Irreducible Banach representations of locally compact groups of a certain type

By

Hitoshi SHIN'YA

(Communicated by Prof. H. Yoshizawa, Dec. 12, 1978)

Introduction

Let *G* be a locally compact unimodular group, and $\{5, T_x\}$ a topologically irreducible representation of *G* on a complete locally convex topological vector space \mathfrak{H} . If there exists a compact subgroup *K* of *G* and an equivalence class δ of irreducible representations of *K* such that $\{\mathfrak{H}, T_x\}$ contains δ finitely many times, then {5, T_x } is called "nice". Let χ_{δ} be the normalized trace of δ and *du* the normalized Haar measure on *K*, and put $\mathfrak{H}(\delta) = E(\delta) \mathfrak{H}$ where $E(\delta) = \int_K T_u \overline{\chi_{\delta}}(u) du$. If the multiplicity of δ in { \mathfrak{H} , T_x } is p, then the function

$$
\phi_{\delta}(x) = \text{trace}\left[E(\delta)T_x\right]
$$

on *G* is called a spherical function of type δ of height *p*. Two topologically irreducible nice representations $\{\mathfrak{H}, T_x\}$ and $\{\mathfrak{H}', T'_x\}$ of *G* are called spherical-functionequivalent (or SF-equivalent) if there exists a common spherical function corresponding to both representations. In fact, this is an equivalence relation (see Theorem 3). If *G* is a connected unimodular Lie group and if $\{\mathfrak{H}, T_x\}$, $\{\mathfrak{H}', T'_x\}$ are *K*-finite Banach representations for a compact analytic subgroup *K*, then they are SFequivalent if and only if infinitesimally equivalent (Theorem 13 in [4]).

Let $\{\mathfrak{H}, T_x\}$ be a topologically irreducible nice representation of *G* on a Banach space \tilde{S} . Put $\rho(x) = ||T_x||$ and denote by dx a Haar measure on *G*. Then the set $L_{q}(G)$ of all functions *f* on *G* satisfying

$$
||f||_{\rho} = \int_{G} |f(x)| \rho(x) dx < +\infty
$$

is an algebra with the convolution product. By the assumption, there exists a compact subgroup *K* and an equivalence class δ of irreducible representations of *K* such that $0 < \dim \mathfrak{H}(\delta) < +\infty$. For a non-zero vector $a \in \mathfrak{H}(\delta)$, put

$$
\mathfrak{H}_{\rho} = \{T_f a \, ; \, f \in L_{\rho}(G) \}
$$

where $T_f = \int_G T_x f(x) dx$. This is a *G*-invariant dense subspace of \mathfrak{H} , and independent

of the choice of such K , δ , and α (cf. Lemma 4 in [2]).

Assume that $G = S \cdot K$, $S \cap K = \{1\}$, where *S* is a closed subgroup and *K* a compact subgroup of *G*, and that the decomposition $x = su$ ($s \in S$, $u \in K$) is continuous. Let $\{\mathfrak{H}, T_x\}$ be a topologically irreducible nice representation of G on a Banach space $\mathfrak H$ which contains an equivalence class δ of irreducible representations of K finitely many times. Then our main theorem consists of two assertions. The first is that there exists a topologically irreducible representation Λ of S on a Banach space such that $\{5, T_x\}$ is SF-equivalent to a constituent of the induced representation of *G* from *A*. The other is that one of such representations *A* of *S* is obtained as follows; we take a non-trivial maximal $L_o(S)$ -invariant subspace \mathcal{K} of \mathfrak{H}_o with $p(x) = \|T_x\|$ (the existence of such $\mathcal X$ will be proved in this paper), and introduce a suitable topology into $\mathfrak{H}_p/\mathcal{K}$ with respect to which it becomes a Banach space. Since it is proved that $\mathcal X$ is S-invariant, we obtain the naturally defined representation of S on $\mathfrak{H}_{o}/\mathscr{K}$. This representation is one of those we want.

§1. Representations of the algebra $L^{\circ}(\partial)$ corresponding to those of G

Let *G* be a locally compact unimodular group, *K* a compact subgroup of *G,* and \hat{K} the set of all equivalence classes of irreducible representations of K. Let δ be an element of *k* with degree *d .* Fix an irreducible unitary matricial representation *D(u)* of *K* belonging to δ , and denote by $d_{ij}(u)$ its (i, j) -matrix element. Put $\chi_{\delta}(u)$ $= d \cdot \text{trace } D(u)$. We shall denote by $L(G)$ the algebra of all continuous functions on *G* with compact supports, and, for every function $f \in L(G)$, define

$$
f^{\circ}(x) = \int_{K} f(uxu^{-1}) du, \qquad f * \overline{\chi}_{\delta}(x) = \int_{K} f(xu^{-1}) \overline{\chi}_{\delta}(u) du,
$$

$$
\overline{\chi}_{\delta} * f(x) = \int_{K} f(u^{-1}x) \overline{\chi}_{\delta}(u) du,
$$

where *du* is the normalized Haar measure on *K*. We shall regard the algebra $L(G)$ to be endowed with the usual inductive topology generated by Banach spaces $L_c(G)$ of all continuous functions with supports in compact subsets $C \subset G$ with supremum norm. Then the sets $L^{\circ}(G) = \{f^{\circ}; f \in L(G)\}, L(\delta) = \{\overline{\chi_{\delta}} * f * \overline{\chi_{\delta}}; f \in L(G)\}, \text{ and } L^{\circ}(\delta)$ $= L^{\circ}(G) \cap L(\delta)$ are closed subalgebras of $L(G)$.

Let \tilde{p} be a complete locally convex topological vector space, and $\{\tilde{p}, T_x\}$ a representation of *G* on \tilde{S} . The operators

$$
E(\delta) = \int_K T_u \overline{\chi_{\delta}}(u) du \text{ and } E_{ij}(\delta) = d \int_K T_u \overline{d_{ij}}(u) du,
$$

where $i, j = 1, \ldots, d$, are continuous and satisfy

$$
E(\delta) = \sum_{i=1}^d E_{ii}(\delta) , \qquad E_{ij}(\delta) E_{kl}(\delta) = \delta_{jk} E_{il}(\delta) ,
$$

denoting by δ_{ik} the Kronecker's delta. Put

$$
\mathfrak{H}(\delta) = E(\delta) \mathfrak{H}, \quad \mathfrak{H}_i(\delta) = E_{ii}(\delta) \mathfrak{H} \qquad (i = 1, ..., d).
$$

Then $\mathfrak{H}(\delta)$ is invariant under the operators T_u $(u \in K)$ and $T_f = \int_G T_x f(x) dx$ $(f \in L(\delta))$ where dx is a Haar measure on G. For simplicity, we say that $\mathfrak{H}(\delta)$ is K-invariant and $L(\delta)$ -invariant. The subspaces $\mathfrak{H}_i(\delta)$ are $L^{\circ}(\delta)$ -invariant and the representations $T_f | \mathfrak{H}_i(\delta)$ of the algebra $L^{\circ}(\delta)$ are mutually equivalent since $E_{ij}(\delta)T_f = T_f E_{ij}(\delta)$ for all $f \in L^{\circ}(\delta)$. Therefore the representation $T_f | \mathfrak{H}(\delta)$ of $L^{\circ}(\delta)$ is equivalent to the direct sum of *d* copies of a certain representation *U(f).*

Theorem 1. *Let G be a locally com pact unim odular group, K a compact* subgroup of G, and δ an element of \hat{K} . If a representation $\{\mathfrak{H}, T_x\}$ of G is topo*logically irreducible, then the corresponding representation U(f) of the algebra* $L^{\circ}(\delta)$ *is also topologically irreducible.*

Proof. Let *W* be a $L^{\circ}(\delta)$ -invariant subspace of $\mathfrak{H}_1(\delta)$, then the subspace $V=$ $\sum_{i=1}^{d} \bigoplus E_{i1}(\delta)W$ is $L^{\circ}(\delta)$ -invariant. And for all $u \in K$, we have

$$
T_u V = \sum_{i=1}^d \bigoplus T_u E_{i1}(\delta) W = \sum_{i=1}^d \sum_{j=1}^d d_{ji}(u) E_{j1}(\delta) W
$$

=
$$
\sum_{j=1}^d E_{j1}(\delta) W = V,
$$

i.e., *V* is also *K*-invariant. Therefore \overline{V} is $L(\delta)$ -invariant (Lemma 14 in [2]). This means $\overline{V} = \{0\}$ or $\overline{V} = \mathfrak{H}(\delta)$ since the representation $T_f | \mathfrak{H}(\delta)$ of the algebra $L(\delta)$ is topologically irreducible (Lemma 2 in [2]). Then it follows that

$$
W = \{0\} \quad \text{or} \quad \overline{W} = E_{11} \overline{V} = \mathfrak{H}_1(\delta)
$$

respectively. Thus the theorem is proved. Q. E. **D.**

Lemma 1. Let $\{\mathfrak{H}, T_x\}$ and $\{\mathfrak{H}', T_x\}$ be two representations of G. If the *corresponding representations* $U(f)$ *and* $U'(f)$ *of the algebra* $L^{\circ}(\delta)$ *are equivalent, then the representations* $T_f | \mathfrak{H}(\delta)$ *and* $T'_f | \mathfrak{H}'(\delta)$ *of the algebra* $L(\delta)$ *are also equivalent.*

Proof. From the assumption it follows that there exists a linear isomorphism ϕ of $\mathfrak{H}(\delta)$ onto $\mathfrak{H}'(\delta)$ such that

$$
\phi T_f = T_f' \phi, \quad \phi E_{ij}(\delta) = E'_{ij}(\delta) \phi
$$

for any $f \in L^{\circ}(\delta)$ and *i*, $j = 1, ..., d$. For every $u \in K$, we have

$$
\phi^{-1}T'_{u}\phi = E(\delta) \phi^{-1}T'_{u}\phi = \sum_{i=1}^{d} E_{ii}(\delta)\phi^{-1}T'_{u}\phi = \phi^{-1}(\sum_{i=1}^{d} E'_{ii}(\delta)T'_{u})\phi
$$

= $\phi^{-1}(\sum_{i,j=1}^{d} d_{ij}(u)E'_{ij}(\delta))\phi = \sum_{i,j=1}^{d} d_{ij}(u)E_{ij}(\delta)$
= $E(\delta)T_{u}$.

Namely $T'_u \phi = \phi T_u$ for all $u \in K$ on $\mathfrak{H}(\delta)$. Thus $\phi T_f = T'_f \phi$ for all $f \in L(\delta)$ (Lemma

14 in [2]). Q.E.D.

Theorem 2 . *Le t G be a locally compact unimodular group, K a compact* subgroup of G, and δ an element of \hat{K} . Let $\{\mathfrak{H}, T_x\}$, $\{\mathfrak{H}', T'_x\}$ be two topologically *irreducible representations of* G which contain δ , and $U(f)$, $U'(f)$ corresponding *topologically irreducible representations* of $L^{\circ}(\delta)$ *respectively. Then U is equivalent to U' if and only if there exists a linear mapping 0 of 5 into* 5' *which satisfies the following conditions;*

- (a) ψ *is defined on a G-invariant dense subspace* $\mathcal{D}(\psi)$ *of* \mathfrak{H} *, and injective,*
- (b) $T'_x \psi = \psi T_x$ *on* $\mathscr{D}(\psi)$ *for all* $x \in G$,
- *(c)* $E(y) \mathscr{D}(\psi) \subset \mathscr{D}(\psi)$ *for every* $\gamma \in \hat{K}$ *, and* $E'(\gamma)\psi = \psi E(\gamma)$ *,*

(d) $\psi | \mathcal{D}(\psi) \cap \mathfrak{H}(\delta)$ *can be extended to a bijective and bicontinuous linear mapping of* $\mathfrak{H}(\delta)$ *onto* $\mathfrak{H}'(\delta)$ *.*

Proof. Assume that U is equivalent to U' . Then, by Lemma 1, there exists a bijective and bicontinuous linear mapping ϕ of $\mathfrak{H}(\delta)$ onto $\mathfrak{H}'(\delta)$ satisfying $\phi T_f =$ $T'_{f}\phi$ for any $f \in L(\delta)$. Fix a non-zero vector $a_0 \in \mathfrak{H}(\delta)$ and put

$$
\mathscr{D}(\psi) = \{T_f a_0 : f \in L(G)\}.
$$

For arbitrary *f*, $g \in L(G)$, we have

$$
E'(\delta) T'_g T'_f a'_0 = T' \overline{\chi_{\delta+g+f+\overline{\chi_{\delta}}}} \phi(a_0) = \phi(T_{\overline{\chi_{\delta+g+f+\overline{\chi_{\delta}}}}a_0) = \phi E(\delta) T_g T_f a_0
$$

where $a'_0 = \phi(a_0)$. This means that $T_f a_0 = 0$ implies $T'_f a'_0 = 0$. Therefore we may define a linear mapping ψ of $\mathscr{D}(\psi)$ to \mathfrak{H}' by $\psi(T_f a_0) = T_f' a'_0$. The injectivity of ψ follows from the above equality. Now it is clear that ψ satisfies the conditions (a), (b), and (c). To prove that ψ satisfies the condition (d), we have only to show ϕ | $\mathscr{D}(\psi)$ n $\mathfrak{H}(\delta) = \psi \mid \mathscr{D}(\psi)$ n $\mathfrak{H}(\delta)$, but this is easy.

Conversely, we assume that a linear mapping ψ satisfies the above four conditions. By the condition (c), we obtain $\mathscr{D}(\psi) \cap \mathfrak{H}(\delta) = E(\delta) \mathscr{D}(\psi)$ and therefore $\mathscr{D}(\psi) \cap \mathfrak{H}(\delta)$ is dense in $\mathfrak{H}(\delta)$. Denote by ϕ a bijective and bicontinuous linear mapping of $\mathfrak{H}(\delta)$ onto $\mathfrak{H}'(\delta)$ which is an extension of the mapping $\psi | \mathcal{D}(\psi) \cap \mathfrak{H}(\delta)$. Since $E'(\delta)T_x'E'(\delta)\phi = \phi E(\delta)T_xE(\delta)$ for all $x \in G$ and ϕ is continuous, we obtain $E'(\delta)T'_{f}E'(\delta)\phi = \phi E(\delta)T_{f}E(\delta)$ for all $f \in L(G)$, i.e., $T'_{f}\phi = \phi T_{f}$ for all $f \in L(\delta)$. Now it is clear that U is equivalent to U' by Lemma 1. Q . E.D.

Definition. A representation $\{\mathfrak{H}, T_x\}$ of G is called *"nice"* if there exists a pair (K, δ) of a compact subgroup K of G and $\delta \in \hat{K}$ which satisfies $0 < \dim \mathfrak{H}(\delta)$ $< +\infty$.

Let $\{5, T_x\}$ be a topologically irreducible nice representation of G. Then we can find a pair (K, δ) which satisfies $0 < \dim \mathfrak{H}(\delta) < +\infty$. Now we take an arbitrary non-zero vector $a \in \mathfrak{H}(\delta)$ and put

$$
\mathfrak{H}_0 = \{T_f a \, ; \, f \in L(G)\} \, .
$$

This is a G-invariant dense subspace of \mathfrak{H} , and an important fact is that \mathfrak{H}_0 is inde-

pendent of the choice of such (K, δ) and *a* (cf. Lemma 4 in [2]). The following theorem, which is the same as Theorem 9 in [4], is a corollary to Theorem 2.

Theorem 3. Let G be a locally compact unimodular group, and $\{\mathfrak{H}, T_x\}$, $\{\mathfrak{H}', T'_* \}$ *two topologically irreducible nice representations of G.* Let $\mathfrak{H}_0, \mathfrak{H}'_0$ *be the corresponding subspaces of* 5, *SY as abov e. Then the following conditions are equivalent.*

(i) For *a* pair (K, δ) of *a* compact subgroup K of G and $\delta \in \hat{K}$ satisfying $0 < \dim \mathfrak{H}(\delta) < +\infty$, the corresponding two irreducible representations $U(f)$, *U'(f) of the algebra* $L^{\circ}(\delta)$ *are equivalent.*

(ii) For every pair (K, δ) of a compact subgroup K of G and $\delta \in \hat{K}$ satisfying $0 < \dim \mathfrak{H}(\delta) < +\infty$, the corresponding two irreducible representations $U(f)$, $U'(f)$ *of the algebra* $L^{\circ}(\delta)$ *are equivalent.*

(iii) *There exists a bijective linear mapping* ψ *of* \mathfrak{H}_0 *onto* \mathfrak{H}'_0 *satisfying* $\psi T_x = T'_x \psi$ *for all* $x \in G$ *and* $\psi E(\delta) = E'(\delta) \psi$ *for all pairs* (K, δ) .

Definition. Two topologically irreducible nice representations $\{\mathfrak{H}, T_x\}$ and {5', *T }* are called *spherical-function-equivalent* (or *SF-equivalent)* if the conditions in Theorem 3 are satisfied.

Let $U(a)$ be a representation of an algebra A on a topological vector space \mathfrak{H} . If there exists a closed invariant subspace $\mathscr L$ of $\mathfrak H$, then the representation $U(a)|\mathscr L$ on $\mathscr L$ is called a *subrepresentation* of $U(a)$.

Theorem 4. *Let G be a locally com pact unim odular group, K a com pact subgroup of* G . Let $\{S, T_x\}$ *be a* representation of G *on a complete locally convex topological vector space* \mathfrak{H} *. Assume* $\{\mathfrak{H}, T_x\}$ *contains* $\delta \in \mathbb{R}$ *, and denote by* $U(f)$ *the corresponding representation of the algebra L°(6). If we can find a topologically irreducible subrepresentation* $U_0(f)$ *of* $U(f)$ *, then there exist closed Ginvariant subspaces* \mathcal{H}_1 , \mathcal{H}_2 *of* \mathfrak{H} *satisfying the following conditions;*

(a) $\mathcal{H}_1 \supset \mathcal{H}_2$, $E(\delta) \mathcal{H}_2 = \{0\}$,

(b) the naturally defined representation τ of G on $\mathcal{H}_1/\mathcal{H}_2$ is topologically *irreducible, an d th e corresponding topologically irreducible representation of the algebra* $L^{\circ}(\delta)$ *is equivalent to* $U_{0}(f)$ *.*

Remark. The author does not know whether $\mathcal{H}_1/\mathcal{H}_2$ is complete or not. But the integrals $\int_{G} \tau_x f(x) dx$ ($f \in L(G)$) and $\int_{K} \tau_u \chi_{\delta}(u) du$ converge in $\mathcal{H}_1/\mathcal{H}_2$, and therefore we can make the same arguments as in the case of representations on complete topological vector spaces.

Proof of Theorem 4. By the assumption, there exists a closed $L^{\circ}(\delta)$ -invariant subspace \mathscr{L}_1 of $\mathfrak{H}_1(\delta) = E_{11}(\delta) \mathfrak{H}$ such that the representation $T_f | \mathscr{L}_1$ of $L^{\circ}(\delta)$ is equivalent to $U_0(f)$. Then the closed subspace $\mathscr{L} = \mathscr{L}_1 + E_{21}(\delta) \mathscr{L}_1 + \cdots + E_{d1}(\delta) \mathscr{L}_1$, where *d* is the degree of δ , is $L^{\circ}(\delta)$ -invariant and *K*-invariant, and therefore $L(\delta)$ invariant. For every $a \in \mathscr{L}$, put $\mathscr{L}_a = \{T_f a : f \in L(\delta)\}\$. Since \mathscr{L}_a is invariant under $E_{ii}(\delta)$, we have

$$
\mathscr{L}_a = E_{11}(\delta) \mathscr{L}_a + \cdots + E_{dd}(\delta) \mathscr{L}_a.
$$

Clearly $E_{11}(\delta) \mathscr{L}_a = \mathscr{L}_a \cap \mathfrak{H}_1(\delta) \subset \mathscr{L} \cap \mathfrak{H}_1(\delta) = \mathscr{L}_1$ and $E_{11}(\delta) \mathscr{L}_a$ is $L^{\circ}(\delta)$ -invariant, thus $E_{11}(\delta) \mathcal{L}_a = \mathcal{L}_1$ or $= \{0\}$. On the other hand, we have $E_{i1}(\delta)E_{11}(\delta) \mathcal{L}_a =$ \mathscr{L}_{a} . Therefore we obtain $\mathscr{L}_{a} = \mathscr{L}$ or $= \{0\}$, and this means that \mathscr{L} is topologically irreducible under $T_f | \mathcal{L}(f \in L(\delta))$.

Now the closed subspace

$$
{\mathscr H}_1=\mathop{\cap}\limits_{{\mathop{a\in \mathscr L}\limits^{\mathscr A}}\limits_{a\neq 0}}\overline{\{T_{f}a\,;f\!\in\!L(G)\}}
$$

is G-invariant, and $E(\delta)H_1 = L$. Denote by H_2 the maximal G-invariant subspace of \mathcal{K}_1 satisfying $E(\delta)\mathcal{H}_2 = \{0\}$. Then these subspaces $\mathcal{H}_1, \mathcal{H}_2$ satisfy the con-
ditions (a) and (b). Q.E.D. ditions (a) and (b) .

§2 . Irreducible Banach representations of *G=SK*

Let *G* be a locally compact unimodular group, and *K* a compact subgroup of *G*. We assume that there exists a closed subgroup *S* of *G* such that all $x \in G$ are uniquely and continuously decomposed into the products $x = su$ where $s \in S$ and $u \in K$. Let $du(s)$ be a left Haar measure on *S* and *du* the normalized Haar measure on *K*, then $dx = d\mu(s)du$ ($x = su$) is a Haar measure on *G*.

In the following, we shall denote by $\{\mathfrak{H}, T_x\}$ a fixed topologically irreducible representation of *G* on a Banach space \mathfrak{H} . We assume dim $\mathfrak{H}(\delta) = pd$ for a fixed equivalence class $\delta \in \hat{K}$, where *d* is the degree of δ and *p* a natural number. If we denote by $\rho(x)$ the operator norm of T_x , then $\rho(x)$ is a semi-norm on *G* (cf. [1]). Let $L_{\rho}(G)$ be the algebra of all measurable functions f on G which satisfy

$$
||f||_{\rho} = \int_G |f(x)| \rho(x) dx < +\infty.
$$

Then $L_p(G)*\overline{\chi_{\delta}}$ and $L_p^{\circ}(\delta) = \{f^{\circ}; f \in L_p(G)*\overline{\chi_{\delta}}\}$ are closed subalgebras of $L_p(G)$.

On the other hand, we shall denote by A_{ρ} the space of all $d \times d$ -matrix valued measurable functions *F* on S which satisfy

$$
\|F\|_{\rho} = d. \max_{1 \leq i, j \leq d} \int_{S} |f_{ij}(s)| \rho(s) d\mu(s) < +\infty,
$$

where $f_i(s)$ are (*i, j*)-matrix elements of $F(s)$. A_ρ is a Banach algebra with the convolution product

$$
F*G(s) = \int_S F(t)G(t^{-1}s)d\mu(t).
$$

Fix an irreducible unitary matricial representation $D(u)$ of K belonging to δ , and define a transformation

$$
\Phi(f)(s) = \int_K \overline{D(u)} f(su^{-1}) du
$$

of $L_{\rho}(G) * \overline{\chi}_{\delta}$ into A_{ρ} . This is continuous, bijective, and linear. The inverse transformation Φ^{-1} is also continuous, and given by

$$
\Phi^{-1}(F)(x) = d \cdot \text{trace}\left[F(s)\overline{D(u)}\right]
$$

where $x = su$. For every element $F = \Phi(f) \in A_{\rho}$ we put $F^{\circ} = \Phi(f^{\circ})$. Then $F \to F^{\circ}$ is a continuous projection, and we easily have an equality

$$
\Phi(f*g^{\circ}) = \Phi(f)*\Phi(g^{\circ}) = \Phi(f)*\Phi(g)^{\circ}.
$$

Therefore $A_{\rho}^{\circ} = \{F^{\circ}$; $F \in A_{\rho}\}$ is a closed subalgebra of A_{ρ} , and isomorphic to the Banach algebra $L_0^{\circ}(\delta)$.

Put

$$
\mathfrak{p} = \{ f \in L^{\circ}_{\rho}(\delta) ; T_f = 0 \},
$$

then this is a regular closed two-sided ideal in $L^{\circ}_{\rho}(\delta)$, and an element $e \in L^{\circ}_{\rho}(\delta)$ is a right identity modulo p if and only if $T_e | \mathfrak{H}(\delta)$ is the identity operator on $\mathfrak{H}(\delta)$. A non-trivial subspace V of $\mathfrak{H}(\delta)$ is called K-irreducible if V is invariant and irreducible under T_u ($u \in K$). For a K-irreducible subspace V of $\mathfrak{H}(\delta)$, we put

$$
\mathfrak{a}_V = \{ f \in L^{\circ}_{\rho}(\delta); T_f \mid V = 0 \}.
$$

Lemma 2. The mapping $V \rightarrow a_V$ of the set of all K-irreducible subspaces of $\mathfrak{H}(\delta)$ *to the set of all maximal left ideals in* $L_{\rho}^{\circ}(\delta)$ *containing* \mathfrak{p} *is bijective.*

Proof. Let *V* be a *K*-irreducible subspace of $\mathfrak{H}(\delta)$, and a a left ideal in $L^{\circ}_{\rho}(\delta)$ such that $a_V \equiv a$. Then $\sum_{f \in a} T_f V$ is invariant under all operators T_f ($f \in L^{\circ}_{\rho}(\delta)$) and T_u ($u \in K$). Therefore $\sum_{f \in a} T_f V$ is invariant under all operators T_f ($f \in \overline{\chi}_{\delta} * L_{\rho}(G) * \overline{\chi}_{\delta}$) by Lemma 11 in [1], and this means $\mathfrak{H}(\delta) = \sum_{f \in \mathfrak{a}} T_f V$. Since dim $\mathfrak{H}(\delta) = pd$, there exist *p* functions $f_1, ..., f_p \in \mathfrak{a}$ such that

$$
\mathfrak{H}(\delta) = T_{f_1} V \oplus \cdots \oplus T_{f_p} V \qquad \text{(direct sum)}.
$$

Thus every vector $a \in \mathfrak{H}(\delta)$ is uniquely written in the form $a = T_{f_1}a_1 + \cdots + T_{f_p}a_p$ where $a_1, ..., a_p \in V$. Since the linear transformation $a \rightarrow a_i$ on V commutes with all operators T_u ($u \in K$), we have $a_i = \lambda_i a$ for some $\lambda_i \in \mathbb{C}$, i.e.,

$$
a = (\lambda_1 T_{f_1} + \dots + \lambda_p T_{f_p})a.
$$

Therefore, for every function $f \in L^{\circ}_{\rho}(\delta)$, we can find a function $g \in \mathfrak{a}$ such that $T_f a =$ *T_ga* for all $a \in V$. This means $L^{\circ}_{\rho}(\delta) = \mathfrak{a}$. Now we have proved that \mathfrak{a}_V , which clearly contains p, is a maximal left ideal in $L_{\rho}^{\circ}(\delta)$.

Conversely let a be a maximal left ideal in $L_{\rho}^{\circ}(\delta)$ containing p. Suppose $\alpha \not\subset \alpha_V$ for every K-irreducible subspace V of $\mathfrak{H}(\delta)$. Take an arbitrarily chosen non-zero vector $a \in \mathfrak{H}(\delta)$. Then there exist $u_1, ..., u_r \in K$ and $\lambda_1, ..., \lambda_r \in \mathbb{C}$ such that $b =$ $\sum_{i=1}^{n} \lambda_i T_{u_i} a$ is a non-zero vector in a *K*-irreducible subspace *V* of $\mathfrak{H}(\delta)$. By our assumption, at least one function $f \in \mathfrak{a}$ satisfies $T_f V \neq \{0\}$, or equivalently, dim $T_f V =$ dim $V=d$. For such a function $f \in \mathfrak{a}$, we have $T_f b \neq 0$. On the other hand, we put

$$
f * \varepsilon_u(x) = f(xu^{-1}) = f(u^{-1}x) = \varepsilon_u * f(x)
$$

for all $f \in \mathfrak{a}$ and $u \in K$. Let *A* be the algebra generated by $\{f * \varepsilon_u; f \in \mathfrak{a}, u \in K\}$. Then above consideration shows that ${T_fa; f \in A} \neq {0}$. This subspace ${T_fa;$ $f \in A$ is $L^{\circ}_{\rho}(\delta)$ - and K-invariant, and therefore $\overline{\chi}_{\delta} * L_{\rho}(G) * \overline{\chi}_{\delta}$ -invariant. Consequently ${T_f a; f \in A} = \frac{5}{6}$. Namely, $f \rightarrow T_f | \frac{5}{6}$ *is a p*-dimensional irreducible representation of A. By the Burnside's theorem, we can find a function $g \in A$ satisfying $T_g | \mathfrak{H}(\delta) = 1$. If we take $f_1, \ldots, f_t \in \mathfrak{a}$ and $u_1, \ldots, u_t \in K$ such that $g = \sum_{i=1}^t f_i * \varepsilon_{u_i}$, then

$$
1 = T_g|\mathfrak{H}(\delta) = T_g \cdot |\mathfrak{H}(\delta) = \sum_{i=1}^t \xi_i T_{f_i}|\mathfrak{H}(\delta)
$$

where $\xi_1, ..., \xi_t$ are certain constants. Thus we have $T_h | \mathfrak{H}(\delta) = 1$ for $h = \sum_{i=1}^{\infty} \xi_i f_i \in \mathfrak{a}$, and it follows that $f * h - f \in \mathfrak{p} \subset \mathfrak{a}$ for all $f \in L_0^{\circ}(\delta)$. This is a contradiction since $a \not\subseteq L_o^{\circ}(\delta)$. Therefore we have proved that there exists a *K*-irreducible subspace *V* of $\mathfrak{H}(\delta)$ satisfying $\mathfrak{a} = \mathfrak{a}_v$.

At last, we show that the mapping $V \rightarrow a_V$ is injective. Let *V* and *V'* be two distinct K-irreducible subspaces of $\mathfrak{H}(\delta)$. Since $V \cap V' = \{0\}$, there exists a linear operator *L* on $\mathfrak{H}(\delta)$ such that $LT_u = T_uL$ ($u \in K$), $LV = V$, and $LV' = \{0\}$. A function $f \in L_0^{\circ}(\delta)$ which satisfies $T_f | \mathfrak{H}(\delta) = L$ belongs to a_V , but does not to a_V . Therefore $a_V \neq a_{V'}$. Q. E. **D.**

Since our topologically irreducible representation $\{\mathfrak{H}, T_x\}$ contains δp times, the irreducible representation $U(f)$ of the algebra $L^{\circ}(\delta)$ corresponding to $\{\mathfrak{H}, T_{\kappa}\}\$ in the sense of § 1 is p-dimensional. If we denote by $U = U(x)$ the spherical matrix function of degree p of type δ defined from {5, T_x } (see [3]), then we have

$$
U(f) = \int_G U(x)f(x)dx \qquad (f \in L^{\circ}(\delta))
$$

up to equivalence. The right hand side converges for $f \in L^{\circ}_{\rho}(\delta)$, therefore we can extend $U(f)$ to a representation of $L_0^{\circ}(\delta)$. We shall denote this by the same notation $U(f)$. On the other hand, for every *K*-irreducible subspace *V* of $\mathfrak{H}(\delta)$, we have a naturally defined irreducible representation of $L^{\circ}_{\rho}(\delta)$ on $L^{\circ}_{\rho}(\delta)/a_V$. It is easily seen that this representation is equivalent to $U(f)$.

For every K-irreducible subspace V of $\mathfrak{H}(\delta)$, we put

$$
\mathfrak{A}_V = \Phi(\mathfrak{a}_V) \ .
$$

Since Φ maps $L^{\circ}_{\rho}(\delta)$ isomorphically onto A°_{ρ} , Ψ_{V} is a closed regular maximal left ideal in A_{ρ}° , and an element $\mathfrak{E} = \Phi(\mathfrak{e})$, where e is a function in $L_{\rho}^{\circ}(\delta)$ satisfying $T_{\epsilon} | \mathfrak{H}(\delta)$ $=1$, is a right identity modulo \mathfrak{A}_{V} . Moreover

$$
\mathfrak{M}_V = \{ F \in A_\rho \, ; \, (G \ast F)^\circ \in \mathfrak{A}_V \text{ for all } G \in A_\rho \}
$$

is a closed regular left ideal in A_{ρ} , and $\mathfrak E$ is a right identity modulo \mathfrak{M}_{V} .

Definition. Let *V* be a *K*-irreducible subspace of $\tilde{p}(\delta)$. We shall denote by

 ${e_1^V,..., e_d^V}$ a base of *V* with respect to which the operators $T_u \, | V$ are represented by our fixed unitary matricies *D(u).*

Lemma 3. Let *V* be a *K*-irreducible subspace of $\mathfrak{H}(\delta)$. For every $F = \Phi(f) \in$ A_p ($f \in L_p(G) * \overline{\chi}_p$) whose (*i, j*)-matrix coefficient is denoted by f_{ij} , we have

$$
T_f e_i^V = \sum_{j=1}^d T_{f_{ij}} e_j^V \qquad (i = 1, ..., d)
$$

where $T_{f_{ij}} = \int_{s}^{t} T_{s} f_{ij}(s) d\mu(s)$.

Proof. Denoting by $d_{\alpha\beta}(u)$ the (α, β) -matrix coefficient of $D(u)$, we have

$$
f(su) = d \cdot \text{trace}\left[F(s)\overline{D(u)}\right] = d \sum_{\alpha,\beta=1}^{d} f_{\beta\alpha}(s) \overline{d_{\alpha\beta}(u)}\,.
$$

Therefore

$$
T_{f}e_{i}^{V} = \int_{S \times K} T_{s}T_{u}f(su)e_{i}^{V}d\mu(s)du
$$

\n
$$
= d \int_{\alpha,\beta=1}^{d} \int_{S \times K} T_{s}T_{u}f_{\beta\alpha}(s) \overline{d_{\alpha\beta}(u)}e_{i}^{V}d\mu(s)du
$$

\n
$$
= d \int_{\alpha,\beta=1}^{d} \int_{j=1}^{d} \int_{S \times K} T_{s}f_{\beta\alpha}(s) \overline{d_{\alpha\beta}(u)}d_{j}i(u)e_{j}^{V}d\mu(s)du
$$

\n
$$
= \int_{j=1}^{d} T_{f_{ij}}e_{j}^{V}. \qquad Q.E.D.
$$

Corollary. Let f be a function in $L_p(G)*\overline{\chi_{\delta}}$ and put $F = \Phi(f) \in A_p$. If we de*note by* E_{ii} *the* $d \times d$ -matrix whose (*i, i*)-matrix coefficient is 1 and the others are 0, then the functions $f_i = \Phi^{-1}(E_{ii}F) \in L_\rho(G) * \overline{\chi_\delta}$ satisfy $f = f_1 + \cdots + f_d$ and

$$
T_{f_i}e_i^V = T_f e_i^V, \quad T_{f_i}e_j^V = 0 \quad (i \neq j).
$$

Lemma 4. Let *V* be a *K*-irreducible subspace of $\mathfrak{H}(\delta)$, and $F = \Phi(f)$ an ele*ment* in A_{ρ} where $f \in L_{\rho}(G) * \overline{\chi_{\delta}}$. Then $F \in \mathfrak{M}_V$ if and only if $T_f V = \{0\}$.

Proof. We shall denote by $L_p(S)$ the algebra of all functions ϕ on *S* satisfying $\int_{S} |\phi(s)| \rho(s) d\mu(s) < +\infty$. Let $E_{\alpha\beta}$ be the $d \times d$ -matrix whose (α, β) -matrix coefficient is 1 and the others are 0. For every $\phi \in L_{\rho}(S)$ and $E_{\alpha\beta}$, the $d \times d$ -matrix valued function $\phi E_{\alpha\beta}$, whose (α, β) -coefficient is ϕ and the others are 0, belongs to A_{ρ} . If we denote by f_{ij} the (i, j) -matrix coefficient of $F = \Phi(f)$ and by g_{mn} the (m, n) -matrix coefficient of $G = (\phi E_{\alpha\beta}) * F$, then $g_{mn} = \delta_{ma}(\phi * f_{\beta n})$ where δ_{ma} is the Kronecker's delta. Putting $g = \Phi^{-1}(G)$ and using Lemma 3,

$$
T_g \cdot e_i^V = \int_K T_u T_g T_{u-1} e_i^V du
$$

=
$$
\sum_{m=1}^d \int_K T_u d_{mi}(u^{-1}) T_g e_m^v du
$$

$$
= \sum_{m=1}^{d} \int_{K} T_{u} \overline{d_{im}(u)} \left[\sum_{n=1}^{d} T_{g_{mn}} e_{n}^{V} \right] du
$$

$$
= \int_{K} T_{u} \overline{d_{ia}(u)} \left[\sum_{n=1}^{d} T_{\phi} T_{f_{\beta n}} e_{n}^{V} \right] du
$$

$$
= \int_{K} T_{u} \overline{d_{ia}(u)} \left[T_{\phi} T_{f} e_{\beta}^{V} \right] du.
$$

Therefore we have

$$
F \in \mathfrak{M}_V \Longleftrightarrow [(\phi E_{\alpha\beta})*F]^{\circ} \in \mathfrak{A}_V \quad \text{for all } \alpha, \beta \in \{1, ..., d\} \quad \text{and} \quad \phi \in L_{\rho}(S),
$$

$$
\Longleftrightarrow [\Phi^{-1}(\phi E_{\alpha\beta}*F)]^{\circ} \in \mathfrak{a}_V \quad \text{for all } \alpha, \beta \in \{1, ..., d\} \quad \text{and} \quad \phi \in L_{\rho}(S),
$$

$$
\Longleftrightarrow \int_K T_u \overline{d_{ia}(u)} [T_{\phi} T_f e_{\beta}^V] du = 0 \quad \text{for all } i, \alpha, \beta \in \{1, ..., d\} \quad \text{and} \quad \phi \in L_{\rho}(S),
$$

$$
\Longleftrightarrow E(\delta) T_{\phi} T_f V = \{0\} \quad \text{for all } \phi \in L_{\rho}(S),
$$

$$
\Longleftrightarrow E(\delta) T_s T_f V = \{0\} \quad \text{for all } s \in S,
$$

$$
\Longleftrightarrow E(\delta) T_u T_s T_f V = \{0\} \quad \text{for all } u \in K \quad \text{and} \quad s \in S,
$$

$$
\iff E(\delta)T_u I_s I_f V = \{0\} \quad \text{for all} \quad u \in K \quad \text{and} \quad s \in S,
$$

$$
\iff E(\delta)T_x T_f V = \{0\} \quad \text{for all} \quad x \in G,
$$

$$
\iff T_f V = \{0\}.
$$
 Q.E.D.

For every $d \times d$ -matrix M and every element $F \in A_{\rho}$, we put $(MF)(s) = M \times F(s)$ where the right hand side is the product of two matrices M and $F(s)$. MF is obviously an element in A_{ρ} .

Lemma 5. Let *V* be a K-irreducible subspace of $\mathfrak{H}(\delta)$, and \mathfrak{M} a left ideal in A_ρ such that $\mathfrak{M}\supset \mathfrak{M}_V$ and that $M\mathfrak{M}\subset \mathfrak{M}$ for every $d\times d$ -matrix M. Then the *subspace* $\{T_f a; f \in L_\rho(G) * \overline{\chi}_\delta, \Phi(f) \in \mathfrak{M}\}\$ *of* \mathfrak{H} , *where* $a \in V - \{0\}$, *is independent of the choice of nonzero vector* $a \in V$.

Proof. Let *a*, $b \in V$ and $a \neq 0$, $b \neq 0$. We can find a continuous function $\xi(u)$ on *K* such that $\zeta \ast \overline{\chi_{\delta}} = \zeta$ and that

$$
T_{\xi}b = \int_{K} T_{u}\xi(u)bdu = a.
$$

For every function $f \in L_p(G) * \overline{\chi_{\delta}}$ satisfying $\Phi(f) \in \mathfrak{M}$, we see $f * \xi \in L_p(G) * \overline{\chi_{\delta}}$ and

$$
\Phi(f*\xi)(s) = \int_K \overline{D(u)} f*\xi(su^{-1}) du
$$

=
$$
\int_{K \times K} \overline{D(u)} f(su^{-1}v^{-1}) \xi(v) du dv
$$

Irreducible Banach representations 207

$$
= \int_{K \times K} \overline{D(v^{-1}u)} f(su^{-1}) \xi(v) du dv
$$

=
$$
\left[\int_{K} \overline{D(v^{-1})} \xi(v) dv \right] \Phi(f)(s) \in \mathfrak{M}
$$

by our assumption on \mathfrak{M} . Since $T_f a = T_{f * \xi} b$, we clearly have $\{T_f a; f \in L_{\rho}(G) * \overline{\chi}_\delta,$
 $\phi(f) \in \mathfrak{M} \} \subset \{T_c b; f \in L_{\rho}(G) * \overline{\chi}_\delta, \phi(f) \in \mathfrak{M} \}$. O.E.D. $\Phi(f) \in \mathfrak{M}$ $\subset \{T_f b \, ; \, f \in L_o(G) * \overline{\chi}_\delta, \ \Phi(f) \in \mathfrak{M} \}.$

Definition. For a K-irreducible subspace of $\mathfrak{H}(\delta)$ and a left ideal \mathfrak{M} in A_{ρ} such that $\mathfrak{M} \supset \mathfrak{M}_V$ and that $M\mathfrak{M} \subset \mathfrak{M}$ for every $d \times d$ -matrix M, we put

$$
\mathfrak{H}_V(\mathfrak{M}) = \{ T_f a \, ; \, f \in L_\rho(G) \ast \overline{\chi_\delta}, \, \Phi(f) \in \mathfrak{M} \}
$$

where $a \in V$, $a \neq 0$.

Since our representation $\{\mathfrak{H}, T_x\}$ is topologically irreducible and nice, we can define the subspace \mathfrak{H}_0 of \mathfrak{H} as in § 1. But $\{\mathfrak{H}, T_x\}$ is a Banach representation, so let's define another subspace \mathfrak{H}_p of $\mathfrak H$ which is a natural extension of \mathfrak{H}_0 , i.e., taking a non-zero vector *a* in $\mathfrak{H}(\delta)$, we put

$$
\mathfrak{H}_{\rho} = \{T_f a \, ; \, f \in L_{\rho}(G)\} \, .
$$

As in the case of \mathfrak{H}_0 , this subspace \mathfrak{H}_0 is independent of *K*, δ , and *a*. Namely, if a pair (K', δ') of a compact subgroup K' and $\delta' \in \hat{K}'$ satisfies $0 \lt \dim \mathfrak{H}(\delta') \lt +\infty$, then, for every nonzero vector $a' \in \mathfrak{H}(\delta')$, we have $\mathfrak{H}_{\rho} = \{T_f a' : f \in L_{\rho}(G)\}\$. Our subspace $\mathfrak{H}_V(\mathfrak{M})$ in the above definition is a subspace of \mathfrak{H}_p and $L_p(S)$ -invariant, i.e., invariant under all operators $T_{\phi} = \int_{S} T_{s} \phi(s) d\mu(s)$ for $\phi \in L_{\rho}(S)$.

Lemma 6. Let *V* be a *K*-irreducible subspace of $\mathfrak{H}(\delta)$, and \mathcal{K} a $L_o(S)$ -invari*ant subspace of* 5,,. *Then there exists a left ideal* 911*in A,, such that* 91 . 1 91 1 1,,, $M\mathfrak{M} \subset \mathfrak{M}$ for all $d \times d$ -matrices M, and that $\mathcal{K} = \mathfrak{H}_V(\mathfrak{M})$.

Proof. Put $\mathfrak{M} = \{ F \in A_{\rho}; T_{f}V \subset \mathcal{K} \text{ for } f = \Phi^{-1}(F) \}$. Let *F* be any element of 911, and denote by $g_{ij} \in L_p(S)$ the *(i, j)*-matrix coefficient of an arbitrary element $G \in A_{\rho}$. The function $h = \Phi^{-1}(G \ast F)$ is given as follows;

$$
h(su) = d \cdot \text{trace} [G * F(s)D(u)]
$$

=
$$
\sum_{i,j=1}^{d} d \cdot \text{trace} [g_{ij} * (E_{ij}F)(s)\overline{D(u)}]
$$

=
$$
\sum_{i,j=1}^{d} g_{ij} * \Phi^{-1}(E_{ij}F)(su)
$$

where E_{ij} is the $d \times d$ -matrix whose (i, j) -matrix coefficient is 1 and the others are 0. Choose a continuous function ξ_{ij} on *K* such that $\xi_{ij}*\overline{\chi_{\delta}} = \xi_{ij}$ and that $\int_{\alpha} D(u^{-1})\xi_{ij}$. $(u)du = E_{ij}$, then we have $E_{ij}F = \Phi(f * \xi_{ij})$ and

$$
T_{\Phi^{-1}(E_{ij}F)}a = T_f(T_{\xi_{ij}}a) \in T_f V \subset \mathcal{K} \qquad (a \in V)
$$

i.e., $E_{ij}F \in \mathfrak{M}$ ($1 \leq i, j \leq d$). From this, we know two facts; the one is that $M\mathfrak{M} \subset \mathfrak{M}$ for all $d \times d$ -matrices M and the other is that $T_a a \in \mathcal{K}$ for all $a \in V$, namely, $G \ast F \in \mathfrak{M}$. Therefore \mathfrak{M} is a left ideal in A_{ρ} . The inclusion $\mathfrak{M} \supset \mathfrak{M}_{\gamma}$ is clear. At last let's prove $\mathscr{K} = \mathfrak{H}_{V}(\mathfrak{M})$. Let $\{e_1^V, \ldots, e_d^V\}$ be, as was already defined, a base of *V* with respect to which the operator $T_u | V$ is represented by the matrix $D(u)$. For every vector $a \in \mathcal{K} \subset \mathfrak{H}_{\rho} = \{T_f e_1^V; f \in L_{\rho}(G) \ast \overline{\chi_{\delta}}\}$, there exists a function $f \in L_{\rho}(G) \ast \overline{\chi_{\delta}}$ such that $T_f e_i^V = a$. From Corollary to Lemma 3, we may assume $T_f e_i^V = 0$ (*i*=2,..., *d*) without loss of generality. Then $T_fV \subset \mathcal{K}$ or, by definition, $\Phi(f) \in \mathfrak{M}$. Therefore $a = T_f e_1^V \in \mathfrak{H}_V(\mathfrak{M})$. Thus we obtain $\mathcal{K} \subset \mathfrak{H}_V(\mathfrak{M})$. Since $\mathfrak{H}_V(\mathfrak{M}) \subset \mathcal{K}$ is clear, we have proved the equality $\mathcal{K} = \mathfrak{H}_V(\mathfrak{M})$. C.E.D. have proved the equality $\mathcal{K} = \mathfrak{H}_{\nu}(\mathfrak{M}).$

Lemma 7. Let *V* be a *K*-irreducible subspace of $\mathfrak{H}(\delta)$. The mapping $\mathfrak{M} \rightarrow \mathcal{K}$ $=$ $\mathfrak{H}_V(\mathfrak{M})$ is a bijection of the set of all left ideals \mathfrak{M} in A_ρ which satisfy $\mathfrak{M} \supset \mathfrak{M}_V$ *and* $M\mathfrak{M} \subset \mathfrak{M}$ *for all* $d \times d$ *-matrices M onto the set of all* $L_o(S)$ -*invariant subspace* \mathscr{K} *of* \mathfrak{H}_o .

Proof. We have only to prove the injectivity. Let \mathfrak{M}_1 and \mathfrak{M}_2 be distinct left ideals in A_{ρ} which satisfy the above conditions. We may assume that there exists an element $F \in \mathfrak{M}_1$ such that $F \notin \mathfrak{M}_2$. Since $F = E_{11}F + \cdots + E_{dd}F$, one of the *d* terms of the right hand side, say $E_{11}F$, does not belong to \mathfrak{M}_2 . We put $f_1 =$ $\Phi^{-1}(E_{11}F)$. Suppose $\mathfrak{H}_V(\mathfrak{M}_1) = \mathfrak{H}_V(\mathfrak{M}_2)$, then $T_{f_1}e_1^V \in \mathfrak{H}_V(\mathfrak{M}_1)$ has another expression of the form $T_{f_1}e_1^V = T_g e_1^V$ with a suitable function $g \in \Phi^{-1}(\mathfrak{M}_2)$. Since $E_{11}G \in \mathfrak{M}_2$ where $G = \Phi(g)$, the function $g_1 = \Phi^{-1}(E_{11}G)$ satisfies $T_{g_1}a = T_{f_1}a$ for every $a \in V$ by Corollary to Lemma 3. Therefore, by Lemma 4, we obtain $E_{11}F - E_{11}G \in \mathfrak{M}_V$ $\subset \mathfrak{M}_2$. This means $E_{11} F \in \mathfrak{M}_2$, but this is a contradiction. Q. E. D.

Since \mathfrak{M}_{V} , where *V* is a *K*-irreducible subspace of $\mathfrak{H}(\delta)$, is a regular left ideal in the Banach algebra A_{ρ} , a maximal left ideal \mathfrak{M} in A_{ρ} which contains \mathfrak{M}_{V} is closed in A_{ρ} . Therefore MWCW for every $d \times d$ -matrix M, and W is invariant under left translations ε_s ($s \in S$) where $(\varepsilon_s F)(t) = F(s^{-1}t)$. Now we naturally define the left multiplication by $d \times d$ -matrix and the left translations ε_s on the quotient space A_n/\mathfrak{M} which is a Banach space with the usual norm. Put

$$
H_i = E_{ii}(A_{\rho}/\mathfrak{M}) \qquad (i = 1, ..., d)
$$

where E_{ii} denotes, as before, the $d \times d$ -matrix whose (i, i) -matrix coefficient is 1 and the others are 0. We shall denote by $\pi_i(s)$ the left translation by an element $s \in S$ on the Banach space H_i , then $\{H_i, \pi_i(s)\}$ are mutually equivalent topologically irreducible representations of *S.*

On the other hand, for a maximal left ideal \mathfrak{M} in A_{ρ} which contains \mathfrak{M}_{V} , \mathscr{K} = $\mathfrak{H}_{\nu}(\mathfrak{M})$ is a maximal $L_o(S)$ -invariant subspace of \mathfrak{H}_o by Lemma 7. Since \mathfrak{M} is invariant under ε_s ($s \in S$), the subspace \mathcal{K} is obviously S-invariant, i.e., $T_s \mathcal{K} \subset \mathcal{K}$ for all $s \in S$. Thus the operator T_s naturally induces a linear operator, which is denoted by $A(s)$, on the vector space $\mathfrak{H}_o / \mathcal{K}$. $A(s)$ is a representation of *S* on the vector space $\mathfrak{H}_{\alpha}/\mathscr{K}$ in a purely algebraic sense.

Lemma 8. Let \mathfrak{M} be a maximal left ideal in A_{ρ} which contains \mathfrak{M}_{V} . The *representations* $\pi_i(s)$ *and* $\Lambda(s)$ *of S, which are defined for* \mathfrak{M} *as above, are algebraically equivalent.* In *other words, there exists a linear bijection* I_i *of* H_i *onto* $\mathfrak{H}_0(\mathcal{K})$, where $\mathcal{K} = \mathfrak{H}_V(\mathfrak{M})$, such that $I_i \circ \pi_i(s) = A(s) \circ I_i$ for $s \in S$.

Proof. For $F \in A_{\rho}$ we define $I'_{i}(E_{ii}F) = T_{f_{i}}e_{i}^{V}$ where $f_{i} = \Phi^{-1}(E_{ii}F)$. If $E_{ii}F \in \mathfrak{M}$, then $T_{f_i}e_i^V \in \mathfrak{H}_V(\mathfrak{M})$ by the definition of $\mathfrak{H}_V(\mathfrak{M})$. Conversely, if $T_{f_i}e_i^V \in \mathfrak{H}_V(\mathfrak{M})$, then T_f , $a \in \mathfrak{H}_V(\mathfrak{M})$ for all $a \in V$ by Corollary to Lemma 3. Therefore $E_{ii}F = \Phi(f_i) \in \mathfrak{M}$ by Lemma 7. These facts mean that I'_i induces naturally a linear bijection I_i of H_i onto $\mathfrak{H}_{\alpha}/\mathfrak{H}_{\nu}(\mathfrak{M})$. The equality $I_i \circ \pi_i(s) = \Lambda(s) \circ I_i$ is clear. Q. E. D.

Let \mathcal{H} be a non-trivial maximal $L_{\rho}(S)$ -invariant subspace of \mathfrak{H}_{ρ} . For a *K*irreducible subspace *V* of $\mathfrak{H}(\delta)$, there exists a maximal left ideal \mathfrak{M} in A_{ρ} which contains \mathfrak{M}_V such that $\mathcal{H} = \mathfrak{H}_V(\mathfrak{M})$ (Lemma 7). For this maximal left ideal \mathfrak{M} , we can define topologically irreducible representations $\{H_i, \pi_i(s)\}$ of S as above. If we introduce a structure of Banach space into $\mathfrak{s}_{\rho}/\mathscr{K}$ with respect to which the linear bijection I_i of H_i onto $\mathfrak{H}_p/\mathcal{K}$ is an isomorphism, then we obtain a topologically irreducible representation $A(s)$ of *S* on the Banach space $\mathfrak{H}_{\rho}/\mathcal{H}$.

§ 3. Main theorem

Let $G = S \cdot K$ be the same locally compact group as in § 2. Let $\{H, \Lambda(s)\}\)$ be a topologically irreducible representation of *S* on a Banach space *H .* We shall denote by 5^4 the Banach space of all H-valued continuous functions ξ on K with a norm $\|\xi\| = \sup \|\xi(u)\|_H$, where $\|\cdot\|_H$ is the norm in *H*. For every pair $(x, y) \in G \times G$, we define $\kappa(x, y) \in K$ and $\sigma(x, y) \in S$ by

$$
xy = \kappa(x, y)\sigma(x, y).
$$

With this notations, we define a bounded linear operator T_x^A on \tilde{D}^A for every $x \in G$ by

$$
(T_x^A \xi)(u) = \Lambda(\sigma(x^{-1}, u)^{-1})\xi(\kappa(x^{-1}, u)) \qquad (u \in K).
$$

Then $\{\mathfrak{H}^A, T_x^A\}$ is a representation of G.

Let δ be an equivalence class of irreducible representations of *K*. As in §1, we choose an irreducible unitary matricial representation $D(u)$ of K belonging to δ , and denote by $d_i(u)$ its (i, j) -matrix coefficient. Put

$$
E^A(\delta) = \int_K T_u^A \overline{\chi_{\delta}(u)} du, \quad E^A_{ij}(\delta) = d \int_K T_u^A \overline{d_{ij}(u)} du \qquad (1 \le i, j \le d)
$$

where *d* is the degree of δ . By the arguments in §1, mutually equivalent *d* representations of the algebra $L^{\circ}(\delta)$ are defined on subspaces

$$
\tilde{S}_{i}^{A}(\delta) = E_{ii}^{A}(\delta)\tilde{S}_{i}^{A} = \{\xi(u) = \sum_{j=1}^{d} \overline{d_{ij}(u)} a_{j}; a_{j} \in H\} \qquad (1 \leq i \leq d).
$$

Denote by e_i a d-dimensional column vector whose j-th component is 1 and the

others are 0, then the mapping *P* defined by

$$
P(\sum_{j=1}^d \overline{d_{ij}} a_j) = \sum_{j=1}^d e_j \otimes a_j
$$

is a linear isomorphism of $\mathfrak{H}^A(\delta)$ onto $\mathbb{C}^d \otimes H$. If we adopt $\sum_{i=1}^d ||a_i||_H$ as a norm of $\sum_{i=1}^{d} e_i \otimes a_j$, then $\mathbb{C}^d \otimes H$ is a Banach space and *P* gives an isomorphism of the Banach space $\mathfrak{H}^A_i(\delta)$ onto the Banach space $\mathbb{C}^d \otimes H$.

For every function $f \in L^{\circ}(\delta)$ we obtain

$$
(T_{f}^{A}\overline{d_{ij}}a)(u) = \int_{G} \overline{d_{ij}(\kappa(x^{-1}, u))} \Lambda(\sigma(x^{-1}, u)^{-1})a f(x) dx
$$

\n
$$
= \int_{G \times K} \overline{d_{ij}(\kappa(x^{-1}, u))} \Lambda(\sigma(x^{-1}, u)^{-1})a f(vxv^{-1}) dx dv
$$

\n
$$
= \int_{G \times K} \overline{d_{ij}(v \cdot \kappa(x^{-1}, u))} \Lambda(\sigma(x^{-1}, v^{-1}u)^{-1})a f(x) dx dv
$$

\n
$$
= \int_{G \times K} \overline{d_{ij}(uv \cdot \kappa(x^{-1}, v^{-1}))} \Lambda(\sigma(x^{-1}, v^{-1})^{-1})a f(x) dx dv
$$

\n
$$
= \sum_{n=1}^{d} \overline{d_{ij}(u)} \Biggl[\int_{G \times K} \overline{d_{nj}(v \cdot \kappa(x^{-1}, v^{-1}))} \Lambda(\sigma(x^{-1}, v^{-1})^{-1})a f(x) dx dv \Biggr].
$$

Therefore we have

$$
P \circ (T_{f}^{A} | \mathfrak{H}_{i}^{A}(\delta)) \circ P^{-1}(e_{j} \otimes a)
$$
\n
$$
= \sum_{n=1}^{d} e_{n} \otimes \left[\int_{G \times K} \overline{d_{nj}(v \cdot \kappa(x^{-1}, v^{-1}))} \Lambda(\sigma(x^{-1}, v^{-1})^{-1}) a f(x) dx dv \right]
$$
\n
$$
= \int_{G} \left[\int_{K} \left(\sum_{n=1}^{d} \overline{d_{nj}(v \cdot \kappa(x^{-1}, v^{-1}))} e_{n} \right) \otimes \Lambda(\sigma(x^{-1}, v^{-1})^{-1}) a dv \right] f(x) dx.
$$

Now put

$$
W^A(x) = \int_K \widetilde{W}^A(vx^{-1}v^{-1})dv
$$

where $\tilde{w}^{A}(x) = D(u) \otimes A(s^{-1})$ with $x = us$, then it follows that

$$
P\circ (T_f^A|\mathfrak{H}_i^A(\delta))\circ P^{-1}=W^A(f)=\int_G W^A(x)f(x)dx
$$

for $f \in L^{\circ}(\delta)$.

Let $\{\mathfrak{H}, T_x\}$ be a topologically irreducible representation of *G* on a Banach space \tilde{y} which contains δp times $(0 < p < +\infty)$, i.e., dim $\tilde{y}(\delta) = pd$. As is proved in §2, there exists a maximal $L_{\rho}(S)$ -invariant subspace \mathscr{K} , which is S-invariant at the same time, of \mathfrak{H}_p where $p(x) = \|T_x\|$, and we introduce the Banach space structure into $H = \mathfrak{H}_{p}/\mathcal{K}$ defined in the last paragraph of § 2. $A(s)$ denotes the topologically irreducible representation of *S* naturally defined on *H .* For this representation

 $\{H, \Lambda(s)\}\$ we consider the induced representation $\{\mathfrak{H}^A, T^A\}$ of *G*. Let $U_0(f)$ be a p-dimensional irreducible representation of the algebra $L^{\circ}(\delta)$ which is equivalent to T_f $\mathfrak{H}_i(\delta)$ on $\mathfrak{H}_i(\delta)$, then this is naturally extended to a representation of the algebra $L_{\rho}^{\circ}(\delta)$, denoted by the same notation $U_0(f)$. In [5] it is proved that there exists a p-dimensional subspace $\mathscr L$ of $C^d \otimes H$ which is invariant for all $W^A(f)(f \in L^{\circ}_o(\delta))$ such that $U_0(f)$ is equivalent to $W^A(f)|\mathcal{L}$. Of course the representation $L^{\circ}(\delta) \ni f \rightarrow$ $W^{\lambda}(f)|\mathcal{L}$ of the algebra $L^{\circ}(\delta)$ is irreducible and equivalent to $U_0(f)$. On the other hand, $W^{\Lambda}(f)$ is equivalent to the representation $T^{\Lambda}_{\uparrow}|\mathfrak{H}^{\Lambda}_{\downarrow}(\delta)$ of the algebra $L^{\circ}(\delta)$, therefore $U_0(f)$ is equivalent to a subrepresentation of $T_f^4 | \mathfrak{H}_i^4(\delta)$. Now, by Theorem 4, we can find closed G-invariant subspaces \mathcal{H}_1 , \mathcal{H}_2 of \mathfrak{H}^4 satisfying the following conditions;

(a) $\mathcal{H}_1 \supset \mathcal{H}_2$, $E^A(\delta) \mathcal{H}_2 = \{0\},$

(b) the naturally defined representation τ of *G* on the Banach space $\mathcal{H}_1/\mathcal{H}_2$ is topologically irreducible, and SF-equivalent to $\{\mathfrak{H}, T_x\}$.

Therefore we have proved the following main theorem.

Theorem 5. *Let G be a locally compact unimodular group with a continuous decomposition G=SK, where S is a closed subgroup and K a com pact subgroup* of G such that $S \cap K = \{1\}$. Let $\{S_0, T_s\}$ be a topologically iirreducble repre*sentation of G on a Banach space* \mathfrak{H} *which contains* $\delta \in \mathbb{R}$ *finitely many times. Then,*

(I) there ex ists a topologically irreducible representation A(s) o f S on a Banach space with the following property; for the induced representation {5A, T} of G, *there exist closed G*-invariant *subspaces* \mathcal{H}_1 , \mathcal{H}_2 *of* \mathfrak{H}^A *such that*

(a) $\mathcal{H}_1 \supset \mathcal{H}_2$, $E^{\Lambda}(\delta) \mathcal{H}_2 = \{0\}$,

(b) the naturally defined representation τ *of G on the Banach space* $\mathcal{H}_1/\mathcal{H}_2$ *is topologically irreducible, and SF-equivalent to* $\{\mathfrak{H}, T_x\}$.

(II) *One of topologically irreducible representations A(s) of S which satisfy (I) is algebraically equiv alent to the naturally defined representation of S on* $\mathfrak{H}_0 \mathscr{H}$, where $\rho(x) = \|T_x\|$ and \mathscr{H} is a non-trivial maximal $L_\rho(S)$ -invariant subspace of \mathfrak{H}_o .

DEPARTMENT OF MATHEMATICS EHIME UNIVERSITY

Bibliography

- **[1]** R . Godement; A theory of sperical functions. I, Trans. Amer. Math. Soc., 73 (1952), 496-556.
- [2] H. Shin'ya; Spherical functions on locally compact groups, J. Math. Kyoto Univ., 12-1 (1972), 55-85.
- [3] H. Shin'ya; Spherical matrix functions on locally compact groups, Proc. Japan Acad., 50 (1974), 368-373.

- [4] H. Shin'ya; Spherical functions and spherical matrix functions on locally compact groups, Lectures in mathematics, Kyoto Univ., 7.
- [5] H. Shin'ya; Spherical matrix functions on locally compact groups of a certain type, J. Math. Kyoto Univ., 17-3 (1977), 501-509.