J. Math. Kyoto Univ. JMKYAZ)
20-2 (1980) 197-212

Irreducible Banach representations of locally
compact groups of a certain type

By
Hitoshi SHIN’YA

(Communicated by Prof. H. Yoshizawa, Dec. 12, 1978)

Introduction

Let G be a locally compact unimodular group, and {9, T,} a topologically
irreducible representation of G on a complete locally convex topological vector space
$. If there exists a compact subgroup K of G and an equivalence class  of irre-
ducible representations of K such that {$, T} contains ¢ finitely many times, then
{9, T,} is called “‘nice”. Let y; be the normalized trace of § and du the normalized

Haar measure on K, and put $(6)=E(6)9 where E(6)=SK T, xs;(w)du. If the multi-
plicity of 6 in {$, T} is p, then the function

¢s(x)=trace [E(S)T;]

on G is called a spherical function of type & of height p. Two topologically irre-
ducible nice representations {$, T,} and {§’, T} of G are called spherical-function-
equivalent (or SF-equivalent) if there exists a common spherical function correspond-
ing to both representations. In fact, this is an equivalence relation (see Theorem 3).
If G is a connected unimodular Lie group and if {9, T}, {$’, T.} are K-finite
Banach representations for a compact analytic subgroup K, then they are SF-
equivalent if and only if infinitesimally equivalent (Theorem 13 in [4]).

Let {$, T.} be a topologically irreducible nice representation of G on a Banach
space . Put p(x)=| T,| and denote by dx a Haar measure on G. Then the set
L,(G) of all functions f on G satisfying

nf||,,=§0|f(x)|p(x)dx< +o

is an algebra with the convolution product. By the assumption, there exists a com-
pact subgroup K and an equivalence class & of irreducible representations of K
such that 0 <dim $(6)< + oco. For a non-zero vector a € H(9), put

5p={Tfa;fe Lp(G)}

where T, = SG T.f(x)dx. Thisis a G-invariant dense subspace of §, and independent
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of the choice of such K, 4, and a (cf. Lemma 4 in [2]).

Assume that G=S-K, Sn K={1}, where S is a closed subgroup and K a com-
pact subgroup of G, and that the decomposition x=su (s€ S, u € K) is continuous.
Let {9, T.} be a topologically irreducible nice representation of G on a Banach space
$ which contains an equivalence class § of irreducible representations of K finitely
many times. Then our main theorem consists of two assertions. The first is that
there exists a topologically irreducible representation A of S on a Banach space
such that {9, T.} is SF-equivalent to a constituent of the induced representation of
G from A. The other is that one of such representations A of S is obtained as
follows; we take a non-trivial maximal L,(S)-invariant subspace ¥ of $, with
p(x)=|Ty|l (the existence of such o will be proved in this paper), and introduce a
suitable topology into $,/2¢" with respect to which it becomes a Banach space. Since
it is proved that o is S-invariant, we obtain the naturally defined representation of
S on $,/°. This representation is one of those we want.

§1. Representations of the algebra L°(d) corresponding to those of G

Let G be a locally compact unimodular group, K a compact subgroup of G,
and K the set of all equivalence classes of irreducible representations of K. Let &
be an element of K with degree d.  Fix an irreducible unitary matricial representation
D(u) of K belonging to J, and denote by d;(u) its (i, j)-matrix element. Put y;(u)
=d-trace D(u). We shall denote by L(G) the algebra of all continuous functions on
G with compact supports, and, for every function fe L(G), define

£ = fads, 0= oG,

7o) = nT0du,

where du is the normalized Haar measure on K. We shall regard the algebra L(G)
to be endowed with the usual inductive topology generated by Banach spaces L(G)
of all continuous functions with supports in compact subsets C< G with supremum
norm. Then the sets L°(G)={f°; fe L(G)}, L(8)={x;*f*xs; f€ L(G)}, and L°(5)
=L°(G) n L(d) are closed subalgebras of L(G).

Let $ be a complete locally convex topological vector space, and {9, T,} a
representation of G on . The operators

E(5) =S T.7:)du and E(5)= dSK T.d;;(u)du,
K
where i, j=1,..., d, are continuous and satisfy
d
E(é) = igl Eii(é) s Eij(fs)Ekt(‘s) =5jkEu(5) s

denoting by &, the Kronecker’s delta. Put
HO)=EB)H, HO)=E )9 (i=1,..4d).
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Then $(9) is invariant under the operators T, (u € K) and T, = SG T.f(x)dx (fe L(3))

where dx is a Haar measure on G. For simplicity, we say that $(6) is K-invariant
and L(d)-invariant. The subspaces $/(5) are L°(8)-invariant and the representations
T; | 9H(6) of the algebra L°(5) are mutually equivalent since E;;(0)T,=T,E;(d) for
all fe L°(6). Therefore the representation T} | $(8) of L°(d) is equivalent to the direct
sum of d copies of a certain representation U(f).

Theorem 1. Let G be a locally compact unimodular group, K a compact
subgroup of G, and & an element of K. If a representation {$, T,} of G is topo-
logically irreducible, then the corresponding representation U(f) of the algebra
L°(d) is also topologically irreducible.

Proof. Let W be a L°(d)-invariant subspace of $,(5), then the subspace V=
3 @E,(§)Wis L°(S)-invariant. And for all u € K, we have
i=1

i

d
=1j

d d
TuV= igl (_BTuEil(é)W= Z =) djl(u)Ejl(a)W

d
=j§1 E;(0)W=V,

i.e., Vis also K-invariant. Therefore V is L(d)-invariant (Lemma 14 in [2]). This
means V={0} or V'=9(5) since the representation T,|$(J) of the algebra L(5) is
topologically irreducible (Lemma 2 in [2]). Then it follows that

W={0} or W=E, V=9,05)
respectively. Thus the theorem is proved. Q.E.D.

Lemma 1. Let {$, T,} and {$', T,} be two representations of G. If the
corresponding representations U(f) and U'(f) of the algebra L°(5) are equivalent,

then the representations T, | H(8) and T'; | H'(6) of the algebra L(5) are also equiva-
lent.

Proof. From the assumption it follows that there exists a linear isomorphism
¢ of H(J) onto $'(5) such that

‘/’Tf: /f¢r ¢Eij(5)=E:'j(6)¢
for any fe L°(6) and i, j=1,..., d. For every ue K, we have

¢\ Tip =E@) §' Tid = £ E@)  Tudp =7 (3 BT ¢

=47 (3 dy@ELON9= 3 dyWE©)
=E()T,.
Namely T,¢=¢T, for all ue K on (). Thus ¢T,=T'¢ for all fe L(§) (Lemma
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14 in [2]). Q.E.D.

Theorem 2. Let G be a locally compact unimodular group, K a compact
subgroup of G, and & an element of K. Let {9, T.}, {$', T.} be two topologically
irreducible representations of G which contain 8, and U(f), U'(f) corresponding
topologically irreducible representations of L°(d) respectively. Then U is equiva-
lent to U’ if and only if there exists a linear mapping y of  into &' which satisfies
the following conditions;

(a) ¥ is defined on a G-invariant dense subspace 2(y) of 9, and injective,

(b) T W=yT,on 2W) for all x € G,

(c) EM2W)=2()) for every ye R, and E'(y)W=yE(y),

(d) ¥|2W)nH(6) can be extended to a bijective and bicontinuous linear
mapping of H(3) onto H'(3).

Proof. Assume that U is equivalent to U’. Then, by Lemma 1, there exists
a bijective and bicontinuous linear mapping ¢ of H(5) onto H'(9) satisfying ¢T,=
'+¢ for any fe L(). Fix a non-zero vector a, € $(5) and put

2W)= {Tfaolfe L(G)} .
For arbitrary f, g € L(G), we have
E'O) T Tra0=T gz.9.5.7:9(@0) = O(T 5,00 1.7300) = PE(O) T, T a0

where ag=¢(a,). This means that T;a,=0 implies T’;ap=0. Therefore we may
define a linear mapping ¥ of 2(y) to ' by ¥(T,ao)=Tjas. The injectivity of ¢
follows from the above equality. Now it is clear that ¥ satisfies the conditions (a),
(b), and (c). To prove that y satisfies the condition (d), we have only to show
ol 20)n H)=y¥|20)n H(S), but this is easy.

Conversely, we assume that a linear mapping ¢ satisfies the above four con-
ditions. By the condition (c), we obtain 2(y¥)n H(6)=E(6)2(Y) and therefore
20) N H(S) is dense in H(). Denote by ¢ a bijective and bicontinuous linear
mapping of $(5) onto H'(d) which is an extension of the mapping ¥ | 2(¥) n H(3).
Since E'(8)T.E'(6)¢=pE(S)TE(S) for all xeG and ¢ is continuous, we obtain
E'(0)TE'(8)p = PE(J)T,E() for all fe L(G), i.e., Typ=¢T, for all fe L(5). Now
it is clear that U is equivalent to U’ by Lemma 1. Q.E.D.

Definition. A representation {§, T,} of G is called “‘nice” if there exists a
pair (K, 6) of a compact subgroup K of G and de R which satisfies 0<dim $(5)
< + 0.

Let {9, T,} be a topologically irreducible nice representation of G. Then we
can find a pair (K, 8) which satisfies 0 <dim $(0)< + 0. Now we take an arbitrary
non-zero vector a € H(d) and put

$0={Tfa§f€ L(G)}.

This is a G-invariant dense subspace of $, and an important fact is that §, is inde-
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pendent of the choice of such (K, 8) and a (cf. Lemma 4 in [2]). The following
theorem, which is the same as Theorem 9 in [4], is a corollary to Theorem 2.

Theorem 3. Let G be a locally compact unimodular group, and {9, T.},
{9', Ty} two topologically irreducible nice representations of G. Let $q, Ho be
the corresponding subspaces of ©, 9’ as above. Then the following conditions
are equivalent.

(i) For a pair (K, 8) of a compact subgroup K of G and e K satisfying
O0<dim H(0)< + o, the corresponding two irreducible representations U(f),
U'(f) of the algebra L°(9) are equivalent.

(i) For every pair (K, 8) of a compact subgroup K of G and 6 € K satisfying
0<dim H(6) < + oo, the corresponding two irreducible representations U(f), U'(f)
of the algebra L°(5) are equivalent.

(iii) There exists a bijective linear mapping  of 9, onto O satisfying
YT, =T,y for all xe G and YE(5)=E'(8)Y for all pairs (K, §).

Definition. Two topologically irreducible nice representations {$, T,} and
{9, T} are called spherical-function-equivalent (or SF-equivalent) if the conditions
in Theorem 3 are satisfied.

Let U(a) be a representation of an algebra A on a topological vector space $.
If there exists a closed invariant subspace .# of §, then the representation U(a)| %
on % is called a subrepresentation of U(a).

Theorem 4. Let G be a locally compact unimodular group, K a compact
subgroup of G. Let {, T,} be a representation of G on a complete locally convex
topological vector space H. Assume {9, T,} contains 5 K, and denote by U(f)
the corresponding representation of the algebra L°(8). If we can find a topologi-
cally irreducible subrepresentation Uy(f) of U(f), then there exist closed G-
invariant subspaces |, #, of  satisfying the following conditions;

(@) o#>5#, E@B)#,={0},

(b) the naturally defined representation © of G on 3#,/#, is topologically
irreducible, and the corresponding topologically irreducible representation of
the algebra L°(3) is equivalent to Uy(f).

Remark. The author does not know whether #,/5#, is complete or not.
But the integrals S 1.f(x)dx (fe L(G)) and S T,Xs(u)du converge in 5#,/#,, and
G K

therefore we can make the same arguments as in the case of representations on com-
plete topological vector spaces.

Proof of Theorem 4. By the assumption, there exists a closed L°(8)-invariant
subspace £, of $,(6)=E;(8)9 such that the representation T,|.%, of L°(d) is
equivalent to Uy(f). Then the closed subspace ¥ =%, +E,(6).%,+ -+ E;(8)Z,,
where d is the degree of 4, is L°(d)-invariant and K-invariant, and therefore L(5)-
invariant. For every ae &, put #,={Ta; fe L(8)}. Since ., is invariant under
E;(6), we have
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Z.,=E, 1(5)$a+ +Edd(5)$a'

Clearly E;1(0)%,=%,N9,0)=ZNH,(0)=%, and E,(0).%, is L°(6)-invariant,
thus E,(0)%,=%,; or ={0}. On the other hand, we have E;(0)E,(0)Z,=
E;(6)%, Therefore we obtain £,=% or ={0}, and this means that ¥ is
topologically irreducible under T, | % (fe L(d)).

Now the closed subspace

50

is G-invariant, and E(6)o#;=.%. Denote by s#, the maximal G-invariant subspace
of o, satisfying E(d)s#,={0}. Then these subspaces +#,, 5, satisfy the con-
ditions (a) and (b). Q.E.D.

§2. Irreducible Banach representations of G=SK

Let G be a locally compact unimodular group, and K a compact subgroup of
G. We assume that there exists a closed subgroup S of G such that all xe G are
uniquely and continuously decomposed into the products x=su where seS and
ue K. Let du(s) be a left Haar measure on S and du the normalized Haar measure
on K, then dx=du(s)du (x=su) is a Haar measure on G.

In the following, we shall denote by {9, T,} a fixed topologically irreducible
representation of G on a Banach space . We assume dim $(6)=pd for a fixed
equivalence class 6 € K, where d is the degree of § and p a natural number. If we
denote by p(x) the operator norm of T,, then p(x) is a semi-norm on G (cf. [1]).
Let L,(G) be the algebra of all measurable functions f on G which satisfy

171,={_17@lpdz< +co.
Then L,(G)*¥; and Ly(8)={f°; fe L,(G)*¥;} are closed subalgebras of L,(G).

On the other hand, we shall denote by 4, the space of all d x d-matrix valued
measurable functions F on S which satisfy

11, =d. Max [ 1£,(5)lp(s)du(s) < +co.
15i,jsdJS

where f;;(s) are (i, j)-matrix elements of F(s). A4, is a Banach algebra with the
convolution product

FxG(s) = Ss FOG(1s)du(t) .

Fix an irreducible unitary matricial representation D(u) of K belonging to d, and de-
fine a transformation

<b(f)(s)=§KW)f<su-l)du
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of L,(G)*y, into A,. This is continuous, bijective, and linear. The inverse trans-
formation @~! is also continuous, and given by

®~1(F)(x)=d-trace [F(s)D(u)]

where x=su. For every element F=®(f)e A, we put F°=®(f°). Then F->F° is
a continuous projection, and we easily have an equality

D(f*g°)=D(f)*P(g°)=D(f)*P(g)°.

Therefore Ag={F°; Fe A,} is a closed subalgebra of A, and isomorphic to the
Banach algebra L;(9).
Put

p={feL3(); T,=0},

then this is a regular closed two-sided ideal in L;(J), and an element ee L;(d) is a
right identity modulo p if and only if T, | $H(J) is the identity operator on $(5). A
non-trivial subspace V of $(d) is called K-irreducible if V is invariant and irreducible
under T, (ue K). For a K-irreducible subspace V of $(d), we put

ay={feL;(): T;| V=0}.

Lemma 2. The mapping V—ay of the set of all K-irreducible subspaces of
9(0) to the set of all maximal left ideals in L;() containing p is bijective.

Proof. Let V be a K-irreducible subspace of $(d), and a a left ideal in L;(5)
such that ay&a. Then Z T,V is invariant under all operators T, (fe L;(d)) and

T, (ue K). Therefore Z T,Vls invariant under all operators T (f€ 13+L,(G)*¥;3)
by Lemma 11 in [1], and this means $(6)= Z TfV Since dim $(8)=pd, there
exist p functions f;,..., f, € a such that

HO)=T,V®---®T, V  (direct sum).

Thus every vector a e $H(d) is uniquely written in the form a=Tra,+--+T;,a,
where ay,...,a,e V. Since the linear transformation a—a; on V commutes with
all operators T, (u € K), we have a;=A,a for some 4;€C, i.e.,

a=(A, Ty ++4,T; )a.

Therefore, for every function fe Lg(d), we can find a function g € a such that Tra=
T,aforallae V. This means L;(§)=a. Now we have proved that a,, which clearly
contains p, is a maximal left ideal in L;(9).

Conversely let a be a maximal left ideal in L;(d) containing p. Suppose aZ ay
for every K-irreducible subspace V of $(8). Take an arbitrarily chosen non-zero
vector a€ $(d). Then there exist u,,...,u,eK and 4,,..., 4, €C such that b=

Z 2;T,a is a non-zero vector in a K-irreducible subspace V of $(5). By our as-

sumptlon, at least one function fea satisfies T,V # {0}, or equivalently, dim T, V=
dim V=d. For such a function fea, we have T;b#0. On the other hand, we put
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fre (x)=f(xu=")=f(u"'x)=¢,xf(x)

for all fea and ue K. Let A be the algebra generated by {f=¢,; fea, ueKj}.
Then above consideration shows that {Ta;fe A}#{0}. This subspace {T;a;
fe A} is L,(0)- and K-invariant, and therefore y;+L,(G)*x;-invariant. Consequently
{Tsa; fe A}=9(5). Namely, f—>T,|9H(d) is a p-dimensional irreducible represen-
tation of A. By the Burnside’s theorem, we can find a function g e A satisfying

T, 9(0)=1. TIf we take f,,..., e a and u,,..., u, € K such that g= th,-*s,,‘, then
i=1
, ! R

where &,,..., & are certain constants. Thus we have T,|9(8)=1 for h= Zt Eifiea,
i=1

and it follows that fxh—fepca for all fe L;(6). This is a contradiction since
a& L;(9). Therefore we have proved that there exists a K-irreducible subspace V
of $(0) satisfying a=ay.

At last, we show that the mapping V—a, is injective. Let V and V' be two
distinct K-irreducible subspaces of $(d). Since V' n V'={0}, there exists a linear
operator L on $(8) such that LT,=T,L (ueK), LV=V,and LV'={0}. A function
fe L,(6) which satisfies T, | H(d)=L belongs to ay. but does not to a,. Therefore
ay #ap. Q.E.D.

Since our topologically irreducible representation {$, T,} contains § p times,
the irreducible representation U(f) of the algebra L°(6) corresponding to {H, T}
in the sense of § 1 is p-dimensional. If we denote by U = U(x) the spherical matrix
function of degree p of type 6 defined from {9, T,} (see [3]), then we have

U(f) = 36 Ux)f(x)dx  (feL°(5))

up to equivalence. The right hand side converges for fe L;(0), therefore we can
extend U(f) to a representation of L;(6). We shall denote this by the same notation
U(f). On the other hand, for every K-irreducible subspace V of $(5), we have a
naturally defined irreducible representation of L,(6) on L;(6)/ay. It is easily seen
that this representation is equivalent to U(f).

For every K-irreducible subspace V of (), we put

Ay =D(ay).

Since @ maps L,(d) isomorphically onto 4,, Ay is a closed regular maximal left
ideal in A, and an element €= &(e¢), where ¢ is a function in L; () satisfying T, | H(5)
=1, is a right identity modulo %,. Moreover

M, ={FeAd,; (G+F)°eU, forall Ge A,}
is a closed regular left ideal in 4,, and € is a right identity modulo 9,

Definition. Let V be a K-irreducible subspace of $(6). We shall denote by
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{e¥,..., €4} a base of V with respect to which the operators T, | V are represented by
our fixed unitary matricies D(u).

Lemma 3. Let V be a K-irreducible subspace of $(6). For every F=®(f)e
A, (fe L(G)*x;) whose (i, j)-matrix coefficient is denoted by f;;, we have

d
Tfe=/=.zl Tfue}’ (l':l,.‘., d)
j=

where Tfii:g T.fi{s)du(s).
N
Proof. Denoting by d,;(u) the («, f)-matrix coefficient of D(u), we have

f(sw) = d-trace [F(s) D] =d_3. f3u(5)degi).

x 1

Therefore

Tfe:'/=8 TST:I./.(Su)eydu(s)du
SxK

=d 3 {  TTfyu()dg@el du(s)du
SxK
=4 $ 3 T e duls)du

d
=3 T, . Q.E.D.

Corollary. Let f be a function in L,(G)*x,; and put F=®(f)e A,. If we de-
note by E; the d x d-matrix whose (i, i)-matrix coefficient is 1 and the others are
0, then the functions f;=®~1(E;F) € L(G)*¥,; satisfy f=f,+---+f; and

Tf‘e:,= Tfe},, The_’,'=0 (i #j).

Lemma 4. Let V be a K-irreducible subspace of $(5), and F=&(f) an ele-
ment in A, where fe L,(G)*3;. Then FeM, if and only if T,V={0}.

Proof. We shall denote by L,(S) the algebra of all functions ¢ on S satisfying

S [@(s)p(s)dp(s) < +oo. Let E,z be the d x d-matrix whose («, f)-matrix coefficient
N

is 1 and the others are 0. For every ¢ € L,(S) and E,;, the d x d-matrix valued
function @E,s, whose («, f)-coefficient is ¢ and the others are 0, belongs to 4,. If
we denote by f;; the (i, j)-matrix coefficient of F=®(f) and by g,,, the (m, n)-matrix
coefficient of G=(@E,z)xF, then g,,=0,.¢*fs,) where 6,, is the Kronecker’s
delta. Putting g=®7!(G) and using Lemma 3,

T °e,.V=S T, T,T,-re¥du

K

g9

d
=3 T T,endu
m=1JK
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- ég TGO ¥, T, ek1du

-, ma
S T,dia) [T, T el 1du.

Therefore we have
FeMy & [(PE,z)*F]° e, forall o, Be{l,...,d} and ¢eL/S),
& [0 Y(PE 4+F)] € ay for all o, Be{l,...,d}
and ¢eLy(S),

<=>SK Ty ) [T,T,ei1du=0  forall i, o fe{l,..,d)
and ¢eL,(S),
& EQ)T,T,V={0}  forall $eLyS),
& E(0)T,T,V={0} for all seS,
&= E(0)T, T,T,V={0} forall ueK and seS,
= E)T,T,V={0} forall xeG,
& T,V={0}. Q.E.D.

For every d x d-matrix M and every element F € 4,, we put (MF)(s)=M x F(s)
where the right hand side is the product of two matrices M and F(s). MF is ob-
viously an element in 4,,.

Lemma 5. Let V be a K-irreducible subspace of $(5), and M a left ideal in
A, such that M>M,, and that MMM for every dxd-matrix M. Then the
subspace {Tsa; fe L(G)*X;s ®(f)eM} of H, where ae V—{0}, is independent of
the choice of nonzero vector acV.

Proof. Let a, beVand a#0, b#0. We can find a continuous function &(u)
on K such that &xy;=¢ and that

Tib S T,E(u)bdu=a.
For every function fe L,(G)*x, satisfying ®(f) e M, we see f+& e L,(G)*); and

B (f*E)(s) =§KT)<7)f*c(su-'>du

=S D(u) f(su='v~)¢E(v)dudv
KxK
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=S D(v™u) f(su~1)E(v)dudv
KxK

=[§K1)(v——x)¢(u)dv}¢(f)(s)e%t

by our assumption on M. Since T,a= T b, we clearly have {T,a; fe L,(G)*¥,,
D(f)eMy ={Tb; fe L(G)*x5 O(f)eM}. Q.E.D.

Definition. For a K-irreducible subspace of $(d) and a left ideal M in 4,
such that M>>I, and that MM <=M for every d x d-matrix M, we put

Hv(M)={T;a; fe L(G)*¥s, P(f)e D}
where aeV, a#0.

Since our representation {9, T,} is topologically irreducible and nice, we can
define the subspace H, of H as in §1. But {9, T,} is a Banach representation, so
let’s define another subspace $, of  which is a natural extension of §,, i.e., taking
a non-zero vector a in $(5), we put

9,={Tsa; fe L(G)}.
As in the case of 9, this subspace 9, is independent of K, §, and a. Namely, if
a pair (K’, 8') of a compact subgroup K’ and &' € K’ satisfies 0<dim $(8")< + oo,
then, for every nonzero vector a’e$(5'), we have 9,={T,a’; fe L,(G)}. Our
subspace $,(IMM) in the above definition is a subspace of $, and L,(S)-invariant,
i.e., invariant under all operators T¢=S T ¢(s)du(s) for ¢ € L,(S).
S

Lemma 6. Let V be a K-irreducible subspace of $(6), and A" a L,(S)-invari-
ant subspace of 9, Then there exists a left ideal M in A, such that M> My,
MM <IN for all d x d-matrices M, and that A" = $,(M).

Proof. Put M={FeA,; T,V for f=07!(F)}. Let F be any element of
M, and denote by g;;€ L,(S) the (i, j)-matrix coefficient of an arbitrary element
GeA,. The function h=®~!(G+F) is given as follows;

h(su) =d-trace [G*F(s)D(u)]

i d-trace [gij*(EijF)(s)m]

i, =1

,i gij* P U(E;F) (su)

i,j=1

where E;; is the d x d-matrix whose (i, j)-matrix coefficient is 1 and the others are 0.
Choose a continuous function &;; on K such that §;*y;=¢;; and that S D(u=1)¢;; -

K
(u)du=E;;, then we have E;;F = ®(f*¢{;;) and

T¢-1(E,jp)a=Tf(T¢”a)E TfVCJ{‘ (ae V)
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ie., E;FeM (121, j£d). From this, we know two facts; the one is that MIN <M
for all d x d-matrices M and the other is that T,a € ¢ for all a € V, namely, G*F € 9.
Therefore MM is a left ideal in A,. The inclusion IMM>IM,, is clear. At last let’s
prove o =9H,(M). Let {e},..., 4} be, as was already defined, a base of V with
respect to which the operator T, |V is represented by the matrix D(u). For every
vector ae X < 9,={Tse}; fe L,(G)*x,}, there exists a function fe L, (G)*x; such
that Trel =a. From Corollary to Lemma 3, we may assume Tye}! =0 (i=2,..., d)
without loss of generality. Then T,V =X or, by definition, &(f) € M. Therefore
a=Trel € Hy(M). Thus we obtain A" =$H,(M). Since H(M)=A" is clear, we
have proved the equality o =%, (). Q.E.D.

Lemma 7. Let V be a K-irreducible subspace of $(6). The mapping M-~
=9Hy(M) is a bijection of the set of all left ideals M in A, which satisfy M>M,,
and MMM for all d x d-matrices M onto the set of all L,(S)-invariant subspace
X of 9,

Proof. We have only to prove the injectivity. Let I, and 9, be distinct
left ideals in A4, which satisfy the above conditions. We may assume that there
exists an element F € M, such that F&EM,. Since F=E,F+ .-+ E,F, one of the
d terms of the right hand side, say E;,F, does not belong to M,. We put f,=
@~1(E,,F). Suppose H,(M;)=Hy(M,), then Ty e} € H,(IM,) has another expression
of the form T el =T, with a suitable function ge ®~'(M,). Since E;;GeM,
where G=®(g), the function g,=9¢"'(E,,G) satisfies T, a=T,a for every aeV
by Corollary to Lemma 3. Therefore, by Lemma 4, we obtain E;;F—E;;Ge M,
cMM,. This means E,,F € M,, but this is a contradiction. Q.E.D.

Since M, where V is a K-irreducible subspace of $(9), is a regular left ideal in
the Banach algebra 4,, a maximal left ideal M in 4, which contains M, is closed in
A,. Therefore MMM for every d X d-matrix M, and 9 is invariant under left
translations ¢, (seS) where (¢,F)(t)=F(s~'t). Now we naturally define the left
multiplication by d x d-matrix and the left translations & on the quotient space
A,/ which is a Banach space with the usual norm. Put

H;=E;(A,/M) (i=1,...,d)

where E; denotes, as before, the d x d-matrix whose (i, i)-matrix coefficient is 1 and
the others are 0. We shall denote by 7,(s) the left translation by an element se S
on the Banach space H;, then {H,, my(s)} are mutually equivalent topologically
irreducible representations of S.

On the other hand, for a maximal left ideal 9 in A, which contains My, "=
Hy(M) is a maximal L,(S)-invariant subspace of $, by Lemma 7. Since M is invari-
ant under ¢ (s€ S), the subspace ¢ is obviously S-invariant, i.e., T.2¢ < for all
seS. Thus the operator T, naturally induces a linear operator, which is denoted
by A(s), on the vector space H,/#". A(s) is a representation of S on the vector space
9,/ in a purely algebraic sense.
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Lemma 8. Let M be a maximal left ideal in A, which contains My,. The
representations n(s) and A(s) of S, which are defined for M as above, are algebrai-
cally equivalent. In other words, there exists a linear bijection I; of H; onto
D,/ , where A = Hy(M), such that Iien(s)=A(s)°I; for seS.

Proof. For F e A, we define I'(E;F)=Tyel where f;=®"1(E;F). If E;Fe,
then Tj.e} € Hp(M) by the definition of H,(M). Conversely, if Ty el € Hy(M), then
T;aeHy(M) for all aeV by Corollary to Lemma 3. Therefore E;F=o(f)eM
by Lemma 7. These facts mean that I; induces naturally a linear bijection I; of H;
onto H,/Hy(M). The equality I,om(s)= A(s)oI; is clear. Q.E.D.

Let »# be a non-trivial maximal L,(S)-invariant subspace of £, For a K-
irreducible subspace V of $(6), there exists a maximal left ideal 9t in 4, which con-
tains M, such that # =$H,(M) (Lemma 7). For this maximal left ideal M, we can
define topologically irreducible representations {H;, m,(s)} of S as above. If we
introduce a structure of Banach space into $,/2¢" with respect to which the linear
bijection I; of H; onto 9,/ is an isomorphism, then we obtain a topologically
irreducible representation A(s) of S on the Banach space $,/5#.

§3. Main theorem

Let G=S-K be the same locally compact group as in §2. Let {H, A(s)} be a
topologically irreducible representation of S on a Banach space H. We shall denote
by $4 the Banach space of all H-valued continuous functions £ on K with a norm
€Nl =sup ||E(u)|| g, Where |||y is the norm in H. For every pair (x, y)e Gx G,
we define k(x, y)e K and o(x, y)e S by

xy=k(x, y)o(x, y).
With this notations, we define a bounded linear operator T4 on $4 for every xe G
by
(T W) =A(a(x7, w) De(k(x~1, u))  (ueK).

Then {$H4, T4} is a representation of G.

Let 6 be an equivalence class of irreducible representations of K. As in §1,
we choose an irreducible unitary matricial representation D(u) of K belonging to 4,
and denote by d,;(u) its (i, j)-matrix coefficient. Put

B0 = Ton@du, E4©)=d| Tidw@de (155 j5d)

where d is the degree of 6. By the arguments in § 1, mutually equivalent d represen-
tations of the algebra L°(d) are defined on subspaces

510) = EA©)9*= (@) = 3, & ajiajeH)  (1SiSd).

Denote by e; a d-dimensional column vector whose j-th component is 1 and the
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others are 0, then the mapping P defined by
d __ d
P(Y dijaj)= 2 e;®a;
j=1 j=1

d
is a linear isomorphism of ${(5) onto C!®H. If we adopt } |la;||y as a norm of
j=1

d
> e;®aj, then C*®H is a Banach space and P gives an isomorphism of the Banach
=

;pace $#(0) onto the Banach space C‘®H.
For every function fe L°(d) we obtain

(T4da) () =SG d S, ) A0 (e, w))a f(x)dx

- SGXK di;(k(xT, ) Ao (x71, w)™Na f(vxv™!)dxdv

Scxx d;j(v-k(x~Y u)A(o(x7t, v™ ) )a f(x)dxdv

SG Kdij(uv-x(x‘.‘, v1))A(e(x~L, v 1) Ya f(x)dxdv

= 2 d@ | dRGT e A, o) Da s dxds |.
n=1 GxK
Therefore we have

Po(TF9{(8))°P~'(e;®a)

> e®[ | di RGN A, v“)“)af(x)dxdv]
n=1 GxK

=SG B (3 dyj(v-r(x71, v71))e, ) ®A(a(x7H, v71) a dv]f(x)dx.

K n=1

WA(x) =S WA(vx~1v~Y)dv
K
where WA(x)=D()® A(s"!) with x=us, then it follows that
Po(THSHE) P = WA = WA f(x)dx

for fe L°(9).

Let {9, T} be a topologically irreducible representation of G on a Banach
space $ which contains § p times (0<p< + o), i.e., dim H(0)=pd. As is proved
in §2, there exists a maximal L,(S)-invariant subspace 2", which is S-invariant at
the same time, of 9, where p(x)=|T,|, and we introduce the Banach space structure
into H=$9,/#" defined in the last paragraph of §2. A(s) denotes the topologically
irreducible representation of S naturally defined on H. For this representation
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{H, A(s)} we consider the induced representation {H4, T4} of G. Let Uy(f) be a
p-dimensional irreducible representation of the algebra L°(§) which is equivalent to
T, | 949) on H,(0), then this is naturally extended to a representation of the algebra
L;(5), denoted by the same notation Uy(f). In [5] it is proved that there exists a
p-dimensional subspace # of C!®@H which is invariant for all WA(f) (fe L;(5))
such that Uy(f) is equivalent to W4(f)|.#. Of course the representation L°(6)3 f—
WA(f)| & of the algebra L°() is irreducible and equivalent to Uy(f). On the other
hand, WA4(f) is equivalent to the representation T4|H#(5) of the algebra L°(),
therefore Uy(f) is equivalent to a subrepresentation of T4|$H#A(6). Now, by
Theorem 4, we can find closed G-invariant subspaces 5, ##, of H4 satisfying the
following conditions;

(@) # >, EAS)#,={0},

(b) the naturally defined representation t of G on the Banach space s#,/:#,
is topologically irreducible, and SF-equivalent to {9, T.}.
Therefore we have proved the following main theorem.

Theorem 5. Let G be a locally compact unimodular group with a continuous
decomposition G=SK, where S is a closed subgroup and K a compact subgroup
of G such that SnK={1}. Let {9, T,} be a topologically iirreducble repre-
sentation of G on a Banach space © which contains 6K finitely many times.
Then,

(I) there exists a topologically irreducible representation A(s) of S on a
Banach space with the following property; for the induced representation {$4, T4}
of G, there exist closed G-invariant subspaces 3, 3¢, of H4 such that

(@ #>, ENO)H,={0},

(b) the naturally defined representation t of G on the Banach space #,/#,
is topologically irreducible, and SF-equivalent to {$, T.}.

(II) One of topologically irreducible representations A(s) of S which satisfy
(I) is algebraically equivalent to the naturally defined representation of S on
9,/H", where p(x)=|T,|| and o is a non-trivial maximal L,(S)-invariant subspace

of 9,.
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