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Introduction

O n a  bordered Riemann surface, where the border is attached a  p rio ri to  the
surface, one can characterize a point on the border by the existence of a halfdisc-
like neighbourhood. Extending this idea to  any com pactification of a Riemann
surface, w e m ay regard  an  ideal boundary point having a  half disclike neighbour-
hood as a borderlike boundary poin t. (For the  precise definition, see § 2.) In  this
paper we treat such borderlike boundary points on the Wiener's comapctifications
of arbitrary R iem ann surfaces. Known facts about the Wiener's compactification
necessary in  our investigation are summarized in § 1.

Now three specific classes of Riemann surfaces can be considered in  connec-
t io n  w ith  th e  se t o f bo rd e rlik e  boundary p o in ts . Am ong them , them , the  class
SOw  (re sp . SOW) is defined a s  th e  class of Riemann suaf aces such  tha t the set of
borderlike boundary points are coincident with (resp. dense in) the whole harmonic
b o u n d a ry . In  §  2  w e  se e  th a t  th e  class SO w  can be considered a s  th e  class of
nearly finite bordered Riemann surfaces whenever the genus is finite (Proposition
4), and th a t th e  class SOÇ,, is precisely the  class of R iem ann surfaces such that
th e  lim it  se t o f  each corresponding fuchsian group has vanishing linear measure
(Theorem 2).

In § 3 we consider the double of Riemann surfaces of above classes and show
a  system of strict inclusion relations between these classes and those of Riemann
surfaces whose doubles belong to well-known c la sses . F o r the  explicit statement,
see Theorem 4.

F ina lly  in  §  4  w e  con sid e r, a s  t h e  th ird  class, the one of Riemann surfaces
which have no borderlike boundary p o in ts . T h is  c lass co inc ides w ith  th e  class
of Riemann surfaces such that each corresponding fuchsian group is o f the  first
k ind , excep t f o r  a  f e w  t r iv ia l  su rfa c e s . (S ee  P roposition  6 .) A nd w e g ive  a
characterization o f  R ie m a n n  su r fa c e s  o f  g en u s z e ro  be long ing  to  th is  c lass
(Theorem 6).

T h e  author w ishes to thank Professors Y . K usunoki and  T . F u jiie  fo r very
helpful conversations.
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§ 1 .  Notations and known facts

I n  th is  section w e shall state  several know n facts about the Wiener's corn-
pactification of an open Riem ann surface w hich a re  used in  th e  se q u e l. F or the
details, see fo r example [2 ] and [ 6 ] .  For an open Riemann surface R, le t  R it  be
t h e  W iener's comapctification o f R, and r w =r i o (R ) (CRZ— R) be the  harmonic
boundary of R .  T h i s  W iener's compactification R :  is  f in e r  th an  o th e r  co rn -
pactifications such a s  M artin's and Kerékjârt6-Stoilow's. More precisely, th e  fol-
lowing fact is known.

Projection Theorem. L e t  R :  be the Martin's or the Kerékjcirt6-Stoilow's
compactification of R, and J the identical automorphism o f  R . Then  J  can  be
extended to a continuous mapping from R: onto R:.

In  p a r t ic u la r ,  in  c a s e  o f  th e  u n it  d is k  U =  z1  <11, it is  k n o w n  tha t the
M artin's compactification o f  U  can be considered a s  th e  usual closure C  in  th e
complex p la n e . H ence w e have the following

Corollary A .  The identical automorphism J u  can be extended to a continuous
mapping from U: onto O.

N ext exc lud ing  severa l tr iv ia l c a se s , U  can be considered a s  th e  universal
covering surface of R .  L e t  G  (= G (R )) b e  a  fuchsian g ro u p  o n  U  associated
w ith  R  a n d  TC 0  b e  th e  p ro jec tio n  f r o m  U  onto R  w ith  respect to  G, th a t  is,
ir0 .g = x 0  f o r  every  g E G .  T hen w e have the  following

Covering Theorem. Let R  be a hyperbolic Riemann surface (i. e. RE0 u )  and
U and 7r 0  be as above. Then 7t. 0  is  a Fatou mapping. In particular, r u  can be
extended to a continuous mapping from U: onto

Rem ark. If  R  is parabolic (i.e. R  OG), the above 7r0  is  n o t a  Fatou mapping.
I n  f a c t ,  le t  RE OG  and suppose th a t  7r0  i s  a  Fatou m app in g . T h en  b y  [2 ] Satz
10.2, there would exist a non-polar closed set F in R such that 1,-1 ( F )  is a potential.
W hile, 17,-1 ( n  i s  a non-constant positive superharmonic function o n  U  w hich  is
invariant under every g  in  G, so  w e have a non-constant positive superharmonic
function o n  R .  T h is  is  a contradiction, for R E  OG .

Now as relations betw een R  and its subregions, the following facts a re  well-
known.

Localization Theorem. Let D  be a subregion on R, F=R—D and 72D be the
identical mapping from D  into R . Then 72D can be extended to a continuous map-
ping from D:, into R:, which we denote also by 77D . Moreover, letting Di -=RZ — P",
and D2-=7) 1 (D1), 771) g ives  a homeomorphism fro m  D , o n to  D , s u ch  th a t
72D(rw(D)(1132)=1".(R)(1D, and a measurable s e t  A  in  P .(D )n D , has positive
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harmonic measure if and only i f  so does 2 B (A). H ere (and  in  the sequel) X'
means the closure o f X  in the Wiener's compactification.

Characterization Theorem. Every component of an open set D (E0 G ) on R is a
region o f type  SO H B  if and  only i f  I'„,n (D w  —0?—D) w ) (-=rwn(B' —a- b w )) =0,
where aD is the relative boundary o f D in  R.

Moreover from Localization Theorem we can show  the following

Proposition A. L e t  R  and R ' be arbitrary Riemann surfaces, D be a sub-
region on R such that ap consists of countably many simple curves not accumulat-
ing to any point of R, and f  be an analytic mapping from R  in to  R ' which is
univalent on D and satisfies the condition that f(aD)=-ary, where D '= f (D ).  Then
the continuous extension of f  gives a homeomorphism from  (r)- — ap-)nr w (R)
onto (D' w  —aD'nnF„(R').

P ro o f. F ir s t  n o te  th a t  f i  D  can  be  ex tended  to  a homeomorphism from  D:,
onto  D 't  a n d  i t  i s  k n o w n  th a t  f (P (D ))= F (D 1 )  (c f . [6 ] IV  1 1 .A ) . N ow  by
Localization Theorem we have  the  continuous mapping = .72D, of .727,1 f ro m  D 1 =

- - -arynnr,v(R ) into Dr ' w  n r (R ') .  For every PE D i there is a positive bounded
harm onic function u o n  D  su c h  th a t u = 0  on aD and u( 7).E.1(P))= 1 . S e t  u '= 0  o n
R'—D' a n d  u '= u  of- i o n  D', then because f-i(au)=aD, w e see  th a t u ' is  a  posi-
tive bounded continuous subharmonic fuhction on R', hence can be extended to a
continuous function on A n d  i t  i s  o b v io u s  th a t  u '= 0  on (R ' —D'Y' and
u '( i) (p ))= 1 . Hence i-2(p )E D ,cr y -  - -arynnr,o(R , ). So >j(D i )c D ; .  Similarly we
can  show th a t th e  continuous mapping m a p s  D; in to  D„ hence the assertion
follows. q . e . d .

I n  t h e  sequel w e shall use , as above, th e  same notation as the original one
fo r  the  extended function o r  mapping.

§  2 .  Borderlike boundary points

In  th is section we shall define certain classes of open Riemann surfaces which
concern w ith the existence of such a  p a r t  o f  t h e  ideal boundary  a s  t h e  usual
b o rd e r . F irs t fo r an  arb itrary  Riemann surface R, w e call a  p o in t p in  r i„(R) a
borderlike boundary point, o r  simply a b-point, o f  R  if  the re  ex ists  a  neighbour-
hood V o f  p in  Rzt with the p roperties : (i)  V =(V nR ) w , —a(VnR)w , (ii) V i - \ R  is
sim ply connected, (iii) a( V n R ) i s  a open simple cu rve . W e ca ll such  a  neigh-
bourhood of a b-point p a distinguished neighbourhood of p . Now set

c1 .1?— {p E r(R ): p  is  a b-point of RI.

R oughly speaking, cl R  i s  the borderlike part of r (R ) ,  an d  we can see easily
tha t every  point of d R has vanishing harmonic measure.

Now set
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SO w =iREEO G : d R = T(R )} , and

SO'w = {REE OG: d i„R  is  dense in  I '(R )} .

Obviously we have that SO w CSOÇ,T. A lso t h e  following Proposition is  easily
seen.

Proposition 1. A surface R  belongs to SO'w  if and only if  [ ' ( R ) —clwR has
vanishing harmonic measure.

P ro o f . L et i t u ,  be th e  harmonic measure on then because d R  is clearly
open, it holds that p„,(d,o R)=p„,(d w R w )=,a„,(1",,), that is p (T — d R ) -= 0 .  q. e. d.

Proposition 2. Let D  be a subregion o f R  such aD  consists o f  a  countable
number of disjoint simple curves which are not accumulating to any point of R.
Further, i f  D  is of type SO Hs, then D  belongs to SO', as a Riemann surface.

Proof. F irst it is  eas ily  seen  th a t 7231 (a D )n r .(D )  is contained i n  d D•
H ence w e can show  the  assertion  b y  t h e  definition o f  t h e  SOH B  a n d  Lemma
1  below, q. e. d.

R em ark . If  w e perm it components o f  ap to accum ulate i n  R , th en  it is
clear that the assertion of Proposition 2 does not hold.

Lemma 1. Let I be an open arc on au, U being the unit disc, and u  a bounded
harm onic function U. Then u=0 o n  J (71 ( I ) r T ( U )  if  a n d  only i f  u  has the
vanishing bonndary value everywhere on I.

P ro o f. It is well-known that u  h a s  t h e  non-tangential boundary value u*
almost everywhere o n  au an d  u  is uniquely determined as the Poisson integral
of u* . L e t u l'= u*  on  / and  = 0  on  au—I, ut=o—ut, and  u i the  P oisson  integral
o f u t (i= 1 , 2). Then u , is harmonic on a n d  u 2 is harmonic on C—(au—I).

Now if  u * = 0  o n  I  ( , i .  e. u 1 ==_0), th e n  it  is  ovbious (cf. Corollary A )  that
u = 0  on J (71 ( I )n T i o . O n the  other hand, suppose that u = 0  o n  f il i ( / ) ( ) F .  First
note that pu,(JE71 (1—.0)=0 and u 1 = 0  o n  JE;1 (U — i). Hence by the assumption and
th e  fact that u 2 =u— u1=0 on  I ,  we have that u1 = 0  almost everywhere on  r(u )
with respect to tt w . Thus we conclude that 11 0, that is, u —= u 2 h as th e  vanish-
ing boundary value everywhere on I. q. e. d.

Next we note  the  following

Proposition 3. SOw  is  a proper subset o f SO'W .

Before proving Proposition 3, we consider here a simply connected subregion
D  in  the  un it d ise  U such that r=aD is a simply (open) curve and D  is contained
i n  { z  U :  Re z> 0 } .  First note that each end  o f r clusters onto a  closed subarc,
say I ,  a n d  /2 ,  o n  au, and (D -7 )nau= D nau— (r 1u i 2 )  is an  o p en  a rc , say I ,  on
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aU (w hich m ay be em pty). W e shall denote by E th e  se t (D w —f w )n r (U )  and
by /7 th e  interior of I  w i t h  respect t o  U.

Lemma 2 .  Enii7r 1(1 )= 0  fo r  each i.

Pro o f . If I . a single point, then there is nothing to p ro v e . Hence suppose
th a t /7 #0. T hen  fo r every CE /7, w e can find a  sequence Irn1;7_1 o f  subarcs of
r  s u c h  th a t  fo r  a  sufficiently small s >0 every component o f  {ze U : C—z I <s}
—Ur n  is  r e la t iv e ly  c o m p a c t in  U. In  p a r tic u la r , every  com ponent o f  D,=

Dn {z U:1C—z1<s} is also relatively compact in U, hence D, is  o f type  SOus.
Thus by Characterization Theorem  we can conclude that J,71( C ) n E =0 . Because
CE/7 is arbitrary , w e have the assertion.  q. e. d.

Lemma 3 .  ju(E)= 1.

Pro o f . B y  Projection T heorem  Ju (/) w )C D , and  by Lem m a 2 w e  have that
J u (E )C D naU — (/7U /;). Also a s  in  t h e  p roo f o f  Lemma 2 , w e  c a n  s e e  th a t
Ju(E)r)(/,— ( I } Î ) )= 0  f o r  each i, hence J u (E) is contained in  I.

O n the o ther hand  it is  obv ious tha t /C J u ( E ) .  A nd s-=--- lu_D  i s  a  continuous
superharmonic function o n  U such  tha t s= 0 on

 J 1 ( J )
 a n d  s= 1 o n  w . Because

sin  continuous on Ulv , we see that j (
1 (I) w nE w cE , hence J u (E )D I, for J u (J(7'(/)) w

is  compact. q. e. d.

Corollary 1. D  is  of type SOHB if and only  if  I=0.

Lemma 4 .  J r-1'M ' nr,,,=E.

Pro o f . I n  t h e  proof Lemma 3, w e  have seen that JET
-1 (/) w n T c . E .  If  F=

E—Ji(I) w n r # 0 ,  th e n  b e c a u se  F  i s  o p e n  in  r y ,, we could construct a  non-
constant bounded harmonic function u o n  U su ch  th a t u = 0  o n  F„,—F. B u t by
Lemma 1 and  3 u*-_-A  on au—(J---/), h e n c e  u 0  o n  U, w hich  is  a contradiction.
T hus w e have the assertion.  q. e. d.

Now Proposition 3  follows from the  following

1 1Example 1. L et R=U—E, w here  E=fexp [ —717+ 'N/ —17e :  n E Z , k e Z1,

then RE SO;,—SO w . T o  sh o w  this, first consider the m apping "?. =- ./u° 72R from
Rt onto  0, w here  r1  J u  a r e  a s  in  Localization Theorem  a n d  Corollary A,
respectively. Because E  is  po lar, E w nry,(U)=0 (cf. [2 ]  Satz 9.7), w e see from
Localization Theorem that 72R  g iv e s  a  homeomorphism fro m  T (R )  on to  I '(U ).
In particular, '( {1}) is not empty. Suppose that there is a  p o in t p  in d R  such
th a t 52- (p)=1, and  take  a  distinguished neighbourhood V , o f  p .  Then by Charac-
te riza tion  T heorem  V ,n R , h e n c e  Vp n U  is  no t o f type  SO R B ,  so we conclude
from Corollary 1 and  Lemma 3 th a t  /=(V p —a Vp )n aU  is  a  non-empty open sub-
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a rc  o n  ay such that 'LB 1. Hence /p exp(A/ —1-1 )  o r exp(--A 1 1 1-1 )  with a suf-
ficiently l a r g e  k, a n d  E clusters to a n  interior point of I ,  which contradicts to
th e  assumption that V, is simply connected. Thus ij --1( )nd .R -=0, th a t is,

SOw .
 1O n the  other hand, it is obvious that d„ ,(R )D r(au— y{ ex p  ( 1)-- }J {1})

n r (R )  and every bounded harmonic function u o n  R (which can be considered
1a s  defined o n  U) such that u*•=0 o n  a 1.7—U{ exp (A/ —17-j }U  { 1 }  vanishes iden-

tically o n  U .  Hence d (R )  is dense in I '( R )  (cf. Lemma 1), that is RESOW.

F o r th e  class SOW , w e can show  the following

Theorem 1. L et RES0 w , R? be the Kerajdrt6-Stoilow's compactification of
R and J  be as in  Projection Theorem. Then J (F (R )) is a finite set of  points in
R? — R.

P roo f. L et E=J(T,o ) (cR','—R), and suppose that E contains infinite number
o f  p o in ts . Because .FC is compact and metrizable and E is  compact, we can find
a  sequence {P} 1 o f  p o in ts  in  E  converging to a  p o in t  P  in  E  such that
P . *  P .  i f  n#m  a n d  P# P „  f o r  every n. L e t  F=J - 1 (P )n r . (R ) and rn=
1 - 1 (P .)n r .(R ) fo r every n, then we see that every r n  is open and closed in the
com pac t H ausdorff subspace (u  P o u r o f  R I', a n d  it is  e a s ily  seen  th a t

urn -  — urit# 0. L e t pEUT;,w —urn ( c l ' )  and suppose that p E d R .  Then for

any distinguished neighbourhood V, o f p , V,nr, #0 for infinitely many n. Hence
we can see either that V ,nR  is not simply connected, o r  that a( Vp n R ) is not
connected, hence not a simple arc (cf. Example 1). T h is  is a contradiction, hence
(Urn w — Urn)nd w R = 0 . So r w (R )# d R , which contradicts to the  assumption

that RESO w . Thus we conclude that E consists o f  a  finite number of points.
q. e. d.

Now th e  following is in  a  sense well-known.

Lemma 5. L et E  be a closed polar subset in  U such that EnaU consists of
a single point, say 1. Then R=U—EESO w .

Proof. Because E  i s  p o la r, )7R  g iv e s  a  homeomorphism from T (R )  onto
Tu (U) (cf. Example 1). Hence we only need to find a distinguished neighbourhood
V , o f  P fo r every point p  o f F.(U ) such that v 9 n E = 0 .  L et F  be the  convex
hull o f E (minimal convex se t containing E), then we can see that 'a U =  {1}
an d  U—F is connected and  simply connected. Hence E'=- {zEU :1,(z)112} is a
closed se t containing E such that a E ' is a  simle analytic a r c  a n d  E'naU= {1}
A lso  it is  seen  th at 1E . i s  a potential, hence by [2 ] Satz 9.7, E 'r 'r (U )= Ø .
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Thus U*_ E"° is a  distinguished neighbourhood o f every p o in t  o f  P (U ) ,  hence
of F (R ). q. e. d.

Proposition 4. Let R  be of  f inite genus g .  T hen ReSO w  if and  only i f  R
can be considered as a subregion on a compact Riemann surface of genus g  such
that aR consists of a f inite set B o f analytic simple closed curves and a relatively
closed polar set E  on the surface 17 — B  such that f n B  is  a f inite set of points.

P ro o f . Because th e  " if"  p a r t can be shown similarly a s  Lemma 5, we shall
prove only th e  c o n v e rse . S u p p o se  th a t R G SOw ,  then by Theorem 1, the set
A T.) is a  finite set, say {P.} ;.n =1, of points in — R , where R t and J  i s  a s  in

Theorem 1. Denote J - 1 (P )ç - [ ' .  by Fi , for every n, then r n,-- r a , hence every
n=1

r n  is  open and closed in  T ,„ . In particular, p (T )> O  fo r every n, where p „ is
the  harmonic measure on  Pt y .

First from th e  assumption R  can be embedded in a compact Riemann surface,
say R o , o f th e  same finite genus a s  R and  REE O .  A n d  it is seen that the  com-
ponent, say E n ,  o f  R o —R corresponding to P n  can not consist of a  sing le  po in t
fo r every n, fo r  if  so , E n, is a  p o la r se t in  R ,  hence ,u.(r 7,)=0, which is a  con-
tradiction. Thus we m ay assum e that every SE,, ( in  R,) is a n  analytic simple
closed curve. Moreover it is easily seen that any other component of . R o —R
than {E7,} 77."_-1 consists of a single point.

Next because r,„ i s  compact and there is a  distinguished neighbourhood of
p  fo r  every p E r„  (=d i d? by assumption), we can find a n  o p e n  neighbourhood
V  o f r „ ,  such that J( V)(1(Rt — R)= IP7.1,T=1 ( c f .  th e  proof o f  Lemma 5). So
J - 1(R t— R— U{P,}) w  i s  polar in  Rt„ hence E =S— R  is  a lso  p o la r  in  S, where

S=R 0— T E . .
n=1

Finally i f  EnaS contains infinitely many points, hence has an accumulating point
on as, then by a  slight modification of the argument in Example 1, we can show
that (1,,,R # P ,,. Hence EnaS is a  finite set of points , q .  e .  d.

Now l e t  R  be a  R ie m a n n  su rfa c e  with th e  hyperbolic universal covering
surface in  the sequel, an d  G =G (R ) be a  fuchsian group o n  U associated with R.
We call R  o f  ty pe I or type II, respectively, according a s  G  is  o f  th e  first kind
o r  th e  s e c o n d  kind (cf. [3], [5]). Also, if  th e  limit se t L(G ) ( ar.1) o f G  has
vanishing linear measure, we call R  o f type H o . Recall that i f  R  is of type II,
then RE  O0  ( c f . DI hence [ ' ( R ) # Ø . A nd we can show  the following

Theorem 2. A Riemann surface R belongs to SO;,,, if  a n d  only  i f  R is  of
type H o .

Rem ark. It is know n that th e  limit se t o f every non-elementary fuchsian
group has positive capacity ([4]).

To prove Theorem 2, we shall state several lemmas. L e t  RE OG, G=G(R)



716 Masahiko Taniguchi

and B = U — L(G). Then B is empty or consists of countably many open arcs in
OU, which we denote by 1/07:.

Now le t  j3E ci R  a n d  V  a  distinguished neighbourhood of p , then because
V nR  is simply connected, any component, say D, of 761( VnR ) is mapped con-
formally onto V nR  b y  f  7  IDe=

 G  D ,  where 7I- G i s  as in  Covering Theorem. Also it
can be seen from Proposition A that fp gives a homeomorphism from (D_w-apw)
nr w (u) onto vnr(R), fo r  VnT,„(R)=((VnR) w —a(VnR) w )nT,,,(R ). And as
before we have the following

Lemma 6 .  Let I=CD—aD)naLI, then I is an open arc contained in  B, hence
in som e I.

Pro o f . Because Dng(D)-=0, hence ing (/ )=0  for every gEG—{g o}, we can
see that I  contains none of fixed points of elements of G— {g0 }, w here g o i s  the
identity of the group G .  B ut th e  se t o f fixed points of elements of G— {g0 } i s
dense in L(G) and / is  open . Hence we conclude that  I L(G)=O. q. e. d.

Lemma 7 .  L et E,,,=76 1(d .R )n r .(U ), F = J u (E ) and B '= U i n , then

BCFCB' .

Pro o f . Take qE E„, arbitrary, and let n 0 (q )=p, V  a  distinguished neighbour-
hood of p and D the component of 7r61( V nR ) corresponding to q. Then by Lemma
6 , /=(D—aD)naUc/,, w ith  som e n. H ence by Lem m a 3, JuME./C.T„C Er.
Because q is arbitrary, we have that PCB '.

On the other hand, for any point CG B we can take a sufficiently small closed
d isk  Lic w ith  th e  center s u c h  t h a t  aLL:  i s  orthogonal to au, u,naucB, and
Ucng(Uc)=0 for every gEG—{g o}. Then 70  g iv e s  a  conformal mapping from
UcnU onto Vc=n-

G(U cn U ) a n d  Vcw—avciv is  a  distinguished neighbourhood of
every point of IrGoiETI (O n r (R )  (# 0 ). Thus we conclude that B c F .  q. e. d.

Lemma 8. L e t  B . = J i i i ( B ) n r ( U )  a n d  13,,=UJi-11 (In )nT„(U ) w , then B„

P ro o f . By Lemma 7 w e see that B„, is  an open subset in  E w . Let q E E ,
and p and I  be as above, then by Lemma 4 and 6 we have that qEfi,71(I) w nr,,,(U)
G R .  Thus the assertion follows, q. e. d.

Proof  o f  Theorem 2. F irs t suppose th a t RES0;47 an d  u  b e  the Poisson
Integral of the function u*=0 on B and =1 on SU- B (= L (G )) .  Recall that R
is  of type 1I0 if and only if u O , and  that uog-=-u for every gE G , hence u can
be considered also a s  a  function on R .  Now by Lemma 1 u=0 on B,„, hence on

So by Lemma 8 we can see that u=0 on d R .  Thus we conclude from the
assumption that u O ,  th a t is , R  is of type II„.

Conversely, suppose that R is  of type 11,, and let u be a  bounded harmonic
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function o n  R vanishing o n  d R .  Then th e  bounded harmonic function uolrB  o n

U vanishes on E ,  and by Lemma 1 and 7 u*=0 on B, hence almost everywhere
o n  au by assumption. Thus u . 0 ,  and we conclude that RESa'w . q. e. d.

Corollary 2 .  L e t  D  be a parabolic end of a Riemann surface such that aD
is a f inite set of simple closed curves. Then D is, as a Riemann surface, of type IL.

Pro o f . D  is of type  SOHB by definition and we see from Proposition 2 that
DE S % , as a  R iem ann  surface . Thus the assertion follows from Theorem 2.

q. e. d.

Corollary 3. Let D  be as in Proposition 2. I f  D  is  of type SO R B , then  D
is  o f type H o as a Riemann surface.

Finally we show by a n  example that th e  class SO;, is no t quasiconformally
invariant.

Example 2 .  Let f  be a quasiconformal automorphism of U  such that there
is a com pact set F on au o f  linear measure zero whose image f (F ) has positive
linear measure (cf. [ 1 ] ) .  L e t F ' be the union of F a n d  a  discrete s e t  o n  au —F
such that every point of F  is clustered by points of F ' from both sides. And let
E  be a  countable se t o f po in ts  on  U such that EnaU=F', then R=U — E and
R'=U— f(E) a re  mutually quasiconformally equivalent. A nd it is obvious that R
is of type  SOHB a s  a  subregion o f  C—E, hence by Proposition 2 we see that
RES0'w .

O n the  other hand, we can see a s  in  Example 1 that (Ju° 72H, ) - 1 (f (F )), which
obviously has positive harmonic measure, is disjoint from h e n c e  f r o m  P r o -
position 1  we conclude that R'EESO;v .

§  3 .  On the double of a Riemann surface.

F o r a  R ie m a n n  su rfa c e  o f  ty p e  II, we can consider the  double , which is
denoted by P, o f  R .  In  this section we a re  concerned with the double of a  sur-
face in S O w  o r  SO'w . And set

DO 1 =11? is of type II and PE Oxl •

Then first we show  the following

Theorem 3. The follow ing strict inclusion relations hold;

DO H B --> SO;v ---> DOAB,

w here A -43 m eans that A  is a proper subset of B.

Pro o f . First suppose that R D O H B , that is, r„,(R ) is em pty o r  consists of
a  s in g le  p o in t . S u p p o se  (./T0 -51-e )n r„ ,(P )# (4  o r  (R :— (R U a R n n r„,(P )*  0,
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where th e  closure is taken in P. T h en  F (P )  must contains at least two points
which is a  co n trad ic tio n . Hence (P w — a in n rw (P )=0 , th at i s ,  R  i s  o f ty p e
SOB B  ( a s  a  subregion o f P ), a s  is seen from Characterization Theorem. Because
R satisfies the condition in Proposition 2, we conclude that ReS%,.

Next suppose that ReSa'w . Then by Theorem 2, R is of type  Ho. Let f  be
a  bounded analytic function o n  P  a n d  G = G (R ). Then 7  can be lifted to a
bounded analytic function, say 7, on  C—L(G). Because L(G) has vanishing linear
measure on aU, f  can be extended to a  bounded analytic function on C, hence a
c o n s ta n t. Thus f  is also the constant, and we conclude that REDOAB.

Finally th e  strictness follows from following examples.  q. e. d.

Example 3 .  L et F an d  E be a s  i n  Example 2. T hen w e h a v e  seen that
R=U—E belongs to SO;v . Here we can see that F has positive capacity. Then
P=C — fU lz: 1/2E.E1 EE 0 H B.

R em ark . T h is  Example 3 also show  that the  double  of a  subregion of type
SOH B  (on some Riemann surface) does not necessarily belong to th e  class 0 H B.
By modifying [ 3 ]  Example 2, we can also show  that the double of a  subregion
of type  SOH B does not necessarily belong even to the  class AD.

Example 4 .  L e t R o be th e  famous example of a  susface in 0Hp — O G  (cf. [6 ]
V 7C), and  D  be a com pact disk on R o . Then R=R o —D belongs to U  1 3 ,  hence

UH B CO A B . B u t because r n,(R ) contains a  p o in t  having positive harmonic
measure, we can see that RESO;v , fo r  such a  po in t can not belong to dn,R.

Moreover we can show  the  following

Proposition 5. Let ReSO w'  and P be the double o f R . C onsidering  R as a
subergion of P, the relative boundary  aR i s  a  countable s e t o f analy tic  simple
arcs not accum ulating any  point of P, w hich w e denote by  f1n1 1. Then

r w (P)Œa R w
 — U T- 77

P ro o f .  First note that P = (C—L(G))IG, where G=G(R), and aR corresponds
to aU—L(G) under this covering. From th e  assumption a n d  Theorem 2  we see
that L(G) has vanishing linear measure. Hence we can show  that R is o f  type
SOH B  a s  a  subregion o f P . So  w e h a v e  from Charabterization Theorem that
(P w —aRnnTto (P )= 0 . And similarly we have that ( -R --aR inn r.(P)=0 , where
R '=P -R  ( , hence in particular, aR'=aR). Thus we conclude that r(P)caRw.

N ext fix a  r . a n d  a  component, say /7„  of 8U —L(G) corresponding to I .
arbitrarily. Here note that if r. is compact then fv7=7",,, hence it is obvious that
7- nw n rw (P )=0 . So  suppose that i s  n o t  co m p ac t. Then it is seen that /7,  is
projected univalently onto Tn. N o w  l e t  Un  b e  th e  o p e n  disk o n  C such that
Un naU=/ 7, and aUn  is  orthogonal t o  U .  Because g(U n )nU n =0 fo r every g  in
G—Ig o l .  w e see  th a t Un  is projected univalently onto a  region, say D,„ on P.
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T hen  by P ro po sition  A  it ho lds that ( ;— T b )n T w (P )  is homeomorphic to
(Ug— Ti./)nr(C— L(G)), a n d  it is easily seen that th e  la t te r  s e t  is empty and

hence we conclude that ft,̀,Y-T w (P )= 0 . Thus we have that I'„(R)
is contains in  '7Rw —UTY,', q. e. d.

Next we show  the follwing refinement o f Theorem 1.

Lemma 9 .  I f  RES0 w , then the number of components of aR (on P ) is finite.

Pro o f . L et aR=- CJr. and  I n ,  Un , and Dn  be as in  the  proof of Proposition 5.

Then by Proposition A  and Lemma 8 we can see that {(DnnR) w  — a(DnnR) w )} 1
i s  a n  o p e n  covering o f  d „R =1 "(R ). Because these se ts  a re  mutually disjoint
and r ( R )  is com pact, the number of Tn m u s t  be finite, q. e. d.

Theorem 4 .  The following system  of strict inclusion relation holds;

SO H,. - ->  DOG —> DO H B S O 4 , DO AB .

Pro o f . I f  RE SOw , then from Proposition 5 and Lemma 9, we see that r( P )
is contained in  aRw  —Urf,-=aR w  —Urnw  =0, that is Pe O G .  A nd let R be the sur-

face  in  Example 1, then it is obvious that PeO G, hence we conclude that SO w

, DOG . Next because t h e  famous example o f  a  su r fa c e  in  0  H p - O G  have an
anticonformal involusion which leaves analytic simple arcs fixed, we can see that
DOG -430 H E . Thus the assertion follows from Theorem 3. q .  e .  d.

Theorem 5 .  The class SO w  i s  quasiconformally invariant.

Pro o f . L et RESO w  a n d  R ' be quasiconformally equivalent to R .  Then P'
is quasiconformally equivalent to P .  A nd by Theorem 4 , we see that P, hence
P' belongs to O .  B ecause R ' is of type SOHB on P', the subset 7)-

Fil(aR9nr„,(R')
o f cl R ' is dense in r n ,(R').

O n the  other hand, we see from Lemma 9 that the number o f components of
air (in  R ') is finite, an d  le t aR'={n}1'..i. Then as in  the  proof of Proposition 5,

we can conclude that 0  )21
-,l(r i r n r w (R ')Ed„,R '. T hus w e h a v e  that r i p(R , )

-=)micaRt) -  nr.(R')-= yiT?, (2-,)-  nrw(R')=4,R , , that is , R'ESO w . q. e. d.,=1

§  4 .  On surfaces of type I

I n  th is sec tion  we consider t h e  other extremal class, that is, th e  class of
Riemann surfaces R such that du ,R =0 . First note  the  following

Proposition 6. R is  of type I  if and only  i f  R has the hyperbolic universal
covering surface and d.R=0.
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Pro o f . A ssum e th a t R E E O G , for i f  R G OG then it is well-known that R  is
o f ty pe  I. A nd then the assertion follows from Lemma 7. q. e. d.

Corollary 4  (cf . D I .  I f  REO H B  and has the hyperbolic universal covering
surface, then R is  of type I.

Pro o f . Noting that R G OHB if  a n d  only if  r ( R )  consists at most a single
point, we have the assertion ,q .  e .  d.

Corollary 5. The class {R: d R =0 } is  quasiconformally invariant.

Now it seems difficult to determine th e  class of general Riemann surfaces of
ty p e  I ( , o r  such that d .R = 0 ). But we can determine th e  class o f  planar such
surfaces. F o r  this purpose, in  th e  sequel, we always suppose that R  is planar
a n d  a  (not necessarily extremal) vertical slit region ( , that is , C— R consists of
vertical slits and  po in ts). Here recall that it is well-known that any planar region
i s  conformally equivalent to such a  region. W e call a  p o in t pcC— R a faint
point if  th e  component o f  C—R containing p is either {P}, o r  a  slit, say E, such
that each component o f  V— E contains a  p o in t in  C— {RUE}  for every neigh-
bourhood V o f  p i n  C .  Then we have  the  following

Theorem 6. A  planar Riemann surface R  is  of type I  if and only  i f  C—R
contains at least three points and every point of C—R is a f ain t point.

Pro o f . Suppose th a t R  i s  o f  ty p e  II, then G=G(R) is of the second kind,
hence there is a  disk V o n  C such that VnL(G) ,---o, ay is orthogonal to aU, and
71- 0  gives a  conformal mapping from 17 1 =  V U in to  R , which i n  turn can be
•extended to a  continuous mapping, say f ,  from PT into R t .  Now it is easily
seen that th e  im a g e  o f  E 1 =  — ( w

i U )  by f  i s  a  s in g le  p o in t , s a y  P v ,  of
R i — R. L e t  E be th e  component o f  C—R corresponding to P i,. I f  E  consists of
a  s in g le  p o in t, say c, then f c  o n  E 1, hence by Lemma 1, f  has non-tangential
boundary v a lu e  c  o n  VnaU ( * 0 ) .  Then f = c  o n  V1, which is a contradiction.
Hence E  is a  slit.

Thus by mapping C—E conformally onto U, we may assume th a t  f =- 1 on
E 1. Then taking a  smaller disk i f  necessary, we may assume that n-G  v i  is  a
continuous mapping from Vi in to  O . A nd it is easily seen that there is a non-
faint p o in t o n  E  (cf. [3 ] Example 2). Because the converse is obvious, we have
the assertion , q .  e .  d.

Corollary 6. I f  E  is a totally disconnected compact set on C and contains at
least three points, then C—E is  o f  type I.

Remark. There is a R iem ann surface R  having only o n e  ideal boundary
component such that R E E O A D  and  R is of type  I. In  fac t, le t E  be a  countable
subset o f  U such that E  does not cluster in U and Eau, and consider th e  two-
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sheeted covering surface R  of U  branching at every point of E .  Then we can
show that R  is of type I ,  and other assertions are clear.
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