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§1. Introduction

Let p be a prime, G a compact, 1-connected, simple Lie group and {G: p} the
set {X: compact, associative H-space such that H¥(X; Z,)~H*(G; Z,) as Hopf
algebras over &7 ,}.

The present paper is the second in a series studying the cohomology H*(BX ; Z))
of the classifying space of X € {G: p} using the Eilenberg-Moore spectral sequence:

E,~Cotor,(Z,, Z,) with A=H%X;Z))
and E,~%:H¥BX; Z,).

Let Eg be the compact, simple, 1-connected, exceptional Lie group of rank 8.
The purpose of the paper is to determine Cotor,(Z5, Z;) with A=H*(Xg: Z,) for
Xge{Eg: 3}.

The paper is organized as follows:

In Section 2, we construct an acyclic injective resolution of Z5 over H¥(Xg; Z5)
by making use of the twisted tensor product. Cotor, (Z5, Z5) with A=H¥(Xg; Z,)
is shown to be isomorphic as an algebra to H(W: d)=Kerd/Imd, where W is a
differential algebra constructed in Section 2. In Section 3 we introduce two oper-
ators dy and d,, in a polynomial subalgebra V of W. We determine cocycles in V
using these operators in §§4 and 5. Then in §6 we study some relations among
the cocycles obtained in §§4 and 5. These relations will be used in Part III, where
the calculation of Cotor,(Z;, Z;) will be completed and the following will be
shown:

Main Theorem. Cotor,(Z;, Z;) is commutative and is generated (as an
algebra) by the following 29 elements:

Ay, Ag, A0, X485 Z52, Z565 User Xgar Z88> Wess 292> W100> Z104> X1085 X120 Wi24»

Wi28, Wi3es Wi40> X144> Wi1s2, V1ess @9 Q215 V255 V26s V575 Ve1s Ve2s

where the index indicates the degree.
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The references of the paper are as listed in Part 1.

§2. An injective resolution of Z, over H*(X4; Z,)

Let Xge{Eg: 3}. First we recall from [7] the Hopf algebra structure of
H¥(Xg4; Z5):

2.1 HX(Xg: Z3)=2Z3[xg, x,01/(x3, x30)

®A(x3, X7, X155 X195 X275, X35, X395 X47)»

where deg x;=1i;
The coalgebra structure is given by

(2.2) éx;=0  for i=3,7,8, 19,20,
bx1s=x3®%7,
Px39=%30®%0,
Pxz7=Xg®@X g+ X20®x7,
Px35=x3®X37 — XF®X 19+ X20@X1 5+ X20X5 @ X1,
Pxa7=Xg®@X39+X20@X 27+ X20X5®X 19— X3 ® X7,

where ¢ is the reduced diagonal map induced from the multiplication on Xs.

Notation. A=H*(Xg; Z;)and A=H*X;; Z,).

We shall construct an injective resolution of Z; over 4 using the same construc-
tion as that in § 3 of [8].
Let L be a graded Z,-submodule of 4 generated by

2
{x3, X7, X8, X19, X205 X85 X30, X155 X309, X27, X35, X47} -

Let 0: A—L be the projection and ¢: L—A the injection such that c0=1, We
name the set of corresponding elements under the suspension s as

(2.3) sL={ay, ag, ag, a0, A3, €17, Ca15 bi6> baos d2g, €306, €as}-

Define §: A—sL by O=so8) and 7: sL»A by i=¢es™'. Let T(sL) be the free tensor
algebra over sL with the natural product . Consider the two sided ideal I of T(sL)
generated by Im (Yo(G®8)-p)(Ker 0), where ¢ is the diagonal map of 4. Put W
=T(sL)/I, that is,

W=2Z1{a,, ag, a9, az9, a3y, €17, €41+ big. bao. das, €36, €as}
and I is generated by
(2.4) [«, B] for all pairs («, B) of generators of T(sL) except

(ag, bys), (ao, dig), (ao, e36), (Ao, 4s), (azs, bso), (@21, d2s),



Cohomology of classifying spaces Il 329

(a1, €36). (az;, €4g), (ag, €17), (@21, Cay)s

[as, b1l +ciqas, [az1, baol+carazo,
[as, dys]+c17a30 [az1, dag]+caras,
Lao, e36]+cy7d2s. [az1, e3gl+carbie,
[ao, eas]+ci7baos [az1, eag]+cardzs,

where [a, Bl=af —(— 1)*Ba with x=deg o -deg f.
Note. W contains the polynomial algebra
V=2Z[a,, as, a0, big, bao. d2s, €36, €48]-
We define a map
d=—yo(0@0)ocpor: SL — T(sL)

and extend it naturally over T(sL) as a derivation. Since d(I)<=I holds, d induces
a map W— W, which is also denoted by d by abuse of notation. It is easy to check
that dod=0 and so W is a differential algebra over Z;. By the relation

dod + Yo(B@B)op =0

we can construct the twisted tensor prodlict W=A®W with respect to 8 [14].
Namely, Wis an A-comodule with the differential operator

d=1®d+(1®Y)(1Q0®1)(s®1).
More explicitly, the differential operators d and d are given by
(2.5) dx;®1)=1®a;,, for i=3,7,8, 19, 20,
dx3®1)=1®c,;—x3®a,,
d(x30®1)=1®cy; — X20® 4y,
d(x;s®@1)=1®b o+ xy®ay,
d(x30@®1)=1®b 4o+ X20® 430,
d(x37@1)=1@d,5+ X5 ®a 30+ X2 @ug,
d(x35®1)=1®e36+ x5 @d5 — X§® 50+ X20@b 6 + X50Xs ®as,
A(x47®1)=1®e45+x5®bso+ X30@d 25— X30® a5+ X30Xs @50}
(2.6) da;=0  for i=4,38,9,20, 21,
de,,=as,
dcyy =a3,,

db¢= —ayas,
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dbso=—a,,a;,

ddyg= —aga;0—a,,as,
deye= —agdyg+¢y7020—ay, by,
de48= —a9b40_021d28+c4108'

Now we define weights in W=A® W as follows:

. . 2
(27 A x5 x5, Xg Xyen X200 X5, X3g,  Xys, X39, X327, X35, Xg9
sL: a,, ag, ae, azo, Az, Ci7n Capn bie buo, dag. e €48

weight: 0 0 1 0 1 2 2 2 2 2 9 9

The weight of a monomial is the sum of the weights of each element.
Define a filtration

(2.8) F,={x|weight x<r}.
Put E;JW=3F;/F;_;. Then it is easy to see that
i

EoW= A(x3, X7, X19, X155 X39, X27, X35, X47)
®Z;[ay. ag, azo. byss bao. dis. €36, €45]

®C(Q(x3)RC(Q(x30))

where C(Q(x;)) is the cobar construction of Z,[x;]/(x?) (i=8, 20). The differential
formulae (2.5) and (2.6) imply that E,W is acyclic, and hence W is acyclic.

Theorem 2.9. W is an injective resolution of Z5 over A=H*(Xg; Z3).
By the definition of Cotor we have

Corollary 2.10. H(W: d)=Ker d/lm d=Cotor,(Z,, Z,).

§3. Some formulae

We define operators d, and ¢,, by
3.1 X: a, ag dyo bie bay dig €3, €4
dgx: O 0 0 —ag 0 —ayy —dyg —byo
dyx: 0 0 0 0 —ayy —ag —b;s —dsg

and extend them over V=Z,[a,, ag, aso, b6, bso. das, €36, €45] so that they
satisfy

for any polynomials P and Q in V (j=09, 21).
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Then we have
Lemma 3.3. For any polynomial P in V, we have
(1) 83P=0, 03,P=0 and 040,,P=0,,04P;
(2) [aq, Pl=c;70oP and [a,,, Pl=c4,0,,P;
(3) dP=ay04P+c,,03P+a5,0,,P+c4,03,P.

Proof. (By induction.)
(1) Suppose that 3P=0 holds for any polynomial of degree up to I. Then
for a monomial xP of degree /+ |, we have

03(xP)=03x - P+ x03P =0.

Thus d3P =0 holds for any polynomial of degree /+1. Similarly, 03, P=0.
Now, suppose that 040,,P=0,,0,P holds for any polynomial of degree up to I.
Then for a monomial xP of degree /41, we have

090, 1(xP)=04(05,x - P+x0,,P)
=090,,X+P+0,,x-0gP+09x-0,,P+x040,,P
=0,109X - P+09x-05,P+0,,%+0gP+x0,,04P
=0,,04(xP).

Thus the relation 040,,P =0,,0,P holds for any polynomial of degree [+ 1.
(2) Suppose that [ay, P]=c,,0,P holds for any polynomial of degree up to I.
Then for a monomial xP of degree /+ |, we have

Lag, xP]1=[aq, X]P+x[ag, P1=c170oX - P+ X705 P =c1705(xP).

Thus the relation [ay, P]=c,,0,P holds for any polynomial of degree [+ 1.

The relation [a,,, P]=c4,0,,P is proved similarly.

(3) Suppose that the differential formula holds for any polynomial P of degree
up to I. Then for a monomial xP of degree /+ 1, we have

d(xP)=dx-P+xdP
=(ag0gx+€,703x+a,,0,,x+ 4,03, X)P
+x(ag0oP+¢,703P+a5,0,,P+c4,03, P)
=(ag0oX+¢1703x+a,,0,,x+¢4,03,X)P
+(agx —c1709x)0gP +c,,x03P
+(a21% —€41021%)021 P+ ¢4, %03, P
=ay0o(xP)+¢,703(xP)+a,,0,,(xP)+¢4,03,(xP).

Thus the differential formula holds for any polynomial of degree 1+ 1. q.e.d.
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Lemma 3.4. Let P be non-trivial in V. Then P is a non-trivial cocycle if and
Only U69P=621P=0.

Proof. If P is a cocycle, dP=0. Then by the differential formula (3) of
Lemma 3.3, we have d,P=0 and J,,P=0.

Conversely, if 0gP=0,,P=0, then 03P =03,P=0, hence we have dP=0 by the
differential formula (3) of Lemma 3.3. Since P contains neither a, nor a,,, it is
not in the d-image, hence it is a non-trivial cocycle. g.e.d.

We shall make much use of diagrams, in which an oblique line .~ means J,
and an oblique line \ means 0,,. The generators of V form the following dia-
grams:

s

RN /\/\

0 0 —by  —dyg  —byg

/\/\/\0
/\/\

Observe that the diagram on the right is symmetric.

Definition. We call two polynomials in V conjugate if one is obtained from
the other by interchanging ag and a,q, b, and b,q, and, e;¢ and e,q.

Then the role of d4 and J,, are interchanged.
Notation. P =the conjugate of P.

We see, in particular, that P is a cocycle if and only if its conjugate P is.

We shall find cocycles in the following steps:

(0) cocycles in Z;[a,],

(i) those in Z3[as, az0, by, baos d2sl,

(ii) those in Z5[ag, asg, byg> baos d2s, €36, €48]»

(iii) those with aq, ¢4, a3y, €44,

(iv) those with a,, and ¢4, but without a4 or c,,.
(The first two steps are done in §4, (ii) in §5 and the last two steps will be in
§9 and §11 of Part III.)

§4. Cocycles without elements of odd degree-I

(0) Cocycles in Z,[a,]

Clearly a, is a cocycle, and it is the only indecomposable one in Z;[a,].
We see by (3.1) that a, is independent from the other generators in ¥ under
the operators d, and 0,,. Therefore Steps (i) and (ii) are done independently from
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Step (0).

(i) Cocycles in Z3[ag, @z o, bi6» s dzsl

Clearly, the elements ag and a,, are cocycles.
An element of degree 1 with respect to byg, bso and dsg is of the form

P=Ab,¢+Bbyy+Cdyg with A, B, CeZ;[ag, ajol.
By Lemma 3.4, P is a cocycle if and only if
dgP=—agd—a,,C=0 and 0,,P=—a,B—agC=0.
Then we have a cocycle
Use=0a}0b 6+ atbso— Agaz0d 2.
A cocycle of degree 2 with respect to byg, byo and d,g is of the form
P=Ab%¢+ Bb3o+ Cd}g— Db sbso+Ebysodys+ Fbedys,
where the coefficients A,..., F are in Z;[ag, d;0]. The conditions
0oP=(Aag—Fa,o)bi6+(Dag—Eajo)bso+(Cazo—Fag)dzs =0,
021P=(Bayo— Eag)bso+(Dazo—Fag)bis+(Cag— Eaz0)dzs =0
give rise to
Aag—Fa,g=0, Dag—Ea,;=0, Cayo—Fag=0,
Ba,,—Eag=0, Da,,—Fag=0, Cag—Ea,,=0.
Then we have a decomposable cocycle
P=a$,b?s+atblo+ ajadodds —adadob bao+adazobaodzs + asazob edzs =ule.
A cocycle of degree 3 with respect to by¢, bso and d,g is of the form
P=Ab3¢+ Bb3o+Cd3g+ Db3cbso+ Ebysbio
+ Fb3¢d, 5+ Gb,¢d3g + Hb3od g +1b4od3s.
Then 4P =0 gives rise to
09A=0yB=0,C=0 and D=F=G=I=0
and 0,,P =0 gives rise to
0,;A=0,,B=0,,C=0 and E=H=I=G=0.

Therefore P=Ab3¢+ Bb},+ Cd3s, where A, B and C are cocycles by Lemma 3.4.
Thus x,5=b3¢, X,,0=b3 and xg,=d3g are all the indecomposable cocycles of
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degree 3.

It is not hard to see that there is no indecomposable cocycle of degree greater
than 3. Hence
(4.1) The following are all the indecomposable cocycles in Zs[ag, ayg, byg. by,

dys]:
= 2 - —p3 — 3
ag, Gy, Use=a30b16+a%bso—agar0dzs, Xazg=bie. Xi20=b30. xga=d3s.
The following diagrams will be of use in the next step:

—bigbso+ d3g
AN

ay0dyg+aghyg ax0bi6+agdys
(4.2.1)

2 2
—ayobte—ashiedyg —aghio— azobsodag

/N /

a}dyg adbs a3obao a}od g
(4.2.2) (4.2.3)

n /é
u56b{ \>56d/28 >6b16
(4.2.4)
A u v
AN RN 7\
¢dyg ¢bye nbao ndag Ndyg+8bso  Nbis+<dyg
(4.2.5) (4.2.6) (4.2.7)

where we put
(4.3) &= —ayobtsbao—asbisbaodrs+arebiedis + asdis,

n=—agb;ebio—a20b16bs0d28+ asbsodis +az0d3s,

A= —bieblo—biebaodis —biedis,

p=—b}sb3o— b 6blod}s — bsod3s,

v=">b%¢b%od,s+ b 6baodis +d3s.

Note that £=# and A=j.

§5. Cocycles without elements of odd degree-1I

(ii) Cocycles in Z3[ag, @z, by6s byor d2ss €365 €43]

(ii-1) A cocycle of degree 1 with respect to e;s and e4g is of the form P=Aesq



Cohomology of classifying spaces II 335
+Be,g+C, where A, B, Ce Z;[ag, aso, bys, bao d2]. Then the relations
0gP=04A €35+ 0B -4 — Adyg—Bbyo+09,C=0,
0,1P=0,,A-e36+0,,B-e43—Ab;s—Bdyg+0,,C=0
give rise to
(5.1) 09gA=0,B=0, 0,,A=0,,B=0,
0oC=Ad,g+ Bb,,, 0,,C=Ab¢+Bd,g.

So by (4.1) A and B are cocycles in Z3[ag, as0, Use, X48> X120, Xg4] and C must
satisfy the following diagram:

C

/N

Lemma 5.2. The following are all the indecomposable cocycles of degree 1
with respect to e; and eug:

Zse=030€36+agess —(b16bao—d3s),
25, =age36—(az0bis +ashiedzs)
zgg =a30€43 — (agbio+az0bsod2s),
Zgy=Usee36 ¢,

Z104=UseCqs 1.

(For later use we choose zq, and z;,, With the terms agd3g and a,od3g respectively
so that they are in the 030%,-image.)

Proof. First, we shall find cocycles P with A#0 by seeking B and C satisfying
Ad,3=0,C—Bb,, and Ab,;4=0,,C—Bd,s. It is sufficient to choose one such P
for a cocycle A, since the difference of two cocycles with the same term Aesq is a
cocycle with 4=0.

Note that the elements x,3=>b3¢, X;20=%3p and xg,=d3g are ‘immobile’ in
seeking B and C, that is to say: when A= A'xigx},oxk, +A” with i, j and k non-
negative integers, there exist B and C satisfying Ad,3=0,C —Bb,o and Ab,4=0,,C
—Bd,g if and only if there exist B’ and C’ satisfying A'd,3=0,C'—B'b,, and
A'bjg=0,,C'—B'd,s, and then B=B'xigx],oxk, and C=C'xigx{,ox%,. In par-
ticular, there is no cocycle P for A=x}4gx4,0xk,+ A" for any cocycle A”. Thus we
have only to study those A as in Z;[ag, a,¢, Usgl-

For A=usq, we have C=¢ with B=0 as in (4.2.4) and hence we obtain an
indecomposable cocycle

Zgy=Usge36+E.
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For A=aq, Adyg=agd,3=04(—b,edys)—aob,6 cannot be of the form 9,C
—Bb,,. And we also see that there exist no B or C for A=ag+ A’ for any A'.

For A=a}, we have C= —a,b}s—agh,¢d,s with B=0 as in (4.2.2) and hence
we obtain an indecomposable cocycle

— 2 2
Zsy=age3e—(az0b}s +agh 6dys).

For A=a,,, we have B=ag and C= —b,¢b,0+d%;s as in (4.2.1) and hence we
obtain a cocycle

_ 2
Z56=030€36+agesg—(b16bso—d3s).

The element zs4 is indecomposable, since there is no cocycle P with A=a,,
and B=0.

We have shown that for A=us¢A’+a3A"+a,,A” we have a cocycle P with
the term Aejq and that P=2zg,4"+25,4" +2554". Therefore, the elements zg,,
zs, and zsg are all the indecomposable cocycles with 4#0.

For A=0 we now find cocycles of the form P=Be,g+ C for cocycles B in
Zi[ag, a,g, Usel, since the elements x,q, X, and xg4 are again immobile in seeking
C.

Note that it suffices to choose one P with the term Be,g, since the difference of
two such P’s is a cocycle with A=B=0.

For B=us,, we have the conjugate of zg,:

Z104=Uselsg T,

which is indecomposable.
For B=ag, there is no cocycle P, since otherwise its conjugate P would be a
cocycle with A=a,, and B=0, but the existence of such a cocycle is already denied.
For B=a3, a,,, aga,, or a3a,, there is no cocycle of the form Be g+ C.
For B=a3, we have a decomposable cocycle P=a3zss—a,0zs5,=da3e s +C.
For B=a3,, we have the conjugate cocycle of zs,:

— 2 2
Zgg =a30€45 —(agbio+az0b40d;s)

which is indecomposable, since there is no cocycle with the term a,qe,.

Thus for B=us¢B'+a3B"+a3,B” we have a cocycle P of the form Be,z+C,
and we see that the elements z,,, and zgg are all the indecomposable cocycles with
A=0.

We have shown that the elements zsg¢, 25,5, Zgg, Zg2 and z,4 are all the indecom-
posable cocycles of degree 1 with respect to e3¢ and egq. q.e.d.

(ii-2) A cocycle of degree 2 with respect to e3¢ and e4q is of the form
P=Ae},— Bejgesg+Celg—Deyg—Eeg— F
with 4, B, C, D, E and F in Z5[ag, a,q, byg, bao, d2g]. The relations
O0gP=04A-€%6—09B - e36e45+05C - €35+ (Adyg+ Bbyo— 09D)ess
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+(Bdyg+ Cbyo—9E)e s +(Ddyg+ Ebyo— 0o F)
=0,
03, P=0,,A €3¢ —0,,B-e36e45+0,,C- €33+ (Ab6+ Bdyg—051D)ese
+(Bd,g+Cd,g—05,E)ess+(Dby s+ Edyg—0,,F)
=0
give rise to
(5.3) 0gA=04B=0,C=0, 0,;A=0,;B=0,,C=0,
0sD=Ad,g+ Bb,, 0,D=Ab,¢+Bd,g,
O09E=Bd,5+ Cb,y, 0,1E=Bb¢+Cdyg,
0gF =Dd,g+Eb,, 0, F=Db ¢+ Edys.

Thus 4, B and C are cocycles in Z,[ag, a9, Usg, X48. X120, Xg4] and D, E and
F form the following diagrams:

D E
/N VRN
Ad,g+ Bbyy  Abyg+ Bdyg Bd,s+Cbhyy  Bbig+Cdyg
F
Lemma 5.4. The elements wgg, W 36, Wi00>» W124> Wi28s Wis2 And w4 are all

the indecomposable cocycles of degree 2 with respect to ess and e4g, where the
coefficients of w;’s are as follows:

P A B C D E F
2 —azob%6 b?6b40

Wsg ag 0 0 —aghied,s 0 —bieds
2 —asb?to blsbio

Wise 0 0 aso 0 —dyobaodss —bjodls

2 —a3b16b40 —azob%6 b%6b40d28

Wioo  Qdgdz0 43 0 +agdig —agbyedzs —DO16428

2 —agbi, —azoby6bao bisbiodys

Wiag 0 420 dsf20 —az0bsodys t+az0d3s —baod3s
Wi2sg Use 0 0 ¢ 0 A
Wis2 0 0 Use 0 n H

—Wiso 0 Use 0 n ¢ Y

Proof. The elements x,g, X;,0 and xg, are immobile with respect to the de-
termination of cocycles P. Thus we have only to study cocycles 4, B and C in
Zy[as, azo, usel-
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Note the number of ag’s and a,,’s in each term of 4, B, C, D, E and F. The
elements D and E have one more ag or a,, in each term than F. The elements A,
B and C have one more than D and E. Therefore, A, B and C must have at least
one a3, aga,, or ad, in each term. (The cocycle us¢ has a3, aga,, and a3,.)

The determination of cocycles is divided into three cases: (1) A#0; (2) A=0
and C#0; (3) A=C=0 and B#0.

(1) Now, let A#0. It is sufficient to find, if any, one cocycle P for a cocycle A4,
since the difference of two cocycles with the same term Ae, is a cocycle with 4=0.

For A=us4, we have D=¢ and F=1 with B=C=E=0 as in (4.2.4) and in
(4.2.5), and hence we obtain an indecomposable cocycle

Wi28=Usee36 — 36— 4.
For A=a} with B=C=0, we have a cocycle
wgg=age3s +(a20bi6 +asbi6d25)e36 — (bisbao — bisd3s),
which is indecomposable, since there is no cocycle beginning with agess.
For A=aga,, with B=a3, we have a cocycle
Wi00 = 05020636 — fe3s4s +(agb bso —asdls)ess
+(az0b6+asbi6das)ess —(bisbaodzs — bi6d3s),

which is also indecomposable, since there is neither a cocycle with A=aga,, and
B=0 nor one beginning with ages.

For A=a%, with B=aga,, and C=a}, we have a decomposable cocycle P=z24
=a3oe}s — ag,0€36€45 + a3e€3s + (some other terms). It is easily seen that there is
no cocycle P with A=a3, and B=0 or C=0.

We have shown that for a cocycle 4 which has at least one usg, a3, aga,o or
a3, in each term, there exists a corresponding cocycle P, which is decomposable
except for wy,g, Wgg and wygq.

(2) Now consider the case A=0and C#0. It is sufficient to find one P with 4=0
for a cocycle C, since the difference of two such P’s is a cocycle with A=C=0.

Now, taking conjugate of w,,5 and wgg, we obtain two indecomposable cocycles
with A=B=0:

Wisy=Usgehs —Neag— s
Wy36=0%0e%g +(agblo+ az0ba0d2s)ess — (b1sbio — blod3s) -
We also have the conjugate of w,q, a cocycle for C=aga,, with B=a},:
Wia4= —030€36€a5 T 5a20€5s +(asgbio+ az0ba0d2s)es6
+(a0b16bs0—az0d35)ess — (b16b30d 25— baod3s)

which is indecomposable as is w, .
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There is no cocycle for C=aga,, with B=0.

For C=a3, there is no cocycle P with A=0, since otherwise its conjugate P
would be a cocycle with A=a3, and C=0, the existence of which is already denied.

For C=a}, we have a cocycle agzls—a,ow;oo With B=0.

We see that, if C has one usg, a3, aga,o or a3, in each term, the corresponding
cocycle P exists and is decomposable except for w,s,, wy3¢ and wy,,.
(3) Finally, consider the case A=C=0 and B#0.

For B=us,, we have an indecomposable cocycle

—Wi40= —Usc€36€45 —1€36— CCsg— V.

For B=a}, aga,, or a3,, there is no cocycle P with A=C=0.

For B=a3, we have P=agw, oo —d,oWss, and for B=a3,, we have P=a,ow,,
—agWi3e-

For B=aa,, or aga?,, there is no cocycle with 4=C=0.

For B=a3a3,, we have a decomposable cocycle P= —z,zgs.

Thus, for those B which have at least one usg, a3, a3, or aga3, in each term there
exists a corresponding cocycle with A=C=0. Then we see that w, 4, is the only in-
decomposable cocycle with A=C=0.

We have shown that wgg, Wi36, Wigo» Wizas Wizgs Wisz and wy,, are all the
indecomposable cocycles of degree 2 with respect to e;¢ and e,g. g.e.d.

(ii-3) Clearly x,o5=e3s and x,,,=e3s are indecomposable cocycles. The other
cocycle of degree 3 with respect to e;4 and e, is of the form

P=Ae}ge,q+ Besgels+ Cedo—Deygesg+ Eedg— Fesg— Geyg—H
with coefficients A,..., H in Z;[ag, a,q, byg, bsg, d2g]. Then the relations
09P=09A - €3seqs+09B - e36e35+(05C — Abyo)eds

—(09D — Ad,g — Bdso)eseeas +(0oE — Bd,g)eds
—(09F — Cd3— Dbyo)ess —(0sG — Ddyg — Ebyo)ess
—(09H —Fdy5— Gbyo)

=0,

0;1P=0;,4-€3geqs+05 B e3eeds+(0,,C— Adyg)es

(021D~ Ay~ Bdsg)essess +(221E~Bbyo)eds
—(0;1F —Cby6—Dd;g)es6—(0,1G— Dby — Edzg)eqs
—(021H —Fbys—Gdy)

=0

give rise to
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(5.5 0yA=0,B=0, 0,,A=0,,B=0,
0,C=Ab,,, 0,,C=Ad,g,
09D =Ad,g+ Bb,,, 03,D=Ab, s+ Bd,s,
0oE=Bd,g, 0,,E=Bb,
0oF =Cd,g+ Db, 0, F=Cb,s+Dd,g,
0oG=Dd,g+Eb,, 0,,G=Dbs+Ed,s,
0oH=Fd,3+Gb,,, 0, H=Fbc+ Gd,s.

Thus, A and B are cocycles in Z[ag, a,¢, tsg, X485 X120, X54] and C,..., H
satisfy the following diagrams:

D

2N AN

Ab40 Adzg Ad28+Bb40 Ab16+Bd28

AN AN

H

N AN

Ddyg+ Ebyy Dbyg+Edy,  Fdyg+Gbay Fbig+Gays
Put
V168 =05a30€36€4s +a3az0€36655 — A5(agbio + a20b40d28)e36
+a30,0(b16bao — d3s)esseas — a20(a20b%6 +ashied2s)els
—ag(by6bdod2s —baodis)ess — az0(bisbaodzs — bied3s)eas
—(b%6b3od3s +biebaodis +d3s).

Lemma 5.6. The element v,¢q is the only indecomposable cocycle of degree 3
with respect to ey and e,g other than x,gg=e3¢ and x,44=e3s.

Proof. The elements x,5, X;,0 and xg, are again immobile in all the determi-
nation of cocycles P, so we have only to study A and B in Z;[ag, a,9, Use]. This
time A and B must have at least one a3, ada,q, aga3, Or a3, in each term.

Firstly, suppose 4#0.

For A=aguss with B=0, we have

— 3
P=2z56W 25— az0Use€i6

=aglsge}€ss +(some other terms).
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For A=a,guse With B=agusg, we have
P=2z5W 40=0,0ls6€36€4s +(some other terms),

but there is no P with B=0.
For A=u}, with B=0, we have

P=2z,9,W,,3 =Uu%se3¢e45+(some other terms).
For A=a3, with B=0, we have
P=—2z56W 24+ adaseels
=a3,e3¢e4s +(some other terms).
For 4=a3 with B=0, we have
P=z56Wwgs — a3az0€36
=age3e¢e,s +(some other terms).
For A=aga3,, we have a cocycle
V168 =a5a30€36€4s + A3a20€366%5 — as(asbio +a30b40d25)e36
+agayo(bysbao — d3s)essess — a20(a20bls +aghidas)eds
—ag(byebdodrs—baod3s)ess — az0(biebaodzs — bi6d3s)eas
—(b}gb3od3s +bibaodis +dSs),

which is indecomposable, since there is no P with A =aga3, and B=0.
For A=a}a,,, there is no cocycle P.
For A=a}a3, with B=0, we have

P=2zgawgs=aga3,e3qe,s +(some other terms).

Thus, if A is a cocycle with at least one agusg, a,0lse, U2, a3, agadoy or a3y in
each term, there is a cocycle P beginning with the term Ae3¢e,s, Which is decom-
posable except for v,¢5.

Now consider the case 4=0.

We obtain cocycles with the term Bejge3s from those with Ae3gqe g by taking
conjugate. In fact, for each of B=a,quse, u%g, a3, a3, and a2a3,, we have a
decomposable cocycle P with 4=0.

For B=agusg, there is no cocycle P with A =0, since otherwise there would be a
cocycle with A=a,quss and B=0.

For B=a3uss, We have a cocycle

P=1zs,w,s,=ajdes¢e3s +(some other terms).

For B=a}a,,, there is no cocycle with A=0, since otherwise its difference with



342 Mamoru Mimura and Yuriko Sambe

v163 Would be a cocycle with A=agza}, and B=0, the existence of which is already
denied.

For B=aga3,, there is no cocycle P.
Thus for those B which have at least one a,qusg, u2q, a3, a3o, a3a3, or aduse in
each term we have a cocycle P with 4=0, all of which are decomposable. This

completes the proof that v,4s is the only indecomposable cocycle other than x;gg
and x,,, of degree 3 with respect to e;¢ and e,s. q.e.d.

(ii-4) A cocycle of degree 4 with respect to ey and e, is the sum of e3q - (cocycle
of degree 1), e3z - (cocycle of degree 1) and a cocycle P of the form

P = - 1836838 +Ae§6848 + Be36eis + Ce%G
—De36948+Ee£8—Fe36—Ge48_H.

So we have only to study cocycles P of the above form.
Now, 0,P=0 and 9,,P=0 give rise to relations similar to (5.5):

(5.5) 001 =0, 0,,1=0 (which are not in (5.5)),
09gA=Ib,y, 0,,A=Id,s  (instead of 9,4=0,,4=0),
0gB=1Id,g, 0,;B=1Ibq (instead of d,B=0,,B=0),
the rest of (5.5).

Now, the cocycle I must have at least one a3usg, agdaolse, A3olise> Use OF
akal, (i+j=4) in each term. Conversely, if I is such a cocycle, we have a cocycle
P with the term —Ie}qe3q, since we have P for each I in the following:

I P
aguse —WggWis2
agdaoUse —Wi00W1s2+UseZs2€3s
a3olise —Wi28Wi36
ug Wi2gWis2
ag a3a,0256€36 — Wioo
adazo —WggWi24— 0325536
a3ado Wi0oW124+ 520(Z35€36 +Z52038)
aga3, —Wi00Wi36 — d30Z52€38
aso aga3ozseeis — Wiz -

1t is easy to see that there is no indecomposable cocycle of degree greater than 4.
Thus we have obtained
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Proposition 5.7. The following 22 elements are all the indecomposable co-
cycles without elements of odd degree:

— 2
as, dg, azp usa—a%ob16+asb4o—asazodzs~
_p3 — B3 — 3 _ 3 3
x48=bie» X120="bio, Xga=d3g, X108=€36> X144=E€ss;
_ 2
Zs6=030€36+agess — D16bso+dis,
) — 2
Zsy=dagezet s Zgg=aj0€a3t"""»
Zg;=Us6€36+Cs Z104=Use€ast 1
— 12,2 2 2
Wgg=ageig+ -, Wizg=0a%084g 1 ">
Wio0=Agl20€3¢ — A%€36€45 + **
100 = AgA20€36 — 4§€36€48 >
Wipa= —A30€36€48 + dgl20€35 + "
124 50€36€48 T dgl20€3s ,
Wi =Usc€lc+ -+, Wisy=Useqg+ "
128 =1Us56€36 > Wis3=Use€sg >
Wiso=Usc€36€a8 1 "

a2 2 2
V168 =0a5a30€}6€as +a%az0€36€58 + .

§6. Nice elements and nice-relations

Definition. We call a cocycle nice if it is in the 0303,-image. (We call it
non-nice otherwise.)

Of the generators in Proposition 5.7 the following elements are nice:
(6.1) use=05031(d28€36€48) »
29, =03031(b16e36€%8) >
Z104=05031(baoe36eas)
Wy sy =03031(bsoe3eels) .
Wy2g =0303,(b c€36€3s) .
W1 40=03031(d2s€36€ds) »
V168 =0303,(—d3selseds);

and the remainder are not.
We see that

(6.1) a4, zse, X108 And Xy 44 are in neither the Og- nor the 0,,-image.

The other non-nice generators are related in the following diagrams:
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6.2.1) €36
/ \d/ \b
/ \ / \ / \

azo

(6.2.2) (M) (N) (N) (M)

—byoels —dygels —dygels  —bige3s

/\/\ /\/\
/\/\/\/\/\/\

X120 \ / Xga \ Xag
Zgsg Zs52
(6.2.3) —byoeseeis biee3seas

/\ /\
/\/\/\/\/\
/\/\/\/\/\/\

Wi3e —Wi2g Wio0 — Wgg

where K= —a,pe}sess +dge36€3s+ baod,s€36— bi16drgeis, and A,...,J are easily
obtained by mere calculations of the do- and the d,,-image. (4,..., J are the con-
jugates of A,..., J respectively.)

We use the letters M, N, M and N as above for simplicity.

Observe that an element of the form
(nice cocycle) - (any cocycle)
is nice. But sometime it happens that products of non-nice generators are nice.

Definition. Two cocycles A and B are called nicely-related if A— B is nice and
denoted by A~ B.
N

We shall show in the following three lemmas that the products in the following
table are nice and that products that have the same circled number are nicely-related.

We exclude the elements a4, x5 and x4, since they are ‘immobile’ in 04-0,,-
diagrams, that is, they are related to no elements by 0,-0,,-diagrams and their
products with other cocycles make no essential difference to diagrams.
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(6.3)
ag- | ayo | zs6 | x4 | *i20] ¥sa | Zs2 | 2gs | Wss | Wioo | Wi2al Wi36
ag nice | nice | nice nice | nice | nice | @ | nice | @
a,, nice | nice nice | nice | @ | nice | @ | nice
Zsg nice @ ® | nice | nice | nice | nice
X48 ® @ ® @
X120 ® ®
Xg4 ® ® ® ® @ ®
Zsq nice | nice | nice | nice | nice | nice
Zgg nice | nice | nice | nice | nice
Wgg nice | nice | nice | nice
w100 nice | nice | nice
Wi24 nice | nice
Wiae nice
Lemma 6.4. All the products in the above table denoted “‘nice” are nice.
Proof. The following are checked by direct calculation:
— 232 (02
ayzse=030%1(e36e4s)
L A2A2 2
az0Z56=0503,(e36€3s) s
2 2
236 =03031(e36€3s),
— 202 (b2 02 o2
Zs6Wgg = 0503 (bisel6eds +az0€36)
_A272
Z56W100=05031(b6d25€36%5 + agelseis) .
— 7272 2 52
Zs6W124=0503(bsodr5€36€3s + az0€3s€ds).
— 282 (b2
Z56W136 =0503,(bjoe}eeis +agels) -
Now, in general, when we have two diagrams
U U
0
we have 0303, (UU)=PR'+QQ’+RP'.
Thus we have the following 0303,-image:
2 _ -
T €36 —e3eess Dess  Desg —leze Jesq eis Deyg
242 2
69521T‘ ag QAgQyo QAgZs; QgZgg AgWgg AgWie @39 @0Zs2
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5848 Je43 —1648 D2 DE "DI DJ
Q30Zgs aWi00 @20W136 232 Z52288 Z5Wgg  Z52Wi00
DJ -pDI D?* —-DI DJ DJ -DI P

2 2
Zs2Wi24 Zs52Wi36 288 ZgsWss  ZssWioo ZssWi24 ZggWize Wis

u -1 J? =JI J? 1J 12

2 2 2
WggWioo WsgsWi24a Wioo WiooW13e Wi2s4 Wi24Wi136e Wise

We haVC W88W136+W100W124=5ga§1(1i) and agagl(K2)=W100W124. Thus
WgsW136=030%,(I —K?). So we have shown all the required products to be nice.
q.e.d.

Using the same diagrams as in the above proof, we have also
(6.4.1) agwyo0—az0Wss=050%,(Jese),
(6.4.2) agWy36—0820W124=0303,(—1Ies6),

whence agWy oo~ d20Wss and agWy3e~azoWi24-
N N

It may be checked by direct calculation that

(6.4.3) agw,g0 and agw,s¢ are non-nice, hence so are their conjugates a,owgg and
az0W124-

Lemma 6.5. We have the following nice-relations, and each term is non-nice:
(1) agwioo ’; G20Wss '}‘v‘ WseZsz, (2) dgWize ’; azoWi24 ;‘ 2562885
(3) X48X120 ‘; X34 (4) zggXss ’; Z52Xgas (5) zs52%120 l’; ZggXg4>
(6) W124x4s’;‘Wsaxa4y 7 W136x4s;’W1ooxs4, (®) Wssxuo';wluxsu
(9) wio0X120 '; Wi3eXga-

Proof. (1) We have agw,go+a20Wss+2s56252=0. Since a,owgg=agW o0 —
030%,(Jesq) by (6.4.1), we have zs5¢z5,=agW;0+ 0305,(Je36), Which shows that

aswxoo‘;azowss ';256252'

(2) agWi36~0az0Wi24~ Zs56Zgg is Shown similarly by using the equality agw; ;6
N N

+ (120W124+Z56288 =0 and (6.4.2).
Now in general, if we have two diagrams
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U X v X'
/ N\ / \ / AN / \
/ \ / \ / \ \Q/ \ 7 \
/\/\/\/\ /\/\/\/\

we have 0203,(UX')=PZ'+QR'+RQ'—TW'—WT’, and thus
0202, (UX' — XU')=PZ' —ZP".
So we have
() X4sX120— X34 =0303,(MM—NN),
(4) ZgeXas—ZssXsa=0303(EM —EN),
(5)  Zs52%y20—XgaZgg =0303,(EM —EN), .
(6) Wy paXeg—XgaWgs=0303,(—KM+NJ),
(7) Wy36X4s—Wi00Xga=0303(—JM—KN),
(8) WggX;120—Wy24Xga=0303,(—JM+KN),
(9) Wi00X120—Wi36Xga =0303,(KM+JN).

Observe that z54zs5, and zsgzgg in (1) and (2) are non-nice, since their nicely-
related cocycles are non-nice by (6.4.3). That the terms in (3),..., (9) are non-nice
may be checked by direct calculation. q.e.d.

Definition. Cocycles A,,..., 4, are called nicely-independent if any sum of
them does not belong to the 030%,-image.

Proposition 6.6. The following monomials in cocycles are non-nice:
(1) xbsy (2 xhaxbs (i#0),  (3) x{z0xha (J#0),  (4) agxls,
(5) agxhgxts (i#0), (6) agxizoxbs (J#0), (7) azoxis
(8) azoxisxhs (i#0), (9) azox{20xba (j#0), (10) zs6x4s,
(11) z5exisxba (i#0), (12) zsex{20%ha (J#0), (13) zs,%45X8a,
(14) zggXis0xba,  (15) wegXhexha, (16) wygoXisxfha, (17) Wi24%{20X84s

i wn _— , .

(18) wy36xi20x84, (19) aswloox"tsxs‘t;’azowssx"tsxgw;'zsezszxisxgm
i h Jj h J h

(20) aSW136x120x84;020W124x120x84’;Zsszssxlzoxu’

where i, j and h are non-negative integers.
The monomials of the form
() (any monomial in the proposition) - ajx$osX\44
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(r, s, and t are non-negative integers)
are nicely-independent and any non-nice monomial is nicely-related to one of them.

Proof. It may be shown directly that the monomials in the proposition are
non-nice. In the calculations we also see that they are nicely-independent, since we
see that no sum of any monomials in the proposition is nice. It follows that mono-
mials of the form () are non-nice and that they are nicely-independent.

Now, we show that any non-nice monomial without a,, x,45 OF x4, is nicely-
related to a monomial in the proposition. Then any non-nice monomial with
ahx3osXt4s is nicely-related to one of the form (*). So we put aside the elements
a4, X19s and x,,4 until the end of the proof.

Of two monomials which are nicely-related, we shall always choose the one with
the least number of x,4 and the least number of x, .

By (3) of Lemma 6.5 we have

xgi? if i=j,
N i=jy ht2) s
x38x120x84’; lets’xs‘t / if i>j,
xipgxgst i i<y,

and so we choose the right hand sides, which are of the form
(1) xbq, (2) xigxls (i#0), (3) x{0xbs (j#0).

And using this nice-relation, we see that any monomial is nicely-related to one
having not both x,5 and x ;.

A non-nice monomial has at most one z, or w, (k=52, 88; =88, 100, 124, 136),
since z,z,., ww, and z,w,; (k, k'=52, 88; I, I'=88, 100, 124, 136) are nice.

By (4)~(9) of Lemma 6.5 we have, for i#0 and j#0,

ZggXhgXhs ;’Zszxi?slng{',
z52%120%84 ’;zssxi'fdxﬂ',
Wi24XhgXhe ’;Wssxi_slxu'a
Wi3eXhsXha ';Wloox-it_slez'II,
WegXi20Xbs ’;W124x{53x§'11,
Wlooxfzoxx'h;Wxssxfféxul-

We take the right hand sides, which are of the form (13)~(18). If i=0orj=0,
the terms in the left hand sides are also of the form (13)~(18).

We study non-nice monomials of the form agA4. By (6.3), we see that A may
contain wygg, Wi3e» Xags X120 and Xg4, and, as we have noted, it may have at most
one w;o0 and w,3¢. We have non-nice monomials
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(4) agxly, (5) agxhsxis (i#0), (6) asx{20x§'4 (j#0),

ok i yh
(19) aswlooxftsxé4;’"' , (20) a8w136x120x84;~..,

The monomial agw,ooxks is of the form (19) and the monomial agw,qoXx]20x}s
(j#0) is nicely-related to agw,,exi3dx41" in (20). Similarly, agw,sx84 is in (20)
and agw,3xigxh, (i#0) is nicely-related to agw,goxig!xhi! in (19).

Therefore, any non-nice monomial of the form agA is nicely-related to one of
(4), (5), (6), (19) and (20).

Similarly, any non-nice monomial of the form a,,A4 is nicely-related to one of
(), (8), (9), (19) and (20).

Finally, we study non-nice monomials of the form zs,4. By (6.3) A may con-
tain zs,, Zgg, X45. X120 and Xg,, and it may contain at most one z5, Or zgg.

We have non-nice monomials

(10) zsexty, (11) zseXhgxhy (i#0), (12) Zssx{20x34 (j#0),

- . J o h
(19) "';’Zsazszxisxs'm {20) "";’Zsszssxnoxsm

Here (19) includes z5¢zs,X%,, and a monomial z5¢zs5,%],0xk, (j#0) is nicely-related
t0 Z56ZggXizdxht! in (20). Similarly, (20) includes zs¢zggxt,, and a monomial
Zs6ZggXhgXh, is nicely-related to zsgzs,xig!xfi! in (19). Thus any non-nice mono-
mial with zs¢ is nicely-related to one of (10), (11), (12), (19) and (20).

We have shown that any non-nice monomial without a4, x g OF X44 is nicely-
related to a monomial in the proposition, and then any non-nice monomial with
a}x5osX444 is nicely-related to one of (¥). g.e.d.
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