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§1'. Introduction

This paper is exactly a continuation of the former one, Part II, aiming to de-
termine

Cotor, (Z3, Z5) with A=H*(Xg; Z5) for Xge{Eg: 3},

where Cotor, (Zs, Z5) was shown to be isomorphic (as an algebra) to the coho-
mology H(W: d)=Ker d/Im d of the differential algebra W constructed in §2.
Our result is

Main Theorem. Cotor,(Z3, Z3) is commutative and is generated (as an
algebra) by the following 29 elements:

A4, Ag; Q20, X485 2525 Z565 Uses Xs4> Z88> Wsss Z92, Wioos
Z104s> X108) X120 W124> Wi28> Wi3er Wid40o X144> Wis2, Vsess

A9, Q215 V25, V265 V5715 Ve1» Ve2s

where the index indicates the degree.

The paper is organized as follows. (The section numbers follow those of
Part II to express that Part III is a continuation of Part II.)

In Section 7 some lemmas are proved for later use. In Section 8 we exhibit
the form of cocycles. Then in Section 9 we determine cocycles containing a, and
¢y7 in W. In Section 10 we study necessary conditions for a cocycle to be trivial.
In Section 11 we determine cocycles with neither ag nor ¢y, (but with a,; and c,,).
We show in Section 12 that Cotor,(Zs, Z3) is commutative and produce an addi-
tive basis. The last section is devoted to showing the relations used in Section 12.

§7. Some lemmas

We denote by P(n, m) an element of degree n with respect to aq and c,, and of
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degree m with respect to a,, and ¢4, where n+m is called the total degree, n the
first degree and m the second degree. Then an element @ of degree N with respect
to elements of odd degree is a sum of elements of total degree N:

®=P(N, 0)+P(N—-1, 1)+---+P(0, N).
We define two operators d’ and d” as follows:

(7.1.1) d'A=a4,09A+c,7,084 forany Ain'V,
d'ag=0, dc,;=a},
da, =0, d'cy;=0;

(7.1.2) d'A=a,,0,1A+c4,03,A forany AinV,
d"ag=0, d'c,7=0,
d'ay =0, d'cqy=a3y;

and extend them as a derivation:
d'(xy)=d'x-y+(—1)e*x.d'y,
d'(xy)=d"x-y+(—1)dcexx.d"y.

We see that d'P(n, m) and d"P(n, m) are of type (n+1, m) and (n, m+1)
respectively.

Lemma 7.2. (1) d=d'+d".
Q) d'*=0, d"?=0 and d'd'=-d'd.

Proof. (1) Clearly d=d’'+d” holds for any element in V. Suppose that it
holds for any element @ of degree up to I with respect to elements of odd degree.
Then,

d(a,®)= —agd®P= —ayd'®—a,d"®
=d'(ag®P)+d"(ag®P),
d(c;,P)=a3®—c,,dP=a3P—c,,d'®P—cy,d"P
=d'(c;:9)+d"(c,19P).

Thus the relation d =d’ +d” holds for a,® and c,,® and it holds similarly for a,,®
and c,,®. Therefore it holds for any element of degree [+ 1.
(2) Since d is a differential operator, we have

R=(d+d"2=d?+d'd"+d'd +d"?=0.

For any element P(n, m), d’?P(n, m) is of type (n+2, m), d"?P(n, m) is of type
(n, m+2) and d'd"P(n, m) and d"d’'P(n, m) are of type (n+1, m+1). Hence, for
reasons of type d*P(n, m)=0 gives rise to
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d'2P(n, m)=0, d"*P(n, m)=0, d'd"P(n, m)=—d"d'P(n, m).

Since the relations d’2=d"2=0 and d'd"= —d"d’ hold for any element P(n, m) of
a single type, they hold for any element. g.e.d.

We see that d’P(n, m) and d”P(n, m) are exactly the parts of types (n+1, m)
and (n, m+1) respectively in dP(n, m).
For technical reasons, we shall extend d, and 0,, as follows:

(7.3.1) 09a,,=0, 0ocqy=0,
0(P+Q)=0oP+05Q, 0o(PQ)=0yP-Q+P0yQ
for any P and Q having neither ag nor ¢4, (99as and dgc,, are not defined);
(7.3.2) 0,,a09=0, 0;.¢y7=0,
0,1(P+Q)=0,P+0,,Q, 0,,(PQ)=0,,P-Q+P0,,Q
for any P and Q having neither a,, nor ¢4y, (02,4, and 0,,c4, are not defined).
We have
Lemma 7.4. (1) d'P(0, m)=(ag+c,7,09)0sP(0, m),
d"P(n, 0)=(a,, +c4104,)02,P(n, 0).
(2) 0yd"P(0, m)=d"0,P(0, m),
0,,d'P(n, 0)=d'0,,P(n, 0).

Proof. (1) Each term of P(0, m) is of the form x,x,-:-x,,4, where x; is either
a,, or ¢y, and Ae V. Recall that a4 and ¢;; commute with x;. Thus,

d'(x1xy X, A)=(—1)"x(x5x,d A
=(—1)"x; X5+ X(@900 A + €1 7034)
=agX X3+ XuOgA + € 7%, X 5+ X,n08A4
=ag0g(X1 X3+ X A) + €1 705(X X5 X, A)
=(ag+¢1700)09(X X3 X pA) .

Thus the first formula d'P(0, m)=(ag+ ¢;70)0,P(0, m) holds.
The other formula is proved similarly.

(2) For AeV, we have
Ood" A=0o(az,05,A+ 4103, A)
=0,100,14+ 410403, 4
=031071094+¢4103,004
—d"d,A.
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Suppose that 04d"P=d"0,P for any P of type (0, m—1). Then,
09d"(ayP)=0y(—a3,d"P)=—a,,04d"P= —a,,d"d,P
=d'(a3,0oP)=d"04(a;,P),
09d"(c41P)=09(a%,P—c41d"P)=0a},04P —c,,04d"P
=a%,00P—c4,d"0sP=d"(c4,04P)
=d"0y(c4,P).

Therefore, 09d”P=d"0,P holds for any P of type (0, m).
The other formula is shown similarly. q.e.d.

(In other words, dy and d” commute whenever 0, is defined and 9,, and d’
commute whenever 0,, is defined.)

Put y,s=[as, ¢;7] and ysy=[ayy, c¢4;]. Clearly, ay, ys6, a,; and ys, are
cocycles, and we have

d'y6=d"y;6=0 and d'ys;=d"ys,=0.

Notation. Throughout the calculations, we shall put n=2k+¢(e=0 or 1)
and m=21+0 (6=0 or 1) for the letters n and m.

The letters A, B, C and D will be used for elements of V and the letters P, Q,
R, S and T will be used for elements of a single type. Thus Q(n, m) or R(n, m) or
others means some element of type (n, m), but in calculations the type is often
abbreviated and elements are written simply as Q;, R; and so on.

In the following lemmas, we shall study an element P(n, m) which satisfies
certain conditions.
Comparing type, we see that an element P(n, m) contains terms of the form

V56(ag+c1700)°yba(az  +¢410,1)°4 with AeV.
We shall see that terms of the above form play essential roles in all the calculations.

Lemma 7.5. An element of type (n, m) can be written as
k+e-1 ,
P(n, m)=y%e¢(as+c1704)°P(0, m) + igb V36€17Q;+d'R(n—1, m),

where Q; is an element of type (n—2i—1, m).

Proof. Since ay and c¢;; commute with a,; and c,,;, we put ay’s and c¢,;'s
before a,,’s and ¢4,’s in each term of P(n, m). Then using the substitutions

Vieagc 70 =y5’8‘Q—y56017(09Q) ,
V4eadQ=d' (yiec1710) +yi6c12(d'Q),

we can rewrite P(n, m) as follows:
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k_l . ;.
v%6(a5 P(0, m)+eci, P'(0, m))+ igoyiachi"' (d’-image)
=yke(ao+ c1705): P(0, m)+ey5ecs,(P'(0, m) — 0y P(0, m))
k=1 .
+ EOJ’%CHQi + (d’-image)
k+e-1 | , .
=y46(ag+c1705)° P(0, m)+ Eb Viec17Q;+ (d'-image) ,

where the type of Q; is obvious and the last (d'-image) is d'R(n—1, m) for some
R(n—1, m). q.e.d.

Lemma 7.6. If d'P(n, m) is of the form
d’'P(n, m)=y5ti(ag+c,709)172Q(0, m)  for some Q(0, m),
then P(n, m) is necessarily of the form
P(n, m)=y%¢(aq+c,704):P(0, m)+(d’-image).

Proof. Since an element P(n, m) can be written by Lemma 7.5 as

kte-1 | , . )
P(n, m)=yic(ag+c,105)*P(0, m) + 2. yieci,Q;+ (d'-image),

i=0 .
we have

d'P(n, m)=(—1)*y5¢(ag+ c,,04) 205" P(0, m)
kte—1 | N ,
+ go v36(@dQ;—c17d'Q)) .

Thus in order that d'P(n, m)=y&¢&(ag+c,709)'7°Q(0, m) for some Q(0, m), it is
necessary that each Q; be 0 and hence

P(n, m)=y4¢(aq+c,705)°P(0, m)+(d’-image).

Similarly to Lemma 7.5, we have

Lemma 7.7. An element of type (0, m) can be written as
PO, m) = pha(az, +coydpy)? A+ 'gl ViR, +d"S(O, m—1),
where R; is an element of type (0, m—2j—1).
Lemma 7.8. Suppose that P of type 2k +¢, 2l+5)vis of the férrﬁ
P = yh(ag+ 1705} P(0, 21+6)+(d'-image).
Then in order that d"P be of the form

d"P=y4s(ag+c1109)yE5%(azy +¢410,1)' ~°B+(d’-image)
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for some BeV, it is necessary that P be of the form
P=y4¢(ag+ci109)*{yé2(az; +c410,1)°A+d"S(0, m—1)} +(d’-image).

Proof. The part P(0, 21+ 6) can be written by Lemma 7.7 as

+é-1
P(O, 21+6)=yé2(021+6'41621)614+ 0 yézc41Rj+d”S(0, 21+5— l) s

[

where R; is of type (0, 2/ —2j+46—1).
Thus we have

d"P=(—1)**°yke(ag+ c1709)*y65°(az; +c41051)' 720511 4

1+6-1 ; .
+(—1)* E.O Vi6(ag+c1709)°y¢2(a3 1 R;— c41d" R ;) + d"(d'-image) ,

which must be of the form

Vi6(ag+c1709) yE5%(ay, 4 €410,1)' "°B+(d'-image)

1+5-1 .
for some BeV. Then the part Y y%¢(as+cy709)°yé,(a%;R;—c4;d"R;) must be
j=o

in the d’-image, for which it is necessary that each yk¢(aq+c,709)°R; be in the
d'-image, since there is neither ag nor ¢4 in y{,a3,R;. It follows that

1+6-1 ) .
Zo V46(ag+c1709)°yérc41 R j€ d’-image
=

and P is of the required form:
P=yks(ag+c1705)*{yt2(asz +¢41021)°A+d"S(0, m—1)} +(d’-image) .
q.e.d.

Lemma 7.9. Let U=y%s(ag+c ,00)cyy T with T of type (0, t) for some t.
If dd"U=0, then d"U=dU.

Proof. The conclusion d"U=dU holds provided d'U=0. And
d'U=(—1)y5t%(aq+c 70) 54,1051 T=0
holds provided 05! T=0.

Now, recalling from (2) of Lemma 7.4 that d” and d, commute (whenever Jg is
defined), we have

dd'U=-d"dU
= — (= 1= D'2y5és(ag +cy705)' %d"(c4,08% 1 T)
= yk¢(ag+cy705) 7%(a3,05 ' T—c,4,05*1d"T)

and the relation d’d”"U =0 gives rise to 05" T=0.
Thus, if d'd"U=0, then d’U=0 and d"U=dU. g.e.d.
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Proposition 7.10. If an element P of type (2k+¢, 21+ 0) satisfies the con-
ditions:

d'P=0,
d'P=y5¢(ag+c1700) y5%(azy +¢410,,)' 2D +(d’-image)

for some D eV, then P is of the form

P=y5e(ag+c1700)°y§2(as, +¢4,0,,)°A+(d’-image) +(d-image) with AeV.
Proof. By Lemma 7.6 the condition d'P=0 gives rise to
P=yke(ag+cy705)*P(0, 21+ 8)+ (d'-image),
for which the condition for d”P gives rise to, by Lemma 7.8,
P=yke(ag+c;700)*{y5(as; +¢410,1)°B+d"S(0, 2146 —1)} +(d’-image).

Now we write d"S(0, 21+ 6 — 1) explicitly to study again the condition d’P=0.
By Lemma 7.7, S(0, 21+ — 1) can be written as

-1,
S(0, 2146 —1)=ygt% Hay +c410,,) ! 7°C + j}:_OJ"ézcu T;+(d"-image),

where Ce Vand T; is of type (0, 21—2j+6—2). Thus d"S(0, 2I+6—1) is expressed
as

480, 245 =1)= (=)' phalas + eud2) F¥C+ T ylad " (caT)).

And P can be written explicitly as
P =yie(ag+c1705)°y62(az1 + €41021)° {B+ (= 1)17903723C}
+ Jlg:,"’z‘s(as; +¢1709)2y¢,d" (cay T;)+ (d’'-image) ,

or, putting A=B+(—1)'720372°C and U= y¢(ag+c,705)°c4, T}, We have

P=yby46(ag+c1700)%(az; + €41051)° A+ (- 1)° ;g:)yé.zd"Uj + (d’-image) .
And the relation

4 P=yhad (yho(as +c1a00) @s:+ cardn) )+ (= 1)° £ ylad' "0,
=0

gives rise to d'd"U;=0 for each j, which yields d"U;=dU; for each j by Lemma 7.9
-1
and hence ZO y¢2d"U; € d-image.

We have shown that any P satisfying the conditions:
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d'P=0,
d"P=y5¢(ag+cy100)°y55%(as, +¢4,0,,) 2D +(d'-image)
is necessarily of the form
P=ykc(ag+c17109)°yts(as, +c4,0,,)° A+ (d'-image) + (d-image).

q.e.d.

§8. The form of cocycles
When @ is an element of the form
&=P(n, m)+P(n—1, m+1)+P(n—2, m+2)+---,

we call P(n, m) the top term. In the following calculations any P with the first
degree negative is understood to be 0.
Now the condition d¢ =0 is equivalent to

8.1)  d'P(n, m)=0,
d"P(n—i, m+i)+dPn—i—1, m+i+1)=0 for i=0,1,...,n,

which we express as a diagram

P(n, m) P(n—1,m+1) P(n—2, m+2)

A A

sum 0 sum 0

From now on, in any diagram, an arrow ,/ will always mean d’ and \, will
mean d".

Note that d®=0 does not necessarily imply that d’®=d"®=0.

If the top term of a cocycle has a d’-image part, i.e., if P(n, m)=P(n, m)+d'Q,
then

P(n, m)+ P(n—1, m+1)+P(h—-2, m+2)+--
=P, m)+dQ+(P(n—1, m+1)—d"Q)+P(n—2, m+2)+---
=P(n, M)+ P(n—1, m+ 1)+ P(n—2, m+2)+---+dQ.

Thus we obtain an equivalent cocycle when we omit the d’-image part from the top
term P(n, m).

We shall determine cocycles such that the top term has no d’-image part.

Now by (8.1) the top term P(n, m) of a cocycle must satisfy the conditions
(8.2) d'P(n, m)=0 and d"P(n, m)ed’'-image.

Then by Propositon 7.10, P(n, m) is necessarily of the form
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(3.3) P(n, m)=yis(ag+c 705)°pbs(as; +¢4102,)°A+(d'-image) +(d-image) .

Determination of cocycles is divided into the following four cases:

Case 1. e=1;

Case 2. &=0, k#0;

Case 3. e=k=0, =1
Case 4. e¢=k=0, 6=0, [#0.

We first determine cocycles (with ag and ¢,;) in Cases | and 2. We show that
(8.2) for n>0 is (not only necessary but) sufficient for the top term of a cocycle.
Then we find some necessary conditions for a trivial cocycle and show that the
cocycles found in Cases 1 and 2 are non-trivial and linearly independent, and that
they are also linearly independent of non-trivial cocycles found in Cases 3 and 4.

§9. Cocycles with elements of odd degree-1

(iii) Cocycles with ay, ¢,4, @s,, €4,

In this section, the first degree n of P(n, m) is not 0.
In order to omit further d’-image parts from P(n, m), we need the following

Lemma 9.1. Let P(n, m) be of the form
P(n, m)=yis(as+c1705)°yk2(az, +¢41051)°B
with Be V. Then it is in the d'-image if and only if B € 03 *-image.

Proof. If P(n, m) is in the d’-image, the term y%¢(aq+c;705)°B must be in the
d’-image. Let Q be such that d'Q = y%c(ag+c,705)*B. Then Q is of type 2k+e—1,
0) and, by Lemma 7.6, is necessarily of the form

Q=ykt " Yag+c170,) 2 C+(d'-image) for some CeV.
Since d'Q is expressed as
d'Q=(=1)""yss(ag+c,705)°037*C,

the element B must be in the d3~*-image.
Conversely, if B=037:D for some D, then we see that

P(n, m)=d'{(—1)'"2y585 (ag +c1705)' " yta(az, +¢4105,)°D} .
Thus P(n, m) is in the d’-image if and only if B e 03 ¢-image. g.e.d.

We can separate further (but not all the) d'-image part from P(‘h, m) in (8.3),
by omitting the 03 ¢-image part from A. Thus we shall study P(n, m) of the follow-
ing form, which will be denoted simply by P in this section:

9.2) P=y4e(ag+cy709)y6s(az, +c4,0,,)°A
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with 4 having no 03 *-image part.

We shall determine cocycles in Cases 1 and 2 by using some of the results in
Part 1.

Excluding a,, we note that the dg-structure of Zj[ag, a,0, b1gs Daos d2ss €365
e45] is the same as the d-structure of Z,[ay, ag, dyg, b1z, big, das, €36] in the case
of X, e {E;: 3}, which is shown in the diagram below:

by, €36

The d-kernel has been completely determined for X,. We have only to interchange
a, and by, in X, with b,, and e, in X respectively, and we obtain the 04-kernel
of X5. (Recall that a, of X is excluded.)

Interpretation of (3.12.1)~(3.12.3) of Part I yields:

(9.3.1) An element of the dy-kernel is in the 03-image if and only if it has no term
of the form

i t i t i t
agXigXiosXias, DaoXisXiosXiss, XisXi0sXi4a
i " .
or (agess—bibao)XagxiosXiast

(9.3.2) An element of the 0o-kernel is in the dq-image but not in the d3-image if
it is a sum of

agXigX$08Xia4, baoXhsXjosXias and 0Of-image;
(9.3.3) An element of the dq-kernel is not in the dq-image if it is a sum of
xhgx{08%}a4, (@34 —b16bao) XigXiosXiasa and Oy-image.

Henceforth we exclude a4, x,05 and x,,4, since they are immobile with respect
to the d4-0,,-structure and hence in d’-d"-diagrams.
Casel. e=1:P=yk(aq+c,70¢)vis(az, +¢4105,)°A with A having no Jo-image
part.

Now, the condition d’P=0 gives rise to dg4=0 or ¢34 =0.
(1) If 8,A4=0, the dq-kernel 4 with no dy-image part is, by (9.3.3), of the form

A=3 a;xig+ 3 Pilagess— bisbso)xhs Wwith oy, B,€Z,.
1 ]
For A=xig, P=ykeaqyl,a3,xig is a cocycle by itself.
FOI‘ A =ase48 - b16b40’ recall that
Zsg=0gesg — b1sbao+az0e36+d3s=A+03(—ee).

The element y%caqy%,a4,256 is a cocycle and it can be rewritten as
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Vhe6aoyb2a3i A+ d (56 yt2a3105(—€36))
=ykoagytiadi A—d" (y56y§;03:105(—e36)) + d( 56 62a3105(— €36)).

Put ¢, 5=09a3,(agess — b1bao) —d"(ad105(—e3g)).  Then yieyiaépy 5 is a cocycle
for A=age 3—b,gbso and, since it is equivalent to ykcaoyh,ad zss, we obtain
actually no new cocycle.

Finally, for A=Y a;xis+ 3 fiagess — biobao)xis, we have a cocycle
¢ =y'2‘6)’éz(; ;0903 X4s + Z; Bi¢1+sxis) for 6=0, 1.

(2) Let 0,450 and 034=0. As we consider 4 with no 0d4-image part, the 0o-
kernel of the form 0,4 has no 03-image part. By (9.3.2), 054 is of the form

OoA=73 y,agxhg+ 3. 0ibaoxis With i, 6,€Zs,
for which we may choose A= — 3 7;b,4xks — 2. J;e4x§s. In fact, for 4 and A" with

0yA=04A', we have P and P’ the difference of which is y4gasyt,(as; +c410,1)(A—A")

and 04(A—A’)=0. This is the case studied in (1).
For A=b,¢ (and 0,4 = —ag), we have a cocycle

D =P=yieyi(aohis—cysag)ad;.
We put
V2s=aqgb g —cyqay

and @=y%.yt,y,sas, is a cocycle for A=b .
For A=e,q (and 094 = —b,,), we study the cases =0 and 6=1 separately.
First, let 6=0: P=y%¢yt,(ag+c 709)e45. Then

d"P=yi6yéa(ag+ci709)(azy +¢41021)d2g

= —d'(V46y62(az; +41051)e36)
with

d"(Yhey62(az, +¢41031)e36) =0,

which is expressed as

P Y6y62(az +c41051)e36

AN

sum 0 0
Therefore, we have a cocycle
D =P+ yieyba(az,+ca10;4)e36

— kol
= y56Y62(agess —Ci7bao+az 636 —Cqyby6).
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We put
Vs7=0g€s43—Ci7bso+ay €36 —C41by6

and ®=yksyl,ys; is a cocycle for A=e, g and §=0.
Now let 5=1. Then,

P=ySeyb6a(ag+ci700)(az, +c41051)eqs
= Y46V62(a9+¢1705)a; €45 —d' (Y56 V62Ca1€36) -
Thus omitting the d’-image part from P, we rechoose
P=y4cyéa(as+c,705)as,€48= — y56Y62a21(dg+1700)e45.
Then, as in the case of d=0, we obtain a cocycle
D= — 5. vla,,v5; for A=eyg and 5=1.

Finally, for A=3 y;b;6xis + 2 ;e45xis, We have a cocycle
13 3
@ =J/'2°6J’éz{; ViV2sa$1Xhs + ‘Z (—1)%5,a81y 57Xk} for =0, 1.

Summing up Case 1, we have studied P of the form (9.2) for e=1 by studying
A with no dy-image part such that 034 =0 (including the case d,4=0). We have
seen that A4 satisfying these conditions is of the form

Yoaxig+ ; Biagess — bbao) Xis + ; VibieXhs + ; 0;€45Xhs
i
and that for any such A there is a cocycle with top term P having no d’-image part:

(9.4) Pokr1,2148 = )"2‘6)’32{; ®a9a3 Xg + Z, Bi®1+sxis
+ ; Viy2sad1xhs + ; (=1)%5,a3,ys57xks} -

Now if an element P(2k+1, m) satisfies (8.2), then it is of the form
P +(d’-image) + (d-image).
Thus,

(9.5) If PQRk+ 1, m) satisfies (8.2), there is a cocycle with top term PQk+ 1, m).

Case 2. &=0, k#0: P=yk.yl,(ay, +c410,,)°4A with A having no 03-image part.
The condition d'P=0 gives rise to do4 =0.
By (9.3.2) and (9.3.3) we have

A=3 axig+ Zl Bi(agess—biebao)Xis + 2; )’iasx‘i}s + ; 0:bsoxls,
where a;, i, Vi, 0;€Z;.
For A=3% a;xis+ 2 7,asxis, P is a cocycle by itself.
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For A=age 53— b b0, We consider a cocycle with z54:
V6 vhaadizse=yhiev62a3:14+d (s (as+ c1700) y62a31€36)
=vheybaad1 A—d"(y45" (ao+ ¢1705) ¥62a31€36)
+d(y45 (a0 + €1705) yé2a31€36) -
Thus putting
$3+5= Y2693 1(agess —bigbao) —d"((ag+c105)a3 €36),

we have a cocycle yhg!yt,@;.5 for A=age,g— b ebso. Since this is equivalent to
yseyt,a3,256, We obtain actually no new cocycle.

For A=b,,, we study the cases 6=0 and d=1 separately.

First, let 6=0, then P=y%,yt,b,0. We have

d'P=—y56y42021020= — ¥4662(a21 +€41021)a20
=d'(y5s' y62(ao+¢1709) (a2 +¢41021)e36)
with
d"(y56" y62(ao+¢1709)(az1 +€41021)e36) =0,
which is expressed as

/P\ ‘/_}"2‘51)’%2(09""'1739)(‘121+C41521)936
0 sum 0 0
Putting
¢s=Y26ba0—(ag+¢1700)(az; +¢41021)e36s

the cocycle &= y5z1yL, 05 is a cocycle for A=b,, and 6=0.
However, the cocycle ¢5 can be rewritten as

Gs=0agC17b40+C17a9bso—a9a21€36+a9Ca D16+ C17a2,d35—C17C4 a8
— 2
=ag(—agesg+Ci7bso—az1€36+Ca1b16) +(aGess+ci7a9byo+Ci7a5,d2g—Cy7¢4,1a8)
= —dgys7+d(ci7€4s)-

Therefore, the cocycle @ is equivalent to — y4g!yt,aoys; and hence we obtain no
new cocycle.
Now, let =1, then P=y%¢yks(a,,bso—ca1d30), Which is a cocycle. We put

Ye1=021bs0—c41a50.

Thus, for

A=3 a;xig+ Y Pi(agess—bigbao)xhs+ X viag xhs+ 3 0:bsoxis
13 1 i 11
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with «;, f;, v, 9; of Z5, we have cocycles
(9.6.1) PDop,21= ; %;y86VbaXis+ Z, Bivs'ybadsxis
+ Z ViV36Ybaasxis + Z 0:¥56 ' vbadsxis
and
(9.6.2) Pop,2i41= Z;: ®; V5662821 Xks + ; Bivis'yéaaz Paxis
+ ; ViV56 V622105 Xis + ; 086 V62V 61 %48

for 6=0 and d=1, respectively.

Summing up Case 2, we have studied P of the form (9.2) for e=0 but k#0 by
studying dq-kernel 4 with no d3-image part. For any such 4, we have obtained a
cocycle of the form @, 5,45 That is, for P with no d’-image part, there exists a
cocycle and since any element P(2k, m) with k#0 satisfying (8.2) is of the form

P +(d'-image) + (d-image),
we have

(9.7) If an element P(2k, m) (k#0) satisfies (8.2), there exists a cocycle with top
term P2k, m).

§10. Necessary conditions for a cocycle to be trivial

For ease of calculation, we consider a cocycle @, for a while, with top term of
type (n, m+1)=Qk+¢, 2/4+5+1):

&@=P(n, m+1)+P(n—1, m+2)+---,
or, in short,
¢=P0+P._1+"‘ (P_i=P(n—i, n1+i+1)).

Suppose that ®=d¥ for some ¥. Then ¥ is of degree n+m and, in general,
of the form

Y=Q(n+h, m—h)+Qn+h—1, m—h+1)+--+Q(n, m)+---,
or, in short,
¥=0y+Qu-1++Q+-  (Q;=00+j, m—j).
The relation d'¥ =@ gives rise to
d'0,=0, d'Q,+d'Q,_.,=0,..., d'Q,+d'Qy=0, d"Qy+d'Q_,=P,,...,

which are expressed as
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/\/\/\/\ N/

sum 0 sum 0 . sum 0 sum P, sum P_,

If h=1, then the top term Q, must satisfy
d'Q,=0 and d"Q,ed-image,

which is the condition (8.2) and, by (9.5) and (9.7) there exists a cocycle 'f’=Q,,+
0,1+ with top term Q,. Then

|ll—lP=(Qh-1—Qh—l)+“',
d¥ =d¥ -9),

since dP =0. Therefore, if a cocycle @ is d¥ for some ¥, we can take ¥ with top
term Q,:

Y=00+Q- 1+

with the conditions d'Q, =0 and d"Qy+d'Q_,=P,.
Now, suppose that Po=P has no d’-image part. Then Q,=0 is such that

d'Q=0 and d'Q=P.

Moreover, Q has no d’-image part. For, if Q=0 +d'R, then P=d"Q=d"Q+d"d'R
=d"Q+d'(—d"R).

The argument required to find the form of such Q is parallel to that for the top
term of a cocycle. Recall that Q is of type (n, m) and P of type (n, m+1). Thus
P is of the form

P=yko(ag+c 705 y55%(a,, +c410,)' 72 A.
The condition d'Q =0 gives rise to, by Lemma 7.6,
Q=yke(ag+c1704)°Q(0, 21+ 8)+(d’-image),
where the d’-image may be omitted. By Lemma 7.8 the condition
d"Q="P=y5e(ao+c1700)°y63%(az1 +€41021)' °A
gives rise to
Q=y56(ag+c17105){yts(as; +¢410,,)°C+d"S(0, 21+ 86— 1)} +(d’-image),

where the d’-image may be omitted. For such Q, exactly as in the proof of Propo-
sition 7.10, the condition d'Q =0 again gives rise to

Q=y46(ag+c1705)°y62(a21 +¢410,1)°B

+ (d’-image) + (d-image) for some BeV.
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Omitting the d’-image and the d-image from Q, Q must be of the form
Q=y56(ag+c1700)°y62(az, +¢410;,)°B.

Now to return to our original convention, we change the second degree of P as
P(n, m):

P=yie(ag+ci700)°y62(as, +4105,)°A

with no d’-image part. Then as we have shown, if d'Q=0 and d"Q =P for such
P, Q must be of the form

Q=y56(ag+cy709)°y63° " (az, +¢4105,)' °B.

Finally, we study the conditions for B. The condition d"Q =P can be written
as

(= 1) 70y4c(as+ c1700)°vb2(azs + €4105,)°031°B
=v46(ag+c1700)°v62(a2; +€41021)° 4,
which gives rise to 4=(—1)!*279927B. The condition
d'Q=(—1)y4¢(ag+c1700) °y 3% (az1 +€4105,)' 206" B
=0

gives rise to 95"'B=0.
- Thus we have

Proposition 10.1. Let @ be a cocycle with top term
P=yk(ag+c700)°yt(as; +¢4,0,1)°A having no d'-image part.
Then, if & is trivial, A has some B such that 037°B=A and 04t¢B=0.
For the cocycle @44 1,214

A=3 a;xig+ Zl Bi(agess —biebao)xis + 'Z Vib1xhs + 2;. 0;e4Xhs

with «;, B;, 7:, 0; € Z5, for which we see by direct calculation that there is no B with
037°B=A and 03B=0. Thus the top term of ®,;., 5,4, does not satisfy the neces-
sary conditions for a trivial cocycle.

Similarly, for the cocycle @, 5,45

A=3 a;xig+ 3 Bi(agess—biebao)xis + z?. Vi Xhg + Z, 0:bsoxis

for which there is no B with 03;°B=4 and d,B=0. Thus the top term of @,, . ;45
does not satisfy the necessary conditions for a trivial cocycle.

Note that we have only to consider a sum of cocycles of the same total degree,
when we check the non-triviality of a sum of cocycles. We consider an arbitrary
sum (within the same total degree) of the cocycles in the ®,,.,,,+,’s and cocycles
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that will be found in Cases 3 and 4. If the top term of the sum is of first degree
positive, then it is the top term of one of the ®,, . ,,+5’s, Which does not satisfy the
necessary conditions for a trivial cocycle.

Therefore, the following cocycles are non-trivial and linearly independent and
they are linearly independent of non-trivial cocycles containing neither ag nor ¢;4:

(10.2.1) (Cocyclesin @;;41,2;)
V6 V62aoxhs, y56y6291xks (which is equivalent to y4¢y¢,a9256),
V56V62V2sXhs,  Y36Vb62Vs1¥is;
(10.2.2) (Those in @441 2;41)
V56Vb2a0a21Xks,  V56V6202xks (Which is equivalent to y4eyé,a0a;1256),
V56V62V25021%ks, V5662021V 57%ks 5
(10.2.3) (Those in @,;,,;)
V56V62Xhs, Y56 'Ve2@3xhs (Which is equivalent to y4¢y6azse),
Y56v62asxis, Y36'vb2¢sxis (which is equivalent to — y45'y4aa0y5s7);
(10.2.4) (Those in @, 5,41)
V56Vb2a21Xks,  ¥55'v6202104xks (Which is equivalent to y4¢yt,a5,256),

Kk ol i K ol i
Y36V6202143X48, V3ieVe2)Ve61Xas-

§11. Cocycles with elements of odd degree-II

(iv) Cocycles with a,, and ¢,, but without a, or ¢, ,

In this section we shall study cocycles with top term P(0, m). Since P(0, m)
has neither a4 nor c¢,4, d"P(0, m) cannot be in the d’-image and the condition (8.2)
for n=0 reads

d'P0, m)=0 and d"P(0, m)=0

and (8.3) reads P(0, m)=P+(d-image) with P=yl,(a,,+¢c4,0,,)°A. Thus we
determine cocycles P of the above form.

Case 3. k=e=0, 0=1: P=yl,(a,, +c4,0,,)A.
The condition d'P=d"P =0 gives rise to

69A=0 and 621A or 6%1A=0.

(1) If 09A=0 and 0,,4=0, 4 is a cocycle and P=y},a,,4 is a cocycle. By
Proposition 10.1 the cocycle P is trivial provided there exists B such that d,;B=A4
and d4B=0, which is expressed as
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B
0 A

(Recall that an oblique line ,~ means d, and an oblique line \ means 8,,.)
If A is nice, there exists such a B, and P is trivial. Thus we have to study
non-nice cocycles A.

/ \
/ AN / \
\ / \ /
\ /
A
(nice)
If ANVA', then A— A’ being nice, the difference
P—P'=yl,a,,A—yka,, A" =ykra,,(A—A")

is trivial. Thus we can choose one of two nicely-related monomials 4 and A'.
"By (6.2.1)~(6.2.3) we have diagrams

AN AN AN

Thus P=yk,a,,A is trivial for A a monomial of the form (7), (8), (9), (13), (14),
(16), (18), (19) and (20) in Proposition 6.6.

On the other hand, there is no B for any sum of cocycles of the form (1), (2), (3),
@), (5), (6), (10), (11), (12), (15) and (17) and hence any sum of the following are
non-trivial :

(1L.1) V62821 X345 V62821 xksxhs (i #0),
y162‘121x{20x§4 (j#0), V6202105%84,
V62a21a5xhgxhs (i#0), vhaazagxirexts (j#0),
V62021256 X845 V62821256%hsxha (i#0),

1 Jj h ; 1 i yh
V62021256X120%82 (J#0), y62a21WegXhsXha,
LGy WypaXdyoxh
Y62821W124X120X84-

() 0,4=0,0,,4#0 and 0%3,A=0: P=yk,(a,,+c4,0,;)A. Now, 09,4 is a co-
cycle, for which it is sufficient to choose one 4. In fact, for A and A’ with d,4'=
09A=0 and 9,,4'=0,,4, the difference between the P’s is
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P'—P=yky(ay,+41051) (A — A)=yt2a;,(A'— A)

with dg(A’ — A)=08,,(A’ — A)=0, which is the case studied in (1).

If 0,,A=03,C for some C with ,C=0, then P=yky(a,;+c410,1)A=d(y§,C)
is trivial by choosing A=0,,C. In particular, if the cocycle 6,;4 is nice, there exists
C for a suitable choice of 4, and P is trivial.

If two cocycles d,,4 and 8,,A4’ are nicely-related, then we have a diagram:

*/*\*
SN,
NN

0214054
(nice)

Let B and C be as in the diagram above: 8,,C=B, d,;B=0,,4—0,,4" and 04B=
0,C=0. Then

P—P' = y{y(az,+41051)A = yb2(az1 +410,1) A’
= y62(a21+¢41021)B+ y42a5,(A— A" —B)
=d(y42C) + y6202,(A— A" —B)

with d4(4A—A’—B)=0 and 0,,(4—A’'—B)=0. Thus the difference is equivalent to
a cocycle studied in (1). Hence we may choose one of two nicely-related cocycles
05,4 and 0,,4'.

For any sum D of non-nice monomials in Proposition 6.6 (whether it is of the
form @,,4 or not), we see by direct calculation that there is no C satisfying 3,C=D
and d,C=0. Thus any cocycle found in the following determination is non-trivial.

Of the monomials in Proposition 6.6, all but zs¢xJ,, ((12) with h=0) are of
the form d,,4.

Of the non-nice generators, ag, X4g, Xg4, Wgg and wy,, are of the form 9,,4
but with 9,4 #0 and so is any sum of monomials of the form (12) with h#0, (1), (2),
3), 4), (5), (6), (10), (11), (15) and (17). Hence, P=yl,(a,;A+c4,0,,A) are not
cocycles for any such sum J,,4.

The other non-nice generators, namely, a,¢, Zgg, Zs2, W10 and w,34, form the
following diagram (cf. (6.2.1)~(6.2.3)):

None C E
/ N\ RN
—byo X120 A4 X34 B

7N\ N AN

0 aso Zgg Zs2
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None K
o VRN
—F non zero H
7\ AN
0 Wi3e Wioo

and we have non-trivial cocycles
Y61 =021bs0— 41050,
Py3=a;B+c4y2s,, Piag=a3,A+cy 2gg,
Piyy=ay H+cyWioos Pig7=—ayF+cy w6

However we have

Poy=dE—aoXgq, P130=dC—agx,,,
P14y =d(—a30€36e4s+ baod2ge36 — d3ges6€as) + Vs7Xg4s
Piy7=—ayF 4+ c4ywy36=d(—bioedg) + V57X, 30

Thus, they are equivalent to a decomposable cocycle and we obtain no new indecom-
posable cocycle. (y¢; was already found in Case 2.)

For 0,;4 any sum of monomials of the form (7), (8), (9), (13), (14), (16), (18),
(19) and (20), we have a sum of the following non-trivial and linearly independent
cocycles:

(11.2) —Vb2Ve1X8as —Vb2Ve1¥heXha (i#0), “J’ézJ’mx{zoxg‘t (j#0),
yEaPysxiegxh, (which is equivalent to — ylagxigxfil),
Y42 P129X]20xh4 (Which is equivalent to — yl,aox{3ixh,),
V62 Pra1xhgxts (which is equivalent to y§,ys,xigxfit),
y62P177X%{20x84 (which is equivalent to yl,ys,x{3dxks),

—yl i 3. — J h
Ve62)61WssX48X84, Y62V 61W124X120%X84-

Cocycles in (11.1) and (11.2) are all the non-trivial cocycles in Case 3 and they
are linearly independent.

Cased. e¢=k=0, 6=0, [#0: P=yl,A.

In this case, A must be a cocycle. By Proposition 10.1 P is trivial provided
there exists C such that 03,C=A and 0,C=0. In particular, P is trivial for a nice
cocycle A. '

For two non-nice cocycles 4 and 4’ such that 44 A', the difference ys,4— yg,A4’
=yl,(A—A') is trivial and y},A4 and y4cA’ are equivalent cocycles. Thus we may
choose one of two nicely-related cocycles A and A4’.

As we have checked in Case 3, there is no C for any sum D of monomials in
Proposition 6.6, and thus
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(11.3) The yL,A’s for all monomials A in Proposition 6.6 are non-trivial and
linearly independent.

More explicitly, (11.3) is stated as:

(11.3)  The following are non-trivial and linearly independent:
ylaxba,  yhaxigxhs (i#0), yhxioxls (j#0),
vhaagxls, yhaagxhsxhs (i#0),
.Vézasx{20x§4 (J#0), yé2a20X84,
Y62a20Xhsxhs (i#0), Yézazox{20x34 (j#0),
V62256 X845 Vhazsexbgxhs (i#0),
yé2~’56x{20«\‘§4 (J#0), ybrzsaxhsxha,
J/fszzssxfzoxg‘ta Y 62WesXhsXhas J’ézwwoxisxém
)’162W124x{20xz';'4, yézwlssx{20X§'4,

1 i yh 1 J h
V62256252X48X84) )V 62256288%120%84+

§12. Structure of H(W: d)

We have shown

Proposition 12.1. H(W: d) is generated (as an algebra) by the 22 elements in
Proposition 5.7 and by the following 7 elements: aq, dsy; V26, Ve2s Y255 V61 and Ysq.

Recall that

Y26=[a9, €171, ye2=[a21, ca1l,
Y25=0a9b16—C17a5, Y61 =021ba0— 41020,
Ys7=09€s45—C17bso+az1€36—C41by6.

Proposition 12.2. Monomials in the 22 cocycles in Proposition 5.7,

yheasyl,a3,aix50sX4s and cocycles of the form @ -aix5ogXxiaq with @ an element
in (10.2.1)~(10.2.4) and (11.1)~(11.3) form an additive basis of H(W : d).

Proposition 12.3. H(W: d) is commutative.

Proof. Since the cocycles in V (including ag, x,0g and x,44) satisfy doA4=
d,,A=0, they commute with ag, a,y, ¢;7 and ¢4, and hence with aq, a,1, Y26, V62

V25, Y61 and ys,.
We have that
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Lay, a;,1=0,

[ag, y25]1=d(—cy7b,),
[as, ¥611=0,

[ag, ys71=d(—c 7€43),
[ag, y26]=d(c7),

[as, ¥621=0,

Ly2s, ¥611=0,

[V2s5: ys7]l=d(—cy7b16e48),
[V2s, Y261=d(c}1by6),
(V25 ¥621=0,

[a21, ¥25]1=0,

Las1, yer1=d(—c41b40),
[ay1, ys71=d(—c4se36)
(421, ¥26]1=0,

[a21, ye2]=d(c31),

[Y61> ¥s711=d(—ca1byoess),
[Ye1s ¥261=0,
[vs1> ye2l=d(c%1bso),

[Vs7, y2el=d(cl1e45),
[Vs7, Ye2l=d(ct1e36)
[y26> Y621=0.

Thus commutativity holds in H(W: d). q.e.d.

Proposition 12.4. The generators in H(W: d) satisfy the following equiva-

lences:
right
ag a1 Yas Y61 Vs
left

(12.5)

a, 0 | remains — Y2698 — Y6295 remains
221 | 0 Y2690 | Y6290 remains
Y2s 0 99931256 Y26%56
Vo1 0 Y62%56
Ysq 0

where the table reads, for example: aqy,s is equivalent to — y,40g,..., Yo1Vs7 1S
equivalent y¢,zs6.

(12.6) aga,,ysq is equivalent 10 y,6Y61— Vo2V 25-
Proof. The equivalences in (12.5) and (12.6) are shown directly as follows:
ad=dcy;, Ag9yys=—y26a5+d(ci7bs6),
A9Y61=—Ye2as+d(—ay e48+C41dyg), a3;=dcyy,
42125 = —Y26d20+d(—aoe35+C17d3s),

a31Y61= — Y6220+ d(C41bao)s  y3s5=d(cy7b6),
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V25Ve1=0o021Zs6+d(—ag(dygess +baoess) +¢17(a20€48 — baod2s))

V25Ys1="Y26Zs6 +d(—age}s—ci7d25€36+C17b16€48)

y¢1=d(c41b0),

_ 2
V61Vs57= V62256 +d(—ay €is —c41dr5e45+Carbaoese) s

— 2 2
y3,=d(c 7€is+ca1€36)

A9a31Y57=Y26Y61 — Ve2V2s+d(—a9Cs1€36+a21C17€45+C17C41d28) -

373

q.e.d.

Note that by (12.5) and (12.6) any cocycle is equivalent to a cocycle each term
of which has at most one of aq, dy;, Va5, Ye1s V575 G021, GgYs7 and d,;ysq.
We have also the following equivalences, a proof of which will be given in
§ 13, since it is rather tedious.

Proposition 12.7. The products agA, a3 A, y25A4, y614, y574, y26A and ye,A
are trivial for a nice cocycle A. For a non-nice cocycle A €V, we have the follow-
ing equivalences:

(12.8)
right )
left ag 20 Z56 X48 X120 Z52 Zgg
aq 0 0 0
a,, —agya,, 0 0 0
Yas 0 0 0 99920%48 A9330%g4
Ye1 0 0 0 T999%0%84 | —%9%0%120
Vs7 —A9Zs¢ | —921%56 —Y25%g84 —Y25%120
—Ye1%as —Y61%84
Y26 —Ye62%Xga | —A9451X4g | —d9dy1Xgy
Ye2 —Y26%84 9991%84 | %9921%120
aga,, 0 0 0
agysq 0 —ayay,2Zs6| O 0 0
31Y57 1799931256 0 0 0 0
right
left Wgs ¥100 Wi24 W13
aq Y —Y25%84 0 —Y25%120
—Ye1%48 —Y61%84
a1 —Y25%84 0 —Yas5%120 0
—Y61%48 ~Y61%84
Y25 —A9Zs56%X48 431256%48 —A9Z56%84 221%56%84
Ye1 99Z56%g4 —921%56%84 99Z56%120 —91%Z56%120
Y57 0 0
Y26 A9Y57%48 —A31Ys57%48 A9)s57Xg4 —931Y57%84
V62 TA9Ys57%84 921Y57%84 —4)s57%120 21Y57%120
aqay, 0 0
agysq 0 0 0 0
ay,Ys7 0 0 0 0




374 Mamoru Mimura and Yuriko Sambe
(The last three lines are added for convenience of calculations.)

The table reads similarly as the table (12.5).

Propositions 12.1 (generators), 12.3 (commutativity) and the relations in Propo-
sitions 12.4 and 12.7 are sufficient to know the structure of H(W: d). (The suf-
ficiency of Propositions 12.4 and 12.7 will be assured later.) We have an additive
basis in Proposition 12.2, although the set of elements is not so convenient (for
instance, the conjugation between cocycles in Proposition 5.7 and between aq and
a,q, Va5 and ygy, y,6 and yg, are not observable). So we would rather have another
additive basis. This is done by taking & in Proposition 12.2 to be an element in
the following:

(12.9.1) Y36y b2Xhas Y36y 62asXta, V36Y62a20%k4,
Y36y 62256X84 V36 yb2a9xta, V561 62a0a20X 84,
V36y62a9z56Xba,  VE6y 62021 X84, V56 62a21256%ka,
V36y62V25%kas Vi6ybaVe1Xha  Vi6Vb2ys1Xha,
V36Y6280021X8a, Y56V 6209021256 X84,

V36Y6200Y 57X84, V56V 62021 57Xb4.

(12.9.2) (In the following, i#0)
yiexhsxha, Yieasxisxta, V56a20xhgxka,

" y46ZsexisXba, V5easxisxha, y56asar0xhsxta,
" yheaszsexhaxba,  yhearXhsXha,  V56a21256XksXha,
Y56y asxigxha, Vi6ye1xisxta,  yieysixisxba,

V56a9a21X45 x84, V2849431256 Xk Xhs,

K i ok k i
Y36@oY 57X48X8as V36921 57X48X84-

(12.9.3) (In the following, j#0)
| +h ! J o 1 J o
Vé2X120X84, Y 6208X120X8a4; YV62820X120X84>
j h | -J h 1 J b
V62256X120%X 845 Y 6280X120X84, Y 6289320X120X84,

j h 1 j h ] J h

Vh209Z56X120%X8a,  V2021X120X84,  Y62021256X120% 84,

] i+ h ] Jo 1 J_ vh
Y62)25%120%X845 Y62V61X120%X84s  V62Y 57X120X84>

] i xh L ey zecsdsoxh
Y620921X120X84, V6289021256X120X845

1 J h 1 J I
Y6289y 57X120X84> V62921 57X120%X84-

We shall call Set I the set of elements in (10.2.1)~(10.2.4) and (11.1)~(11.3),
and Set II the set of elements in (12.9.1)~(12.9.3). Then
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Lemma 12.10. The two sets, Set I and Set 11, are equivalent in the sense that
one is expressible as the other and the elements are linearly independent in each
set.

Proof. We can make Set Il by eliminating products which are trivial by
Propositions 12.4 and 12.7.

We can easily check using equivalences in Propositions 12.4 and 12.7 that each
element in Set I is equivalent to a unique element which is a sum of monomials in
Set II and conversely that each element in Set II is uniquely equivalent to a sum of
monomials in Set I. Since Set I is linearly independent, so is Set II. Therefore,
the two sets of elements are equivalent in the sense stated. g.e.d.

Note that we have assured that Propositions 12.4 and 12.7 contain all the
equivalences necessary to determine the structure of H(W : d).

Proposition 12.2'. Monomials in the 22 cocycles in Proposition 5.7,
Yheasykoas,a5xiogXtss and the cocycles of the form ®-aix5ggx!sq with @ an element
in (12.9.1)~(12.9.3) form an additive basis of HW : d).

§13. A proof of Proposition 12.7

In this section, the letters 4,..., N and 4,..., N are as in the diagrams (6.2.1)~
(6.2.3).

(1) Products with ys,.
If we have a diagram of the form

U X
/\/\
/\/\/\

/\/\/\/\

we have
d(Qess+Regg+ Tdyg+Sbyo+ Ybso+ Uag+Xaz0)=ys; W+ y,5sP+ yg, Z.
Thus, we have
Y57+ (nice cocycle) € d-image,
V57252t V25Xga+ Ve1X4s € d-image,
Vs51Z88+ Y25X120+ V61X84 € d-image.

On the other hand, by direct calculation we have
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V57252 —A9Wj00

_ 2 2
=d(—agd,5€36—a30b 6636+ agh,se36€45 + by sd3ge36— bisdasess),

whence
A9Wi00+ Y25Xg4+ Ve1X4g € d-image.
Its conjugate yields
a21Wi24+ V25X 120+ Y61 Xs4 € d-image.
By direct calculation we have
Vs7ag+aozse=d(b e 3 —d,ge36),
Vs7020+a21256=0d(bgoes6—d;ge43),
Vs1Zs6 =d(— boe3s —d2ge36ess — bis€ds),
Vs1Wss=d(a20b16€36 — agdrge3s — agh e3seys
—b}ebsoeds — biedrsessess — biseds),
Vs1Wi00=d(—agb,oe3¢+ agdyselgess + az0b 6€36€45 + aghysescels
—byebsodarsels—bisd}gessess — bed,s€3s),
VsiWi2a=d(—az0b €35+ a20d,5€36€38 + agbsoess€ls + az0b40€36€45
—bygbaodasels — bsodlgessess — b3od;5€36)
Vs1Wi3e=d(agbaodis — azod;5eds — azobsoesseds
—by6bjoeds — biodrsesgess — bioeds) -

We fill in the table the line of ys; and the boxes agw, o, and a, w;,,. The mo-
nomials ys;X4g, V57X;20 and ys,xg, remain as they are.

(2) Products with a,;.
If we have a diagram of the form below, then dY=a,,Z+aoR+c,W.

Y
7\
R V4
7 N/ N\
w 0 0
Thus we have

a,, -(nice cocycle) € d-image, a,,ag+aqa,0=d(—d,s),

a31a30=d(—bso), a3,25,=dB, a,;zgg=dA,
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a3 Wgg— gWi00=d(—G), az Wigo=dH,
a3, Wy24—AgWy36=dG, azwi3e=d(—F).
Therefore we see that
a,, - (nice), a,,a50, 21252, A31Z88, G21W100 aNd @y W36 are trivial;
a,,ag is equivalent to and will be replaced by —aga,o;
a,,Wgg is equivalent to agw,o, Which has been shown in (1) to be
equivalent to — y,5Xgs— V61X485
a,;W;,4 has been shown to be equivalent to —y,5X;0— Ve1Xsa-

The line of a,; in the table is thus filled. The monomials a,;zs¢, az1X4s,
a,1X1,0 and a,,xg, remain as they are.

(3) Products with a,.
Taking conjugates, we have that

ag - (nice), agdg, agzs,, AgZgg, doWgg and agw,,, are trivial;
AgWgo 1S equivalent to — y,5Xgs — Vo1 X483
AW, 3¢ 1S equivalent to —y,5X120— Ve1Xg4-
The line of a, in the table is filled except agasg, d9zse, A9X4g, AoX120 aNd AgXgy.

(4) Products with y,s.
If we have a diagram of the form below,

Y
R VA
7 N/ N\

w 0 0
then d(agY+b,gR)=y,sW+a,,asZ. And, since d(d,z)= —asa,o—a,,as, we have
d(agY+b,¢R+d,3Z)=y,sW—aga,oZ. Thus we have

V25 - (nice cocycle) € d-image,
V25Z52 — Aol20X4s € d-image,
V25288 — G9d20X54 € d-image.
By direct calculation we have
y2sag=d(b}e),

V25820 =d(—bed,5+agess),
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V25256 =d(age3s — bisess +bi6d1ges6),
Y25Wgg+agZseX4g =d(bi6F),
Y25Wi00 —a21256X48 =d(agl + b6G).
We have also
YasWi2a+a9ZsXga=d(—bisH)+agw, 4, € d-image,
Y2sW13e— a21Z56Xga=0d(—agJ —b;sG) —a, w40 € d-image,

since wy 4, is a nice cocycle.
The line of y,s in the table is filled except y,s5X45, ¥25%;20 and y,5xg,.

(5) Products with yg,.
Taking conjugate and using the equivalence of aga,, and —a,;ag, we have the
following products in the d-image:

Ye1-(iCe), Ye1Zs53+a9A20X54s V61288 + A9d20X 120
Y6198s V61920, V612565
Y61Wss —d9Z56X84, Y61Wi00t+A21Z56X354s
y61W124—a9256x;20s Ye61W136 T a212Z56X120-

The line of yg, is filled except for yg x4, Ve1X120 and g Xg4-

(6) Products with y,e and ye,.

The product ye,4 for a nice cocycle A has been shown to be trivial in Case 4
of §11. Taking conjugate, we see that y,¢A4 is also trivial.

The products —agy,s, —a,,y2s, —agye; and —a,;ye; are equivalent by (12.5)
t0 Y16ds, V26820, Ye20as and ye.a,, respectively. The latter (with y,¢ and yg,) will
be used in the following.

We have that

V62252 — Aol Xga=d(—ayE—c4yB),

V62288 — gl X120=d(—a3,C—c4 A),

YeaWas +ao(az H+caywigo) =d(az1J +¢4,G),
Y62W100—A21(a21H +C41Wi00) =d(—c4,H),
Ve2Wiza+ag(—az F+caywize) =d(—azl—cy,G),
Ve2W13s—a21(— a1 F+caiwize)=d(cy, F).

Recall that ay H+c4;Wi00=P14;=ys7Xgs+(d-image) and —a,;F+cyyw 36=P,77
=Ys59X120+(d-image). Therefore, replacing P,,, and P,,, by the right hand sides,
we have '
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V62252 — A9021Xg4, V62288 —9A21X1200  Ve2Wss T A9Y57X54s
Ye62Wi00— 21Y57X84s  Ye2W124+a9Ys57X1205 YVe2W136 —@21Y57%120
in the d-image.
Taking conjugate, we have the following in the d-image:
V26252 1+ a9ds1 Xy, V26288t AoA21X84s  V26Wss — d9Y57X48>
Y26Wi00+a21Y57%X48, Y26Wi24—d9Y57X84, YV26W136 T A21V57%84-

We have some more relations. If we have a diagram below,
U X
/ N / \
/ \ / \ / \
/ \ / \ / \ / \

then
d((azy +¢41021)X)=(ag+c1709)(az; +€4102)T— Y622,
d((ag+¢1709)U)= — y,6P 4+ (a3 +¢410,1)(ag +¢1705)T,

from which y,sP+ ye,Z=d(—(ag+¢y700)U —(as1+¢410,1)X). Thus the following
are in the d-image:

V26288t V62252,  V26Wi24+Ve2Wss, Ya6Wi13e T Ve2W100s

V26X120+ V62X84> V26X8at Ve2Xas-

The first three relations are not used, since each term in them may be replaced by
another cocycle. The monomials y,¢x;,0 and ye;Xx4g may be replaced by — yg2Xgs
and — y,¢Xg, respectively by the last two relations.

The lines of y,¢ and ye, are thus filled. q.e.d.
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