On a lattice property of the space $\Gamma_{ho} \cap \Gamma_{he}$

By

Fumio MAITANI

(Communicated by Prof. Y. Kusunoki, Dec. 9, 1978)

Introduction

In the Hilbert space $\Gamma = \Gamma(R)$ of square integrable real differentials on a Riemann surface R, let Γ_h (resp. Γ_{he}) be the subspace of Γ which consists of harmonic (resp. exact harmonic) differentials. The orthogonal complement of Γ_{he}^* in Γ_h is denoted by Γ_{ho} . The space of harmonic measure Γ_{hm} is defined as follows: $\omega \in \Gamma_{hm}$ if and only if for every $\varepsilon > 0$ and every compact set E there exist a canonical region $G (\supset E)$ and a harmonic function w_G which is constant on each boundary component of G such that $\|\omega - dw_G\|_G < \varepsilon$. The subspace Γ_{hm} is the orthogonal complement of the space Γ_{hse}^* in Γ_h , where Γ_{hse} consists of harmonic semiexact differentials. The subspace $\Gamma_{ho} \cap \Gamma_{he}$ clearly includes Γ_{hm} , and $\Gamma_{ho} \cap \Gamma_{he} = \Gamma_{hm}$ for finite bordered Riemann surfaces, but R. Accola showed an example of Riemann surface of infinite genus for which the equality does not hold.

Now for *HP*-functions u and v we denote by $u \wedge v$ (resp. $u \vee v$) the greatest harmonic minorant (resp. the least harmonic majorant) of u and v. A subspace $\Gamma_x \subset \Gamma_{he}$ forms a vector lattice if du and $dv \in \Gamma_x$ imply $d(u \wedge v)$ and $d(u \vee v) \in \Gamma_x$. We say that a subspace $\Gamma_x \subset \Gamma_{he}$ has a lattice property if $df \in \Gamma_x$ implies $d(f \wedge c) \in \Gamma_x$ for every real constant c. The space Γ_{he} forms the vector lattice, hence it has a lattice property. It is pointed out in [4] that the space Γ_{hm} has the lattice property.

Here we shall show that $\Gamma_{ho} \cap \Gamma_{he}$ has also the lattice property. Some related subjects shall be investigated.

1. We shall show first that Γ_{hm} forms the vector lattice. This implies that Γ_{hm} has the lattice property.

Proposition 1. Let u and v be harmonic functions such that du and dv belong to Γ_{hm} . Then $d(u \wedge v)$ and $d(u \vee v)$ belong to Γ_{hm} .

Proof. It is sufficient to show $d(u \wedge v) \in \Gamma_{hm}$. Let $\{R_n\}$ be a canonical regular exhaustion of R. For a given $\varepsilon > 0$, there exists an R_m such that $||du||_{R-R_m} < \varepsilon$ and $||dv||_{R-R_m} < \varepsilon$. Further, there exist an integer N(>m) and harmonic functions u_n and v_n in R_n (n > N) such that u_n and v_n are constant on each boundary component of R_n , $||d(u-u_n)||_{R_n} < \varepsilon$, and $||d(v-v_n)||_{R_n} < \varepsilon$. We have a continuous extension \hat{u}_n

(resp. \hat{v}_n) of u_n (resp. v_n) which is constant on each component of $R - R_n$. Then

$$\|\mathbf{d}(u-\hat{u}_n)\|_R < 2\varepsilon$$
, and $\|\mathbf{d}(v-\hat{v}_n)\|_R < 2\varepsilon$.

If $u \neq v$, a closed set $\{p \in R; u(p) = v(p)\}$ consists of analytic arcs. We denote $\mathbf{A}_r = \{p \in R; u(p) - v(p) < r\}$, $\mathbf{B}_r = \{p \in R; -r < u(p) - v(p)\}$ and $\mathbf{G}_r = \mathbf{A}_r \cap \mathbf{B}_r$. We can take r > 0 such that $\|du\|_{G_r} < \varepsilon$ and $\|dv\|_{G_r} < \varepsilon$. Then, for n > N,

$$\|d\hat{u}_n\|_{G_r} < 3\varepsilon$$
, and $\|d\hat{v}_n\|_{G_r} < 3\varepsilon$.

There exists an integer N' (>N) such that for n > N'

$$|u_n - u| < r/4$$
 and $|v_n - v| < r/4$ on R_m ,

because u_n and v_n converge respectively to u and v in the sense of Dirichlet norm on a region which contains \overline{R}_n . Since $u_n < v_n$ on $\mathbf{A}_{-r/2} \cap R_m$ and $u_n > v_n$ on $\mathbf{B}_{-r/2} \cap R_m$, it follows that

$$\begin{aligned} \|d\min(\hat{u}_{n},\,\hat{v}_{n}) - d\min(u,\,v)\| \\ \leq \|du_{n} - du\|_{A_{-r/2}\cap R_{m}} + \|dv_{n} - dv\|_{B_{-r/2}\cap R_{m}} + \|d\hat{u}_{n}\|_{G_{r}\cup(R-R_{m})} \\ + \|d\hat{v}_{n}\|_{G_{r}\cup(R-R_{m})} + \|du\|_{G_{r}\cup(R-R_{m})} + \|dv\|_{G_{r}\cup(R-R_{m})} \\ < 18\varepsilon. \end{aligned}$$

Hence we can take sequences $\{\hat{u}_n\}$ and $\{\hat{v}_n\}$ such that

$$\lim_{n\to\infty} \|\mathrm{d}\min\left(\hat{u}_n,\,\hat{v}_n\right) - \mathrm{d}\min\left(u,\,v\right)\| = 0.$$

Let $w_{i,n}$ be a harmonic function on R_i (i > n) such that $w_{i,n} = \min(\hat{u}_n, \hat{v}_n)$ on ∂R_i and $\hat{w}_{i,n}$ be a continuous extension of $w_{i,n}$ which is constant on each component of $R - R_i$. Since $w_{i,n} - \hat{w}_{i,n}$ (j > i) is a Dirichlet potential in R_i , we have

$$\|\mathbf{d}(w_{i,n} - \hat{w}_{i,n})\|_{R_i}^2 \le \|\mathbf{d}w_{i,n}\|_{R_i}^2 - \|\mathbf{d}w_{j,n}\|_{R_i}^2.$$

It follows that $\{w_{i,n}\}$ converges to a harmonic function w_n in R and dw_n belongs to Γ_{hm} . We can show that $\min(\hat{u}_n, \hat{v}_n) = w_n + g_n$, where g_n is a Dirichlet potential (cf. [3]). Hence we have

$$\|dw_n - d(u \wedge v)\| \le \|d\min(\hat{u}_n, \hat{v}_n) - d\min(u, v)\|.$$

It follows that $d(u \wedge v) \in \Gamma_{hm}$, q.e.d.

2. Next we show the lattice property of the space $\Gamma_{ho} \cap \Gamma_{he}$.

Proposition 2. Let f be a harmonic function in R such that $df \in \Gamma_{ho} \cap \Gamma_{he}$. Then for every real constant c, $d(f \wedge c)$ belongs to $\Gamma_{ho} \cap \Gamma_{he}$.

Proof. We may assume c=0. Let $\mathbf{G}_r = \{p \in R; f(p) > r\}$, for real r. Take r < 0 and set

192

$$h_r = \begin{cases} 1 & \text{on } G_0 \\ 0 & \text{on } R - G_r \\ 1 - f/r & \text{on } G_r - G_0 \end{cases}$$

For $g \in HBD$ (bounded harmonic Dirichlet function) $g_r = gh_r$ is a bounded Dirichlet function. By the orthogonal decomposition:

$$\begin{split} \Gamma &= \Gamma_{co} + \Gamma_{e}^{*} \qquad (\text{cf. [2]}), \\ 0 &= (df, dg_{r}^{*}) = (df, dg_{r}^{*})_{G_{r}} \\ &= (df, dg^{*})_{G_{0}} + (df, dg^{*})_{G_{r} - G_{0}} - \frac{1}{r} (df, d(fg)^{*})_{G_{r} - G_{0}}. \end{split}$$

We have

(1)

$$\begin{split} |(\mathrm{d}f, \mathrm{d}(fg)^*)_{G_r-G_0}| \\ &= \left| \iint_{G_r-G_0} \left(-\frac{\partial f}{\partial x} \frac{\partial (fg)}{\partial y} + \frac{\partial f}{\partial y} \frac{\partial (fg)}{\partial x} \right) \mathrm{d}x \mathrm{d}y \right| \\ &\leq \iint_{G_r-G_0} \left| f \left(-\frac{\partial f}{\partial x} \frac{\partial g}{\partial y} + \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \right) \right| \mathrm{d}x \mathrm{d}y \\ &\leq -\frac{r}{2} \iint_{G_r-G_0} \left\{ \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 + \left(\frac{\partial g}{\partial x} \right)^2 + \left(\frac{\partial g}{\partial y} \right)^2 \right\} \mathrm{d}x \mathrm{d}y \\ &= -\frac{r}{2} \left\{ \| \mathrm{d}f \|_{G_r-G_0}^2 + \| \mathrm{d}g \|_{G_r-G_0}^2 \right\}. \end{split}$$

It follows that

$$\lim_{r\to 0} \left| \frac{1}{r} (\mathrm{d}f, \, \mathrm{d}(fg)^*)_{G_r-G_0} \right| \le \lim_{r\to 0} \frac{1}{2} \left\{ \|\mathrm{d}f\|_{G_r-G_0}^2 + \|\mathrm{d}g\|_{G_r-G_0}^2 \right\} = 0.$$

Since $\lim_{r\to 0} (df, dg^*)_{G_r-G_0} = 0$, we have $(df, dg^*)_{G_0} = 0$ from (1), hence $(df, dg^*)_{R-G_0} = 0$, because $(df, dg^*) = 0$. By the orthogonal decomposition $\Gamma_e = \Gamma_{he} + \Gamma_{eo}$, we have

$$(d(f \land 0), dg^*) = (d \min (f, 0), dg^*) = (df, dg^*)_{R-G_0} = 0.$$

Since every harmonic Dirichlet function h is approximated by *HBD*-functions in the sense of Dirichlet norm, we have $(d(f \land 0), dh^*) = 0$. It follows that $d(f \land 0) \in \Gamma_{ho}$ and get the conclusion, q.e.d.

3. Let $X = \Gamma_x + \Gamma_{eo}$ ($\Gamma_x \subset \Gamma_h$) and for compact set F on R, $X_F = \{\omega \in X; \omega = 0 \text{ on } F\}$. Then X and X_F are closed subspaces of Γ . We denote by X^F the orthogonal complement of X_F in X and by $\omega_x^F = \omega^F$ the orthogonal projection of $\omega \in X$ to X^F .

Lemma 1. (Yamaguchi [4]) Let $\Gamma_x \subset \Gamma_{he}$ have the lattice property and $\omega \in \Gamma_x + \Gamma_{eo}$. Let W^F be the Dirichlet function such that $dW^F = \omega_x^F$ (cf. [3]). If $W^F \leq c$ on F, then $W^F \leq c$ on R.

Fumio Maitani

Proof. We have a representation $W^F = W + W_0$, where $dW \in \Gamma_x$ and W_0 is a Dirichlet potential. There exists a Green potential P such that $|W_0| \le P$ (cf. [3]). We see that

$$\min(W+W_0, c) = \min(W, c-W_0) + W_0 \le \min(W, c+P) + W_0,$$

$$\min(W+W_0, c) \ge \min(W-P, c) = \min(W, c+P) - P.$$

Hence we get Royden's decomposition: $\min(W^F, c) = W \wedge c + P_0$, where P_0 is a Dirichlet potential. By the assumption we have $\dim(W^F, c) \in X$ and $\min(W^F, c) = W^F$ on F. Therefore $d(\min(W^F, c) - W^F) \in X_F$, and

$$\|\dim (W^F, c)\|^2 = \|\dim (W^F, c) - W^F)\|^2 + \|dW^F\|^2 \ge \|dW^F\|^2.$$

On the other hand, clearly, $\|\dim (W^F, c)\| \le \|dW^F\|$. It follows that $\min (W^F, c) = W^F$ and $W^F \le c$ on R, q.e.d.

Let \prod_x (resp. \prod_{eo} , \prod_{eo}^*) be the orthogonal projection from Γ to $\Gamma_x (\subset \Gamma_h)$ (resp. Γ_{eo} , Γ_{eo}^*). We assume that $\omega \in \Gamma$ is supported in interior of F. For $\Gamma_x \subset \Gamma_{he}$ W_x denotes a harmonic function such that $dW_x = \prod_x (\omega)$, and W_0 denotes a Dirichlet potential such that $dW_0 = \prod_{eo} (\omega)$.

Proposition 3. Let $\Gamma_x \subset \Gamma_{he}$ have the lattice property. Then W_x and $W_{x^{\perp} \cap he}$ are bounded, where $\Gamma_{x^{\perp}}$ is the orthogonal complement of Γ_x in Γ_h .

Proof. By the assumption

$$\prod_{x}(\omega) + \prod_{eo}(\omega) = -\prod_{x\perp}(\omega) - \prod_{eo}^{*}(\omega) \quad \text{on} \quad R - F.$$

It follows that for any $\sigma \in X_F$

$$(\prod_{x}(\omega) + \prod_{eo}(\omega), \sigma) = (\prod_{x}(\omega) + \prod_{eo}(\omega), \sigma)_{R-F}$$
$$= (-\prod_{x\perp}(\omega) - \prod_{eo}^{*}(\omega), \sigma)_{R-F} = (-\prod_{x\perp}(\omega) - \prod_{eo}^{*}(\omega), \sigma) = 0$$

Hence we have $(\prod_x(\omega) + \prod_{eo}(\omega))_x^F = \prod_x(\omega) + \prod_{eo}(\omega)$. Now we may assume that W_0 is bounded on F. If W_0 is unbounded on F, we consider $\omega' = d(W_x + W'_0)$ for ω , where $W'_0 = W_0$ on R - F, and $W'_0 = \min(W_0, \max_{\partial F} W_0)$ on F. By Lemma 1 we know that $W_x + W_0$ is bounded. Since Γ_{he} and $\{0\}$ have the lattice property, $W_{he} + W_0$ and W_0 are bounded. By the fact $\prod_{x \perp 0 he} (\omega) = \prod_{he} (\omega) - \prod_x (\omega)$, we know that $W_{x \perp 0 he}$ is bounded, q.e.d.

Remark. Let W_x and W_y be bounded. If $\Gamma_x \perp \Gamma_y$, then W_{x+y} is bounded. If $\Gamma_x \subset \Gamma_y$, then $W_{x \perp \cap y}$ is bounded. By these operations we can find subspaces Γ_x such that W_x is bounded.

Let p and q be two distinct points on R and $U_{p,q}$ (resp. $V_{p,q}$) be a harmonic function such that $dU_{p,q} \in \Gamma_x$ (resp. $dV_{p,q} \in \Gamma_x \perp$),

$$(dU, dU_{p,q}) = U(p) - U(q)$$
 for any $dU \in \Gamma_x$,

194

(resp. $(dV, dV_{p,q}) = V(p) - V(q)$ for any $dV \in \Gamma_{x^{\perp}} \cap \Gamma_{he}$). We can construct a differential $\omega \in \Gamma$ such that ω has compact support and $(dU, \omega) = U(p) - U(q)$ for any harmonic Dirichlet function U. Therefore we have

Corollary 1. If Γ_x has the lattice property, then $U_{p,q}$ and $V_{p,q}$ are bounded.

Let $HX^{\perp} = \{U; dU \in \Gamma_{x^{\perp}} \cap \Gamma_{he}\}$ and $HBX^{\perp} = \{U \in HX^{\perp}; U \text{ is bounded}\}$. Since the points p and q can be chosen arbitrarily, we have the following.

Corollary 2. If Γ_x has the lattice property, HBX^{\perp} is dense in HX^{\perp} . In other words, by the usual notations for null classes of Riemann surfaces, $O_{HBX^{\perp}} = O_{HX^{\perp}}$.

Particularly we can take Γ_{hm} and $\Gamma_{ho} \cap \Gamma_{he}$ for Γ_x . Let $KD = \{U; dU \in \Gamma_{hm}^{\perp} \cap \Gamma_{he}\}$, $KD' = \{U; dU \in (\Gamma_{ho} \cap \Gamma_{he})^{\perp} \cap \Gamma_{he}\}$, $KBD = \{U \in KD; U \text{ is bounded}\}$, and $KBD' = \{U \in KD'; U \text{ is bounded}\}$.

Corollary 3. $O_{KBD} = O_{KD}$ and $O_{KBD'} = O_{KD'}$.

Faculty of Engineering, Osaka University

References

- Accola, R. D. M.: The bilinear relation on open Riemann surfaces. Trans. Amer. Math. Soc., 96 (1960), 143–161.
- [2] Ahlfors, L. V. & Sario, L.: Riemann surfaces. Princeton Univ. Press, Princeton. 1960. 382 pp.
- [3] Constantinescu, C. & Cornea, A.: Ideale Ränder Riemannscher Flächen. Springer-Verlag, Berlin-Göttingen-Heidelberg. 1963. 242 pp.
- [4] Yamaguchi, H.: Regular operators and spaces of harmonic functions with finite Dirichlet integral on open Riemann surfaces. J. Math. Kyoto Univ., 8 (1968), 169–198.
- [5] Yoshida, M.: The method of orthogonal decomposition for differentials on open Riemann surfaces. J. Sci. Hiroshima Univ. Ser. A-I Math., 32 (1968), 181–210.