a>0. Then a®=6, whence a=3; this is a contradiction because D+ K
~(a—3)H=0. Next suppose that V is a Hirzebruch surface F, for n=0. With
the same notations as in 4.2.3, write D~aM-+bl for integers a, b=0. Then,
since (K?)=8 we have

(D»=ab—an)=5

2p(D)=(a—1){2(b—1)—an}=0.

If a=1 then D~M+bl and our assertion holds. Suppose that 2b—an=2. Then
we have 2a¢=5, whence a=3 and b=(an+2)/2. If n=0 then D~I[+aM and
our assertion holds. Assume n>0. Then (D-M)=(2—an)/2<0. Hence D=M+D’,
where D’ is a reduced effective divisor such that D’~(a—1)M+bl. Since D is
reduced and connected we must have (D’'-M)=Q2+2n—an)/2>0, which is im-
possible because (D’-M) is an integer. Q.E.D.

§5. Case of rational surfaces-III.

5.1. Thorem. Let V be a nonsingular projective rational surface and let D be a
reduced effective divisor on V such that V—Supp (D) is affine, |2(D+K)|=¢ and
dim| —(D+K)|=0. Then V—Supp (D) contains a nonempty open set which has a
structure of trivial A'-bundle.

The theorem will be proved in the following paragraphs 5.2~5.6.
5.2. We shall show that we may assume the following additional condition:
—(D+K)~E, where E is an exceptional curve of the first kind.

Proof. By virtue of Corollary 4.5, we may assume that V is not relatively
minimal. Hence V has an exceptional curve E of the first kind. Assume
|E4+D+K|+¢. If E4+D+K~0 then —(D+K)~E; this is the desired condition.
Suppose E4+D+K+0. Then since |E|2|E+D+K|+|—(D+K)| and D+K»0
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we have a contradiction. Now assume |E+D-+K|=¢. As in 4.24 we have
(D-E)=0or 1. Let o: V— V be the contraction of E and let D=04(D). We
shall consider the cases (D:E)=0 and (D-E)=1 separately.

Case (D-E)=0. As in 4.24.1, we know the following:

(i) |2D+K7)|=¢ and V—Supp (D)= V—Supp (D), which is affine;

(ii) dim|—(D+K7)| =0 since —o*(D+Ky)~—(D+K,)+E.
If dim|(D+4K7)| >0, V—Supp (D) (hence V—Supp (D)) contains a nonempty open
set which has a structure of trivial A'-bundle (cf. Theorem 4.2), and thus we
are done. If dim|—(D+K7)|=0 then V and D satisfy the same conditions as
V and D do, while (K%)=(K2)+1.

Case (D-E)=1. As in 4.24.2, we have the following:

(i) |2(D+Ky)|=¢ and V—Supp (D) V—Supp (D), where V—Supp (D) is
affine ;

(ii) dim|—(D+K7)| =0 since —o*(D+Kp)~—(D+Ky).
Thus V and D satisfy the same conditions as V and D do, while (K%)=(K2)+1.

By repeating the above process finitely many times, either we know that
V—Supp (D) contains a nonempty open set which has a structure of trivial 4!-
bundle, or we are reduced to the case where the additional condition that
—(D+K)~E is satisfied for some exceptional curve E of the first kind.

Q.E.D.

5.3. Lemma. Let V be a nonsingular projective rational surface and let D be a
reduced effective divisor on V such that V—Supp (D) is affine and E+ D+ K~0 for
some exceptional curve E of the first kind. Then we have the following:

(1) Assume that E¢Supp (D); then Supp (D) is a linear chain of nonsingular
rational curves, and Supp (D)\JE has one of the following configurations;

KPP

contact of
order 2

(2) Assume that ECSupp (D), then Supp (D) consists of nonsingular rational
curves E, C,, C, and C,, and the configuration of Supp (D) is given as follows,
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Proof. Since D+K~—E, we have |2(D+K)|=¢ and dim|—(D+K)|=0.
Hence we know that (D-D+K)=-—2, every irreducible component of D is a
nonsingular rational curve, D has only normal crossings, and the dual graph of
D is a tree (cf. Lemma 3.1). Moreover, we have (D-E)=—(D-D+K)=2.

Assume that E¢Supp (D). Let D, be an irreducible component of D. Then
we have

0=—(D,: E)=(D,- D+ K)=(D,-D—D)+(D,- D+ K)=(D,-D—D,)~-2,

where (D,-D—D,)>0 because D is connected. This implies the folloWing:

(i) If D, is not a terminal component of D then D, meets exactly two
other components of D, and D; does not meet E;

(ii) If D, is a terminal component then D, meets E transversally at a
single point if D—D;#¢.
Therefore Supp(D) is a linear chain and Supp(D)\U E has one of the listed
configurations.

Assume next that ECSupp (D). Since (D:E)=2, Supp (D) has three irredu-
cible components C,, C,, C; meeting E. We shall show that these curves are
terminal components of D. Indeed, since

_1:—(Cl'E):<Cl‘D_C1)"2:(C1‘ E)+(C1' D_CI_E)_Z
=(,-D—-C,—E)—-1,

we have (C,- D—C;—E)=0. This implies that C, is a terminal component. The
same argument applies to C, and C,. Q.E.D.

5.4. Let V, D and E be as in 5.3. Then either V—Supp (D) contains a nonempty
open set which has a structure of trivial A*-bundle, or we are reduced to the case
where the following conditions are satisfied:

(1) There is no nonsingular rational curve F (other than E if E¢ Supp (D))
on V such that F¢ Supp (D) and (F*)<0;

(2) D does not contain any exceptional component (except E if ECSupp (D)).

Proof. Let F be a nonsingular rational curve (other than E if EZ Supp (D))
such that F¢& Supp (D) and (F?)<0. Then we have

0=—(F-E)=(F-D+K)=(F-D)—1,

where (F-D)>0 because V—Supp (D) is affine, and where (F-K)=—2—(F)=—1.
Hence (F-D)=1, (F-K)=—1 and (F-E)=0. This implies that F is an excep-
tional curve of the first kind, F meets D transversally at a single point and F
does not meet E. Let o: V— V be the contraction of F, let D=04(D) and
E=04(E). Then we have the followihg:

(i) V—Supp (D) V—Supp (D) and V—Supp (D) is affine;

(ii) E is an exceptional curve of the first kind such that D+Ky~—E
(cf. 4.2.4.2).
Thus we may contract F without loss of generality.
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Suppose that C is an exceptional component of D (other than E if ECSupp
(D)). Suppose that C is not a terminal component of D. Then (C-D)=1 and
(C-E)=0. Let og: V—V be the contraction of C, let D=04(D) and let E=
ox(E). Then the above two conditions (i) and (ii) are satisfied (cf. 4.2.4.2).
Thus we may contract C without loss of generality. Suppose now that C is a
terminal component of D. Then (C-E)=1 by Lemma 5.3. Let g: V — V be the
contraction of C, let D=04(D) and let E=04(E). Then we have the following:

(i) V—Supp (D)= V—Supp (D), which is affine;

(ii)’ E is a nonsingular rational curve such that (E%)=0 and D+ Ky~—E,
whence |2(D+K7)|=¢ and (D+Ky)»)=0 (cf. 4.24.1).

By virtue of Corollary 4.3, V—Supp (D) (hence V—Supp (D)) contains a nonempty
open set which has a structure of trivial A'-bundle. Q.E.D.
5.5. Proof of Theorem 5.1. We shall assume that the additional conditions (1),
(2) of 5.4 are satisfied by V, D and E. First, we consider the case where
E&Supp (D). If some irreducible component of D has nonnegative self-intersec-
tion multiplicity then V—Supp (D) contains a nonempty open set which has a
structure of trivial A'-bundle (cf. Lemmas 3.3 and 3.4). Assume that each
irreducible component of D has negative self-intersection multiplicity, which is
then <—2 by virtue of the condition (2) of 54. Then the intersection matrix
of D is negative definite (cf. Mumford [6; p. 61). This contradicts the assump-
tion that Supp (D) is a support of an ample divisor.

Next we consider the case where ECSupp (D) (cf. the figure in Lemma 5.3).
If (CH=0 for some i (=1, 2, 3) then V—Supp (D) contains a nonempy open set
which has a structure of trivial A'-bundle. Assume that (C})<0 for i=1, 2, 3.
Then (CH=—2 for i=1, 2, 3 by the condition (2) of 54. The condition (1) of
5.4 implies that E is the unique exceptional curve of the first kind on V. Let
o: V— V be the contraction of E and let C;=0(C;) for i=1, 2, 3. Then (C?
<—1 for i=1,2, 3. If (CH<—2 for i=1, 2, 3 then V is relatively minimal.
This is a contradiction because there is at most one irreducible curve with
negative self-intersection multiplicity on a relatively minimal rational surface
(cf. Lemma 5.6 below). Hence one of C,’s, say C,, satisfies (C})=—1. Let z:
7V — ¥ be the contraction of C,, and let C;=7«(C;) for i=2, 3. Then C, and
C, are nonsingular rational curves meeting each other at a single point with
multiplicity 2, and (63)§0 for =2, 3. Such a pair of curves does not exist on
a relatively minimal rational surface (cf. Lemma 5.6 below). Then one of C,
and C,, say C,, must be an exceptional curve of the first kind. Let o: V-w
be the contraction of C,, and let C*=p*(53). Then C* is an irreducible rational
curve with only one ordinary cusp, and (C*?)<4. Moreover, we know that W
is a relatively minimal rational surface and that C* is ample. This is impossible
by virtue of Lemma 5.6 below. Q.E.D.

5.6. Lemma. Let V be a relatively minimal rational surface. Then we have the
following :

(1) There is at most one irreducible curve with negative self-intersection
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multiplicity;

(2) there is no pair of distinct irreducible curves C,, C, such that (CH=0 (z
=1, 2) and (C,-C,)=2;

(3) there is no irreducible rational curve C such that C has only one ordinary
cusp, (C)<4 and V—C is affine.

Proof. (1) Let C be an irreducible curve on V such that (C®)<0. Then V
is a Hirzebruch suface F, with n=0 and n=+1. With the notations of 4.2.3,
write C~aM+bl with integers a, b=0. Then (C)=a(b—an)<0. If a=0 then
C~![ and (C)=0. If ¢>0 then 2b—an=0. If >0, i.e.,, C#M then (C-M)=b—
an<0, which is a contradiction. Hence C~M if a>0. Thus (C?)<0 if and
only if n=2 and C=M; (C*»=0 if and only if C~[. Therefore there exists at
most one irreducible curve C with (C?<0.

(2) Let C, and C, be two distinct irreducible curves such that (C)=<0 for
i=1, 2. Then (C,-C,)=0 or 1 by the above observation. Thus the second state-
ment holds true.

(3) Let C be an irreducible rational curve C such that C has only one
ordinary cusp, (C*)=<4 and C is ample. Then p,(C)=1. If V is isomorphic to
P? then C is a conic and p.(C)=0, which is absurd. Thus V is a Hirzebruch
surface F, with n=0 and n+#1. Write C~aM+b! with integers a, b=0. Then
we have

0<(CH=a(2b—an)<4,

2p.,C)=(a—1){2(b—1)—an}=2.

From the second equality, we have either a=2 and 2b—an=4 or a=3 and
2b—an=3. But neither case satisfies the first inequality. Hence follows the
validity of the statement (3). Q.E.D.

5.7. Let V, D and E be as in 5.3. Let o: V— V be the contraction of E and
let D=04(D). Then D is a reduced effective divisor such that every irreducible
component of D is a (not necessarily nonsingular) rational curve, D+ K3~0 and
V—Supp (D) is affine. If D has only normal crossings and there are no nowhere
zero regular functions on V—Supp (D), V—Supp (D) is called a logarithmic K3-
surface (cf. litaka [1]). Let F be an exceptional curve of the first kind on V.
Then (F-D)=1. Hence either F¢Supp (D) and F meets D transversally at a
single point, or F is an irreducible component meeting one or two other com-
ponents of D. Let z: V — ¥ be the contraction of F and let D=r4(D). Then
D is a reduced effective divisor such that every irreducible component of D ig
a rational curve, D4 K3~0 and ¥ —Supp (D) is affine (cf. 4.2.2.2). If F¢Supp(D)
then 7 is called a half-point detachment; if FCSupp (D) then 7 is called a
canonical contraction. The inverse transformation is called a half-point attach-
ment and a canonical blowing-up, respectively (cf. [1]). Repeating these trans-
formations (half-point detachments or canonical contractions) we obtain a
relatively minimal rational surface W and a reduced effective divisor G such
that every irreducible component of G is a (not necessarily nonsingular) rational
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curve, G+ Ky~0 and W—Supp (G) is affine. Conversely, V and D are regained
by the following process:

(1) Obtain V and D by repeating half-point attachments or canonical
blowing-ups ;

(2) let ¢: V— V be a quadric transformation with center P which is a
double point or a triple point of D, let E=¢"(P) and let D=¢*(D)—2E. Hence
E¢Supp (D) if P is a double point of D and ECSupp (D) if P is a triple point
of D.

It is not hard to classify divisors G on relatively minimal rational surfaces
W satisfying the above conditions. Those are given in the following list (cf.

(1:

Case W=P>.
1) 1) 2) 1 2%)
1
1 1 1 1
1
1
G:ll+]::‘i'lu G:l+Q
l;=a line @=a conic
3) 3
9 9
G=a cubic
Case W=P'xX P!,
4 ’
) 0 5) 0 57 0
0 0 0 2 2 0
0
M,~M,~M C~M+1
li~l~l
6) 6’)
G=C,+4-C, G=M+-\"

Ci~Co~ M+ M ~M--21
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8) 8)
8 8
G~2M+-21
Case W=F,.
9) 10)
—2
0 0
2
G=M4+M 1,41, G=M+I+M
M ~M+2, [~~~ M ~M+31L

)
—2
"~ M4l Ci~Co~M+21
3)
X 8

Case W=F, with n=3.

11 119 12) 12/
(é :: —2
G=M+M G=C\+C,
1 13
A 8

G~2M+41

14) 15) 15")
—n —n —n
0 0 0 n+2
n42 0
n
G=M+M+1,+1, . GC=M-+M+I1
M ~M+nl M ~M+m+1)
1y~~~
16) 16%)
/0 J
—n
G=M+M

M ~M+(n+2)l
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5.8. By virtue of Theorems 4.2 and 5.1, we know that the four conditions
in Lemma 1.3 are equivalent to each other if V is rational, V—Supp (D)
is affine and dim|—(D+K)|=0. Note that dim|—(D+K)|=0 if (D+K))H=—1
(cf. Lemma 4.1). In the following, we shall give a partial result in the case
where (D4+K)»)<—2. We shall first remark the following:

Lemma. Let V be a nonsingular projective rational surface and let D be a
reduced effective divisor on V such that | D+Ky|=¢. Assume that |E+D+K|+#¢
for an exceptional curve E of the first kind. Let o: V —V be the contraction
of E and let D=04(D). Let m be a positive integer. Then

dim|m(E+D+K)| =0 if and only if dim|m(D+Kv)|=0.

Proof. Assume that dim|m(E+D+K;)|=0. We claim that (D-E)=2.
Indeed, if E4 D+ Ky~0 then (D- E)=2. Assume that E+D+Ky~3> n,C;>0. Since

0=dim| E+D+Ky| gi(E—I-D-l-K-E—l—D):(D-E)—Z ,

we have (D:E)<2. Assume that (D-E)<1. Then E is an irreducible com-
ponent of > n;C; because (E:-E4D+K)<—1, whence |D+Ky|#¢, a contradic-
tion. Therefore, (D-E)=2. Then we have

o¥(D)=D+2E and E+D+Ky~c*D+K7).

Hence we have: dim|m(D+K7)| =dim|m(E+ D+ Ky)| =0.
Next assume that dim|m(D+K7)|=0. Let n=(D-E). Then n=2 as in the
above argument. Then we have

o¥(D)=D+nE and o*D+K3)~(EL+D+K,)+(n—2)E.
Hence we have
0<dim|m(E+ D+ Ky)| <dim|m(D+ K7)| =0. Q.E.D.

5.9. Theorem. Let V be a nonsingular projective rational surface and let D be
a reduced effective divisor on V such that V—Supp (D) is affine, (D+K)*)<—2 and
[2(D+K)|=¢. Assume that dim|2(E+D+K)|=dim|E+D+K|=0 for an excep-
tional curve E of the first kind. Then there exists a birational morphism p from
V onto a nonsingular projective surface V such that the following conditions are
satisfied :

(1) E does not meet any exceptional curve of p, whence E:p(E) is an ex-
ceptional curve of the first kind;

2) let ﬁ:p*(D); then E4+D+Ky~0;

(3) V—Supp (D)= V—Supp (D), and V—Supp (D) is affine.
Therefore, V—Supp (D) contains a nonempty open set which has a structure of
trivial A'-bundle.

Proof. By assumption, |E+D+K|+#¢. If E-|;D+K~0 then we have only
to take V=V and o= the identity morphism. Thus we assume that E-+D+K
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~>n;,C;>0. As in the proof of Lemma 5.8, we have (D-E)=2. Hence X n,(C;-E)
=0. Note that E is not an irreducible component of 3 n,C; because | D+K|=¢.
Hence E does not meet any component C;. '

We shall show that some component of > n,C; is an exceptional curve of
the first fiind. Since (E-E+D+2K)=—1, E is a fixed component of | E4+ D+2K]|
and |D+4-2K|#¢ if | E4-D+2K|+¢. This is a contradiction because D+ |D+2K]|
c|2(D+K)|=¢. Hence we have | E4D+2K|=¢. Therefore we have | X C;+K]|
=¢, which implies by virtue of Lemma 3.1 that every irreducible component C;
is a nonsingular rational curve. Then we have

dim|C,| 24 (Co-C—K)=(C)+1.

Since dim| E+D+K|=dim|X>n;C;|=0 this implies that (C})<0 for every i¢. On

the other hand, since ((D+K)*»)=<—2 and (D:-D+K)=-—2, we have (D+K:-K)=0.
Hence we have

;ni(C,--K):(E—I-D—l-K- K)=—1+(D+K-K)=—1.

Thus there exists an irreducible component of >n,C;, say C,, such that (Cy-K)

<0. Since (C})<0, C, is an exceptional curve of the first kind.
We shall show that |C,+D+K|=¢. Assume the contrary. Then C,+D+K
~F>0 because (D+K)»)<—2, and E+Fe|E+C,+D+K|. Note that

(n,+1)C,+ §1 nC;e| E4+C,+D+K].

Since every component C; is disjoint from E, this implies that | E+C,+D+K]|

contains two distinct members E+F and (n,+1)C,+ Z‘; n,C;. This is a contra-
i=

diction because we have

dim| E4+C,+ D4 K| =dim|2(E+D+K)|=0.

Therefore, |C,+D+K|=¢, which implies 0=(C,-D)=1.

Let o,: V— V, be the contraction of C,, let D,;=(c)«(D) and let E,=(0.)x
(E). Then we shall show that the following conditions are satisfied:

(i) V,—Supp(D,)S V—Supp (D), and V,—Supp (D,) is affine;

(il) 12AD+Ky)=¢;

(i) (Di+Ky)H=(D+Ky)*) if (C,-D)=1 and (D,+Ky))=(D+Ky)")+1 if
(C,-D)=0; ‘

(iv) E, is an exceptional curve of the first kind on V, and dim|E;+D,+ K|
The first three assertions can be proved by the same fashion as in 4.24. We
shall prove the assertion (iv). Since (E-C,)=0, E; is an exceptional curve of
the first kind on V,. Moreover, we have

E+D+Ky~c¥(E,+D,+Ky)+0C,,
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where =1 if (C,- D)=0 and 6=0 if (C,-D)=1. Then it is easy to see that
dim|E;+ D+ Ky, | =dim|2(E,+ D,+ Ky )| =0.

The above process can be repeated if (D,+Ky))=—2. Thus, repeating
these processes finitely many times, we have a birational morphism p: V— 1%
from V onto a nonsingular projective surface V such that if we set 5=P*(D)
and EZp*(E) then the following conditions are satisfied :

1) V—Supp (D)< V—Supp (D), and V—Supp (D) is affine;

2) |AB+K) | =¢;

3) (D+Knp=—1;

4) E is an exceptional curve of the first kind on ¥, and dim|E+ D+ K5l

=dim|2(E+ D+ K7)| =0.
Then we shall show that E+I§+K;~O. Indeed, assume that E7+15+K;;~F>0.
Then every irreducible component of F is distinct from E because ]5+K?,I=¢.
On the other hand, dim| —(D+ K3)| =0 by virtue of Lemma 4.1. Hence —(D+K3)
~G=0. Then E~F+G, which is a contradiction. Therefore, E+ D+ Ky~0.
Then Theorem 5.1 implies that V—Supp (D) (hence V—Supp (D)) contains a
nonempty open set which has a structure of trivial A'-bundle. Q.E.D.

5.10. Theorem. Let V be a nonsingular projective rational surface and let D be
a reduced effective divisor on V such that V—Supp (D) is affine, (D+K))=—2 and
|m(D+K)|=¢ for every integer m>0. Assume that there exists an exceptional
curve E of the first kind satisfying the following two conditions:

(1) dim|E4D+K|=0,

2) (E+D+K)-dimension k(E+D+K)=1%
Then V—Supp (D) contains a nonempty open set which has a structure of trivial
A'-bundle.

Proof. We shall obtain a contradiction by assuming that the assertion is
false. Our argument consists of four steps.
(I) Let Ei}niCi be an effective divisor in |E+D+K|. Then every com-

ponent C; is distinct from E, for, if otherwise, |D-+K|+#¢ which contradicts
the assumption. By the Riemann-Roch theorem we have dim|E+D+K|=(E: D)
—2, whence (E-D)<2 because dim|E+ D+ K|=0 by assumption. Suppose (E-D)
=<1. Then the following sequence

0 — HY(V, Oy(D+K)) —> HY(V, Oy(E+D+K)) — HYE, Ox((E-D)—2))

implies that |E4+D-+K|=¢. Since dim|E+D+K|=0 we have (E-D)=2.
Now consider | E4+D+2K|. Since (E-E4+D+42K)=—1and |D+2K|=¢, we
know that |E+D-+2K|=¢. Thence I;Ci+K|=¢, which implies that every

component C; is a nonsingular rational curve. Since dim|C;|=(CH+1 (cf. 3.2.1),

* For any integer m>0, let ¢,, be the rational mapping from V to PY defined by
| m(E4+D+K) |, where N(m) =dim|m(E+D+K)|. Then (E+D+K)-dimension
r(E+D+K) is defined as 51;13 dim ¢, (V). If [m(E4+D+K)|=¢ for every integer m>0,

m,

we set r(E+D+K) = —co,



36 Masayoshi Miyanishi and Tohru Sugie

we know that (C?) <0 for every component C;. On the other hand, the assump-
tion ((D+K)*)=—2 implies that b: =—(D+K-K)=0. Hence we have

—1—=b=(E+D+K -K)=3n:C;-K)<0.

This implies that (C,- K)<0 for some component, say C,. Then C, is an excep-
tional curve of the first kind. Furthermore, we know that (C;- E)=0 for every
component C;, because (E-D)=2 and C;#E. Hence C;nN\E=4¢.

(I) By virtue of Theorem 5.9, we have dim|2(E+D+K)|>0. Write
|2(E4+D+K)|=|X|+F, where F is the fixed part. Suppose (X2>0. Then
Zariski's lemma (cf. Zariski [8]) implies that |mX| has no base points for
sufficiently large integer m>0; this implies that |mX]| is not composed of a
pencil and dim @, x,(V)=2, which contradicts the assumption #(E+D+K)=1.
Therefore, we have (X2)=0. We may write X~»C, where |C| is an irreducible
linear pencil. Since Z;nicie |2(E4+D+K)| we have F<23 n;C;. Since (C;-E)

=0 for every i, we have (F-E)=0. Hence we have
0=2(E-E+D+K)=r(C-E)+(F-E)=r(C-E).

Thus (C-E)=0. Namely, E is contained in a member of |C|; C’+E<|C| for
some effective divisor C’. If r=2 then 2(D+K)~rC'+(r—2)E+F>0, which
contradicts the assumption |[2(D+K)|=¢. Hence we know that r=1. In a
similar fashion, we can show that E¢Supp (C’). Thus we have

E+2(D+K)~C'+F and dim|E+2(D+K)|=0.

We shall show that dim|E4+m(D+K)|<0 for every integer m>0. Since
e(E+D+K)=1, the moving part of |m(E+D+K)| is composed of the pencil
|C|, and we can write |m(E+D+K)|=|t,C|+F,, where F, is the fixed part
and ¢t,>0. Then t,<m—1, for, if otherwise, m(D+ K)~(t ,—m)C+mC’+F, >0,
which contradicts the assumption |m(D+K)|=¢. Then we have

(m—t)E+m(D+K)~t,C'+F, .
Since it is clear that dim|¢,C’'—F,|=0, we have
dim| E4+m(D+K)| 0.

(III) In this step we shall show that, after replacing E if necessary by
an exceptional curve of the first kind satisfying the same conditions as £ does
in the statement, there exists an exceptional curve Z of the first kind such that
(E-Z)=0and |Z+D+K|=¢. Suppose the contrary: If E’ and Z are exceptional
curves of the first kind such that E’ satisfies the same conditions as E does in
the statement and that (E’-Z)=0, then |Z+D+K|+#¢. By making a slight
change of notations in the step (1), we write

E+D+K~2uPCP>0,
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where (E-C")=0 for every index i and C{” is an exceptional curve of the first
kind. By assumption, we have

|[CP+D+K|+¢.
Since we have
E+2(D+K)~(nf = 1)CP+ 3 aPCO+(CP+ D+ K) - (R)

and dim| E+4+2(D+K)|=0, we have
dim|C®+D+K|=0 and (C{"-D)=2.

On the other hand, we have dim|2(C{*+D+K)|>0, for, if otherwise, V—
Supp (D) contains a nonempty open set whicn has a structure of trivial A'-
bundle (cf. Theorem 5.9). The relation (R,) above implies #(C{’4+D+K)=1.
The same argument as in the step (II) shows that

[2(C{"+ D+ K)=|C|+(the fixed part) and (C{"-C)=0,

where |C| is the same pencil as constructed in the step (I).
Write

CO+ D+ K~ S nPCP>0,

where (C{’-C?®)=0 for every index i and some component, say C{®, is an excep-
tional curve of the first kind. Then we have,

E+3(D+K)~(nf0—1)CP+ B nfPCP+(nfP—1)CP+ 2 nCP
+(CP+D+K) ~ (Ry).

The relation (R,) implies that E+C® for every index i because |2(D+K)|=¢,
and the relation (R,) implies that

dim|C®+D+K|=0, (C*-D)=2 and «(C{*+D+K)=1,

because |C{P+D+K|+#¢ (since C{" satisfies the same conditions as E does in
the statement and (C{*-C{®)=0) and dim| E+3(D+K)| <0. By the same argument
as above, we have

[2(C*+D+K)|=|C|+(the fixed part) and (Cf-C)=0.

Thus, proceeding inductively we obtain a sequence {C{", C{*, ---} of excep-
tional curves of the first kind satisfying the following conditions for j=1, 2, ---:

(1) CYD+D+K~3ZnfC, where C{”:=E,
J
@) E+G+DD+E)~ 3 A =P+ 3 0l +CP+D+K) -+ (R,

3) dim|CP+D+K|=0, (C{-D)=2 and «(CP+D+K)=1,
@) |2(CP+D+K)|=|C|+(the fixed part), and (C{”-C)=0,
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6) CO+GHI—OD+K)~ 3 (P —1CP+ 2 nCP)

s=t+1

+(CP+D+K)
and CP#CY for 0=t<j.

Let f: V— P! be the morphism defined by the pencil |C|. Then, by virtue
of the conditions (4) and (5), the curves in the sequence {C{, C®, .-} are
mutually distinct (hence infinitely many) exceptional curves of the first kind,
each of which is contained in a fiber of f. This is a contradiction. Therefore,
we know that there exists an exceptional curve Z of the first kind such that
(E-Z)=0 and |Z+D+K|=¢, provided one replaces E (if necessary) by some C{®.

(IV) Let o: V — V be the contraction of Z, let D=04(D) and let E=g4(E).
Since (E-Z)=0, E is an exceptional curve of the first kind on V. As in the
proof of 4.2.4, we have (D-Z)=0 or 1; indeed, we have

D if (D-Z)=0

0*(5)={
D+Z if (D-Z)=1
and

oXE+D+Kp)+Z  if (D-Z)=0

E+D+KV~{ _
o*(E+D+Kv) it (D-2)=1.

Then we have the following:

(i) |m(D+Kw)|=¢ for every integer m>0, and V—Supp (D) is affine;

(ii) dim|E+D+Ky|=0;

(i) k(E+D+Kp)=1;

(iv) (KH)=(Kp)+1;

(v) V—Supp (D) does not contain any nonempty open set which has a struc-

ture of trivial A’-bundle.
The assertion (i) is proved in the same fashion as in 4.24. We shall prove
the assertions (ii) and (iii) in the case (D-Z)=0. Note that Z is a fixed com-
ponent of |E+D+Ky| because (Z-E+D+Ky)=—1. Hence dim|E+D+Ky|=
dim| E4+D+K,—Z|=0. On the other hand, we have clearly 0<k(E+D+K3)
<K(E+D+Ky)=1. If x(E+D+K7)=0 then Theorem 5.9 implies that V—Supp(D)
(hence V—Supp (D)) contains a nonempty open set which has a structure of trivial
A'-bundle, which is a contradiction. Hence «(E-+D+K7)=1.

Thus we obtained the same situation on V as the one on V which we
started with, except that (K$)=(K%})+1. Therefore we can apply the same
arguments as in the steps (I)~(lll) infinitely many times. However, this is
impossible because (K% =<8 or 9. Thus we proved the assertion in the theorem.

5.11. Theorem. Let V be a nonsingular projective rational surface and let D be
a reduced effective divisor on V such that V—Supp (D) is afine and |D+K|=¢.
Assume that there exists an exceptional curve E of the first kind satisfying the
following conditions:
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(1) r:=dim|E+D+K|>0,
2) #(E4+D+K)=1.
Then V—Supp (D) contains a nonempty open set which has a structure of trivial
A'-bundle.

Proof. Our proof consists of three steps.
(I) Note that h(D+K)=h*D+K)=0. Hence we have

— KD+ K) = (D+K-D)+1=0.
Then, from an exact sequence
0— Oy(D+K) —> Oy(E+D+K) — 0(E-D)—2) —> 0,
we obtain an isomorphism
H(V, ov(E+D+K)) — HYE, 05((E-D)—2)).

Hence r=(E-D)—2.

Write |E+D+K|=|A|+F, where F is the fixed part. By virtue of the
above isomorphism, we know that any irreducible component of F does not
meet E, whence (E-F)=0. Now suppose (A2)>0. By Zariski’s lemma (cf.
Zariski [8; Th. 6.1]), {mA| has no base points for sufficiently large integers
m>0. Since (A?)>0 then |mA| is not composed of a pencil. This implies that
k(E+ D+ K)=2, which contradicts the condition (2) above. Therefore we have
(A®»)=0. This implies that |A| is written in the form |A|=|»C|, where |C|
is an irrecucible linear pencil on V.

(1) Since E4+D+K~rC+F and (E-F)=0, we have
r=(E-E+D+K)=(E-7C+F)=r(E-C),
whence (E-C)=1. For every integer m>0, write
Im(E+D+K)|=[An|+Fn,

where F, is the fixed part. If (A%)>0 we reach to a contradiction as in the
first step. Hence (A%)=0 and | A,| is composed of a pencil. Since |mrC|+mF
C|m(E+D+K)|, | An| is, in fact, composed of the pencil |C|. Write |An|l=
|tnC| with t,=1. Then we have

tmt(Fu-E)y=mr, tp,=mr, and F,<mF.
Hence we have: t,=m» and F,=mF.

(IIl) We shall show that |C+D+K|=¢; then, since (C?*)=0, Lemma 3.2
implies the validity of our theorem. Suppose |C+D+K|+#¢. By the second
step, we have

[(r+IE+D+EK)|=|r(r+1)C|+(r+DF,

where (r+1)F is the fixed part. Note that |»(r+1)C—E|=¢, because, if other-
wise, (C-r(r+1)C—E)=0, which contradicts (C-r(r+1)C—E)=—(C-E)=—1.
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This implies that any member of |#(r4+1)C| does not contain E. Since any
irreducible component of F does not meet E, we know that any member of
|(r+1)E+D+K)| does not contain E. However, if |C+D+K|+¢, we have

r+IE+D+K)~rB+rE+F,

where B€|C+D+K|. This is a contradiction. Thus, [C4+D+K|=¢, and we
are done.

§6. Further results and remarks.
6.1. We shall consider the following

Assertion (A). Let V be a nonsingular projective rational surface and let D
be a reduced effective divisor on V. Assume that the following conditions are
satisfied:

(1) V—Supp (D) is affine;

2) |Im(D+K)|=¢ for every integer m>0;

3) (D+KPH=-2;

(4) there exists an exceptional curve E of the first kind such that | E4+ D+ K|
#+¢ and k(E+D+K)=2.

Then |E4+n(D+K)|=¢ for some integer n>0.

6.2. Remark. Let V be a nonsingular projective rational surface and let D be a
reduced effective divisor on V such that V—Supp (D) is affine and |m(D+K)|=¢
for every integer m>0. If the assertion (A) is true then V—Supp (D) contains a
nonempty open set which has a structure of trivial A'-bundle.

Proof. We shall proceed by induction on —(K?), where —(K*)=—8 or —9.
If V is relatively minimal, our assertion follows from Corollary 4.5. Thus we
shall assume that V is not relatively minimal.

(I) Our assertion is true if (D+K)*)=—1 (cf. Corollary 4.3 and Theorem
5.1%). Thus we have only to consider the case where (D+K)*)<—2. Since V
is not relatively minimal, there exists an exceptional curve E of the first kind
on V. Consider a linear system |E4+D+K|. If |E4+D+K|=¢ then (D-E)=0
or 1. Let g: V— V be the contraction of E and let D=g4(D). Then V—Supp (D)
is affine, and |m(D+Ky7)|=¢ for every integer m>0 (cf. 4.2.4). Since —(K})=
—(K%)—1 we are done by inductive assumption. Suppose |E+D-+K|#¢. If
#(E+D+K)Z1 our assertion holds (cf. Theorems 5.9, 5.10 and 5.11). Thus we
are reduced to the situation as in the assertion (A), which we shall consider
in the next step.

(II) Suppose that the assertiohn (A4) is true. Since | E+D+K|+¢, we may
assume that |E+n—1)D+K)[#¢. Let Zn,C;e|E+(n—1)(D+K)|; since

(D+K))=-—2 implies (D+K-K)=0, we have (E+(n—1)(D+K)-K)=<—1, whence

* As remarked in 5.8, dim|— (D+K)|=0 if (D+K)?)=—1.
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>nC;>0. Then C; is a nonsingular rational curve such that [C;+D+K|=¢
for every index i. If (C$)=0 then our assertion holds by virtue of Lemma 3.2.
Therefore we may assume that (C?})<0 for every index i. On the other hand,

we have
(K-E+(n—1)(D+K))= Zini(ci']()<0 ,

whence (C,-K)<0 for some component, say C,., Then C, is an exceptional
curve of the first kind such that |C,+D+K|=¢. Let 0: V— V be the con-
traction of C, and let D=04(D). Then V—Supp (D) is affine, and |m(D+K7)| =¢
for every integer m>0 (cf. 4.2.4). Since —(Kjy)=—(K%)—1 we are done by
inductive assumption. Q.E.D.

6.3. Theorem. Let V be a nonsingular projective rational surface and let D be
a reduced effective divisor on V such that V—Supp (D) is ajfine and that D has at
worst nodal double points as singularities. Then the conditions (1), (2) and (3) in
the statement of Lemma 1.3 are equivalent to each other.

Proof. The implication (1) > (2) > (3) is shown in Lemma 1.3. We shall
prove the implication (3) > (1). We shall proceed by induction on —(K?). It is
easily seen from the proof of Remark 6.2 that we have only to prove the

following

Assertion (B). Let V and D be as above. Assume that there exists an excep-
tional curve E of the first kind such that |E4+D+K|=¢. Let 6: V— V be the
contraction of E and let D=o4(D). If the condition (3) is satisfied on V then
the condition (3) is satisfied on V. Namely, for any divisor A on V, we have

| A+m(D+Ky)| =¢ for any sufficiently large integer m>0.

Proof. Indeed, we have |o*(A)+m(D+K)|=¢ for any sufficiently large
integer m>0. Suppose (D-E)=0. Then we have

D4+K~o*D+K7)+E and |o*A+m(D+Kp)| +mEC|o*(A)+m(D+K)|.
Suppose (D:-E)=1. Then we have
D+K~o*D+Kyp) and |o*(A+m(D+Kp)|=|e*A)+m(D+Ky)|.

Hence |A+m(D+Ky)|=¢ for any sufficiently large integer m>0. Thus the
assertion (B) is verified. Needless to say, the assertion (A) is true if the condi-
tion (3) of Lemma 1.3 is satisfied. Q. E.D.

6.4. We shall give an example which satisfies the conditions of the assertion
(A):

Example. Let V,: =P'X P! and let C, and C, be irreducible nonsingular

curves such that:
(1) Cy~M+2l and C,~2M+1 (cf. 4.2.3 for the notations);
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(2) C, and C, intersect each other in distinct five points Py, -, P;:

Q) if M;~M, l;~I, and P,=M;nI; then (M, C,; P)=1(l;, C,; P;)=1* for
1=:<5.
Let o: V— V, be the composite of quadric transformations with centers P,, ---,

P, let Cj: =a'(C;) (j=1,2) and let D;: =a~%(P,) (i=1, -, 5). Let D=C/+ 3 D;
i=1

and let E=C;. Then V—Supp (D)= V,—C,, which is affine and contains a cylin-
derlike open set. Hence |m(D+K)|=¢ for every integer m>0. Moreover, it is
easy to show that (D+K)*)=—5 and E+D+K~oc*(M+![). Hence V and D
satisfy the conditions of the assertion (A). In this example, the assertion (A)
is valid.
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Added in proof. In January, 1979, T. Fujita proved that the implication (4)
> (3) in Lemma 1.3 holds true under the assumption that D has only normal
crossings as singularities. Thus, the four conditions of Lemma 1.3 are equiva-
lent to each other under the same assumption. Therefore, Zariski’s Problem
is now answered in the affirmative; it is true even over an arbitrary field k&
of characteristic zero by virtue of T. Kambayashi [On the absence of nontrivial
forms of the affine plane, J. Alg. 35 (1975), 449-456].

* (M, C,; P;)=the local intersection multiplicity of M,, C, at P;, etc.



