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1. Introduction

The Wiener space, which is a typical example of abstract Wiener spaces intro-
duced by L. Gross [1], is a triple (B, H, u) where
(i) B is a Banach space consisting of real-valued continuous functions x(t) with
x(0)=0 defined on the interval T=[0, 1] endowed with norm | x|| = sélllgllx(t)l.

(ii) H is a Hilbert space consisting of absolutely continuous functions x(t) with
x(0)=0 such that x'(¢) e L¥(T) endowed with the inner product

Cxryn=| ¥ Oy o

and
(iii) u is the Wiener measure, i.e., the Borel probability measure on B such that

(.0 [, exptith, »)uax) —exp( = 3-Ch, 1>

where he B¥*< H and (, ) is a natural pairing of B* and B. Note that ||x]| <|x|y
=./{x, x>y for x e H, then the inclusion map i: H—B is continuous. Hence we
have B¥*c H*=H and we regard B* as a subset of H. It is readily seen that
{x(1); 0<t< 1} is a standard Wiener process on the probability space (B, i). A
real-valued (or more generally, a Banach space-valued) measurable function defined
on the probability space (B, u) is called a Wiener functional. We identify two
Wiener functionals F(x) and F,(x) if F(x)=F,(x) a.e. (). Typical examples of
Wiener functionals are solutions of stochastic differential equations or Ito’s multiple
Wiener integrals [2].

P. Malliavin introduced a notion of derivatives of Wiener functionals and
applied it to the absolute continuity and the smoothness of density of the probability
law induced by the solution of the stochastic differential equation at a fixed time
[6], [7]. Here we define the derivatives of the Wiener functionals in a somewhat
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different way and rephrase a theorem of Malliavin. We shall apply it to the absolute
continuity of the probability law induced by a system of multiple Wiener integrals.

The author wishes to thank Professor S. Watanabe for his valuable suggestion
and encouragement.

2. Notion of derivative

Let (B, H, u) be the Wiener space or more generally, any abstract Wiener space.
Let E be a separable Banach space and F be a mapping from B into E. F is said to
be B-differentiable (or Fréchet differentiable) at x e B if there exists an operator
T=T,e #(B, E) (we denote the space of all bounded linear operators from B into
E by #(B, E)) such that

(2.1 F(x+y)=F(x)=T(y)+o(lyll) as |yl—0 (yeB).

The operator T=T, is called the B-derivative (or Fréchet derivative) of F at x € B,
F'(x) in notation. If F is B-differentiable at every point of B, we say simply that
F is B-differentiable. Similarly F is said to be H-differentiable at x € B if there
exists an operator S=S, € #(H, E) such that

(2.2) F(x+h)—F(x)=S(h)+o(|hly) as |hlz—s0 (heH).

The operator S=S, is called the H-derivative of F at x € B, DF(x) in notation. If
F is H-differentiable at every point of B, we say F is H-differentiable. Clearly if
F is B-differentiable, then F is also H-differentiable and DF(x)=F'(x)|;. In-
ductively we can define F”, F”,... and D*F, D3F,.... We may regard F") as an
element of #"(B; E) and D"F as an element of .#"(H, E) where #"(B, E) is a space
of continuous n-linear operators from B" into E and .#"(H, E) is defined similarly.
When E is a Hilbert space, S e #"(H, E) is said to be of Hilbert-Schmidt class if

@3 S 18y iy i) B <00

i1,02,00,in=
for any orthonormal system {h;}i2, in H. We denote by #{,)(H, E) the space of
all Se #"(H, E) which are of Hilbert-Schmidt class. Then £{,,(H, E) is a Hilbert
space with inner product given by
(2.4) (T, Yol 1,py= 2 {T(his-es hi)y S(hypeees B ) Dk
bt

[ PPN in=1

for T, Se £},,(H, E). Where {h;}, is a complete orthonormal system in H. If
F: B—E is m-times B-differentiable then D™F is of Hilbert-Schmidt class (cf. [4]).
Let K be a separable Hilbert space. For p>1, we denote by L?(u; K) the set

of all K-valued Wiener functionals F: B—K such that
1

10 oo =( | 1FCOIER(@0) ) < o0

Difinition 2.1. For p,, py,..., p,=>1, we define H(py, py;-.., py)(K) to be the
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space of all Wiener functionals F(x)e LPo(u; K) such that there exists a sequence
{fi}&, of functions on B into K with the following properties;

(i) forany k=1, 2,..., f, is a n-times B-differentiable mapping from B into K and
Jee Lro(u; K),

(i) lim f=F in LPo(p; K),

(iii) for any m=1, 2,..., n, D"fi(x)e £%\(H, K) for all xeB and a sequence
{Dm™f,}%, is a Cauchy sequence in LP=(u; £7 (H, K)),

(iv) for any k=1, 2,..., there exists a finite dimensional projection Q,: B—B such
that Q,|y is an orthogonal projection in H and fi(x) =f(Qx).

For Fe H(pgy, P1»-.-» Pw) (K), We set D'"F=,l‘im D™ f, and call it the m-th weak H-

derivative of F.

The sequence of above definition is called an approximating sequence. By
the following lemma our definition of weak H-derivatives are justified; they are well-
defined independent of a particular choice of an approximating sequence {f,}.

Lemma 2.1. If Fe H(py, p;)(K) and F=0, then DF =0.

Proof. In the proof we may assume K=R. Indeed we take /e K* and con-
sider the functional I(F(x)). Then evidently I(F(X))e H(py, p;)(R) and DI(F(x))
=/oDF(x) from the chain rule of differential. Furthermore if DI(F(x))=Il-DF(x)=0
for all e K*, we have DF(x)=0. So we shall assume K=R. Take an approxi-
mating sequence {f,}&, of F and he B*<H such that |h|y=1. Let H, be a
subspace of H spanned by h, H, be an orthogonal complement of H, in H and
H, be a completion of H, in B. Then B=H @H, where @ stands for the direct
sum; indeed any x e B can be expressed as x=(h, x)h+(x—(h, x)h) where (h, x)h
eH, and x—(h, x)he H,. Therefore n(x)=x—(h, x)h defines a projection of B
onto H, and (H,, H,, fi) is an abstract Wiener space where ji=pon™! i.e., induced
measure of p by n. Note that if we express x € B as x=y-+th where y=n(x) and
t=(h, x), then u is expressed as

_t2
w(dx) = fi(dy) x\—/%—;e T dr.

Since f,—0 in LPo(u) as k— oo,

o]

[ rirentan) = a@)|” 1A+ie st d—o

@ 2
as k—»oo. Consequently if we put gk(y)=S Ifk(y-f-th)ll"’\/é—ne_r? dt, we see that

g,—0 in L!(fi) as k—oco. By extracting a subsequence if necessary, we may assume
g,—0 a.e. (). By a similar argument, we have

[ IKDALy +1h), B u= CDFGy-+1h), 1yl o™ di—s0

as k—oo a.e. (fi). Note that for a fixed y, f(y+th) is differentiable with respect to
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t and its derivative is
4 f,(y+th)=(Df(y +1h), by .

Therefore we have for a.e. y(fi)

foly +th)—0 in LPO( ;—e_tTdt>

and

“gt_fk(y+th)——><DF();+th),h>H in L”'('—l'~e_'7dt>

NEd

as k—oo. By a well-known result in one dimensional case, we have
. I _t?
(DF(y+th), h)y=0 '\/‘2—76 2 dt-a.e.

Hence (DF(x), h>;;=0 a.e. (u). Since he B* is arbitrary and B* is dense in H, we
have DF(x)=0 a.e. (1). Q.E.D.

Obviously H(pg, pis---» P»)(K) is a Banach space endowed with norm

”F”H(po,pl,...,pn)(k’) = méo ”D"'F”me(”;g'("z)(ﬂ;xn. especially for Po=PDy="=pDp= 2*
HQ2,2,...,2)(K) is a Hilbert space endowed with norm (considering the Hilbert

n+1
space structure, we modify the above norm in this case) [Fl}2.2.. 20x=

n
Zo ID™F |3 290, :xy-  We can also characterize the space H(po, py...., p,)(K)
=

in another way. We introduce the notion of smooth functional. Let K be a sepa-
rable Hilbert space. Then a K-valued smooth functional ¢(x) defined on B is the
mapping ¢: B—K expressed as o(x)=f((!, x), (I3, x)...., (I;, x)) where d is a posi-
tive integer and f: R—K is a K-valued C* function with compact support and
l;, l5,..., ;e B*. 1t is easy to see that a smooth functional is B-differentiable of
any order and its derivatives are all smooth functionals. Then we have:

Proposition 2.1. H(pg, p;..... p,)(K) is the completion of all K-valued smooth
functionals with norm || - [l yypo.p,....pm(x) defined above.

Proof. What we have to show is that K-valued smooth functionals are dense
in H(pg, P1»-.e» p)(K). Take any Fe H(pg, py>...» po)(K). For any £>0, from
Definition 2.1, there exists f € LPo(u; K) satisfying (i) and (iv) of Definition 2.1 such
that || f—Fllucpopispmky <€ From (i) and (iv) of Definition 2.1, f is expressed
as f(x)=g((l;, x), (I3, X),..., (I, x)) where [, I,...., l,e B¥ and g is a K-valued C"
function defined on R4. We may assume that /, /,,..., [, are orthonormal system
in H. For N=1, 2,..., let ¢5j(&): R¥>R is a C* function such that 0<cy(é)< 1 and

ILif [{<N

en(&)= .
if [§|>N+1.
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We may assume that {cy}%-, is uniformly bounded together with its derivatives.
Then it is easy to show that

en((Tyy %), (Lay X),eens gy XNg((Ly, x), (I3, X),.e0s (I, X))
— f(x) in H(po, pyse-es p)(K) as N — 0.

Then we may assume that g has compact support. But g can be approximated
uniformly by a C*® function with compact support by using the molifier. Hence
we can find a smooth functional ¢ such that || f—ollye.p0,...pyx) <&  This com-
plete the proof. Q.E.D.

Proposition 2.2. If Fe H(py, p,)(K) and DF =0, then F =constant a.e. ().

Proof. We may assume K=R as in Lemma 2.1. It is enough to prove in
case of bounded F. Indeed take a C* function cy(¢): R—R such that
¢ if [{[<N
@.5) en(&)= _
sgn (&)(N+1) if [N+

and consider the function cyoF. Then clearly cyoF € H(pgy, p;)(R) and DcyoF
=cy(F)DF =0. Note finally that if cyoF =constant for all N €N, it is evident that
F=constant. So let F be bounded. For any he B* such that |h|y=1 we have,
similarly as in Lemma 2.1 (we use the same notation)

_ . 12
B=H,®H,, u(dx)=u(d,v)x7;7e > dr

where x=y+th. In the following we fix h and se R. From the assumption, for
a.e. y(@)

4Ry +1h)= (DF(y +1h), by y=0
where the derivative is in the distributional sense. Consequently we have for
a.e. y(fi)

F(y+th)=constant a.e. in t
and hence

F(y+(t+s)h)=F(y+th) a.e. in t.
Thus we have
F(x+sh)=F(x) a.e. (u).

Hence

S F(x)u(dx) =S F(x+sh)u(dx)
B B

= SBF(x) exp {s(h, x)— %zlhﬁ,} u(dx).
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To show the second equality, we use the following fact. If we define p,(-)=pu(- —h),
then p, is absolutely continuous with respect to p if and only if he H and its Radon-

A%
B4 (see Kuo [4]). If we put

Nikodym derivative is given by exp{(h, xy -4

c=g Fx)u(dx), we have
B

SB(F(x) —C)etsh® u(dx) =0

for any se R and he B* such that |h|;=1. Our assertion now follows from the
following.
Lemma 2.2. {e(" ") he B*} spans L*(w).

This fact is well known (see Lehman [5]).

Next we shall obtain a formula on the integration by parts for Wiener integrals
(see also Kuo [3]). In order to state the formula we need the Hermitian poly-
nomials defined by

_1yn &2 gn _&2
2.6) Hy©={"D" % ;'é"—e T ¢eR,n=0, I....

This definition is a little different from ordinary one but it is more convenient for
our purposes. We list below some properties of the Hermitian polynomials:

2.7 Hy(§)=1

2.8) i HAO = H,o ()

2.9 (14 1) s (D) = EH, (&) + Hy1 () =0
o I B 1

(2.10) | QD e ™ dE= b,y

In (2.8) and (2.9), we set H_;(¢)=0if n=0.

Let {h;}%, =B* be a complete orthonormal system in H and fix it until Lemma
2.3. Let a=(ay, a,,...) be a sequence of non negative integers such that a;=0
except for finitely many j. We define the Fourier-Hermite functionals H,(x) on
B as

@11 H(0) = Hy (s 5HH (1, 5))-.
From (2.10) we have

0 if a#b
@.12) [, H(oH ) =[ L
B al if a=b

where al=a,la,!---.
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It is easily seen that for Fe H(py, py,..., Ps) (K), D™F(x) is symmetric a.e. (1)
e, D"F(X)(y, Uzsenns Up) =D"F(X) (Ug(1)s Ug(ay--s Ugemy) a.€. (1) for any uy, u,,...,
u,€H and any permutation o of {1, 2,..., m}. For a sequence a=(a,, a,,...) as
above we define

(2.13) D\alF(x)(h®) =D\ F(x)(hy,..., hy, hy,..., hy,...)
N——r S———’
a, a,

where |a|=a;+a,+---.
Lemma 2.3. Let FeH(py, py...., p,)(R) such that py>1 and p,, p,,..., p,>1.
Then it holds that
@19 [, D1t FG) (h) g (mcan)
={ F@) T (= 0019 Dl () (h8) H, -y ()m(a).
B b<a b!

for any smooth functional ¢ and any sequence a=(a;) such that a;=0 except for
finitely many j. Here b<a means that b=(b;) is a sequence of non negative
integers such that b;<a; for all j.

Proof. First we assume po, py,..., p,—1>1 and p,>1. We shall prove it by

i
-

induction on |a|. Let |a|=1i.e., a=6,=(0,0,...,0, 1, 0,...) for some ieN. Take
an approximating sequence { f;}i=, for F. Similarly as in Lemma 2.1, we set

2

— P el
B=H,®H,, y(dx)=ﬁ(dy)xﬁe T dt
where x=y+th;, Then

[ <o), B> ouax)

@ 2

= B |” DA+, b oy +h) e T

© _12
= B |7 GG+t i) e T ar

— o0

By integration by parts in the one dimensional case, we have

SB <ka(x),hi>gp(x)#(dx)
= —Sﬁzﬁ(dy)go_owfk(.]/"Fthi)%{(p(y +thi)\/"-—:l)‘?e_172}dt

2

== B AP ik by =0+ ) e F

={ A (= Do), > + 0 (6) s, M} u(ax)
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Letting k— oo, we have

(2.15)

SB (DF(x), h;) @(x)u(dx) = &BF(x) {={D@(x), h;) + @ (x)(h;, x)} u(dx).
Thus (2.14) holds for a=4;. Next we assume (2.14) for all a’ such that |a'|<|a]
and we shall show (2.14) for a+6;. Note that (DF(x), h;» € H(py, p2.-» P))(R)
if Fe H(po, py»--.» P»)(R). Hence by induction

gBDm«DF(x), i >) (h*) o (x) p(dx)

= CDF(), by T (= 1)W1 DI (o) (1) Homo (6) ().
B b<a .
Again by induction for §;, we have
[, e pe e po)nca)
= FLZ (= DI##1-20 DI () (1+9) Homo ()
B b<a .
=3 (= 1)L DI () () CDHqop(3), i)
b<a .
+ T (= 1)L DI () (h) Hymy (6) Ur %) ] a( )
= FOLE (= 111100 DS () (1) Hoy ()
B b<a .
+ T (=D)L DI () ()~ Hympms (5) + (hiy ) ooy (1)} ()
={ FOOL, T (= DPID o) () Ho 1)
B b<a+di
| |
x {5y oo @ bk D}Tu(dx)
= F&) 5 (= DL D () () o s () ().
B b<a+d; .

Here we used the following general formula:
(2.16) (@;+ D) H gy 5(x) = (hy, X)H(x)+Hy—5(x)=0

which is a consequence of (2.9). Here we set H,_;(x)=0 if ¢;=0. Thus we have
(2.14) for a+6;. The restriction p,, ps,..., p,—;>1 can be removed from Proposi-
tion 2.1. Q.E.D.

Definition 2.2. The Ornstein-Uhlenbeck operator L is defined, for any func-
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tion f: B—»R which is twice B-differentiable, by
2.17) Lf(x)=trace D>f(x)—(f'(x), x).

Remark. It is known that if 4 € %(B, B*) then A|, e % ,(H) where &£ ,(H)
is a space of trace class operators on H (see Kuo [4]). Since fis twice B-differenti-
able, f'(x) e Z*(B, R)=%(B, B*) and trace D2 f(x) can be defined.

Now we shall extend the Ornstein-Uhlenbeck operator L as follows:

Definition 2.3. For p,, p,, p;, p.=1, we define H(pgy, p;, P2; p) to be the
space of all Wiener functionals F(x)e H(py, p,,» p,)(R) such that there exists an
approximating sequence {f.}i=; in H(po, p;» p2)(R) for F satisfying also that
{Lf}%-, is a Cauchy sequence in Lrr(u). We call the limit of {Lf,}2, in LPr(u)
the weak L-derivative and denote it by LF.

This weak L-derivative is well-defined as we shall see in Lemma 2.5 below. We
can take a sequence of smooth functionals as an approximating sequence.

Lemma 2.4. If Fe H(py, pi» P2; PL), then

2.18) [ LFeen@n={ FeLeGouax

for any smooth functional ¢(x).

Proof. First we prove (2.18) for a smooth functional F. Take any he B*
such that |h|y=1. Then (DF(x), h)y is also a smooth functional and hence from
Lemma 2.3,

(2.19) [ ©2F)h, )= (b, x)CDFG), By} o(In(ax)
={ DUDF), By ) (B0 (x)(dx)
= (b x)<DF), By wo(Iu(dx)

==, <DF(), 154 <DO (), Y uu(ax).

Since F and ¢ are finite dimensional functions, there exists an orthonormal system
{h{, hyy..., b} in H and h;e B* (i=1, 2,..., k) such that

SBLF(X)fP(x)#(dx) = ttrace D2F(x) = (7' (1), )} 0 ()u(dx)

= 3 (D2FCx) i, h) (b, 1) CDFC), by ) 0()pa(d)

and

[, <DF ), Do)y uu(ax) = 3 CDF(), by w (Do), iy uiu(d).
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From (2.19) we have

[, LF)¢(utdx) == <DF(), Do(x)> ui(d).
By exchanging F and ¢ we have

[, FooLo()n(ax) = =, <DF(x), Dp(x)) un(ax).

and (2.18) is proved. The general case is easily obtained by approximating F with
smooth functionals. Q.E.D.

Lemma 2.5. If Fe H(py, p1, P2; Pr) and F=0, then LF=0.

Proof. From Lemma 2.4, we have

[, LoD = P Lo =0
for any smooth functional ¢. Then it is easy to conclude that LF=0. Q.E.D.

Clearly H(po, p1» P2; pr) is a Banach space endowed with norm ||Fl|gpo,py,p2:p1)
= Fllgpo.pr.pe) + ILF [ Lrr(,).  Especially for Po=P1=P,=prL=2, H2,2,2;2) is
a Hilbert space endowed with norm |Fl|}(2,2,2:2)=Flk(2,2,2y+ |LF|}2(, We shall
show later that H(2, 2, 2; 2)=H(2, 2, 2)(R) i.e., the weak L-differentiability follows
automatically. In the sequel we shall mainly consider the space H(1,2,1;1).
This space convenient as we shall see, for instance, in the following lemmas.

“Lemma 2.6. Let F=(F!, F2,...,F%) be an R‘valued Wiener functional
defined on B and u be an element of CARY) (the space consisting of all twice
continuously differentiable functions which are bounded together with their
derivatives up to the second order). If FleH(1,2,1;1) for i=1,2,...,d, then
uFeH(,2,1;1).

Proof. Let {fi}¥., be an approximating sequence for F* in H(1, 2, 1; 1) and
put fi=(fL, f2...,f$). By extracting a subsequence if necessary, we have u( fil(x)
—u(F(x)) a.e. (1) as k—oo and hence in L'(p). Clearly uof is twice B-differentiable.
We shall show that {uof,}¢, is an approximating sequence for uoF. Since {f}}i-,
is an approximating sequence for Fi(x) (i=1, 2,..., d) we have

Dwsf) ()= ¥ 2 (SbNDri)

Ma
ﬁ*’l“ e

e

s~ (F(x))DFi(x)  in L(u; H)

i=1

Dusfi)= 5 aé. S (DA @DFA) + §§—<fk(x)>02fk(x)

o
Q)

— 3 b (F)DF'(x)@DF/(x) +

i,j=1

(%)

in Li(u; £%)(H; R)),
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L(usf)(x)= 3

i,j=

(1 (L Dfi(x), ka(x)>H

[

6 5@
Ou

+ £ 2 RLA

(F(x)){DF'(x), DF/(x)> u

d
., a{' e,

+ 3P F@ILF)  in L)

as k—>oo. Thus uoFe H(1, 2, 1; 1). Q.E.D.
Using this lemma we shall generalize Lemma 2.4 as follows:

Lemma 2.7. If F,GeH(1,2,1;1) and F, G are both bounded, then the
following equality holds.

(2.20) SBLF(x)G(x)u(dx) =SBF(x)LG(x)u(dx).

Proof. From Lemma 2.4, (2.20) holds if G is a smooth functional. We can
see by using Lemma 2.6 that G is approximated by smooth functionals which are
uniformly bounded and hence (2.20) follows. Q.E.D.

Lemma 2.8. If F and G belong to H(1, 2, 1; 1) and they are both bounded,
then F(x)-G(x)e H(1, 2, 1; 1) and the following equality holds;
(2.21) L(F - G)(x)=LF(x)G(x)+2{DF(x), DG(x))z+ F(x)LG(x).

Proof. Let {f,}#, and {g,}%; be approximating sequences for F and G
respectively. From Lemma 2.6, we may assume that {f,}>, and {g,}2, are uni-
formly bounded and converge a.e. (u) as k—oo. Clearly fi(x)-g.(x) is twice B-
differentiable. We shall show that {f,-g,}%, is an approximating sequence for
F.G. Since {fi}i%, and {g,};>, are the approximating sequences for F and G
respectively we have

Slx)gi(x) — F(x)G(x) in L'(p),
D(fi 91) (x) = gu(x)Dfi(x) + fi(x)Dg(x)
— G(x)DF(x)+ F(x)DG(x) in L*u; H),
D2(fi.- gi) (x) = gu(x)D? fi(x) + Dfi(x) ® Dgi(x) + Dgy(x) ® Dfy(x) +fi(x)D?g,(x)
— G(x)D?F(x)+ DF(x)® DG(x) + DG(x) ® DF(x) + F(x)D*G(x)
in L' u; £%4)(H; R)),
L 91) (x) = Lfi(x)g(x) + 2{ Df(x), Dgu(x)) 5+ fi x)Lgi(x)
— LF(x)G(x)+2{DF(x), DG(x))y+ F(x)LG(x) in L(u)
as k—>oo. Thus we have F(x)-G(x)e H(l, 2, 1; 1) and (2.21) holds. Q.E.D.
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3. Absolute continuity of probability laws

Let F be an Ré-valued Wiener functional. We investigate the absolute con-
tinuity of ueF~! i.e., the probability law on R¢ induced by F, with respect to
Lebesgue measure. Original method is due to Malliavin using stochastic derivatives.
Here we rephrase his ideas using our derivatives.

‘ Lemma 3.1. (Malliavin [6]) Let v be a finite measure on R? such that there
exists a constant C>0 and for any ¢ € CF(R?)

(3.1) |Snd—gg—v(a’é) <Clgle for k=1,2,...,4d.

Then v is absolutely continuous i.e., there exists ue L'(R?) such that v(d&)=

u(&)de.
Using this lemma we have the following main theorem.

Theorem 3.1. Let F=(F!, F%,...., F4) be an R4valued Wiener functional
defined on B. We assume that F satisfies the followings:
(i) FieH(,2,1;1) i=1,2,..,4d,
(ii) o4 (x)=(DFi(x), DFi(x))yeH(1,2,1;1) i,j=1,2,..,d,
(iii) det (¢%(x))#0 a.e. ().

Then the probability law of F is absolutely continuous.

Proof. Take an arbitrary ¢>0. Since o(x)=(g'/(x)) is invertible a.e. (u)
i.e., poo~1 has its full measure on GL(n), there esxists ; € C¥(GL(n)) such that
l(x)u(dx) — u(dx)|| <e where Yy=y,00 and the norm | -|| is the total variation.
Moreover there exists u: GL(n)—»M, (M, is a space of (n, n)-matrices) such that
u(A)=A"1 on the support of ¥, and ue CP(GL(n)). Let {="({;, {5,..., {s) be the
first column vector of u(o) (for simplicity we consider only the first column vector,
the other case being similar). Note that kz: {,0%=4,; on the support of y. From

Lemma 2.6 ¥, {,e H(1, 2, 1; 1), k=1,2,...,n. Let ¢ e CP(R?Y) and ¢=poF. We
shall show the following equality.

32) {2 L0DP), DF()> ug(x)u(dx)

== {, £ (L) <Dp(), DFH)) -+ $(0)<DLu(x).DF(x)

+ (x)g () LF*(x)} ¢ (x) u(dx).

First we show that (3.2) holds for F&=cyoF*, where cy is the function defined by
(2.5). We may assume that the derivatives of cy is uniformly bounded in N. Since
F}% is bounded and belongs to H(1, 2, 1; 1) we have, from Lemma 2.7 and Lemma
2.8, that
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[, £ 6.0 <DFy(), DEx)>9x)n(d)
—4{ S GELFE-$) ()= FY (LG () ~ LY F (0} $(0)n(a)

— 4, £ LEen @A) - L Py ) (0 = W LS9 ()
Bx)(d)
= { £ @ DL(x), DFY®)Y i+ L(x)<DY(x), DFE(x)>

+ {2 (x) LFR(x)} @(x)u(dx)

Note that DF§—DF* in L*(u; H) and LFf—LF* in L'(u) as N—oo. Hence by
letting N— oo, we have (3.2). On the other hand,

[, £ 60O (x), Dp) np(x)n(d)

il (i (x){DF*(x), g?, (F(x))DF'(x)> y¢(x)u(dx)

d ki 1%
={ 2 Lo S5 (Fe)g(0nd)

S8 (FODg(ou(d).

Thus we have
(3.3 {28 9 @uEI<Clol.
where

C= SB I él {Ck(x) {D¢(x), DF*(x)) g+ ¢(x){DL(x), DF*(x)> 4
+ Ck(x)gb(x)LF“(x)} lﬂ(dx)

Consequently y(x)u(dx)oeF~! is absolutely continuous by Lemma 3.1. But [y(x)-
u(dx)—pu(dx)|| <e and ¢ is arbitrary. Hence puoF~! is absolutely continuous.
Q.E.D.

4. Derivatives of the multiple Wiener integrals.

In this section we shall investigate the differentiability of the multiple Wiener
integral. Let (B, H, u) be the Wiener space. We put T=[0, 1]. For fe L%(T?)
(peN), we define a multiple Wiener integral I,(f) of f as

1 ty tp-1
@D L= 3 [ ax) (" ax) (77 oy toapens tomdx(@y)

P
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where integrals are understood in the sense of Ito’s stochastic integrals and ¢ runs
1 1

over all permutations of {1, 2,..., p}. We also denote S S Sy, ta,enn, t)dx(ty)
0 0

dx(ty)---dx(t,) in place of I,(f). Then the mapping I,:f—1I,(f) is a bounded

linear operator from L2(TP) into L2(u) such that

(4,2) |Ip(f)|i2([l)= IIp(f)liz(u) =P!lf|iZ(TP)SP!|f|iz(Tp)

where f is the symmetrization of f:

1
(43) f(tls 15000y tp)= ? ZS f(tcr(l)’ ta(2)9"-9 to'(p))'
€Sy

We shall show that I,(f) has all moments and I, is continuous mapping from L2(T»)
into L4(y) for any g>1. First, we introduce some notations. For fe L*T?) and
geL¥(T9 (p, q=>1), f®g € LAT**1) is defined by

F®g(ty, taseens ty S1y S20ees )= f(t1, taseees 1)9(S1, S250e05 Sg) -

Let {i,, i,..., i;} and {j, j,,..., j;} be I different elements of {1, 2,..., p} and {1, 2,
..., q} respectively. Then c(iy, is,..., I;5 jy5 jz, ., j0f ®g is defined by
[c(il’ i2""’ il; jl’ j29 ’jl)f®g](tls . u, ‘ii,"'-, tp’ Sqsenes gjla'--, §j,)---’ sq)]

1 1
=SO.“S0f(tl’ th"a tp)g(sbSZs'“) Sq)dul'“dul

t,l—-'—>u1 Sjlf')ul

ty,—u, Sj U,

where, for example, ;, means that the variable t;, is removed and f;, >u, means that
the variable ¢, is replaced by the variable u;. By the Schwartz’ inequality, it is easy
to see that c(iy, izyeees iy} 1 J2oeeer j))f ®g € LATP*9721), more precisely

[c(ivs Bnsens B3 J1s Jaseees IS ®Flrarera-2ty < f | 2wyl gl L2(Ta)-
Now we have;
Lemma 4.1. For fe L¥TP?), g e LX(T9)
4.4) L(N1,(9)

AT ] . P .
; T ; lz)c(l 2 )lp+q—21(c(lla12""s11;11’12""a]1)f®g)
(VY PN =2 i o
where > denotes, for each fixed |<p A q, the sum over possible

{i1s 82,00 .lx)‘=(1 2,...,p}
{J1s0250000di}={1 y2,0q)

ways of choosing | different elements {iy, i5,..., i} and {j,jz,..., ji} from {1,2,..., p}
and {1, 2,..., q} respectively.

Proof. Without loss of generality we may assume g<p and we prove it by
induction on g. For g=1, it was proved by It6 ([2], Theorem 2.2). Assume that
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the formula is true up to q. Let fe L(T?), g€ L*T9) and he LT). We denote
f=f@ty, tay..s t,), g=9(5y, Sa5..., 5;) and h=h(s,,). By induction for q and 1,

I()1+1(g®h)

= LN UDLE) = 3, Ty-1(e(Fig+ Da®h)

= LNL@LW = X L(Nli(e(: g+ Dg@h).

By induction,

IL(N)H1,(9)
4 1 .. e s s .
=Z 1_ Z Ip+q—21(c(ll9 12""5ll;]lﬁ.]Za""Jl)f@g)‘
=0 (i1, 82,0000 11} ={1,2,...,P}

{J1sd2se00d1}E(1,2,000, 4}

Hence we have

Ip(f)1q+l(g ®h)

3 1 Lo s s ,
= Z 77 . Z Ip+q—21(c(111 Igyeeey ll;]b 129"-7Jl)f®g)
1=0 &° {iy, iz, i1} S(1,2,.. ,)
{J1sd2se0d1}={1,2,.0,0}

X 1) = 3 L(N)y-1(e(i: g+ Dg @h).

Again by induction for p+q—2/, 1 and p, g—1,

L)1 (g ®h)
q
S0 > Lt gri=21({€(is, dapeess £13 712 Jreees /1) ®9) ©F)
1=0 (i1, 82,0 i1}<{1,2,...,P}

Uthizemmdi}e{1,2,.. na)

L1

+2 77 . -

1=0 b= {ig, Q2,0 11}S{1,2,0., P} P14 1#F i1, 02,0001
{Jird2seend1}={1,2,..,0}

Ip+q—2!(c(il+ls ¢I+ 1){C(i1, i27"" il;jl, j25"', ]l)f®g}®h)

k=
+3 T i Lz
=0 {ity 825000y 01}S{1,2,0.0, P} Ji+1F J10d 20000 J1
(.’hjzy"-rjl)c(lyzy---:q)
Ip+q—21—1(c(jl+1’q+ D{c(1, taseensiys j1s Jasees JDS® G} ®h)

g ]

_Z z T
Jj=11=0 {15 82, 000y 01} E{1,2,..

P}
{J1sd2seenndi}={1,2,.,q\ {j}

Ip+q—21—1(c(ils Dgeees 813 J1s J2seees JOS®{c(js g+ 1)g®R}).

Note that the third term and the forth term are cancelled each other. Consequently,
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Ip(f)1q+1(g ®h)
qil I .. coe , h
_l=0 l' {il,iz,...,il)CZ{I,Z ,,,, ) p+q—2!(c(lb12;-'-3lla]l’]29"°]l)f®{g® })
Ud2seaii}e{l,2,...,q,9+1)

Now (4.4) follows by noting that functions of the form g®#h for ge L¥(T%) and
he L*(T) span LY(T4*Y), Q.E.D.

By this lemma, we have the following estimate:

SBIp(f)Zlq(g)zﬂ(dx)SKp,q(lfliz(mlgliur«))

for fe L*(T?) and g € L*(T%) where K, , is a constant which depends only on p and
q. If we use this lemma repeatedly, we have

RACARATATS ATATTER)

< Kpl,pz,...,p,.lfl|%.2(TP1)|f2li2(TP2)'”Ifnliz(TP")

for f, e LX(T?), f, € L¥T">),..., f,e LXT?") where K, ,. . is a constant which
depends only on py, p,...., p,. Especially, for fe L*(TP)

[ 1(uan <c, it

where C,,=K, , . Hence I(f) has all moments.
n

Now we can investigate the weak H-derivatives of I,(f) of fe L*(T?). Since
I(N=1, f) where f is the symmetrization of f, we may assume that f is symmetric.
We denote the space of all symmetric functions in L%(T?) by LX(T?). Let f,, k=1,
2,... and f be in L*(T?) such that |f,—f|.2r»)—0 as k— o0 and f, is a special step
function for every k. Here by a special step function, we mean a function of the
form

(4‘5) f(tl’ t2"", 1p)

N=1
= z SivesiplaGivizgonip (B 2250005 1)

i1,825000,ip=0

where A={0=t,<t,<---<ty=1} is a partition of [0, 1],
A(iys dgseees )=t G4 ) X [ty Ly 1) X o X [0 b4 1)

and f;, ;, .., are constants such that they are symmetric in iy, i5,..., i, and f; ;, ;.
=0 if there exist same elements among i,, i,,..., i, (cf. Ito [2]). We shall show
that {I,(fy)}¥=, is an approximating sequence for I,(f) in H(po, p;s-..., p,)(R) for
any neN and py, py,..., p,=1. First we investigate I,(f) such that f is a special
step symmetric function of the form (4.5). Then the multiple Wiener integral
of f is expressed as
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(4.6) L= S ity A3 i i)

l|,l'2 ..... p=

where  Ax(iy, iy,..., ip)=(X(1;, 4+ 1) = x(t; N(X(t;, + 1) = x(t:,)) - (x(t;, + 1) — x(1;,))-

Clearly I,(f) is B-differentiable and its derivatives are given by

@D L@ =p T fi A5 ) () =7 (0,)

Liyl2y00,0p

(4.8) L(f)(x)(y, 2)

=p(p— 1). Nil . =Ofi.,i;,i,....,i,,Ax(isa---, ip)(y(ti|+l)_y(ti1))

l|,i2,i3 ..... ip
X (z(ti,41) — 2(8:,))
for y, ze B and so on. Finally

Ip(f)(P)(x)(yla Ya2seees yp)

=p! Nil, =0fi1,i2 ..... (V1) =y (@) (2t 40) — y2(t:,))

i1yi2,.00,ip
X(Vp(tie1) —yp(ti,))
for y, y;...,y,€B and
Ip(.f)(p+l’=0’ Ip(f)(P+2)=O,... .

Next we study the integrability of H-derivatives of I,(f).
{,ID1,(N(ln(dx)

50, T fuin A5l b, )46 ()

Bi|=0 iz,ig,...,lp

.....

X Ax(iZ""y ip)Ax(st"'v jp)/’l'(dx)

=pp—N! T 0'?.,.~2 ..... i 4G A0y, ip)

i1,02,0ip=
=P(P!)|f|iz(rv)
where |- | is the Lebesgue measure. Similarly, we have
[ 1D, w40 =p(p = DI e,

In general

[, 11Dl womit(d)=p(p =1 (p=mt DD flEscrny.

279
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Thus we obtain that D™I (f)e L*(u: £7%)(H: R)). We can obtain stronger results
by using Lemma 4.1. First we note that

1
0

L By u=pl (. e o, 0 1)1} dx(as) - dxtry

for he H. Let {h}Z, be a complete orthonormal system in H. Then we have

[ 101,00 tnax) = (D16 ()

={ (& on»ne, b Rruc)

0

=2 SB (DI(f)(x), ki) 5<DI(f)(x), hy) hu(dx).

i,j=1

By the Schwartz’ inequality, this is majorized by

£ [, ORI, myhu@n (oL, )

and this is majorized by

PRCREN

(KSI---Sl{ :)f(sl, P sp)h;-(sl)ds,}zdsz---dsp>

0 0

(At o b0 1 )
S

=K2B;...S‘ $ {g;f(tl, fyoon, z,,)h;(zl)dzl}zdtz...d,pT

0i=1
=K2|f|?,2(1r)

by the remark of Lemma 4.1 where K is a constant depending only on p. Thus we
have DI (f)e L*(u; H) and

[, IPL () <Kl fltaan,
Similarly we can show that for any p, >1, DI (f)e LP'(u; H) and
(4.9) [, IDLNIR(X) < Kpopl £,
where K, ,, is a constant depending only on p and p,. We can get similar results
on the higher weak H-derivatives; for any meN and p,>1 D"I(f)e LP~(u;
Z%(H; R)) and

(4.10) [ 1D LN () < Ko f

where K, ,. is a constant depending only on m and p,. Now the following propo-
sition is easily obtained.
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Proposition 4.1. Let f be an element of LX(T?). Then for any neN and
Do> Pise-er Pa2 1, I(f) € H(po, Pi»---» P»)(R) and its weak H-derivatives are given
by

@11 <DL, By a=p |+ Attty ) @)t} dx(12) ()
for heH,
(4.12) D2, (f)(x)(h, k)

=p(p =1 ({1 At 2, e ) @R )t} (1) ix(2,)

for h, ke H and so on. Moreover

@.13)  DPL(N()=p!f. DFIUf)(x)=0, D72 (f)(x)=0,...,

where we regard f as an element of #7,,(H; R) in the following way;

1 1
(4'14) f(hl, h29'-°a hp)=go"'gof(tla Iy5eeey tp)hll (tl)h,Z (tz)“'h;,(tp)dtldtz“'dtp
for hy, hy,..., h,e H.
If {fi}& is a sequence of special step functions in L2(T?) which converges to
fe L¥(TP) in L2(T?) then {I,(f)}e=1 is an approximating sequence for I1(f) in
H(po, pys--» P)(R).

From this proposition we see that p+ I-th weak H-derivative of the multiple
Wiener integral I,(f) of fe L?(Tr) is 0. The converse also holds as we shall see in
the following.

Proposition 4.2. If Fe H(py, pi,.--» p,)(R) and D"F=0 for m<n, then F is
the linear combination of multiple Wiener integrals with degree <m.

Proof. From the assumption D"F=0 and Proposition 2.2, we have that
Dm~1F =constant a.e. (u). Hence there exists f,_, e L%T™!) such that Dm1F
=(m—1)!f, -, here we identify L2(T™"!) and #75,'(H; R) as in Proposition 4.1.
Then C]early F_Im—l(fm—l)EH(pO’ pl*""pn)(R) and Dm_l(F'—Im—l(fm—l))=0'

m—1 -~
By repeating this procedure we have F= Y I,(f,) for some f,e L¥(T*) k=1,2,...,
k=0

m—1. Q.E.D.

Next we consider the weak L-derivative of the multiple Wiener integral.. Let

S be a special step function in L?(TP) defined by (4.5). Then firstly we have from
4.7)

(I(N) (%), x)=pI(f)(x).

Secondly we have

00

trace D21,(f)(x)= Y D2L,(f)(x)(hi,h;)

i=1



282 Ichiro Shigekawa

where {h;}%, is a complete orthonormal system in H. We choose {h;}, as

follows. Let h;=h;/|hily i=1, 2,..., N, where ﬁi(t)=gtl[,,_h,i)(u)du. By adding
0

appropriate elements hy,, hyya,... to {h;}¥,, we get a complete orthonormal
system {h;},. Since fis a special step function

0

trace D21,( f)(x)= X D2L(f)(x)(h;, h;)

i=1

- % p(r- 1)&(’)---3;{5;8;;'(:,, ty, L3senn) t,,)h;(tl)hg(tz)dt,dtz}
dx(t3)-dx(t,)
0.
Therefore
LI (f)) (x)=trace DI () (x)—(I(f)(x), x)=—pl (f)(x).

From this we can easily conclude the following.

Proposition 4.3. If fe LX(T?), then I1,(f)e€ H(po. p,. p2; p.) for any po, py,
P2, pL>1 and weak L-derivative of 1,(f) is given by

We have defined the space H(pg, py,---» P»)(R) for pg, pys..., p,=1. We simply
denote H(2, 2,...,2)(R) by H™2, We may regard H™? as a subspace of L3(u). It

n+1
is well known that F € L%(u) can be expanded by the multiple Wiener integrals;

(4.16) F=3% I(f,) in L)

p=0

where f, € LX(TP) for p=1, 2,... and

o0 0
(4'17) |F|i2(u)= [;O IIp(fp)Iiz(u)= pgop!lfpliz(Tp)'
Using this expansion, we can characterize H™?2 as follows:

Proposition 4.4. Let Fe L%(u) be expanded as (4.16).  Then FeH"? if and
only if

(4.18) 3 p(p— 1) (p=n+ D)3z < .

p=n

Proof. (Necessity) Let Fe H™? given by (4.16) and {h;}{Z, be a complete
orthonormal system in H such that ;e B¥*. From Lemma 2.3,

[, <DFG), 1) wHo (o)

= P {= <DH, (), By o+ (i, ) H, ()} ()
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= P (= Hyms (5)+ (b, %) Hy()} ()

= F)(@i+ D) Hors (n(d)

where H,(x) is a Fourier-Hermite functional given by (2.11) and we use the formula
(2.16). Here we used (2.14); in Lemma 2.3 we prove it only for smooth functional

1
but it can be extended to cover this case. We note that {H,(x)/(a!)?}, is the com-
plete orthonormal system in L?(x) and

Ha(x)=ﬁl|a!(hll®”'®h,1®, h®--®hy®-+-). If p=la+,|, then we have
a, a

SB (DF(x), by g H o (x)u(dx)

= LU @t Do (1)

1

= BUGED [ Fts ey 1 (00) Bt BiC)
By(ta s a,) - dtydty - dt,
= (el DS, @) H,(2)n(dx).
Hence we have
CDF(x), by u= 5 plymi(e(1; DS, @),
Similarly we have
D"F(x)(hy,, by Bi,)
= 3 po= 1) (p=mt Dlpop(e(L, 2,0y mi 1, 2,0, m)fy®
{h;, @ ®h; }).

Finally, since F € H"-2 we have

[, 1D FC) Bt omyi ()

={ 8 Db by b))

Big,iz,e.,in=1

by da = SB[;:‘.'IP(p— - (p—n+ 1)1, ,(c(1,2,..., n; 1, 2,..., n)f,
Q{h,®--®h;,})]1*u(dx)
= i iP(p—l)...(p—n+1)(p!)S;...S;{S:)...Sl

i1,82,..,in=1p=n o
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2
fp(th 150005 tp)h,il(tl)“'h;n(tn)dtl"'dtn} dtn+1"'dtp

p(p—1)(p—n+ DY foli2crr

n

M8

£ 2= D=t DI

Thus we have (4.18).
(Sufficiency) Take F e L?(u) satisfying (4.18). Choose a complete orthonormal

N
system in H such that h;e B¥*. We put Gy= 3 I(f,) for N=1,2,.... Then
p=0

Gy e H™? from Proposition 4.1 and

SB ID"G (%) %, smy 1 (dx)

=§ £ DG iy by i) u(d)

Bij,izsyim=

S S 3 D)) iy, By, y,)?u(d)

Biy,izs...,im=1 p=0

(s 1!7(11—1)'-’(10—m+I)S;-'-SI{SI---S1

{1,020 im=1 SB p=m olJo 0

f(tla 1250005 tp)h:‘l(tl)hi'z(tz)"'hli,,.(tm)dtl"'dtm}dx(tm+l)"'dx(tp)]2)u(dx)

- 3 > [p(xv—l)-~-(p—m+l)z(p—m)!S;'"SI{SI'--S1

i1,i25000im=1 p=m oLJo 0

2
Pty by 8B 01V (1) (b)) ity ]
N
=2 p(p= 1) (p=—m+D(2Nlf, L2am

= £ plp= 1 (p=m+ DI oo

Now it is easy to see that {Gy}%-, is a Cauchy sequence in H"-2 from (4.18). Since
Gy—F in L*(u) as N—ooo, the limit of {Gy}®-, coinside with F. Consequently
FeH"?2. Q.E.D.

Proposition 4.5. We have H?»?(=H(2,2,2)(R))=H(2,2,2;2) and the
following equality holds;

@19) [ LA = | (DFG)IE+ DGO iy i(dx)

for FeH(2, 2, 2;2).
Proof. It is obvious that H(2, 2, 2; 2)cH*2. Let Fe H>? be expanded as
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N
(4.16). If we put Gy= 3 .I,(f,) for N=1, 2,..., then from Proposition 4.3, we
=0
have Gye H(2, 2, 2; 2) and

N
LGN = El —plp(fp)'
Hence
N
1LGalEn =, EGu(xu(ax) = £ P21 (f)l

But from Proposition 4.4, we have
p);zp(p— DIL(fp)1E20 < 0.

Then it is easy to see that {Gy}¥- is a Cauchy sequence in H(2, 2, 2; 2) and hence
FeH(2,2,2;2). Thus H»2=H(2, 2, 2;2). Now it is clear that

LF= 5 ~pL,(f,).

o
ILFI%.Z(A) = p;lpzllp(fp)liz(u)'

But from Proposition 4.4, we have

QO
IDF(x)|} 200, = El P2

Qa0
|D2F(x)|iz(u;yfz)(u;m) = EZP(P— l)llp(fp)liz(n)‘

Hence we have (4.19). Q.E.D.

So far we have investigated the derivatives of multiple Wiener integrals. For
another example, we discuss on solutions of stochastic differential equations; we
do not give a proof, however. We consider the following stochastic differential
equation in one dimension (the extension to the multi-dimensional case is straight-
forward);

(4.20) xo=e+{) a(X(s))dx(s)+ | b(X(s))ds.
We assume a, be CZ(R). Then the solution X(2) of (4.20) for fixed t belongs to

H(2, 2)(R) and its weak H-derivative DX(t) is given by the solution of the stochastic
differential equation

(4.21) <DX(), hyu= S;Z—Z (X(5))<DX(s), h) ydx(s)

+ S;j_g (X(5)){DX(s), hyyds+ S;a(X(s))h'(S)ds
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for heH. Furthermore, if a, be CP(R), then X(t) for a fixed ¢ belongs to
H(pg, P1»---» Pw) (R) for every n and every pg, pyse.os P> 1.

5. Absolute continuity of probability laws of the multiple Wiener integrals

Now we investigate the absolute continuity of probability laws of the multiple
Wiener integrals as an application of Theorem 3.1. First we treat the case of a
single multiple Wiener integral.

N
Theorem 5.1. Let F be a real valued Wiener functional given by F= 3% I (f,)
=0

for fpel:z(T"), p=1,2,....N. If fy#0, then the probability law on Rpinduced
by F is absolutely continuous.

Proof. We prove this theorem by induction on the degree N. For N=1, the
theorem is true since I,(f;) has a normal distribution. Assume the theorem is true

N+1
for N. Let F= Y If,). The conditions (i) and (ii) of Theorem 3.1 are satisfied
=0

p
by Propositions 4.1 and 4.3. Therefore it suffices to establish the condition (iii),
i.e.,

a(x)=(DF(x), DF(x)yp=|DF(x)|}#0 a.e. (1).

For any he H,

1 1 1
DFG), By u= (V4D 0 fuar 4t )t ) d | dix(a)--

dx(tys+,) + (lower terms).

Since fy4; #0, there exists 1 € H such that
1
So Sner @y, taseees iy )R (21)dt #0 in  L%(TM).

Hence, by induction, we have {DF(x), h)y#0 a.e. (1) for such he H. Thus o(x)
=|DF(x)|%#0 a.e. (1) and the theorem is true for N+1. Q.E.D.

Next we discuss the case of a system of multiple Wiener integrals. This case is
rather complicated. We give here one sufficient condition for the absolute
continuity.

Theorem 5.2. Let F=(F!, F2,...,F%) be an Ré-valued Wiener functional
given by

;N . . -
(5.1) F'=p§01,,(f,,"), i=1,2,..,d, fPeLl¥T?).

We assume that there exists h e L¥(T) such that the system of functions g(t), g,(t),
...y §4t) defined by

1o
(5.2) gi(t)=SO"'SOf§v‘,)(t, Loy EN DR (L) B (2y,)dty - dly,
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is linearly independent in LXT). Then the probability law on R* induced by F
is absolutely continuous.

Proof. Put G=1,(g), K=1k) for ge L¥(T?), ke L¥T%). We shall evaluate
{(DG(x), DK(x))>y concretely. Let {h;}%, be a complete orthonormal system in
H. Then by Proposition 4.1 and Lemma 4.1,

(DG(x), DK(x)>u= 3. <DG(x), h> u{DK(x), hidn

= § 11 (5 clms D@41 (3, elni @)
© | PAdTL P4
=27 2z 2
i=1 ¢ =0 m=1n=1{m,my,....m}c{1,2,...,p}\ {m}
{1y 12, ey WAL, 2yeeen @)\ {0}
Ip+q—2[—2(c(ml’ Myyeeny My5 Ry, Rgees, 1) (e(m; D)g @A) (c(n; k@A)
pAd |
=3 7 3 Iyg-2(c(my, my,...m; 0y, ny,..., n))g®k).
=1 ¢ {my,ma,...,m}<{1,2,...,p}
{1y n2, . m}e{1,2,..,q}

Hence if ge L%(T?) and ke L2(T4), then the highest term in the expansion of
1

{DG(x), DK(x))y is the multiple Wiener integral of pqS g(u, ty,..., t)k(u, ss,...,
0

spdu. Now it is clear that ¢'i(x)=(DF(x), DFi(x))y€ H(l, 2, 1; 1). Thus the
condition (i) and (ii) of Theorem 3.1 are clearly satisfied. It suffices to establish the
condition (iii) i.e., det (¢*(x))#0 a.e. (1). But

(5.3) det (¢¥(x)) = tgd sgn (1) .-=1£[1 ot (x).

Since ¢if(x) is a sum of multiple Wiener integrals, so is also det(¢*/(x)). The
highest term in the expansion of det(ai/(x)) is the multiple Wiener integral I,(f)
of the function f e L?(T*) defined by

(5:4) f=NiNE--N; 3 sgn(n){c(l; DA QSN @

®{c(1; DAY SFEN
where k=2( Z N;—d). We shall show that the symmetrization f of f is not the

Zero e]ement m L2(T*). Tt is easy to see that f#0 if and only if there exists h e H
such that the inner product <h'®@h'®-+-®@H’, f>12,19#0. But this inner product is
just a constant multiple of the Gramian of the system of functions {g,(f)} defined by
(6.2) and consequently, f#0 if and only if {g,(¢)} defined by (6.2) is linearly independ-
end for some he H. Thus we can conclude f #0. From Theorem 5.1, det (¢'/(x))
#0 a.e. (p). Q.E.D.

We shall give an example.

Example. Letf,e L2(Rr) for p=1, 2,..., N which has a support on (— o0, 0]7.
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We define the stationary process {X,; —oo<t< oo} by
N t t
X,=p§0 S_m---g_wf‘,(u1 —tuy—t,..., up—t)dx(u,)---dx(u,)

where {x(t); — oo <t< oo} is the Wiener process such that x(0)=0. Then any finite
dimensional joint distribution is absolutely continuous.

Proof. So far we assume that the Wiener process is defined on the time interval
[0, 1]. But we can easily extend above results in the case of time interval (— co, c0).
We shall prove that for —oo<t; <t,<:--<t,<co, the probability law of (X,,, X,,,
..., X, ) on R" is absolutely continuous. We prove it by induction on n. We may
assume that f,=0, f;=0,..., fy_;=0 and the support of fy is not included in
(—o0, —¢]N for any £>0. The general case can be proved similarly. For n=1,
the probability law of X, is absolutely continuous from Theorem 5.1.  Assume that
the statement is true for n and consider the law of (X, , X,,...., X,, X, , ). If we
put

th th
Xt =S_w“’g_wf1v(u1 —lpitrees Un—top)dx(uy) - dx(uy)

th+1 th+1

+g_w S Lm0, 1™ \(=o0,1,0% (155 UN)
Xy —tpi1sens Uy — 2y 1)dx(uy) - dx(uy)

=Y1+Y2,

then clearly (X,,, X,,...., X,,, Y;) and Y, are independent and (X,,,..., X)) and Y,
have the absolutely continuous probability laws from the assumption of induction
and Theorem 5.1. Hence for any Borel subset A =R"*! such that |4|=0,

(X Xegpevor Xpo X1,i JEA)
=E,[1,X,, X;,o..0» Xs,p Y1+ 13)]
=E[E[1,X,; Xppeens Xy, Y1+ V)| Xy, Xopoons Xy, Y111

=E,‘S_w (X, Xopoons X Yo+ Ey,(dE)

where vy, is a induced measure by Y,. Since vy, is absolutely continuous and the
probability law of (X,,, X,,,..., X,,) is absolutely continuous, we have

(X Xippoor X,s X, ) € A)=0.

th+1

Hence the probability law of (X,,, X,,,..., X, X,,,,) is absolutely continuous.
Q.E.D.
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