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Introduction

On a bordered Riemann surface, where the border is attached a priori to the
surface, one can characterize a point on the border by the existence of a halfdisc-
like neighbourhood. Extending this idea to any compactification of a Riemann
surface, we may regard an ideal boundary point having a halfdisclike neighbour-
hood as a borderlike boundary point. (For the precise definition, see §2.) In this
paper we treat such borderlike boundary points on the Wiener’s comapctifications
of arbitrary Riemann surfaces. Known facts about the Wiener’s compactification
necessary in our investigation are summarized in § 1.

Now three specific classes of Riemann surfaces can be considered in connec-
tion with the set of borderlike boundary points. Among them, them, the class
SOw (resp. SO%) is defined as the class of Riemann suafaces such that the set of
borderlike boundary points are coincident with (resp. dense in) the whole harmonic
boundary. In §2 we see that the class SOy can be considered as the class of
nearly finite bordered Riemann surfaces whenever the genus is finite (Proposition
4), and that the class SOj, is precisely the class of Riemann surfaces such that
the limit set of each corresponding fuchsian group has vanishing linear measure
(Theorem 2).

In §3 we consider the double of Riemann surfaces of above classes and show
a system of strict inclusion relations between these classes and those of Riemann
surfaces whose doubles belong to well-known classes. For the explicit statement,
see Theorem 4.

Finally in §4 we consider, as the third class, the one of Riemann surfaces
which have no borderlike boundary points. This class coincides with the class
of Riemann surfaces such that each corresponding fuchsian group is of the first
kind, except for a few trivial surfaces. (See Proposition 6.) And we give a
characterization of Riemann surfaces of genus zero belonging to this class
(Theorem 6).

The author wishes to thank Professors Y. Kusunoki and T. Fujiie for very
helpful conversations.
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§1. Notations and known facts

In this section we shall state several known facts about the Wiener’s com-
pactification of an open Riemann surface which are used in the sequel. For the
details, see for example [2] and [6]. For an open Riemann surface R, let RX be
the Wiener’s comapctification of R, and [',=I",(R) (CR¥—R) be the harmonic
boundary of R¥. This Wiener’s compactification R¥ is finer than other com-
pactifications such as Martin’s and Kerékjart6-Stoilow’s. More precisely, the fol-
lowing fact is known.

Projection Theorem. Let R} be the Martin's or the Kerékjdrtd-Stoilow’s
compactification of R, and J the identical automorphism of R. Then J can be
extended to a continuous mapping from RY onto R}.

In particular, in case of the unit disk U={|z| <1}, it is known that the
Martin’s compactification of U can be considered as the usual closure U in the
complex plane. Hence we have the following

Corollary A. The identical automorphism Jy can be extended to a continuous
mapping from U} onto U.

Next excluding several trivial cases, U can be considered as the universal
covering surface of R. Let G (=G(R)) be a fuchsian group on U associated
with R and mg be the projection from U onto R with respect to G, that is,
meeg=mg for every geG. Then we have the following

Covering Theorem. Let R be a hyperbolic Riemann surface (i.e. R&Og) and
U and ng be as above. Then ng is a Fatou mapping. In particular, mg can be
extended to a continuous mapping from Uiy onto RY.

Remark. If R is parabolic (i.e. R€Oy¢), the above s is not a Fatou mapping.
In fact, let Re0; and suppose that = is a Fatou mapping. Then by [2] Satz
10.2, there would exist a non-polar closed set F in R such that 1,-1¢m is a potential.
While, 1,-1» is a non-constant positive superharmonic function on U which is
invariant under every g in G, so we have a non-constant positive superharmonic
function on R. This is a contradiction, for ReOg.

Now as relations between R and its subregions, the following facts are well-
known.

Localization Theorem. Let D be a subregion on R, F=R—D and 7p be the
identical mapping from D into R. Then np can be extended to a continuous map-
ping from DY into RY, which we denote also by pp. Moreover, letting D,=R%—F",
and D,=np"(Dy), np gives a homeomorphism from D, onto D, such that
W(DIND)=I"y(R)ND, and a measurable set A in ', (D)N\D, has positive
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harmonic measure if and only if so does np(A). Here (and in the sequel) xv
means the closure of X in the Wiener's compactification.

Characterization Theorem. Everycomponent of an open set D (0g) on R is a
region of type SOyp if and only if I'yn(D*—(R—D)") (=I',(D*“—06D"))=0,
where 0D is the relative boundary of D in R.

Moreover from Localization Theorem we can show the following

Proposition A. Let R and R’ be arbitrary Riemann surfaces, D be a sub-
region on R such that 0D consists of countably many simple curves not accumulat-
ing to any point of R, and f be an analytic mapping from R into R’ which is
univalent on D and satisfies the condition that f(0D)=0D’, where D'=f(D). Then
the continuous extension of f gives a homeomorphism from (D* —3D")N(R)
onto (D’*—aD"™)N(R").

Proof. First note that f|p can be extended to a homeomorphism from D3
onto D’% and it is known that f(I',(D)=I,(D’) (cf. [6] IV 11.LA). Now by
Localization Theorem we have the continuous mapping 7=yp °feyp' from D,=
(D*—3D")Nw(R) into D'*NI,(R’). For every pe D, there is a positive bounded
harmonic function # on D such that =0 on 0D and u(y*(p))=1. Set u’=0 on
R’'—D’ and u'=u-f"! on D’, then because f~X0D’)=0D, we see that u’ is a posi-
tive bounded continuous subharmonic fuhction on R’, hence can be extended to a
continuous function on R’%X.  And it is obvious that u'=0 on (R'—D)" and
@' (H(p)=L. Hence 7(p)e D;=(D""—0D"*)N\[,(R’). So #(D,)CD;. Similarly we
can show that the continuous mapping 7' maps Dj into D,, hence the assertion
follows. g.e.d.

In the sequel we shall use, as above, the same notation as the original one
for the extended function or mapping.

§ 2. Borderlike boundary points

In this section we shall define certain classes of open Riemann surfaces which
concern with the existence of such a part of the ideal boundary as the usual
border. First for an arbitrary Riemann surface R, we call a point p in [',(R) a
borderlike boundary point, or simply a b-point, of R if there exists a neighbour-
hood V of p in R} with the properties: (i) V=(VAR)*—o(VAR)”, (ii) VAR is
simply connected, (iii) d(VNR) is a open simple curve. We call such a neigh-
bourhood of a b-point p a distinguished neighbourhood of p. Now set

dyR={pel',(R): p is a b-point of R}.

Roughly speaking, d, R is the borderlike part of I',(R), and we can see easily
that every point of d,, R has vanishing harmonic measure.
Now set
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SOw={R&0¢: dy,R=I",(R)}, and
SOw={R& Os: dyR is dense in [,(R)}.

Obviously we have that SOwCSOj. Also the following Proposition is easily
seen.

Proposition 1. A surface R belongs to SOy if and only if I'yv(R)—dwR has
vanishing harmonic measure.

Proof. Let pu, be the harmonic measure on I, then because d, R is clearly
open, it holds that p,(dw R)=po(dw R™)=p,,(I",,), that is p,, ([, —d, R)=0. g.e.d.

Proposition 2. Let D be a subregion of R such 0D consists of a countable
number of disjoint simple curves which are not accumulating to any point of R.
Further, if D is of type SOyp, then D belongs to SOy as a Riemann surface.

Proof. First it is easily seen that %3'(@D)N[,(D) is contained in d,D.
Hence we can show the assertion by the definition of the SOz and Lemma
1 below. q.e.d.

Remark. If we permit components of 0D to accumulate in R, then it is
clear that the assertion of Proposition 2 does not hold.

Lemma 1. Let I be an open arc on oU, U being the unit disc, and u a bounded
harmonic function U. Then u=0 on JF*(I)N[w(U) if and only if u has the
vanishing bonndary value everywhere on 1.

Proof. 1t is well-known that » has the non-tangential boundary value u*
almost everywhere on oU and u is uniquely determined as the Poisson integral
of u*. Let uf=u*on ] and =0 on 0U—I, u¥=u*—u¥, and u; the Poisson integral
of u¥ (;=1,2). Then u, is harmonic on C—/ and u, is harmonic on C—@U-I).

Now if u*=0 on I (, i.e. u,=0), then it is ovbious (cf. Corollary A) that
u=0 on J7'U)N["y. On the other hand, suppose that u=0 on J3'(/)N[,. First
note that u,(/7'(I—1))=0 and u,=0 on Jz'(U—1). Hence by the assumption and
the fact that u,=u—wu;=0 on I, we have that u,=0 almost everywhere on [",(U)
with respect to pg,. Thus we conclude that i#,=0, that is, u=u, has the vanish-
ing boundary value everywhere on . q.e.d.

Next we note the following
Proposition 3. SOy is a proper subset of SOyy.

Before proving Proposition 3, we consider here a simply connected subregion
D in the unit dise U such that y=0D is a simply (open) curve and D is contained
in {z€U: Rez>0}. First note that each end of 7 clusters onto a closed subarc,
say I, and I,, on oU, and (D—7)noU=DoU—(I,\JI,) is an open arc, say I, on
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oU (which may be empty). We shall denote by E the set (D* =7 (U) and
by I3 the interior of I; with respect to aU.

Lemma 2. ENJ;'(:)=0 for each i.

Proof. 1f I, is a single point, then there is nothing to prove. Hence suppose
that I3#0. Then for every {I;, we can find a sequence {7.}5-; of subarcs of
v such that for a sufficiently small ¢>0 every component of {z€U: |{—z]| <&}
—knjrn is relatively compact in U. In particular, every component of D.=—

DN{zeU: |{—z|<e} is also relatively compact in U, hence D. is of type SOys.
Thus by Characterization Theorem we can conclude that Jz({)N\E=0. Because
{el; is arbitrary, we have the assertion. q.e.d.

Lemma 3. J,(E)=].

Proof. By Projection Theorem Jy(D¥)CD, and by Lemma 2 we have that
JHAEYTDNoU—(I;\JI3). Also as in the proof of Lemma 2, we can see that
Jo(E)NU;—(I3\UI))=0 for each i, hence Jy(E) is contained in I.

On the other hand it is obvious that /CJy(E). And s=1y-p is a continuous
superharmonic function on U such that s=0 on J7'(/) and s=1 on 7“. Because
s in continuous on U3, we see that J7'(1)*N[wCE, hence Jy(E)DI, for J,(J77U )"
is compact. g.e.d.

Corollary 1. D is of type SOyp if and only if I=0.
Lemma 4. J;'()“N[,=E.

Proof. In the proof Lemma 3, we have seen that J7'(1)""[wCE. If F=
E—J7" NN, #0, then because F is open in I, we could construct a non-
constant bounded harmonic function # on U such that =0 on I',—F. But by
Lemma 1 and 3 w*=0 on aU—(/—1I), hence u=0 on U, which is a contradiction.
Thus we have the assertion. g.e.d.

Now Proposition 3 follows from the following

Example 1. Let R=U—E, where E:{exp [—%-I—«/—_l%]: neZ, keZ},

then ReSOy—SOw. To show this, first consider the mapping 7=Jy°nz from
R¥ onto U, where yr and Jy are as in Localization Theorem and Corollary A,
respectively. Because E is polar, E“NI(U)=0 (cf. [2] Satz 9.7), we see from
Localization Theorem that %, gives a homeomorphism from 7,(R) onto I, (U).
In particular, 7°'({1}) is not empty. Suppose that there is a point p in d,R such
that 7(p)=1, and take a distinguished neighbourhood V, of p. Then by Charac-
terization Theorem V,N\R, hence V,NU is not of type SOxs so we conclude
from Corollary 1 and Lemma 3 that I=(V,—adV,)"oU is a non-empty open sub-
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arc on oU such that />1. Hence Isexp(\/:I%> or exp(—\/:I%) with a suf-

ficiently large k, and FE clusters to an interior point of I, which contradicts to
the assumption that V, is simply connected. Thus #-'({1})"\d,R=0, that is,
Re& SOy

On the other hand, it is obvious that du(R)D7~/(3U~fexp (x/—_l)%}uu})
N[,(R) and every bounded harmonic function # on R (which can be considered
as defined on U) such that #*=0 on aU—kk}{exp («/—‘I%)}U{l} vanishes iden-
tically on U. Hence d,(R) is dense in [,(R) (cf. Lemma 1), that is Re SO).

For the class SOy, we can show the following

Theorem 1. Let R€SOw, R¥ be the Kerékjdarts-Stoilow’s compactification of
R and ] be as in Projection Theorem. Then J(I',(R)) is a finite set of points in
R¥—R.

Proof. Let E=J(I',) (CR¥—R), and suppose that E contains infinite number
of points. Because R¥ is compact and metrizable and E is compact, we can find
a sequence {P,;}%-, of points in E converging to a point P in E such that
P,+P, if n#m and P+#P, for every n. Let I'=]"(P)"\[w(R) and [,=
J UPINT(R) for every n, then we see that every [, is open and closed in the
compact Hausdorff subspace (’}J[’ DU of RY and it is easily seen that

Ur,”—\Jr,+0. Let peUIL,*—UI, (CI') and suppose that ped, R. Then for

any distinguished neighbourhood V, of p, V,N\[",+#0 for infinitely many n. Hence

we can see either that V,N\R is not simply connected, or that d(V,NR) is not

connected, hence not a simple arc (cf. Example 1). This is a contradiction, hence

(U—I’;"’—Lnjlﬂn)r\dszﬂ. So I',(R)#d, R, which contradicts to the assumption
n

that ReSOyw. Thus we conclude that E consists of a finite number of points.
q.e.d.

Now the following is in a sense well-known.

Lemma 5. Let E be a closed polar subset in U such that ENOU consists of
a single point, say 1. Then R=U—E&SOy.

Proof. Because E is polar, 5r gives a homeomorphism from [",(R) onto
I',(U) (cf. Example 1). Hence we only need to find a distinguished neighbourhood
V, of P for every point p of I, (U) such that meE‘=0. Let F be the convex
hull of E (minimal convex set containing E), then we can see that FnoU={1}
and U—F is connected and simply connected. Hence E'={zeU: 1x(2)=1/2} is a
closed set containing E such that dE’ is a simle analytic arc and E‘NoU={l}.
Also it is seen that 1 is a potential, hence by [2] Satz 9.7, ENy(U)=0.
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Thus Ut—E’" is a distinguished neighbourhcod of every point of I, (U), hence
of I',(R). q.e.d.

Proposition 4. Let R be of finite genus g. Then ReSOw if and only if R
can be considered as a subregion on a compact Riemann surface of genus g such
that OR consists of a finite set B of analytic simple closed curves and a relatively
closed polar set E on the surface R—B such that ENB is a finite set of points.

Proof. Because the “if” part can be shown similarly as Lemma 5, we shall
prove only the converse. Suppose that ReSOy, then by Theorem 1, the set
J(I,) is a finite set, say {P,}™,, of points in R¥f—R, where R¥ and J is as in

Theorem 1. Denote J-Y(P, )N\ by [, for every n, then I',= Q I, hence every

I, is open and closed in I",. In particular, p,(I’»)>0 for every n, where pu, is
the harmonic measure on [,

First from the assumption R can be embedded in a compact Riemann surface,
say R, of the same finite genus as R and R& Og. And it is seen that the com-
ponent, say E,, of R,—R corresponding to P, can not consist of a single point
for every n, for if so, E, is a polar set in R}, hence p,([,)=0, which is a con-
tradiction. Thus we may assume that every dFE, (in R,) is an analytic simple
closed curve. Moreover it is easily seen that any other component of.Ro—R
than {F,}%; consists of a single point.

Next because I, is compact and there is a distinguished neighbourhcod of
p for every pel’, (=d,R by assumption), we can find an open neighbourhood
V of Iy, such that J(V)N\(R¥—R)={P,}%, (cf. the proof of Lemma 5). So
JY(RF—R—U{P,})” is polar in R}, hence E=S—R is also polar in S, where

S=Ry— U E,.

Finally if £NdS contains infinitely many points, hence has an accumulating point
on 0S, then by a slight modification of the argument in Example 1, we can show
that d,R+#I,. Hence ENdS is a finite set of points. g.e.d.

Now let R be a Riemann surface with the hyperbolic universal covering
surface in the sequel, and G=G(R) be a fuchsian group on U associated with R.
We call R of type I or type II, respectively, according as G is of the first kind
or the second kind (cf. [3], [5]). Also, if the limit set L(G) (CoU) of G has
vanishing linear measure, we call R of type II,. Recall that if R is of type II,
then Re&Og (cf. [3]) hence I',(R)#0. And we can show the following

Theorem 2. A Riemann surface R belongs to SOy if and only if R is of
type II,.

Remark. It is known that the limit set of every non-elementary fuchsian
group has positive capacity ([4]).

To prove Theorem 2, we shall state several lemmas. Let Re& Oy G=G(R)
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and B=0U—L(G). Then B is empty or consists of countably many open arcs in
oU, which we denote by {I,}%-..

Now let ped,R and V a distinguished neighbourhood of p, then because
VNR is simply connected, any component, say D, of 7z (VN\R) is mapped con-
formally onto VAR by fp=mng|p, where ns is as in Covering Theorem. Also it
can be seen from Proposition A that fj gives a homeomorphism from (D¥—6D")
NL(U) onto VALL(R), for VAL (R)=(VAR)’—0(VAR)")N[w(R). And as
before we have the following

Lemma 6. Let I:([_)—éf))maU, then I is an open arc contained in B, hence
in some I,.

Proof. Because D\g(D)=0, hence INg(I)=0 for every g G—{g,}, we can
see that I contains none of fixed points of elements of G—{g,}, where g, is the
identity of the group G. But the set of fixed points of elements of G—{g,} is
dense in L(G) and I is open. Hence we conclude that /IN\L(G)=0. q.e.d.

Lemma 7. Let E,=ns(d RINL(U), F=]Jy(E,) and B'=\UI,, then

BCFCB'.

Pr;)of. Take qe E,, arbitrary, and let 7g(g)=p, V a distinguished neighbour-
hood of p and D the component of 7z'(VN\R) corresponding to g. Then by Lemma
6, I=(D—aD)NdUCI, with some n. Hence by Lemma 3, Jy(q)elCI,CB'.
Because ¢ is arbitrary, we have that FCB’.

On the other hand, for any point {€ B we can take a sufficiently small closed
disk U, with the center { such that dU; is orthogonal to oU, U;noUC B, and
Ueng(Up)=0 for every geG—{g,}. Then ns gives a conformal mapping from
Ucn\U onto Vi=rng(UNU) and V:*—aV:" is a distinguished neighbourhood of
every point of 7wgeJ7'(QONTw(R) (#0). Thus we conclude that BCF. gq.e.d.

Lemma 8. Let B,=Ji'(B)"\[Ww(U) and B,=\UJ7*I )N\ (U)*, then B,C
E,CB,.

Proof. By Lemma 7 we see that B, is an open subset in E,. Let g€FE,,
and p and I be as above, then by Lemma 4 and 6 we have that g J7' (1) N\ (U)
C B,,. Thus the assertion follows, g.e.d.

Proof of Theorem 2. First suppose that RSO}, and u be the Poisson
integral of the function u*=0 on B and =1 on 0U—B (=L(G)). Recall that R
is of type I, if and only if u=0, and that u-g=u for every g G, hence u can
be considered also as a function on R. Now by Lemma 1 =0 on B,, hence on
B!,. So by Lemma 8 we can see that u=0o0n d,,R. Thus we conclude from the
assumption that »=0, that is, R is of type Il,.

Conversely, suppose that R is of type Il,, and let u be a bounded harmonic
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function on R vanishing on d,R. Then the bounded harmonic function uers on
U vanishes on E,, and by Lemma 1 and 7 »*=0 on B, hence almost everywhere
on 90U by assumption. Thus #=0, and we conclude that ReSOy. qg.e.d.

Corollary 2. Let D be a parabolic end of a Riemann surface such that 6D
is a finite set of simple closed curves. Then D is, as a Riemann surface, of type Il,.

Proof. D is of type SOyp by definition and we see from Proposition 2 that
DeS0}, as a Riemann surface. Thus the assertion follows from Theorem 2.
q.e.d.

Corollary 3. Let D be as in Proposition 2. If D is of type SOysp, then D
is of type I, as a Riemann surface.

Finally we show by an example that the class SO}, is not quasiconformally
invariant.

Example 2. Let f be a quasiconformal automorphism of U such that there
is a compact set F on U of linear measure zero whose image f(F) has positive
linear measure (cf. [1]). Let F’ be the union of F and a discrete set on oU—F
such that every point of F is clustered by points of F/ from both sides. And let
E be a countable set of points on U such that ENOU=F’, then R=U—E and
R'=U—f(E) are mutually quasiconformally equivalent. And it is obvious that R
is of type SOy as a subregion of C—FE, hence by Proposition 2 we see that
ReS0y,.

On the other hand, we can see as in Example 1 that (Jyeyg ) '(/(F’)), which
obviously has positive harmonic measure, is disjoint from d, R’, hence from Pro-
position 1 we conclude that R’eSOj%.

§ 3. On the double of a Riemann surface.

For a Riemann surface of type II, we can consider the double, which is
denoted by R, of R. In this section we are concerned with the double of a sur-
face in SOy or SO}. And set

DOx=1{R is of type Il and R=0y}.
Then first we show the following
Theorem 3. The following strict inclusion relations hold ;
DOyp—> SOy —> DOyp,
where A—B means that A is a proper subset of B.

Proof. First suppose that Re DOy, that is, I',(R) is empty or consists of
a single point. Suppose (R*—3dR™)N,(R)#0 or (R*¥—(RIGR)" )N H(R)+0,
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where the closure is taken in R% Then I',(R) must contains at least two points
which is a contradiction. Hence (R*—8R*)NI,(R)=0, that is, R is of type
SOy (as a subregion of R), as is seen from Characterization Theorem. Because
R satisfies the condition in Proposition 2, we conclude that ReSOj.

Next suppose that ReSOy. Then by Theorem 2, R is of type I, Let f te
a bounded analytic function on R and G=G(R). Then f can be lifted to a
bounded analytic function, say f on C—L(G). Because L(G) has vanishing lirear
measure on U, f can be extended to a bounded analytic function on C, hence a
constant. Thus f is also the constant, and we conclude that Re DO 4.

Finally the strictness follows from following examples. g.e.d.

Example 3. Let F and E be as in Example 2. Then we have seen that
R=U—E belongs to SOy. Here we can see that F has positive capacity. Then
R=C—EVU{z:1/2€E}& Oyj.

Remark. This Example 3 also show that the double of a subregion of type
SOyp (on some Riemann surface) does not necessarily belong to the class Oyp.
By modifying [3] Example 2, we can also show that the double of a subregion
of type SOyp does not necessarily belong even to the class O ,p.

Example 4. Let R, be the famous example of a susface in Oyp—0¢ (cf. [6]
V 7C), and D be a compact disk on R,. Then R=R,—D belongs to Uyp, hence
ReUyzCO4p But because I',(R) contains a point having positive harmonic
measure, we can see that Re& SOy, for such a point can not belong to d,R.

Moreover we can show the following

Proposition 5. Let ReSOj and R be the double of R. Considering R as a
subergion of R, the relative boundary R is a countable set of analytic simple
arcs not accumulating any point of R, which we denote by {rn}5=1. Then

Pw(I?)CEW{”"—knjf,’f )

Proof. First note that R=(C—L(G))/G, where G=G(R), and 0R corresponds
to 0U—L(G) under this covering. From the assumption and Theorem 2 we see
that L(G) has vanishing linear measure. Hence we can show that R is of type
SOz as a subregion of R. So we have from Charabterization Theorem that
(R*—0R“)NT,(R)=0. And similarly we have that (R"*—3R"*)"\[,(R)=0, where
R’=R—R (, hence in particular, 3R’=8R). Thus we conclude that I'",(R)CoR™.

Next fix a 7, and a component, say [,, of dU—L(G) corresponding to 7,
arbitrarily. Here note that if 7, is compact then 7, =7,, hence it is obvious that
7o (R)=0. So suppose that 7, is not compact. Then it is seen that I, is
projected univalently onto 7,. Now let U, be the open disk on C such that
U.NoU=I, and oU, is orthogonal to dU. Because g(U,)N\U,=0 for every g in
G—{g.}, we see that U, is projected univalently onto a region, say D,, on R.
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Then by Proposition A it holds that (D¥—3D)NIT(R) is homeomorphic to
(T¥ =3UYNT,(C—L(G)), and it is easily seen that the latter set is empty and
7o (DY —3DY), hence we conclude that 74N\, (R)=0. Thus we have that I',(R)
is contains in 67?"’—\7{7’,‘,’, g.e.d.

Next we show the follwing refinement of Theorem 1.

Lemma 9. If ReSOy, then the number of components of OR (on R) is finite.

Proof. Let 6R=ern and I,, U,, and D, be as in the proof of Proposition 5.

Then by Proposition A and Lemma 8 we can see that {{D,N\R)* —0(D,N\R)")} 51
is an open covering of d,R=I",(R). Because these sets are mutually disjoint
and I',(R) is compact, the number of 7, must be finite. q.e.d.

Theorem 4. The following system of strict inclusion relation holds

SOW —— DOG — DOHB e SO;;V e DOAB .

Proof. If ReSOw, then from Proposition 5 and Lemma 9, we see that I",(R)
is contained in 9R¥—\Uf*=0R*—Ur¥=0, that is R€0s. And let R be the sur-

face in Example 1, then it is obvious that R€Og, hence we conclude that SOy
—DOg. Next because the famous example of a surface in Oxp—Ogs have an
anticonformal involusion which leaves analytic simple arcs fixed, we can see that
DOsz—DOyp. Thus the assertion follows from Theorem 3. qg.e.d.

Theorem 5. The class SOw is quasiconformally invariant.

Proof. Let ReSOw and R’ be quasiconformally equivalent to R. Then R’
is quasiconformally equivalent to R. And by Theorem 4, we see that R, hence
R’ belongs to Og. Because R’ is of type SOyp on R/, the subset PR(ORNINTW(R")
of d,R’ is dense in I, (R’).

On the other hand, we see from Lemma 9 that the number of components of
OR’ (in R’) is finite, and let 0R’={r;}?;. Then as in the proof of Proposition 5,

we can conclude that 1\2 PR )*NW(R)Cd,R'. Thus we have that I',(R’)

=TROR)” \TWo(R)= U 77 NTw(R)=d ', that is, R'SOy.  q.e.d

§4. On surfaces of type I

In this section we consider the other extremal class, that is, the class of
Riemann surfaces R such that 4, R=0. First note the following

Proposition 6. R is of type I if and only if R has the hyperbolic universal
covering surface and d, R=0.
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Proof. Assume that Re Og, for if ReOg then it is well-known that R is
of type I. And then the assertion follows from Lemma 7. g.e.d.

Corollary 4 (¢f. [3]). If ReOyp and has the hyperbolic universal covering
surface, then R is of type I.

Proof. Noting that ReOyp if and only if I',(R) consists at most a single
point, we have the assertion. g.e.d.

Corollary 5. The class {R:d,R=0} is quasiconformally invariant.

Now it seems difficult to determine the class of general Riemann surfaces of
type I (, or such that d,R=0). But we can determine the class of planar such
surfaces. For this purpose, in the sequel, we always suppose that R is planar
and a (not necessarily extremal) vertical slit region (, that is, C—R consists of
vertical slits and points). Here recall that it is well-known that any planar region
is conformally equivalent to such a region. We call a point pcC—R a faint
point if the component of C— R containing p is either {P}, or a slit, say E, such
that each component of V—E contains a point in C—{R\JE} for every neigh-
bourhood V of p in C. Then we have the following

Theorem 6. A planar Riemann surface R is of type I if and only if C—R
contains at least three points and every point of C—R is a faint point.

Proof. Suppose that R is of type II, then G=G(R) is of the second kind,
hence there is a disk V on C such that VAL(G)=0, 8V is orthogonal to 86U, and
e gives a conformal mapping from V,=VAU into R, which in turn can be
extended to a continuous mapping, say f, from V{ into R¥. Now it is easily
seen that the image of E,=VY—(V¥AU) by f is a single point, say Py, of
R¥—R. Let E be the component of C—R corresponding to Py. If E consists of
a single point, say ¢, then f=c on E,, hence by Lemma 1, f has non-tangential
boundary value ¢ on VaU (#£0). Then f=c on V,, which is a contradiction.
Hence E is a slit.

Thus by mapping C—E conformally onto U, we may assume that |f|=1 on
E,. Then taking a smaller disk if necessary, we may assume that ngly, is a
continuous mapping from V, into U. And it is easily seen that there is a non-
faint point on E (cf. [3] Example 2). Because the converse is obvious, we have
the assertion. q.e.d.

Corollary 6. If E is a totally disconnected compact set on C and contains at
least three points, then C—E 1is of type I.

Remark. There is a Riemann surface R having only one ideal boundary
component such that ReO,p and R is of type 1. In fact, let £ be a countable
subset of U such that E does not cluster in U and EDoU, and consider the two-
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sheeted covering surface R of U branching at every point of E. Then we can
show that R is of type I, and other assertions are clear.
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