On Rees algebras over Buchsbaum rings

By

Shiro GOTO and Yasuhiro SHIMODA

(Communicated by Prof. M. Nagata, Aug. 2, 1979)

1 . Introduction

The purpose of this paper is to prove the following

Theorem (1.1). *For a N oetherian local ring A w ith maximal ideal ni the following two conditions are equivalent.*

(1) *A* is a Buchsbaum ring and $H_mⁱ(A) = (0)$ for $i \neq 1$, dim *A*.

(2) The Rees algebra R (q) = ^q ⁿ *is a Cohen-Macaulay ring for every param-no e te r ideal* q *of A.*

In this case R(qn) is also a Cohen-Macaulay ring for every parameter ideal q and for every integer $n>0$.

Here $H_{\text{in}}^{i}(A)$ denotes the *i*-th local cohomology module. Now recall the definition of Buchsbaum rings. Let A be a Noetherian local ring with maximal ideal m. Then *A* is called a *Buchsbaum* ring if the difference

 $l_A(A/\mathfrak{q}) - e_A(\mathfrak{q})$

is an invariant $I(A)$ of A not depending on the particular choice of a parameter ideal q of *A*, where $e_A(q)$ denotes the multiplicity of *A* relative to q. This is equivalent to the condition that the equality

$$
(a_1, a_2, \cdots, a_i): a_{i+1} = (a_1, a_2, \cdots, a_i): \mathfrak{m}
$$

holds for every $0 \le i < d$ and for every system a_1, a_2, \dots, a_d of parameters for *A*, where $d=$ dim *A* (c. f. [14], Satz 10). The theory of Buchsbaum rings has started from an answer of W. Vogel $[18]$ to a problem of D.A. Buchsbaum $[2]$ (c.f. p. 228). The basic properties of Buchsbaum rings were discovered by J. Stückrad and W. Vogel $([14]$ and $[15]$), and our theorem (1.1) guarantees that certain Buchsbaum rings are characterized by the behaviour of Rees algebras relative to parameter ideals. This is a new point of view in the study of Buchsbaum singularities (c. f. $[4]$ and $[16]$).

Recently G. Valla $[17]$ proved that, if a Noetherian local ring A is Cohen-Macaulay, then so is the Rees algebra $R(q^n)$ for every parameter ideal q of A and for every integer $n>0$ (c. f. [3] for a shorter proof). Our research was motivated by a partial answer of Y. Shimoda $[12]$ to the question whether the converse of Valla's result is true. He solved this problem in case A is an integral local domain of dimension 2. A complete answer comes from our theorm (1.1) and is stated as follows.

Corollary (1.2). *Let A be a N oeth eria n local ring and assume that depth* $A \neq 1$. Then A is a Cohen-Macaulay ring if and only if so is the Rees algebra $R(q^n)$ *for every parameter ideal* q *of A and for every integer* $n>0$.

Of course this is not true in case depth $A=1$ (c. f. (5.6)).

Our theorem $(1,1)$ will be proved in Section 4. In Section 2 we will give some results on Buchsbaum modules which we need in Section 4 in order to compute the depth of Rees algebras relative to parameter ideals. In Section 3 we will show that every Noetherian local ring is at least Buchsbaum if all the Rees algebras relative to parameter ideals are Cohen-Macaulay. In Section 5 we assume that A is a Buchsbaum local ring with canonical module K_A . The aim of this section is to prove that K_A is a Cohen-Macaulay module if (and only if) $H_n^{\{t\}}(A)=(0)$ for every $1 \lt i \lt d$ *A*. Of course this is the same condition as (1) of Theorem (1.1) in case depth $A > 0$.

In the following we denote by *A* a Noetherian local ring of dimension *d* and with maximal ideal nt. $H_{\text{in}}^{i}(\cdot)$ will always stand for the *i*-th local cohomology functor.

2. *U (aM) as* **a Buchsbaum module**

First we recall the definition of Buchsbaum rings, or more generally that of Buchsbaum modules. Let M be a finitely generated A -module of dimension r .

Definition (2.1) *M* is called a *Buchsbaum* module if the difference

 $l_A(M/\mathfrak{q} M) - e_M(\mathfrak{q})$

is an invariant $I(M)$ of M not depending on the choice of a parameter ideal q of *M*, where $e_M(q)$ denotes the multiplicity of *M* relative to q.

This is equivalent to the condition that every system a_1, a_2, \dots, a_r of parameters for *M* is a weak sequence, i. e., the equality

$$
(a_1, a_2, \cdots, a_i)M
$$
: $a_{i+1} = (a_1, a_2, \cdots, a_i)M$: m

holds for every $0 \leq i < r$ (c. f. [14], Satz 10). A Noetherian local ring is said to be a Buchsbaum ring if it is a Buchsbaum module over itself.

Examples (2.2). (1) A finitely generated module M is Cohen-Macaulay if and only if *M* is Buchsbaum and $I(M)=0$.

(2) Suppose that *A* is a Buchsbaum ring with dim $A = d > 0$. Then the maximal ideal m of A is a Buchsbaum module and $I(m)=I(A)+d-1$ (c.f. [5], (2.4)).

In particular, if *A* is a Cohen-Macaulay ring of dimension 2, then m is a Buchsbaum module with $I(m)=1$. This seems to be a simplest example of Buchsbaum modules which are not Cohen-Macaulay.

(3) Suppose that $d = \dim A > 0$ and let *V* be a *t*-dimensional vector space over A/m . Let $B = A \times V$ be the idealization of V by A. Then B is a Buchabaum ring if and only if so is *A*. In this case dim $B=d$ and $I(B)=I(A)+t$ (c. f. [5], (2.8)). In particular, if *A* is a Cohen-Macaulay ring, then *B* is a Buchsbaum ring with $I(B)=t$. Thus for arbitrary integers $d>0$ and $t\geq 0$ there is a Buchsbaum local ring *B* such that

$$
\dim B = d \quad \text{and} \quad I(B) = t \, .
$$

(4) Suppose that *A* is a Buchsbaum ring which is not Cohen-Macaulay. Then any formal power series ring over *A* is not a Buchsbaum ring (c.f. $[11]$, (4.6)).

(5) Let *k* be a field and $R = k[|s, t|]$ a formal power series ring. We put $A = k[|s^4, s^3t, st^3, t^4|]$ in *R*. Then it is well-known that *A* is not a Cohen-Macaulay ring. However *A* is Buchsbaum and $I(A)=1$.

(6) Let *k* be a field and $R = k[|x_1, x_2, \cdots, x_d, y_1, y_2, \cdots, y_d|]$ a formal power series ring. We put $A=R/a$ where

$$
\mathfrak{a}=(x_1, x_2, \cdots, x_d)\bigcap(y_1, y_2, \cdots, y_d).
$$

Then A is a d-dimensional Buchsbaum ring and $I(A)=d-1$. Moreover

$$
H_{\mathfrak{m}}^{i}(A) = \begin{cases} A/\mathfrak{m} & (i=1) \\ (0) & (i \neq 1, d) \end{cases}
$$

(c. f. $[10]$, p. 469).

(7) Let $d > 0$ and $h_0, h_1, \dots, h_{d-1} \ge 0$ be integers. Then there exists a Buchsbaum local ring *A* such that

$$
\dim A = d \quad \text{and} \quad \dim_{A/\mathfrak{m}} H_{\mathfrak{m}}^i(A) = h_i \qquad \text{for all} \quad 0 \leq i < d \; .
$$

(Here dim_{A/ π}H_{*n*}</sub>(A) denotes the dimension of $H_{\mathfrak{m}}^{i}(A)$ as a vector space over A/m. See (2.6), (3).) Moreover it is known that, if $h_0 = 0$ (resp. $d \ge 2$ and $h_0 = h_1 = 0$) then the ring A may also be taken to be an integral domain (resp. a normal domain). See [5].

Let *M* be a finitely generated *A*-module.

Definition (2.3). Assh_A $M = {p \in \text{Supp}_A}M$; dim $A/p = \dim_A M$. Notice that, for an element *a* of m, dim $_A M / aM = \text{dim}_A M - 1$ if and only if $a \notin \bigcup_{p \in \text{Ass}_{A} M} p$. Let N be an A-submodule of M and

$$
N = \bigcap_{\mathfrak{p} \in \mathbf{Ass}_{A^M/N}} N(\mathfrak{p})
$$

a primary decomposition of N in M.

 $\textbf{Definition (2.4).} \quad U_M(N) = \bigcap_{\mathfrak{p} \in \textbf{Assh}_A^{\mathbf{M}/N}} N(\mathfrak{p}).$

As every $p \in \text{Assh}_A M/N$ is a minimal element of $\text{Supp}_A M/N$, this definition does not depend on the choice of a primary decomposition of *N*. Usually we denote $U_M(N)$ simply by $U(N)$. Notice that $\text{Ass}_A M / U(N) = \text{Assh}_A M / N$.

Now we are prepared to state the main result of this section.

Theorem (2.5). Suppose that M is a Buchsbaum A-module of dimension $r > 0$. *Let a be an element of* **m** *and assume that* $\dim_A M / aM = r - 1$. *Then*

(1) $U(aM)$ *is also a Buchsbaum module and* $dim_A U(aM) = r$.

(2)
$$
I(U(aM)) = \begin{cases} I(M) - (r-1) \cdot \dim_{A/\mathfrak{m}} H_{\mathfrak{m}}^1(M) & (r \ge 2) \\ 0 & (r = 1) \end{cases}
$$

\n(3) depth_A $U(aM) = \begin{cases} \min\{2 \le i \le r : H_{\mathfrak{m}}^i(M) \neq (0)\} & (r \ge 2 \text{ and depth}_A M > 0) \\ 0 & (r \ge 2 \text{ and depth}_A M = 0) \\ 1 & (r = 1) \end{cases}$

In order to prove this assertion we need some results on Buchsbaum modules.

Lemma (2.6). *Suppose that M is a Buchsbaum A-module of dimension* r>O. *Let* $U=U(0)$ *in M*. *Then*

- (1) $\text{Assh}_A M = \text{Ass}_A M \setminus \{m\}.$
- (2) *M/U* is again a Buchsbaum module with $\dim_A M/U = r$ and $\text{depth}_A M/U > 0$.
- (3) $\mathfrak{m} \cdot H_{\mathfrak{m}}^i M = (0)$ *for all* $0 \leq i < r$. In particular $H_{\mathfrak{m}}^0(M) = [0 : \mathfrak{m}]_M = U$.

(4) *Let a be an element of* m *and assume that* $\dim_A M / aM = r - 1$ *. Then* M / aM *is again a Buchsbaum module. Moreover*

$$
H^i_{\mathfrak{m}}(M/aM) = H^i_{\mathfrak{m}}(M) \bigoplus H^{i+1}_{\mathfrak{m}}(M)
$$

for all $0 \leq i < r-1$ *, and there is an exact sequence*

$$
0 \longrightarrow H_{\mathfrak{m}}^{r-1}(M) \longrightarrow H_{\mathfrak{m}}^{r-1}(M/aM) \longrightarrow H_{\mathfrak{m}}^{r}(M) \longrightarrow H_{\mathfrak{m}}^{r}(M) \longrightarrow 0
$$

a

of A-modules.

 $I(M) = \sum_{i=0}^{r-1} {r-1 \choose i} \cdot \dim_{A/\mathfrak{m}} H_{\mathfrak{m}}^i(M)$. (Here $\dim_{A/\mathfrak{m}} H_{\mathfrak{m}}^i(M)$ denotes the dimension *of* $H_m^i(M)$ *as a vector space over* A/m .)

Proof. (1) This is trivial since $\text{Ass}_A M/U = \text{Ass}_A M$ and since $m \cdot U = (0)$ (c. f. [14], Satz 5).

(2) See [14], Korollar 13.

(3) See [10], Hilfsatz 3 and its proof.

(4) See [14], Korollar 6 for the first assertion. Consider the second one. Fist notice that $U=[0 : a]_M$. Then we have two exact sequences

$$
0 \longrightarrow U \longrightarrow M \xrightarrow{g} aM \longrightarrow 0 \quad \text{and} \quad 0 \longrightarrow aM \xrightarrow{f} M \longrightarrow M/aM \longrightarrow 0
$$

where $f \cdot g(x) = ax$ for all $x \in M$. Apply the functor $H_{\text{in}}^{i}(\cdot)$ to the second sequence

and we get a long exact sequence

$$
(\mathbf{A}) \quad \cdots \longrightarrow H_{\mathfrak{m}}^{\mathfrak{t}}(aM) \longrightarrow H_{\mathfrak{m}}^{\mathfrak{t}}(M) \longrightarrow H_{\mathfrak{m}}^{\mathfrak{t}}(M/aM) \longrightarrow H_{\mathfrak{m}}^{\mathfrak{t}+1}(aM) \longrightarrow H_{\mathfrak{m}}^{\mathfrak{t}+1}(M) \longrightarrow \cdots
$$

On the other hand, as $m \cdot U = (0)$,

$$
H^i_{\mathfrak{m}}(M) \xrightarrow{g} H^i_{\mathfrak{m}}(aM)
$$

is an epimorphism (res. an isomorphism) for $i=0$ (resp. $i>0$). Thus, considering the following commutative triangle

we conclude that the map $H^i_{\mathfrak{m}}(aM) \longrightarrow H^i_{\mathfrak{m}}(M)$ is 0 for every $0 \leq i < r$ because $aH_n^i(M)=(0)$ for $0\leq i < r$ by (3). Hence from the long exact sequence (*) we obtain exact sequences

$$
(**) \quad 0 \longrightarrow H^i_{\mathfrak{m}}(M) \longrightarrow H^i_{\mathfrak{m}}(M/aM) \longrightarrow H^{i+1}_{\mathfrak{m}}(M) \longrightarrow 0 \quad (0 \le i < r-1)
$$

and

$$
0 \longrightarrow H_{\mathfrak{m}}^{r-1}(M) \longrightarrow H_{\mathfrak{m}}^{r-1}(M/aM) \longrightarrow H_{\mathfrak{m}}^{r}(M) \stackrel{a}{\longrightarrow} H_{\mathfrak{m}}^{r}(M) \longrightarrow 0.
$$

Of course the sequence (**) splits as $H_n^i(M/aM)$ is a vector space over A/m . (5) See [10], Satz 2.

The following striking result is due to J. Stückrad and W. Vogel [16] and J. Stückrad [13].

Lemma (2.7). *L e t M b e a finitely generated A -m odule . If the canonical homomorphisms*

$$
h^i_M: \operatorname{Ext}_A^i(A/\mathfrak{m}, M) \longrightarrow H^i_{\mathfrak{m}}(M) = \lim_{\substack{\longrightarrow \\ n}} \operatorname{Ext}_A^i(A/\mathfrak{m}^n, M)
$$

are surjective for all $i \neq \dim_A M$, then M is a Buchsbaum module. In case A is a *regular local ring, the converse is also true.*

Proof of Theorem (2.5).

If $r=1$, then the assertions are trivial because $aM=M/H_{\rm m}^{\rm n}(M)$ and $U(aM)=aM$ in this case. Now consider the case $r \ge 2$. First we will show that

- (a) $H_{\mathfrak{m}}^{0}(U(aM))=H_{\mathfrak{m}}^{0}(M)$,
- (b) $H_{m}^{1}(U(aM)) = (0)$,
- and (c) $H_{\mathfrak{m}}^{i}(U(aM))=H_{\mathfrak{m}}^{i}(M)$ $(i \ge 2)$.

Apply the functor $H_w^i(\cdot)$ to the following two exact sequences

 (\ast) 0 $\longrightarrow aM \longrightarrow U(aM) \longrightarrow U(aM)/aM \longrightarrow 0$, $0 \longrightarrow U((0)) \longrightarrow M \longrightarrow aM \longrightarrow 0$.

Then we see

$$
H^i_{\mathfrak{m}}(aM) = H^i_{\mathfrak{m}}(U(aM)) \quad \text{for} \quad i \ge 2
$$

and

and

$$
(**) \quad H^i_{\mathfrak{m}}(M) = H^i_{\mathfrak{m}}(aM) \qquad \text{for} \quad i > 0,
$$

because $U((0))$ and $U(aM)/aM (=U_{M/aM}(0)))$ are vector spaces over A/m (c. f. [14], Satz 5). Summarizing them we have the assertion (c) . Moreover, applying the functor $H_{m}^{i}(\cdot)$ to the exact sequence

$$
0 \longrightarrow U(aM) \longrightarrow M \longrightarrow M/U(aM) \longrightarrow 0,
$$

we have the assertion (a) because $\text{depth}_A M/U(aM) > 0$ (c.f. (2.6), (2)).

Now let us prove the assertion (b). Apply the functor $H^i_{\mathfrak{m}}(\cdot)$ to the sequence $(*)$ and we have an exact sequence

$$
(***) \quad 0 \longrightarrow H_{\mathfrak{m}}^0(U(aM)) \longrightarrow U(aM)/aM \longrightarrow H_{\mathfrak{m}}^1(aM) \longrightarrow H_{\mathfrak{m}}^1(U(aM)) \longrightarrow 0.
$$

On the other hand we see

$$
U(aM)/aM = H_{\mathfrak{m}}^{0}(M) \bigoplus H_{\mathfrak{m}}^{1}(M)
$$

by (2.6), (4) because $U(aM)/aM = U_{M/aM}(0)$ and $U_{M/aM}(0) = H_n^0(M/aM)$. Thus, recalling $H_{\mathfrak{m}}^1(aM) = H_{\mathfrak{m}}^1(M)$ by (**) and $H_{\mathfrak{m}}^0(U(aM)) = H_{\mathfrak{m}}^0(M)$ by (a), we conclude that

 $H_n¹(U(aM))=0$

by the exact sequence (***) of vector spaces over A/m .

Now let us prove Theorem (2.5). It follows from (a), (b) and (c) that

$$
\sum_{i=0}^{r-1} {r-1 \choose i} \cdot \dim_{A/\mathfrak{m}} H^i_{\mathfrak{m}}(U(aM)) = I(M) - (r-1) \cdot \dim_{A/\mathfrak{m}} H^1_{\mathfrak{m}}(M)
$$

 $dim_A U(aM) = r$

 $(c. f. (2.6), (5))$. Moreover we have by (a) , (b) and (c) that

and

$$
\mathrm{depth}_A U(aM) = \begin{cases} \min \{2 \le i \le r : H^i_{\mathfrak{m}}(M) \ne (0) \} & (\mathrm{depth}_A M > 0) \\ 0 & (\mathrm{depth}_A M = 0) \, . \end{cases}
$$

Thus it suffices to show that *U(aM)* is a Buchsbaum module. For this purpose, after passing through the completion of A, we may assume without loss of generality that *A* is a regular local ring.

Now apply the functor $Ext_{A}^{i}(A/\mathfrak{m}, \cdot)$ to the sequence (*) and we obtain a commutative diagram

$$
\begin{array}{ccc}\n\text{Ext}_{A}^{i}(A/\mathfrak{m}, aM) \longrightarrow & \text{Ext}_{A}^{i}(A/\mathfrak{m}, U(aM)) \longrightarrow & \text{Ext}_{A}^{i}(A/\mathfrak{m}, U(aM)/aM) \\
\downarrow h_{aM}^{i} & \downarrow h_{U(aM)}^{i} & \downarrow \\
H_{\mathfrak{m}}^{i}(aM) \longrightarrow & H_{\mathfrak{m}}^{i}(U(aM)) \longrightarrow & H_{\mathfrak{m}}^{i}(U(aM)/aM) = (0)\n\end{array}
$$

with exact rows for every $0 \lt i \lt r$, where the vertical maps are canonical homomorphisms. On the other hand, as $aM=M/U(0)$ is a Buchsbaum module of dimension r (c. f. (2.6), (2)), we see by (2.7) that $h^i_{\alpha M}$ is a surjection for every $i \neq r$. Hence so is $h_{U(\alpha,M)}^i$ by the above diagram and we conclude again by (2.7) that $U(aM)$ is also a Buchsbaum module. This completes the proof of our assertion.

Corollary (2.8). *Under the same situation as* (2.5), *U(aM) is a Cohen-Macaulay module if* and *only if* $r=1$ *or*

$$
H_{\mathfrak{m}}^{i}(M) = (0) \quad for \quad i \neq 1, r.
$$

Remark (2.9). Let *M* be a finitely generated A-module of dimension 2 and suppose that $m \cdot H_n^0(M)=m \cdot H_n^1(M)=(0)$. Then $U(aM)$ is a Buchsbaum module with

$$
I(U(aM))\mathbin{\overset{\sim}{=}} \dim_{A/\mathfrak{m}} H^0_{\mathfrak{m}}(M)
$$

for every element a of m such that $\dim_A M / aM = 1$. But such M is not necessarily a Buchsbaum module. For example, let

$$
A = k[|x, y, z, w|]/(x, y) \cap (z, w) \cap (x^2, y, z^2, w)
$$

where $k[\,x, y, z, w]$ is a formal power series ring over a field k. Then dim $A=2$ and $H_{\text{m}}^{0}(A)=H_{\text{m}}^{1}(A)=k$. As W. Vogel mentioned in [19], A is not a Buchsbaum ring.

3. In this section we will prove the following

Theorem (3.1). Suppose that the Rees algebra $R(q) = \bigoplus_{n\geq 0} q^n$ is a Cohen-Macaulay *ring f or ev ery parameter ideal* q *o f A . Then A is a Buchsbaum ring.*

For this purpose we need a few lemmas. Of course we may assume $d=$ $\dim A > 0$. For a moment let a_1, a_2, \dots, a_d be a system of parameters for A. We put $q=(a_1, a_2, \cdots, a_d)$ and $R=R(q)$. Notice that the ring R can be canonically identified with the graded A -subalgebra

$$
A[a_1X, a_2X, \cdots, a_dX]
$$

of $A[X]$, where X is an indeterminate over A. By \mathfrak{M} we denote the unique graded maximal ideal of R , i.e.,

$$
\mathfrak{M}=(\mathfrak{m},\ a_1X,\ a_2X,\ \cdots,\ a_dX).
$$

Recall that

$$
\dim R = \dim R_{\mathfrak{M}} = d+1
$$

 $(c. f. [9]$ and $[17]$). We put

$$
\mathfrak{Q} = (a_1, a_2 + a_1 X, \cdots, a_d + a_{d-1} X, a_d X).
$$

Lemma (3.2). $\mathfrak{M}=\sqrt{\mathfrak{Q}}$. In particular,

 $a_1, a_2+a_1X, \cdots, a_d+a_{d-1}X, a_dX$

is a system of parameters for R_m .

Proof. Suppose $a_i X \in \sqrt{\mathfrak{Q}}$ for some *i*. Then $a_{i-1} X \in \sqrt{\mathfrak{Q}}$, as

 $(a_{i-1}X)^2 = (a_i + a_{i-1}X) \cdot a_{i-1}X - a_{i-1} \cdot a_iX$.

Hence it follows by induction on *i* that $a_i X \in \sqrt{\Omega}$ for all $1 \le i \le d$, which yields also $q\subset\sqrt{\mathfrak{Q}}$ as $a_i+a_{i-1}X\in\mathfrak{Q}$ by definition. Thus $\mathfrak{M}\subset\sqrt{\mathfrak{Q}}$, which implies $\mathfrak{M}=\sqrt{\mathfrak{Q}}$.

Corollary (3.3). *R is a Cohen-Macaulay ring if and only if*

 $a_1, a_2+a_1X, \cdots a_d+a_{d-1}X, a_dX$

is an Rⁿ -seq u en ce.

Proof. If $a_1, a_2 + a_1X, \cdots a_d + a_{d-1}X, a_dX$ forms an R_m -sequence, then R_m is a Cohen-Macaulay local ring by (3.2) . Thus *R* is globally a Cohen-Macaulay ring by virtue of [9], Theorem. The converse is trivial.

Lemma (3.4). *Suppose that R is a Cohen-Macaulay ring. Then*

 $(a_1, a_2, \cdots, a_{d-1}): a_d = (a_1, a_2, \cdots, a_{d-1}): a_d^n$

for every integer $n > 0$.

Proof. It suffices to show $a : a_d^2 \subset a : a_d$ where $a = (a_1, a_2, \dots, a_{d-1})$. If $d = 1$, this is trivial as a_1 is A-regular. Consider the case $d=2$. Let r be an element of *A* and assume that $ra_2^2 = sa_1$ for some $s \in A$. Then we have $s \in a_2R$ since $a_2(r \cdot a_2 X) = s \cdot a_1 X$ and since a_2 , $a_1 X$ is an R-sequence by (3.3). Let $s = ta_2$ for some $t \in A$, and we have $ra_2 = ta_1$ as $ra_2^2 = as = a_2(ta_1)$.

For the case $d \ge 3$ we need the following

Claim. Let *c* be an element of a and assume that $c \in q^2$. Then $c \cdot a_d^{d-3} \in \mathfrak{aa}^{d-2}$. *Proof of the claim.*

Let us express $c = \sum_{i=1}^{d-1} a_i b_i$ and put

$$
I = (\{a_i - a_{i+1}X\}_{1 \le i \le d-2}, a_1X).
$$

Then

$$
a_d \cdot c \, a_d^{d-3} X^{d-1} = \sum_{i=1}^{d-1} a_i X \cdot b_i a_d^{d-2} X^{d-2}
$$

and $a_j \equiv a_{j+1} X \bmod I$ for every $1 \leq j \leq d-2$. Observe the equations

$$
a_i X \cdot b_i a_d^{d-2} X^{d-2} \equiv a_{i-1} X \cdot b_i a_d^{d-2} X^{d-3} \equiv \dots \equiv a_1 X \cdot b_i a_d^{d-2} X^{d-i-1} \equiv 0 \mod I
$$

 $(1 \le i \le d-1)$, and we have

$$
a_d \cdot ca_d^{d-3} X^{d-1} \in I.
$$

On the other hand we see by (3.3) that a_d , $a_{d-1}-a_dX$, \cdots , a_1-a_2X , a_1X is an $R_{\mathbb{R}^+}$ sequence. Thus $ca_d^{d-3}X^{d-1} \in IR_{\mathfrak{M}}$, i.e.,

Rees algebras over Buchsbaum rings 699

$$
f \cdot ca_d^{d-3} X^{d-1} \in I
$$

for some $f \in R \setminus \mathfrak{M}$. Now let us express

(*)
$$
f \cdot ca_d^{d-3} X^{d-1} = \sum_{i=1}^{d-2} (a_i - a_{i+1} X) g^{(i)} + a_1 X \cdot g
$$

with $g^{(i)}$, $g \in R$. Let $g_j^{(i)}$ (resp. g_j) denote the coefficient of the term X^j in (resp. *g*). Then, comparing the term X^{d-1} in the equation (*), we see

$$
f_0 \cdot c \, a_d^{d-3} = \sum_{i=1}^{d-2} a_i g_{d-i}^{(i)} - \sum_{i=1}^{d-2} a_{i+1} g_{d-2}^{(i)} + a_1 g_{d-2}.
$$

As f_0 is a unit of A, this equation implies that

$$
c\,a\,a^{d-3}\in\mathfrak{a}\mathfrak{q}^{d-3}
$$

as desired.

Proof of Lemma (3.4) *(Continued).*

Let *r* be an element of *A* and assume that $ra_d^2 \in \mathfrak{a}$. We put

$$
I = (a_1, \{a_i - a_{i-1}X\}_{2 \le i \le d-1}, a_d X).
$$

First notice that

$$
ra_d \cdot (a_d - a_{d-1}X)^{d-2} = ra_d \cdot \sum_{i=0}^{d-2} (-1)^i {d-2 \choose i} a_d^{d-2-i} \cdot (a_{d-1}X)^i
$$

= $ra_d^{d-1} + \sum_{i=1}^{d-2} (-1)^i {d-2 \choose i} a_d X \cdot ra_{d-1}^i a_d^{d-2-i} X^{i-1}$
\equiv $ra_d^{d-1} \mod I$.

On the other hand, as $ra_d^2 \in a \cap q^2$, we have $ra_d^{d-1} \in a q^{d-2}$ by the above claim. Now let us express $ra_d^{d-1} = \sum_{i=1}^{d-1} a_i b_i$ with $b_i \in \mathfrak{q}^{d-2}$. Then, since $a_j \equiv a_{j-1} X \mod I$, we observe that $a_i b_i \equiv a_{i-1} \cdot b_i X \equiv \cdots \equiv a_1 \cdot b_i X^{i-1} \equiv 0 \mod I$ ($1 \le i \le d-1$), which implies

 $ra_d^{d-1} \equiv 0 \mod I$.

Thus

$$
ra_d \cdot (a_d-a_{d-1}X)^{d-2} \in I,
$$

and so we have $ra_d \in IR_{\mathfrak{M}}$ because $a_d - a_{d-1}X$ is $R_{\mathfrak{M}}/IR_{\mathfrak{M}}$ -regular by (3.3). Hence

$$
f \cdot ra_d \in I
$$

for some $f \in R \setminus \mathfrak{M}$. Comparing the constant term similarly as in the proof of the above claim, we see that

$$
ra_a\!\in\!\mathfrak{a}
$$

as required. This completes the proof of our assertion.

Proof of Theorem (3.1).

Let $a_1, a_2, \dots, a_{d-1}, a$ and $a_1, a_2, \dots, a_{d-1}, b$ be two systems of parameters for *A .* In order to prove *A* is a Buchsbaum ring, it suffices to show

$$
\mathfrak{a} : a = \mathfrak{a} : b
$$

where $a=(a_1, a_2, \cdots, a_{d-1})$ (c.f. [14], Satz 5). Of course, by the symmetry between *a* and *b,* we have only to prove

 $a : a \subset a : b$.

Let $n > 0$ be an integer such that $b^n \in \mathfrak{a} + aA$ and express $b^n = \sum_{i=1}^{d-1} a_i x_i + a x$ with $x_i, x \in A$.

Now let r be an element of A and assume that $ra \in \mathfrak{a}$. Then we have $rb^n \in \mathfrak{a}$ as $rb^n = \sum_{i=1}^{d-1} a_i \cdot rx_i + ra \cdot x$ and as $ra \in a$ by the assumption. Hence $r \in a : b^n$ and so $r \in \mathfrak{a} : b$ by (3.4). Thus we have $\mathfrak{a} : a \subset \mathfrak{a} : b$ as desired, and this completes the proof of Theorem (3.1) .

Remark (3.5). *A* Noetherian local ring *A* is not necessarily a Buchsbaum ring even if $R(q)$ is a Cohen-Macaulay ring for some parameter ideal q of A. For example, let $k[\, |s, t|]$ be a formal power series ring over a field k and put

 $A= k[\;] s^2$, *st*, *t*,

in $k[|s, t|]$. Then $R((s^4, t))$ is a Cohen-Macaulay ring but *A* is not a Buchsbaum ring.

4. The depth of $R(q)$

In this section suppose that *A* is a Buchsbaum ring and let $a=a_1, a_2, \dots, a_d$ be a system of parameters for A . We put

$$
\mathfrak{q} = (a_1, a_2, \cdots, a_d) \quad \text{and} \quad R = R(\mathfrak{q}) .
$$

For a finitely generated R-module E we denote $\dim_{R_{\mathfrak{M}}} E_{\mathfrak{M}}$ (resp. depth $K_{\mathfrak{M}} E_{\mathfrak{M}}$) simply by

 $dim E$ (resp. depth E)

where $\mathfrak{M} = (\mathfrak{m}, a_1 X, a_2 X, \cdots, a_d X)$, the unique graded maximal ideal of *R*. The main purpose of this section is to prove the following

Theorem (4.1).

$$
\text{depth } R = \begin{cases} \text{depth}_A U(aA) + 1 & (\text{depth } A > 0) \\ 0 & (\text{depth } A = 0) \end{cases}
$$

We put $q_i = (a_1, a_2, \cdots, a_i)$ $(0 \leq i \leq d)$ and begin with

Lemma (4.2). $U(q_i) \cap q^n = q_i q^{n-1}$ for every integer $n > 0$ and for every $0 \leq i \leq d$.

Proof. This is trivial in case $i=d$.

Suppose $i < d$ and that the assertion holds for $i+1$. First notice that

 $U(q_i) \cap q^n \subset U(q_{i+1}) \cap q^n$.

In fact, if $i = d - 1$, then $U(q_{i+1}) = q$. Hence $U(q_i) \cap q^n \subset q^n = U(q_{i+1}) \cap q^n$ clearly. In case $i < d-1$, we have $U(\mathfrak{q}_i) = \mathfrak{q}_i : \mathfrak{m}$ and $U(\mathfrak{q}_{i+1}) = \mathfrak{q}_{i+1} : \mathfrak{m}$ by (2.6), (3). So $U(\mathfrak{q}_i) \subset$ $U(\mathfrak{q}_{i+1})$ as $\mathfrak{q}_i \subset \mathfrak{q}_{i+1}$, and the claim follows.

Let *x* be an element of $U(\mathfrak{q}_i) \cap \mathfrak{q}^n$. Then $x \in U(\mathfrak{q}_{i+1}) \cap \mathfrak{q}^n$ as we have remarked above. On the other hand we know

$$
U(\mathfrak{q}_{i+1}) \cap \mathfrak{q}^n = \mathfrak{q}_i \mathfrak{q}^{n-1} + a_{i+1} \mathfrak{q}^{n-1}
$$

by the assumption on i . Thus x may be expressed as

$$
x = y + a_{i+1}f
$$

where $y \in q_i q^{n-1}$ and $f \in q^{n-1}$. Recalling $a_{i+1} f = x - y \in U(q_i)$, we get $f \in U(q_i)$ because a_{i+1} is $A/U(q_i)$ -regular.

If $n=1$, then $a_{i+1} f \in q_i$ since $U(q_i) = q_i$; m. Therefore $x = y + a_{i+1} f \in q_i$, and so we have

$$
U(\mathfrak{q}_i)\cap\mathfrak{q}=\mathfrak{q}_i
$$

in this case. Now suppose $n \geq 2$ and assume that

$$
U(\mathfrak{q}_i)\cap\mathfrak{q}^{n-1}=\mathfrak{q}_i\mathfrak{q}^{n-2}.
$$

Then, as $f \in U(q_i) \cap q^{n-1}$, we see $f \in q_i q^{n-2}$ and hence $a_{i+1} f \in q_i q^{n-1}$. Thus $x = y$ $+a_{i+1}$ $f \in q_{i}q^{n-1}$ as required. This completes the proof of our assertion.

Corollary (4.3). $U(aA) \cap \mathfrak{g}^n = a\mathfrak{g}^{n-1}$ *for every integer* $n > 0$.

Let $h: R \to A$ be the canonical projection. We denote $U(aA)$ by $hU(aA)$ when we consider it via *h* an *R*-module. Moreover we regard $_hU(aA)$ as a graded</sub> module trivially, i. e.,

$$
[L_n U(aA)]_0 = U(aA) \quad \text{and} \quad [L_n U(aA)]_n = (0) \quad \text{for} \quad n \neq 0.
$$

Proposition (4 .4). *There is an exact sequence*

$$
0 \longrightarrow {}_{h}U(aA) \longrightarrow R/(aX) \longrightarrow R((q+U(aA))/U(aA)) \longrightarrow 0
$$

of graded R-modules.

Proof. Let $f: R \to R((q+U(aA))/U(aA))$ be the canonical epimorphism and put $I=Ker f$. Then $I\Rightarrow aX$, and *I* is a graded ideal of *R*. Let *z* be an element of I_n $(n>0)$ and express $z = bX^n$ ($b \in q^n$). Then $b \in U(aA)$ and so, by (4.3), we have *b*=*ca* for some $c \in \mathfrak{q}^{n-1}$. Hence

$$
z = aX \cdot cX^{n-1}
$$

and this implies that $\sum_{n>0} I_n = (aX)$. Of course $I_0 = U(aA)$ and it is a routine work to check

$$
{}_{h}U(aA)\cong I/(aX)
$$

as graded R -modules.

Cerollary (4.5) *([1]). R is a Cohen-Macaulay ring if so is A.*

This is proved by induction on dim A. But we omit the detail as this fact has been already known by **J.** Barshay [1].

We note

Lemma (4.6). Suppose that depth $A > 0$. Then aX is a non-zerodivisor of R.

Lemma (4.7). dim $hU(aA) = \dim A$ *and* depth $hU(aA) = \text{depth}_A U(aA)$.

P ro o f. These follow from the isomorphisms

 $H_{\mathfrak{M}}^i(n,U(aA)) \cong {}_h H_{\mathfrak{m}}^i(U(aA))$,

where $h H_m^d(U(aA))$ denotes $H_m^d(U(aA))$ considered an R-module via $h: R \to A$. For the first assertion recall that $\dim_A U(aA) = \dim A$ by (2.5), (1).

Proposition (4.8). Suppose that dim $A=2$. Then, if depth $A>0$, R is a Cohen-*Macaulay ring.*

Proof. We put $\overline{A} = A/U(aA)$ and $\overline{q} = q\overline{A}$. Then $R(\overline{q})$ is a Cohen-Macaulay ring of dimension 2 by (4.5) because \overline{A} is a Cohen-Macaulay local ring of dimension 1. Consider this fact together with the exact sequence

$$
0 \longrightarrow {}_{h}U(aA) \longrightarrow R/(aX) \longrightarrow R(\tilde{q}) \longrightarrow 0
$$

given by (4.4). Then we see depth $R/(aX)=2$ as depth $hU(aA)=2$ by (2.5) and (4.7). Therefore depth $R=3$ since aX is a regular element of R (c. f. (4.6)). Thus R_m is a Cohen-Macaulay local ring. Hence the assertion follows from [9], Theorem.

Remark (4.9). Let *A* be the example given by (2.2) , (5). Then M. Hochster and J. Roberts [9] showed that $R(q)$ is a Cohen-Macaulay ring for the parameter ideal $q = (s^4, t^4)$, and mentioned by this example that a ring retract of a Cohen-Macaulay ring is not necessarily Cohen-Macaulay. Our result (4.8) guarantees that the Rees algebra $R(q)$ is a Cohen-Macaulay ring for *every* parameter ideal q of *A*. See also Y. Shimoda [12].

Proof of Theorem (4.1). (1) (depth $A > 0$) We have to show

depth $R = \text{depth}_4 U(aA) + 1$.

Assume the contray and choose $d=$ dim *A* as small as possible among such counterexamples. We put

 $\overline{A} = A/U(aA)$, $\overline{q} = (q + U(aA))/U(aA)$ and $\overline{R} = R(\overline{q})$.

Then $d \ge 3$ by (4.8) and, by the minimality of *d*, we see

$$
\text{depth } \overline{R} = \text{depth}_{\overline{A}} U(b\overline{A}) + 1
$$

where $b=a_2 \text{ mod } U(aA)$. We put $s=depth_{\overline{A}}U(b\overline{A})$. Notice $s \ge 2$ by (2.5).

If $d=s+1$, then depth $\overline{R}=d$ and so, by the exact sequence

Rees algebras over Buchsbaum rings 703

 $0 \longrightarrow L(A) \longrightarrow R/(aX) \longrightarrow \overline{R} \longrightarrow 0$

given by (4.4), we have

depth
$$
R/(aX)
$$
=depth $_h U(aA)$.

Hence depth $R = \operatorname{depth}_A U(aA) + 1$, but this contradicts the choice of *d*. Thus we conclude $s < d-1$.

Claim.
$$
H_m^i(A)=(0)
$$
 for $2 \le i \le s$ and $H_m^{s+1}(A) \ne (0)$.
Proof of claim.

Apply the functor $H_{m}^{i}(\cdot)$ to the following two exact sequences

$$
0 \longrightarrow b\overline{A} \longrightarrow U(b\overline{A}) \longrightarrow U(b\overline{A})/b\overline{A} \longrightarrow 0
$$

and

$$
0 \longrightarrow U(aA)/aA \longrightarrow A/aA \longrightarrow \overline{A} \longrightarrow 0.
$$

Then we get

$$
H^i_{\mathfrak{m}}(U(b\overline{A}))=H^i_{\mathfrak{m}}(\overline{A}) \quad \text{(resp. } H^i_{\mathfrak{m}}(\overline{A})=H^i_{\mathfrak{m}}(A/aA))
$$

for every $i \ge 2$ by the first (resp. second) sequence. Thus we see by (2.6) , (4) that

$$
H^i_{\mathfrak{m}}(U(b\overline{A}))=H^i_{\mathfrak{m}}(A)\bigoplus H^{i+1}_{\mathfrak{m}}(A)
$$

for every $2 \leq i < d-1$.

Suppose s=2. If $H_{m}^{2}(A) \neq (0)$, then depth_A $U(aA) = 2$ by (2.5). So we have depth $R/(aX) = 2$ by (4.4), because depth $\overline{R} = 3$. This asserts depth $R = 3 = \text{depth}_A U(aA)$ $+1$, which is impossible. Thus we conclude $H_n^2(A) = (0)$ in this case. Of course

$$
H^3_{\mathfrak{m}}(A) = H^2_{\mathfrak{m}}(U(b\overline{A})) \neq (0).
$$

Now consider the case $s \geq 3$. Then

$$
H^i_\mathfrak{m}(U(b\overline{A}))=H^i_\mathfrak{m}(A)\bigoplus H^{i+1}_\mathfrak{m}(A)=(0)
$$

for $2 \leq i \leq s-1$ and

$$
H^s_\mathfrak{m}(U(b\overline{A}))=H^s_\mathfrak{m}(A)\bigoplus H^{s+1}_\mathfrak{m}(A)\neq(0).
$$

Hence $H^i_{\mathfrak{m}}(A) = (0)$ $(2 \leq i \leq s)$ and $H^{s+1}_{\mathfrak{m}}(A) \neq (0)$ as required.

Now back to the proof of Theorem (4.1). It follows from the above claim and (2.5) that

$$
depth_{A}U(aA)=s+1.
$$

On the other hand

$$
\text{depth } \overline{R} = s+1.
$$

Hence depth $\overline{R} = \text{depth}_A U(aA)$, which implies by (4.6) that

$$
depth R = depth_A U(aA) + 1
$$

- this is a contradiction.

(2) (depth $A=0$) Let x be a non-zero element of A such that x m=(0). Then $x\mathfrak{M}=(0)$ and so we have depth $R=0$ in this case.

Example (4.10). Let *d* and *t* be integers with $d > t \ge 2$. Then there is a Buchsbaum ring *A* such that

$$
\dim A = d \quad \text{and} \quad \text{depth } A = t
$$

 $(c. f. (2.2), (7)$ and $[16]$, Theorem 3). In this case

 $\dim R(\mathfrak{q}) = d+1$ and depth $R(\mathfrak{q}) = t+1$

for every parameter ideal q of A. Of course $R(q)$ is not a Cohen-Macaulay ring.

Corollary (4.11). Suppose that depth $A > 0$. Then the following condition are *equivalent.*

(1) $H_{m}^{i}(A) = (0)$ *for* $i \neq 1$, *d.*

(2) The Ress algebra R(q) is a Cohen-Macaulay ring for every parameter ideal q *of A.*

(3) *There* is a parameter ideal q of A, for which the Rees algebra $R(q)$ is a *Cohen-Macaulay ring.*

(4) The A-module U(aA) is a Cohen-Macaulay module for every element a of m *such* that dim $A/aA = d-1$.

(5) *There* is an element a of m such that $\dim A/aA = d-1$, for which the A*module U(aA) is Cohen-Macaulay.*

If *A* has the canonical module K_A , one may add further

(6) KA is a Cohen-Macaulay module.

Proof. The equivalence of the conditions from (1) to (5) follows from (2.5), (2.8) and (4.1) . The proof of the equivalence of the conditions (1) and (6) will be found in the next section.

Proof of Theorem (1.1) .

The equivalence of the conditions (1) and (2) is now clear by (3.1) and (4.11) . Now consider the last assertion. Let q be a parameter ideal of A and let $n>0$ an integer. Then $R(q^n) = \bigoplus_{i \geq 0} q^{in}$ is a direct summand of $R(q)$ as an $R(q^n)$ -module. Moreover $R(q)$ is a module-finite extension of $R(q^n)$. Thus the result follows from [7], Proposition 12. This completes the proof of Theorem (1.1).

5 . The canonical modules of Buchsbaum rings

The purpose of this section is to prove the equivalence of the conditions (1) and (6) in Corollary (4.11). Now suppose that *A* is a Buchsbaum ring.

First we recall the definition of canonical modules. Let \hat{A} (resp. E) denote the completion of A (resp. the injective envelope $E_{\lambda}(\hat{A}/\hat{\mathfrak{m}})$ of the residue field $\hat{A}/\hat{\mathfrak{m}}$).

Definition (5.1) ([6]). An -module K_A is called the canonical module if

 $\hat{A} \otimes_{A} K_{A} \cong \text{Hom}_{\hat{A}}(H_{\hat{\mathfrak{m}}}^{d}(\hat{A}), E)$

as \hat{A} -modules.

The canonical module is uniquely determined up to isomorphisms if it exists. In case A is a homomorphic image of a Gorenstein local ring B , then A has the canonical module and it is given by

$$
K_A = \operatorname{Ext}^s_B(A, B)
$$

where $s = \dim B - \dim A$ (c.f. [6], Satz 5.12).

In what follows we assume that *A* has the canonical module K_A . Recall that dim $K_A = \dim A$ (c. f. [6]).

Lemma (5.2). Suppose A is complete and $d=dim A>0$. Let a be an element of m *such that* dim $A/aA = d - 1$ *. Then*

(1) *a* is K_A -regular. In particular, depth $K_A > 0$.

a

(2) There is an ex act sequence

$$
0 \longrightarrow K_A/aK_A \longrightarrow K_{A/aA} \longrightarrow H_{\mathfrak{m}}^{d-1}(A) \longrightarrow 0
$$

o f A-modules.

Proof Apply the functor $Hom_A(\cdot, E)$ to the sequence given by (2.6), (4). Then we obtain an exact sequence

$$
0 \longrightarrow K_A \longrightarrow K_A \longrightarrow K_{A/\alpha A} \longrightarrow H_{\mathfrak{m}}^{d-1}(A) \longrightarrow 0,
$$

because $H_{m}^{d-1}(A) \cong \text{Hom}_{A}(H_{m}^{d-1}(A), E)$. This yields all the results we claimed.

Corollary (5.3). depth $K_A \geq 2$ *if* dim $A \geq 2$. In particular K_A *is a Cohen-Macaulay module if* dim $A=2$.

Proof. We may assume that *A* is complete. Let a be an element of m such that dim $A/aA = \dim A - 1$. Then depth $K_{A/aA} > 0$, and K_A/aK_A is contained in $K_{A/aA}$ (c. f. (5.2)). Hence depth $K_A \geq 2$ as a is K_A -regular. The second assertion is obvious.

The equivalence of the conditions (1) and (6) in Corollary (4.11) comes from the next

Theorem (5.4). K_A is a Cohen-Macaulay module if and only if

 $H_w^i(A) = (0)$ *for* $1 < i <$ dim *A*.

Proof. We may assume *A* is complete. By (5.3) we may assume further $d=$ dim $A \geq 3$. Let a be an element of m such that dim $A/aA=d-1$.

First notice that K_A is a Cohen-Macaulay module if and only if $K_{A/aA}$ is a Cohen-Macaulay module and $H_{m}^{d-1}(A) = (0)$. For, suuppose that K_A is Cohen-Macaulay. Then depth $K_A/aK_A = d-1 \geq 2$. On the other hand depth $K_{A/aA} \geq 2$ by (5.3). Hence we see by the exact sequence given in (5.2), (2) that

$$
H_{\mathfrak{m}}^{d-1}(A) \mathbin{\equiv} (0)
$$

because the length of $H_{m}^{d-1}(A)$ is finite. Thus $K_{A/aA} = K_{A}/aK_{A}$, and hence $K_{A/aA}$ is Cohen-Maulay. The converse is trivial.

In case $d=3$, we have by (5.3) and the above fact that K_A is a Cohen-Macaulay module if and only if $H_{\mathfrak{m}}^2(A)=(0)$. Now suppose $d\geq 4$ and assume that our assertion holds for $d-1$. Then

K A is a Cohen-Macaulay module $\Leftrightarrow K_{A/aA}$ is Cohen-Macaualy, and $H_{m}^{d-1}(A) = (0)$ \Leftrightarrow *H*_m(*A*/*aA*)=(0) for $1 \lt i \lt d-1$, and *H*_m⁻¹(*A*)=(0) (by the assumption on *d*) $\Leftrightarrow H_{\mathfrak{m}}^{i}(A) \bigoplus H_{\mathfrak{m}}^{i+1}(A) = (0)$ for $1 \leq i \leq d-1$ (by (2.6), (4)) $\Leftrightarrow H^i_{\mathfrak{m}}(A) = (0)$ for $1 < i < d$.

This completes the proof of Theorem (5.4).

Question (5.5). Is K_A a Buchsbaum module? If dim $A=3$, this is true and $I(K_A)=\dim_{A/\mathfrak{m}}H^2_{\mathfrak{m}}(A).$

Proof. As usual we may assume that *A* is complete. Let a be an element of m^2 such that dim $A/aA = 2$. Then *a* is K_A -regular and there is an exact sequence

$$
0 \longrightarrow K_A/aK_A \longrightarrow K_{A/aA} \longrightarrow H^2_{\mathfrak{m}}(A) \longrightarrow 0
$$

of A-modules (c. f. (5.2)). Apply the functor $H^i_{\mathfrak{m}}(\cdot)$ to this sequence and we have that

(*)
$$
H_{\mathfrak{m}}^1(K_A/aK_A) = H_{\mathfrak{m}}^2(A)
$$
,

as $K_{A/aA}$ is a Cohen-Macaulay module of dimension 2 by (5.3) and as $m \cdot H_m^2(A) = (0)$. This yields by [10], Satz 3 that K_A/aK_A is a Buchsbaum module, and hence so is K_A by the choice of a (c. f. [19], Theorem). For the second assertion notice that

$$
H_{\mathfrak{m}}^1(K_A/aK_A) = H_{\mathfrak{m}}^2(K_A)
$$

 $(c. f. (2.6), (4))$. Then we see by the equality $(*)$ that

$$
I(K_A) = \dim_{A/\mathfrak{m}} H^2_{\mathfrak{m}}(A)
$$

because $I(K_A)=\dim_{A/\mathfrak{m}} H_\mathfrak{m}^2(K_A)$ by (2.6), (5). This completes the proof of our assertion.

We will close this paper with the following

Theorem (5.6). Let $d \ge 2$ and $h \ge 1$ be integers. Then there is a Buchsbaum *complete local domain A which satisfies the following conditions*: (1) dim $A=d$. (2) $H_n^i(A) = (0)$ for $i \neq 1$, d. (3) $\dim_{A/n} H_n^i(A) = h$. Hence depth $A = 1$. (4) The nor*malization B of A is a regular local ring and* $mB\subset A$ *. In particular Sing* $A = \{m\}$ *.* $(K_A = B.$

Proof. Let K/k be an extension of fields with $[K:k]=h+1$ and $B=$ $K[\vert x_1, x_2, \cdots, x_d \vert]$ a formal power series ring over *K*. We put

$$
A = \{ f \in B : f(0, 0, \cdots, 0) \in k \}
$$

and $P=k[|x_1, x_2, \cdots, x_d|]$. Then *A* is an intermediate ring between *P* and *B*. Moreover *A* is a Noetherian complete local ring with dim $A=d$, because *B* is a module-finite extension of P . Let m (resp. n) denote the maximal ideal of A (resp. B). Then $n=m$, since

$$
\mathfrak{n} = \{ f \in B : f(0, 0, \cdots, 0) = 0 \} \subset A
$$

by definition. In particular $mB\subset A$ and so *B* coincides with the normalization of *A*. Consider the exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow B/A \longrightarrow 0
$$

of A-modules. Then, applying the functor $H_{m}^{i}(\cdot)$ to this, we see that

$$
H_{\mathfrak{m}}^{i}(A) = \begin{cases} H_{\mathfrak{m}}^{d}(B) & (i = d) \\ B/A & (i = 1) \\ (0) & (i \neq 1, d) \end{cases}
$$

Hence it follows from $[10]$, Satz 3 that *A* is a Buchsbaum local ring. Of course

$$
dim_{A/\mathfrak{m}}H_{\mathfrak{m}}^1(A)=dim_{A/\mathfrak{m}}B/A
$$

= $[K:k]-1$
=h.

Thus we have proved the assertions from (1) to (4).

Now consider the last one. Let E_A (resp. E_B) denote the injective envelope $E_A(A/\mathfrak{m})$ (resp. $E_B(B/\mathfrak{n})$). Then

$$
K_A = \text{Hom}_A(H^d_{\mathfrak{m}}(A), E_A)
$$

by definition. On the other hand

$$
\begin{aligned} \text{Hom}_A(H^d_{\mathfrak{m}}(A), \ E_A) &= \text{Hom}_A(H^d_{\mathfrak{n}}(B), \ E_A) \\ &\cong \text{Hom}_B(H^d_{\mathfrak{n}}(B), \ E_B) \\ &\cong B \,, \end{aligned}
$$

and so we have $K_A = B$ as required. This completes the proof of Theorem (5.6).

Remark (5.7). Together with the example given by (2.2) , (6) the example in the proof of Theorem (5.6) is obtained by "glueing". In general, certain glueings are always Buchsbaum and satisfy the condition (1) of Theorem (1.1) . We will prove this in a subsequent paper.

> DEPARTMENT OF MATHEMATICS NIHON UNIVERSITY DEPARTMENT OF MATHEMATICS TOKYO METROPOLITAN UNIVERSITY

References

- $\lceil 1 \rceil$ J. Barshay, Graded algebras of powers of ideals generated by A-sequences. I. Algebra, 25 (1973), 90-99.
- [2] D.A. Buchsbaum, Complexes in local ring theory, In: Some aspects of ring theory, C. I. M. E., Rome 1965.
- [3] S. Goto, On the Rees algebras of the powers of an ideal generated by a regular sequence, Proceedings of the Institute of Natural Sciences, Nihon University, 13 (1978), 9-11.
- $\lceil 4 \rceil$, On the Cohen-Macaulay fication of certain Buchsbaum rings, in preprint.
- [5] - . On Buchsbaum rings, in preprint.
- [6] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics 238, Springer Verlag 1971.
- [7] M. Hochster and J.A. Eagon, Cohen-Macaulay rings, invariant theory, and generic perfection of determinantal loci, Amer. J. Math., 93 (1971), 1020-1058.
- [8] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175.
- [9] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ., 14 (1974), 125-128.
- [10] B. Renschuch, J. Stückrad, and W. Vogel, Weitere Bemerkungen zu einem Problem der Schnittheorie und über ein Ma β von A. Seidenberg für die Imperfektheit, J. Algebra, 37 (1975), 447-471.
- [11] P. Schenzel, N.V. Trung, and N.T. Guong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57-73.
- [12] Y. Shimoda, A note on Rees algebras of two dimensional local domains, to appear in J. Math., Kyoto Univ.
- [13] J. Stückrad, Üper die kohomologische Charakterisierung von Buchsbaum-Moduln, to appear in Math. Nachr.
- [14] J. Stückrad and W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ., 13 (1973), 513-528.
- [15] Über das Amsterdamer Programm von W. Gröbner und Buchsbaum Varietäten, Monatshefte fur Mathematik, 78 (1974), 433-445.
- [16] Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727-746.
- [17] G. Valla, Certain graded algebras are always Cohen-Macaulay, J. Algebra, 42 (1976), 537-548.
- [18] W. Vogel, Über eine Vermutung von D.A. Buchsbaum, J. Algebra, 25 (1973), 106-112.
- [19] A non-zero-divisor characterization of Buchsbaum modules, in preprint.