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1 .  Introduction

The purpose of this paper is to prove the following

Theorem (1.1). For a N oetherian loca l ring A  w ith  maximal ideal n i the
follow ing tw o conditions are equivalent.

(1) A  is a B uchsbaum  ring and H(A )=-(0) fo r  i# 1 ,  dim A.

(2) The Rees algebra R ( q ) =  q n  is  a Cohen-Macaulay ring for every param-no
e te r ideal q  of A.

In  this case R(qn) is also a Cohen-Macaulay ring for every  param eter ideal q and
fo r  every  integer n>0.

Here H ( A )  denotes the  i-th local cohomology m odule. Now recall the defini-
tion of Buchsbaum r in g s . L e t A  be a  Noetherian local ring with maximal ideal
tn. T h en  A  is called a  Buchsbaum ring if the difference

/A(A/q) —  eA(q)

is an invariant I(A ) of A  not depending on the particular choice o f  a  parameter
ideal q  o f  A , where eA (q) denotes the multiplicity of A  relative to q. This is
equivalent to the condition that the  equality

(a, a2 , ••• , a i) : a 1 + 1 = ( a 1 ,  a 2 ,  • • •  ,  a i ) :

holds for every 0 - i <d  and for every system a1 , a 2 ,  • • ,  ad  o f  parameters for A,
where d=dim A  (c. f. [14 ], Satz 1 0 ). The theory of Buchsbaum rings has started
from an answer of W . Vogel [18 ] to a  problem of D. A . Buchsbaum [2 ] (c . f . p.
228). The basic properties of Buchsbaum rings were discovered by J. Stiickrad
a n d  W . Vogel ( [1 4 ] a n d  [1 5 ]), a n d  our theorem (1.1) guarantees that certain
Buchsbaum rings are characterized by the behaviour of Rees algebras relative to
parameter ideals. This is a  new point of view in  the study o f  Buchsbaum sin-
gularities (c. f. [4] and [16]).

Recently G. V alla [17] proved that, if  a  Noetherian loca l ring  A  is Cohen-
Macaulay, then so is the  Rees algebra R(qn) for every parameter ideal q of A and
for every integer n>0 (c. f. [3] fo r a  shorter proof). Our research was motivated
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by a  partia l answer o f  Y. Shimoda [12] to the question whether the  converse of
Valla's result is t r u e . H e  solved this problem in case A is an integral local domain
of dimension 2. A  complete answer comes from our theorm (1.1) a n d  is stated
a s  follows.

Corollary (1.2). Let A  be a N oeth e r ia n  local ring and assume that depth
A 1. T h e n  A  i s  a Cohen-Macaulay ring if and only  i f  so  is  the Rees algebra
R(qn) fo r  ev ery  param eter ideal q of A  and for ev ery  integer n>0.

Of course this is not true in  case depth A =1 (c. f. (5.6)).
O ur theorem (1.1) will be proved in Section 4 .  In Section 2 we will give some

results on Buchsbaum modules which we need in Section 4  in  order to compute
t h e  depth o f  Rees algebras re la tive to parameter ideals. In Section 3 we will
show  that every Noetherian lo c a l r in g  is at least Buchsbaum i f  a ll  t h e  Rees
algebras relative to parameter ideals are Cohen-Macaulay. In Section 5 we assume
that A  is a  Buchsbaum local ring with canonical module K A . T h e  aim  o f  this
section is to prove that KA is a Cohen-Macaulay module if (and only if) H,f,(A)=(0)
for every 1 < i<dim A .  Of course this is th e  same condition as (1 ) o f  Theorem
(1.1) in  case depth A >O.

In  the  following we denote by A  a  Noetherian local ring of dimension d and
with maximal ideal nt. 11 (.)  w ill always s ta n d  f o r  th e  i- th  local cohomology
functor.

2. U (aM ) as a  Buchsbaum module

First we recall th e  definition o f Buchsbaum rings, or m ore generally that of
Buchsbaum m odules. L e t M  be a  finitely generated A-module of dimension r.

Definition (2 .1 )  M  is called a  Buchsbaum m odule if the difference

/A(M/qM) — em(q)

is an invariant 1(M ) o f  M  not depending on  the  choice o f  a  parameter ideal q of
M , where e m (q ) denotes th e  multiplicity o f M  relative to q.

T his is equivalent to the condition that every system a l , a2, , a, o f param-
eters for M  is a  weak sequence, i. e., the  equality

(a,, a 2 , ••• , ai)M : at+1=(a1, a2, ••• , a i )M :m

holds for every 0  .i < r  (c. f. [14], Satz 1 0 ). A  Noetherian local ring is said to be
a  Buchsbaum r in g  if  it is a  Buchsbaum module over itself.

Examples (2 .2 ) . (1 )  A  finitely generated m odule M  i s  Cohen-Macaulay if
and only i f  M  is Buchsbaum and I(M )=0.

( 2 )  Suppose that A  is a  Buchsbaum r in g  with dim A = d > 0 . Then the max-
imal ideal nt o f A  is a  Buchsbaum module and 1 (m )= I (A )+ d -1  (c. f. [5], (2.4)).
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In particular, if A  is a Cohen-Macaulay ring of dimension 2, then nt is a  Buchsbaum
module with /(m )=1. This seems to be a  simplest example o f  Buchsbaum modules
which a re  not Cohen-Macaulay.

(3) Suppose that d=dim  A >0 a n d  le t  V  be a  t-dimensional vector space over
A /m . L e t  B = A x  V be th e  idealization o f  V b y  A .  Then B  i s  a  Buchabaum
r in g  i f  a n d  only if  so is A .  In  this case dim B = d  and I (B )= I (A )± t  (c. f. [5],
(2 .8)). In  particular, if A  is a Cohen-Macaulay ring, then B  is a  Buchsbaum ring
with I (B )= t .  Thus fo r  arbitrary integers d> 0 a n d  t_ . 0  th e re  is  a  Buchsbaum
local ring B  such that

dim B = d  a n d  I (B )= t

(4) Suppose that A  is a  Buchsbaum ring which is not Cohen-Macaulay. Then
any formal power series r in g  over A  is not a  Buchsbaum ring (c. f. [11], (4.6)).

(5) L e t k be a  fie ld  and  R = k [ s ,  t l ]  a  formal pow er series ring. W e put
A=k[1s 4 , s't, st', t 4 1] in R . Then it is well-known that A is not a Cohen-Macaulay
r in g .  However A  is Buchsbaum and I(A )=1.

(6) L et k be a field and R = k [ x l , x 2 , ••• , xd, y l r  Y 2 r  • "  y d ]  a  formal power
series r in g .  We Nit A = R /a where

x2, x d ) n ( y i ,  Y 2 ,  • • •  r  Y d ) •

Then A is a  d-dimensional Buchsbaum ring and  I (A )= d -1. Moreover

11(A)=
A / m  (i =1)

(0) (i# 1 , d)

(c. f. [10], p. 469).
(7 )  L e t d> 0 and ho , h1, ••• , h d0  be integers. Then there exists a Buchs-

baum local ring A  such that

dim A = d  a n d  dimA/,,,B1,(A)=hi fo r  a l l  01<i<d

(Here dim A /2,H  (A ) denotes the dim ension of H,'„(A) a s  a  vector space over A/m.
See (2.6), (3).) Moreover it is known that, if  h0 = 0 (resp . d>.2 an d  h0,-- - h1=0),
then th e  r in g  A  may also be taken to be a n  integral domain (resp . a norm al
dom ain). See [5 ].

L et M  be a  finitely generated A-module.

Definition (2 .3 ). A ssh A M= {13 SUPPAM ; dim A/p=dim A M }  . N otice that, for
an  element a of nt, dim A M/aM=dim A M - 1  if  and  only if  a E  U  p. L e t  N be

peAs,hA M
a n  A-submodule o f  M  and

N =  n  MP)pEAssA miu

a  primary decomposition o f N  in  M.

Definition (2.4). U (N )= n N(1)).
peAsshAmiN
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A s every pEAssh A M/N is a minimal element of SuppAM/N, this definition does
not depend on  the  choice o f  a  primary decomposition o f  N .  U sually w e denote
Um (N ) sim ply by U (N ). Notice th a t AssA M/U(N)=Assh A M/N.

N ow  w e a re  prepared to  state  the  m ain  result o f  th is  section.

Theorem (2 .5 ). Suppose that M  is a Buchsbaum A-module of dimension r> 0 .
Let a be an element o f m and assume that dimA M Ia M = r -1 . Then

(1) U(aM) is also a Buchsbaum module and dimA U(aM)=r.

(2) I(U (aM ))=
01 0 (r-=1).

min {2 ; 1171,(M )*(0)}( r 2  and depthA M> 0)

(3)(3) depthA U(aM)= 0 ( r . 2  and depthA M=0)

(r=1) .

In  order to  prove th is assertion we need some results on Buchsbaum modules.

Lemma (2.6). Suppose that M  is a Buchsbaum A-module of dimension r > O.
Let U=U((0)) in  M .  Then

(1) AsshA M -=AssA M\ {m} .
(2) M /U  is again a Buchsbaum module with dimA M IU =r and depth 4 M/U>0.
(3) m•HM=-(0) fo r  all 0 _ i< r .  In particular 11A(M)=[0:m] m =U.
(4) Let a be an element of m and assume that dimA M Ia M = r-1 . Then MlaM

is again a Buchsbaum module. Moreover

H (M la M )= H (M )(1 )H '(M )

fo r  all 0 _ i< r -1 ,  and there is an exact sequence
a

0 ---> H ]-(M la M )--> 1 1 (M )--->  I -g (M )- ->  0

of A-modules.
r - 1  ' r - 1 '- 1 )(5) I (M )=  E  •  • c h m A i i .H (M ) .  (Here dimAimig(M) denotes the dimensioni=0

o f I-1(M) as a vector space over A lm.)

Pro o f . (1) T h is  is  trivial since Ass A M/U=Assh A M  and since m• U=(0) (c. f.
[14 ], Satz 5).

(2) See [14], Korollar 13.
(3) See [10], Hilfsatz 3 and its proof.
( 4 )  See [14], Korollar 6 f o r  t h e  f ir s t  a sse r tio n . Consider the second one.

F is t notice th a t  U=[0 : a] m . T hen w e have tw o exact sequences

0 -->  U  — >  M  — > aM  >  0 a n d  0 ---> aM-- > M --> MlaM —> 0

w here f.g (x )=ax  fo r  a ll x  M . Apply th e  functor H,{,(.) to  the second sequence
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and we get a long exact sequence

( * )  •  •  • H (aM )---> H (M )— > 11;f,+1(aM)—>1-1,;,+1(M) — >  .

On the other hand, as m. U=(0),

IlgaM )

is an epimorphism (res. an isomorphism) for i= 0  (resp . i> 0). Thus, considering
the following commutative triangle

IP(aM )

  

 H ( M )

   

1-1(A1)

we conclude that the map H (a M )-->f  1 -1 ( M )  is  0  fo r every O i < r  because
all(M )=(0 )  for 0 - i< r  by (3). Hence from the long exact sequence (*) we ob-
tain exact sequences

(** ) 0 --> 1121,(M )— > 11,f,-"(M )---> 0  ( 0  i r —1)
and 

a
0 ---> --> H (M )---> 0.

Of course the sequence (**) splits as H (M laM ) is a  vector space over A/m.
( 5 )  See [10], Satz 2.

The following striking result is due to J. Stiickrad and W . Vogel [1 6 ]  and
J. Stackrad [13].

Lemma (2.7). L e t  M  b e  a  f initely  generated A -m odu le . If  th e  canonical
homomorphisms

171;f : Ext(A/m, M )---> la(M )=1im ExtA (A lm n, M )

are surjectiv e f or all i#dirn A M , then M  is a  Buchsbaum m odule. In case A  is a
regular local ring, the converse is also true.

Proof  o f  Theorem (2.5).
If r= 1, then the assertions are trivial because aM =M IH (M ) and U(aM )=aM

in  this case . Now consider the case r2 . F irst w e w ill show that

(a) H(U(aM ))=Hg l (M ),

(b) H(U(aM ))=(0) ,

a n d  ( c )  H, i (U(aM))=1-1;f 1(M )  ( i>= 2).
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Apply the functor H/ •)  to  the following two exact sequences

(* ) 0  -->  aM  --> U(aM ) --> U(aM )/aM  ---> O,
and

0 ---> U((0)) M  ---> aM --> O.
Then we see

H(aM )=Hf i(U(aM )) for
and

(**) I--g(M)=H/JaM) for i > 0 ,

because U((0)) and U(aM)/aM (=Um/am((0))) are vector spaces over II//n (c. f. [14] ,
Satz 5). Summarizing them we have the assertion (c). M oreover, applying the
functor H/ •)  to  the exact sequence

O— > U(aM) ----> M — >  M /U(aM ) --> O,

w e have the assertion (a) because depthA M/U(aM)>0 (c. f. (2.6), (2)).
Now let us prove the assertion (b). Apply the functor 1-1(.) to the sequence

(*) and w e have an exact sequence

(***) 0 --> H(U(aM ))— > U(aM )/aM HgaM)— > 1-1,t(U(aM)) — > O.

On the other hand we see

U(aM)/aM=1--R(M)EDH(M)

by (2.6), (4) because U(aM)/aM=Umiam((0)) and 1Jm /am ((0))=In(M /aM ). Thus,
recalling H (aM )=-H (M ) b y  (**) and HA (U(aM ))=H(M ) by (a), we conclude that

11(U(aM))=(0)

b y  the exact sequence (***) of vector spaces over Ahn.
Now let us prove Theorem  (2.5). It follows from  (a), (b) and (c) that

( 1- 7 1)-dimA imli(U(aM))-=I(M)— (r-1).dim A /m li(M )i=0 z

(c. f. (2.6), (5)). M oreover we have b y  (a), (b) and (c) that

dim A U(aM )=r
and

min {2 _< r ;  HgM )* (0)} (d e p th A M> 0)
depthA U(aM)=

0 (depthAM=0).

Thus it suffices to show that U(aM) is  a  Buchsbaum module. For this purpose,
a f te r  p a ss in g  th ro u g h  th e  completion o f A , w e  m a y  assume w ithout loss of
generality that A  is  a  regular local ring.

Now apply the functor Ext(A/m, •) t o  th e  sequence (* )  and w e  o b ta in  a
commutative diagram

ExtA(A/m, aM) — > Ext,(A/m, U(aM )) --> Ext!(A/m, U(aM)/aM)
hb(am) 1

H!„(aM) 11,;,(U(aM)) HgU(aM )/aM )=(0)
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w ith e x a c t  rows f o r  every  0 < i< r , where th e  v e r t ic a l  maps a r e  canonical
homomorphisms. O n the  other hand, as aM =M IU ((0)) is a Buchsbaum module of
dimension r (c. f. (2.6), (2)), we see by (2.7) th at it c' m  i s  a  s u r je c t io n  fo r  every
i * r .  H ence so is hb(am) by th e  above diagram and  we conclude again by (2.7)
that U (aM ) is also a  Buchsbaum m odule . T h is completes th e  proof o f our asser-
tion.

Corollary (2.8). Under the same situation as (2.5), U(aM ) is a Cohen-Macaulay
m odule if  and only i f  r = 1  or

Ig(M)=(0) f o r  i 1 ,  r .

Remark (2.9). L et M  be a  finitely generated A-module of dimension 2  and
suppose that m•lig,(M)=Trt.H1(M)=(0). Then U (aM ) is a Buchsbaum module with

I (U( a M )):= di m m l -n(  M)

fo r every element a of at such that dimA M /aM =1. But such M is not necessarily
a  Buchsbaum m o d u le . F o r example, let

A = k [lx ,  y , z, y ) ( z ,  w )n (x 2 , y , z 2 , w )

where k [ x , y ,  z, w  l is a formal power series ring over a field k .  Then dim A =2
and H ( A ) = H ( A ) = k .  A s W . Vogel mentioned in  [19], A  is  n o t a  Buchsbaum
ring.

3 .  In  this section we will prove th e  following

Theorem (3 .1 ) . Suppose that the Rees algebra R (q)= ED qn is a Cohen-Macaulayno
ring  f or every  param eter ideal q o f  A .  Then A  is a  Buchsbaum ring.

F or this purpose we need a  few  lem m as. O f c o u rse  w e m ay  assum e d=
dim A > O. F o r  a  m o m e n t  le t  a1 , (12 , ••• , ad  b e  a  system o f  parameters fo r  A.
We put q=(a i , a2, • •• , ad) and R =R ( q ) .  Notice that th e  r in g  R  can be canonically
identified with th e  graded A-subalgebra

A [a lX ,  a j ,  . . • ,  a d X ]

o f  ! [ X ] ,  w h e re  X  i s  a n  indeterminate over A .  By ge we denote the unique
graded maximal ideal o f  R, i. e.,

Tt=(m, a i X , a j ,  • • •  , adX ).
Recall that

dim R-=dim Ru =d+1

(c. f. [9] and  [1 7 ] ) .  We put

4D-=(a1 , a 2 -ka1X, , a d +a d _iX, a d X).

Lemma (3.2). 9R= Af C  In particular,

a l , a2-1-a1X , ••• , ad+ad-iX , adX
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is a system of param eters fo r  R u .

Pro o f . Suppose a i XE A/ C  for some i. T hen  ai_ i XE VC, as

H e n c e  it  fo llo w s  b y  induction on i  th a t ai X A/rar for all which yields
also q CA/Z:1 as a1-Fai_ i X 0  by definition. Thus TtCA/C, which implies 9Y:=- ../O.

Corollary (3.3). R  is a Cohen-Macaulay ring if and only  if

a„ a2d - aiX, ••• add-a X, a d X

is  an R n -s eq u en ce .

Pro o f . If a 1 ,  a2+a2X, •••ad+ad-,X , a d X  form s an Rn -sequence, then  R932 is  a
Cohen-Macaulay local ring b y  (3.2). T hus R  is g lobally  a Cohen-Macaulay ring
by virtue of [9], T h e o re m . The converse is  trivial.

Lemma (3.4). Suppose that R  is a Cohen-Macaulay ring. Then

(a„  a2 , ••• , ad -i):a d
-=(a„ a2, ••• , ad - i ): aq

fo r every  integer n>0.

Pro o f . It suffices to show a : a;ica : ad  w h e r e  n= (a„  a 2 , ••• , I f  d=-1,
t h i s  i s  trivial as a i  is  A -regu lar. C onsider the case d = 2 . Let r be an element
o f A and assum e t h a t  r4 -= sa 2 f o r  som e s E A .  T h e n  w e  have  sE a 2 R  since
a 2 (r•a 2 X )= s•a 1 X  and since a 2 , a i X  is  an  R-sequence b y  (3.3). Let s=-ta 2 for some

and w e have ra 2 = ta 1 a s  ra != a s= a 2 (ta 1).
For the case d 3  w e  n e e d  the following
C la im . Let c  be an  element of a and assume th a t ce (12 . Then c•ag - 3 E a a '.
Proof  of the claim.

d-
Let us express c= E a t b., and put

1-1

a ,X ).

Then
d -1

ad•Cag
- 3 X d - 1 - = a i X•b i a g - 2 X d - 2

and ai - cci ,,X  mod / for every  1 - j d - 2. O bserve  the  equations

a i X • bi a'di -  A =- a i _i X • bi ag - 2 Xd - 2 -_-_--_.• • • • a i X • b i acj - 2 Xd - i - 1 .- --0 mod I

and w e  have

ad•ca x3

O n the other hand w e see by (3.3) th a t ad , ad-i—adX, ••• , a iX  is an Rn -
sequence. T hus c a g -

2 X 1 -  1 
E e.,
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f •cag - 2 X d - ' e I

for some f e  R M .  Now let us express

d-2
(*) cag - 3 X d - 2 -= E (a i —a i , ,X ) g " ) + a ,X .g

t=i

with g( 1 ) ,  g e R .  Let e i n (resp. g .,)  denote the coefficient of the term X ' in
(resp. g ) .  Then, comparing the term Xd - 1  in  th e  equation (*), we see

d -2 d -2
f • c a q - 3 -= E E

2=1

As f o is  a unit of A , this equation implies that

cag - 3 E

as desired.
Proof of  Lemma (3.4) (Continued).
Let r  be an element of A  and assume that raa e a. W e  put

adX ).

First notice that
d-2

ra d •(a d — ad- i X ) d - 2 =ra d •  E (-1)i(
d

i=o z
d-2

=rag - 1 + E ( - 1 ) i ( d 7 2 ) a d X .rc41 _,acl - 2 - 'Xi - '

racdi - i mod I .

On the other hand , as  raa E a n e ,  w e  have  r a g 'e  acid- 2  b y  th e  above claim.
d-i

Now let us express ra = a i bi  with bi Eq d - 2 .  Then, since cti==-ai _I X mod I, we

observe that a i bi—=ai_ i •biX==_••• a 1 •b 1X i - 1 =. 0 mod I  ( 1 _ i d - 1 ) ,  which implies

racci - 1 0 mod I .
Thus

rad•(ad— aa_IX )d -2 I,

and so we have ra d /R n  because ad—ad-1X is Rlid/Rn-regular by (3 .3 ). Hence

f . ra d e l

for some fE RM. Comparing the constant term similarly as in  the  proof of the
above claim, we see that

rad e a

as required. This completes the  proof of our assertion.

Proof o f  Theorem (3.1).
Let a i , a 2 , ••• , ad _i , a  a n d  a2 , a2 , •••, ad .1 , b  be two system s o f  parameters

for A .  In order to prove A  is a  Buchsbaum ring, it suffices to show
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a : a = a :  b

where a=(a i , a 2 , ••• , ad-i) (c . f . [14 ], Satz 5). O f course, by th e  symmetry be-
tween a and  b, we have only to prove

a : aCa : b.
d - 1

L e t  n > 0  b e a n  integer such that VG ad-aA and express bn= E a i x ,± a x  withE=1
x i ,  x GA .

Now le t  r  be a n  element o f  A and assum e that r a s a .  Then we have rbn G a
d - 1

a s  rbn -= E rx + ra•  x  a n d  a s  ra s  a by th e  assumption. Hence rG a : bn and  so

rE  a : b by (3 .4 ). Thus we have a :  a c a : b as desired, and this completes the proof
o f  Theorem (3.1).

Remark (3.5). A  Noetherian loca l ring  A  is not necessarily a  Buchsbaum
r in g  even i f  R (q ) i s  a Cohen-M acaulay ring for some parameter ideal q o f A.
F o r example, le t k [ s ,  t l ] be a  formal power series ring  over a field k  and put

A=k[ s 2 , st, t,

in s, t a  Then R((s4 , t))  is a Cohen-Macaulay ring but A  is not a Buchsbaum
ring.

4 . The depth o f  R(q)

In  this section suppose that A is a  Buchsbaum r in g  a n d  le t  a=a 1 , a 2 , •••  , ad
be a  system o f parameters fo r  A .  We put

a2, ••• , a d )  a n d  R-=R(q).

F o r  a  finitely generated R-module E  we denote dimmR E:01 (resp. depth R ,E v )
simply by

dim E  (resp. depth E)

where V -=(m, a 1X, a2X , •-• , adX ), th e  u n iq u e  graded maximal ideal o f R .  The
m ain purpose o f this section is to prove the  following

Theorem (4.1).
depth A U (a A )+ 1  (depth A > 0)

depth R =
O (depth A =0) .

We put q = - ( a 1 ,  a 2 ,  • • ,  a i )  (0 i c1) and begin with

Lemma (4.2). U(ci i )non=q i cin- 1  fo r  every  integer n > 0  and for every

Pro o f . T his is trivial in  case i=d.
Suppose i <d  and  that the assertion holds for i + 1 .  First notice that

uccri)ncin ucq, onqn.
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In  fac t, if  i= d - 1 ,  then U(q i , ) , q. Hence U(q z)nqncqn=U(ci i , ) n q n  c learly . In
c a s e  i < d - 1 ,  we have  U ( q 2 . ) = q ,  : m and  U(Lli+i)=(li-Fi :In by (2.6), (3). So U(cri)C
U (q i+ i) as ch. q i+ i, an d  th e  claim follows.

L e t x  be a n  element of U ( q ) q .  Then xE V q i+ i)n c i n  as we have remarked
above. O n the  other hand we know

tAq i+l)nq n  = C1 iq n - i +ai+lq

by th e  assumption on  i. Thus x  may be expressed as

x-=y-Fai + l f

where y  c r i cin- 1  a n d  f E c i ' .  Recalling ai + i f=x — y EU(cr i ), w e  g e t fE U(q i )
because ai +1 is  A ltA qi)-regular.

If  n= 1, then a i + i f E q i since U (q)= q i : tn. Therefore x =y - -k a i+i f t l i ,  and so
we have

(ALI i)(1(1 =111

in  this c a s e .  Now suppose n 2  and assum e that

u( q i
)n q n - 2

T h e n , a s  fE U(q i )nci ' ,  w e see fE g i ci 1 - 2  a n d  hence a 1+1 f c l i gn - 1 . Thus x =y
-i-ai+ 1fEcr1q 1 2 - 1  a s  required. T h is  completes th e  proof o f our assertion.

Corollary (4.3). U(aA )ncin=acin - 1  f o r  every  integer n>0.

L et h : A  be th e  canonical pro jec tion . We denote U(aA ) by h U(aA ) when
we consider it v ia  h a n  R -m o du le . Moreover we re g a rd  n U (aA ) a s  a  graded
module trivially, i . e.,

ChU(aA )J0=U(aA ) a n d  [hU(aA )]n=(0) f o r  n*0 .

Proposition (4 .4 ). T here is an exact sequence

0 -- >  hU(a A) R I(aX )----> R ((q+U(aA ))IU(aA ))---> 0

of graded R-modules.

Pro o f . Let f  : R  R ((q+U (aA ))1U (aA )) be the canonical epimorphism and put
/=Ker f .  Then IB aX , and  I  is a  graded ideal o f R .  L et z  be a n  element of I n

(n > 0 ) a n d  e x p re ss  z =b X n  (b E q n ) . Then bEU (aA ) and so, by (4 .3 ) ,  we have
b=ca fo r  some cEcin - i. Hence

z=aX .cX n-1

and  this implies that E I n -=(aX ). Of course I o =U (aA ) and  it is  a routine work
n>0

to check
hU(a II(a X)

a s  graded R-modules.

Cerollary (4.5) ( [1 ]) .  R  is a Cohen-Macaulay ring if so is A.
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This is proved by induction on dim A .  But we omit the detail as this fact has
been already known by J. Barshay [1].

We note

Lem m a (4.6). Suppose that depth A > 0 .  Then aX  is a non-zerodivisor of R.

Lemma (4 .7 ). dim h U(aA )=dim A and depth h U(aA )=depth A U(aA).

P roo f. These follow from the isomorphisms

1-111(hU(aA))—= h Mi(U(aA )),

where h ig t (U(aA )) denotes HI„(U(aA)) considered an R-module via h: R—■ A . For
the first assertion recall that dimA U(aA)=dim A by (2.5), (1).

Proposition (4 .8 ) . Suppose that dim A =2 .  Then, if depth A> 0, R  is a Cohen-
Macaulay ring.

P roo f. We put A =A IU(aA ) and 7=q -A .  Then R(4) is a Cohen-Macaulay ring
of dimension 2 by (4.5) because A  is a Cohen-Macaulay local ring of dimension 1.
Consider this fact together with the exact sequence

0 ---> h U(aA ) --> RI(aX )---> R(4) ---> 0

given  by (4.4). Then we see depth R I(aX )=2 as depth h U(aA )=2 by (2.5) and
(4.7). Therefore depth R=3 since aX  is a  regular element of R  (c. f. (4.6)). Thus
Rn  is a Cohen-Macaulay local ring. Hence the assertion follows from [9], Theorem.

Remark (4 .9 ) . Let A  be the example given by (2.2), (5). Then M. Hochster
and J. Roberts [9 ]  showed that R(q) is a Cohen-Macaulay ring for the parameter
ideal cr, (s4, t4), and mentioned by this example that a  r in g  retract o f  a  Cohen-
Macaulay r in g  is not necessarily Cohen-Macaulay. Our result (4.8) guarantees
that the  Rees algebra R(q) is a Cohen-Macaulay ring fo r every parameter ideal
ci of A .  See also Y. Shimoda [12].

Proof o f Theorem (4.1).
( 1 )  (depth A > 0) We have to show

depth R=depth A U(aA)+1

Assume the contray and choose d=dim A  as small as possible among such coun-
terexamples. We put

A -=A IU (aA ), iï=(q +U(aA ))IU(aA ) and P=R(E).

Then (1 . 3 by (4.8) and, by the minimality of d, we see

depth ./7=depth7i U(bA)+1

where b-=a, mod U (aA ). We put s=depthU(b71). Notice s 2 by (2.5).
If  d =s+1 , then depth 17=d and so, by the exact sequence
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0 — — > h U (aA )--> R I(aX )-- >17— ,  0

given by (4.4), we have

depth R I(aX )=depth h U(a A ) .

Hence depth R=depth A U(aA)+1, but this contradicts th e  choice o f d .  Thus we
conclude s < d -1 .

C la im . 111(A)=(0) for and 1-1V-1 (A )*(0).
Proof  of claim.
Apply the  functor 1-1(•) to th e  following two exact sequences

0 bÂ --> U(17271) --> U(b3)163 --> 0
and

0 --> U (aA )laA  --> A laA --> A  --> 0.

Then we get
H(U(b71. ))=Htin( ; I )  (resp. 11(Â )=-H((A laA ))

fo r  every i by th e  first (resp. second) sequence. Thus we see by (2.6), (4) that

H(U(b2-4))=1--g(A)EDIV 1(A)

for every 2_ i<d  —1.
Suppose s = 2 . I f  I-n(A )*(0), then depth A U(aA)=2 b y  (2.5). S o  w e  have

depth R I(aX )=2 by (4.4), because depth R =3. This asserts depth R=3=depth A U(aA)
+1, which is im possible. Thus we conclude M ,(A )=(0) in  this case. O f course

HP,(A)=11,2,(U(b271))*(0).

Now consider the  case  s.>_3. Then

1-g(U(b71))=M(A)E191-INA)=(0)

for —1 and

Hfu(U(b.71))..---HVA)EDHf,P(A)*(0).

Hence 11(A )=(0) (25 .is)  and  1-1 1(A ) (0 )  a s  required.
Now back to th e  proof o f Theorem (4.1). It follows from t h e  above claim

and (2.5) that

depthAU(aA)=s+1.

O n the other hand
depth R =s+1.

Hence depth P-=depthA U(aA), which implies by (4.6) that

depth R =depth A U(aA)+1

 this is a contradiction.
( 2 )  (depth A=0) L e t x  be a non-zero element o f A  such that xnt=(0). Then

x9R.=(0) and so we have depth R= 0 in  this case.
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Example (4.10). L et d an d  t  be in tegers w ith  d > t 2 .  T h en  th ere  is  a
Buchsbaum ring  A  such that

dim A = d  a n d  depth A =t

(c. f. (2.2), (7) and  [16], Theorem 3). In  this case

dim R(q)=d+1 a n d  depth R(q)=t+1

for every parameter ideal q o f A .  O f course R (q) is not a Cohen-Macaulay ring.

Corollary (4 .11) . Suppose that depth A > O. Then the following condition are
equivalent.

(1) H (A )=(0 ) fo r  i # 1 , d.
(2) The R ess algebra R (q) i s  a Cohen-Macaulay ring for every  param eter

ideal q of A.
(3) T here is a param eter ideal q o f A , fo r which the Rees algebra R (q) is a

Cohen-Macaulay ring.
(4) The A-module U(aA ) is a Cohen-Macaulay module for every element a of

m such that dim A laA =-d-1.
(5) T here is an element a of m such that dim A laA =d - 1 ,  fo r  which the A-

module U(aA ) is Cohen-Macaulay.
I f  A  has the canonical module KA, one m ay  add further
(6) KA  is a Cohen-Macaulay module.

Pro o f . T he  equivalence of the conditions from (1) to (5) follows from (2.5),
(2.8) and (4 .1 ). T h e  proof of the  equivalence of the conditions (1) and (6) will be
found in  th e  next section.

Proof  o f Theorem (1.1).
T h e  equivalence of the conditions (1) and  (2) is now clear by (3.1) and (4.11).

Now consider th e  last asse rtion . L e t q be a  parameter ideal o f  A  and  le t  n > 0
a n  in teger. T hen R(q 19= ED c- is a  d irec t summand o f  R(q) as an  R(e)-module.

i O

Moreover R(q) is a module-finite extension of R(qn). Thus th e  result follows from
[7 ], Proposition 1 2 . T his completes th e  proof of Theorem (1.1).

5 .  The canonical modules of Buchsbaum rings

T h e  purpose o f this section is to prove th e  equivalence of the conditions (1)
and  (6) in  Corollary (4.11). Now suppose that A  is  a  Buchsbaum ring.

First we recall th e  definition o f canonical m o d u le s . L e t Â  (resp. E )  denote
th e  completion o f  A (resp. the injective envelope .E2(A/fh) of the residue field AMI).

Definition (5 .1 ) ([6 ]) . An -module KA is called th e  canonical module if

AO A ICA - Hom2(14“(A), E)

a s  A-modules.
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T h e  canonical module is uniquely determined up to isomorphisms if  it exists.
In case A  is  a  homomorphic im age  o f a  Gorenstein local ring B , then A  has the
canonical module and it is given by

K A =E x t(A , B )

where s=dim B—dim A  (c. f. [6], Satz 5.12).
In  what follows we assume that A  has th e  canonical module K A .  Recall that

dim K A = d im  A  (c. f.

Lemma (5 .2 ) . S uppose A  is complete and d=dim A > 0 .  L e t a be an  element
o f  m such that dim A laA =d -1 . T h e n

(1) a  is K A -regu lar. In  particu lar, depth K A  > O.
(2) T here is an ex act sequence

0 ----> KAlaKA---> KAlaA - - >  I n - '(A) --> 0
o f  A-modules.

P ro o f ' Apply th e  functor Hom A (• , E ) to t h e  sequence given by (2.6), (4).
Then we obtain an  exac t sequence

a
0 — > KA  --> K A  — > KAlaA

because In c - i(A) - - Hom A (H1, - 1 (A ), E ). T his yields all th e  results we claimed.

Corollary (5.3). depth K A - 2  i f  d im  A 2 .  I n  particular K A  i s  a  Cohen-
Macaulay m odule if  dim A=2.

Pro o f . W e may assume that A  is complete. L e t a  be a n  element of in such
that dim A laA =d im  A -1 . Then depth KA/aA > 0, a n d  K A /aK A  is  co n ta in ed  in
K A la A  (c. f. (5.2)). Hence depth K A

-_2 a s  a  is K A -regu lar. The second assertion
is obvious.

T he  equivalence of the conditions (1) and (6) in  Corollary (4.11) comes from
th e  next

Theorem (5.4). K A  is  a Cohen-M acaulay  m odule if  and only  i f

1-K(A)=-(0) f o r  1<i< dim A .

Pro o f . W e may assume A  is  com p lete . B y (5 .3 ) w e m ay assum e further
d=dim  A 3 .  Let a be an element of in such that dim A laA -=d - 1 .

First notice that K A  is  a Cohen-Macaulay module if and o n ly  i f  K A la A  i s  a
Cohen-M acaulay m odule and m -i(A ) , (o). F o r , suuppose th a t  K A  is Cohen-
Macaulay. Then depth K A laK A = d - 1  2. O n the  other hand depth K A / „A  b y
(5.3). Hence we see by the  exac t sequence given in  (5.2), (2) that

1(A)=-(0) ,
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because t h e  length o f Hg - 1 (A ) is fin ite. Thus K A I . A = K A l a K A ,  a n d  hence KAlaA
is  Cohen-Maulay. The converse is  trivial.

In  case  d=3, w e have by (5.3) and the above fact that KA is a Cohen-Macaulay
module if  and  only if  1-11(A)=(0). Now suppose d.,4 and assum e that our asser-
tion holds for d - 1 .  Then

K A  is  a Cohen-Macaulay module
<=> KAI a A is  Cohen-Macaualy, and 1-1g- '(A )=- (0)
<=> HgAlaA)-=(0) fo r  1 <i<d - 1 , and I g - '(A )=(0) (by the  assumption o n  d)
<=> 11(A)EBH 1(A )=(0) for 1 <i<d - 1  (by (2.6), (4))
<=> li(A )-=(0) fo r 1 <i<d .

T h is  completes th e  proof o f Theorem (5.4).

Q uestion (5.5). Is K A  a  Buchsbaum m o d u le?  If  dim A=3, th is  is  tru e  and
KKA)=dimA/J1,!,(A).

P ro o f . A s usual we may assume that A  is complete. Let a be an element of
in' such that dim A laA =2 . Then a is K A -regular and  there is an  exact sequence

0 - - >  KA laKA - > KAlaA - >  H (A ) - - ) .  0

of A-modules (c. f. (5.2)). Apply th e  functor H g .)  to this sequence and w e have
that

(* )  HI,(KA/aKA)=H1 (A),

a s  KAiaA is  a Cohen-Macaulay module of dimension 2 by (5.3) and as nt-1-11(A)=(0).
This yields by [ 1 0 ] ,  S a tz  3 that K A laK A i s  a  Buchsbaum module, and hence so is
K A  by th e  choice of a (c. f. [19], Theorem). For the second assertion notice that

H,l(KAlaKA)-- -1--g(KA)

(c. f. (2. 6), (4)). Then we see by th e  equality (*) that

/(KA)=dimAimi-g(A )

because KKA)=-- dimAt.,H(KA) by (2.6), (5). This completes the proof of our assertion.

W e w ill close this paper with the  following

Theorem (5.6). Let and be integers. T hen there is a  Buchsbaum
complete local domain A  which satisfies the following conditions: (1 ) dim A =d.
(2) H (A )=(0 )  f o r i* l, d. (3) dimA imH(A )=h. H ence depth A =1. (4) T he nor-
malization B of  A  is a regular local ring and m B C A . In particular S ing A = {m}
(5) K A = B .

P ro o f .  L e t  K / k  b e  a n  e x te n s io n  o f  f ie ld s  w ith  [K : k l=h +1  a n d  B =
K [Ix i , x 2, ••• , x al] a  formal power series ring  over K .  W e put

A--- { fe  B ; f(0, 0, • •• , O)G
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an d  P =k [ x i , x 2 ,  • , Then A  is a n  intermediate ring  between P  a n d  B.
Moreover A  is  a Noetherian complete local ring with dim A =d, because B  is  a
module-finite extension of P .  Let in ( r e s p .  n )  denote th e  m a x im a l ideal o f  A
(resp. B ) .  Then n=m , since

n =  IfE  B ; f (0, 0, • • • , 0) =01 CA

by definition. In  particular mBC A  and so B coincides with the normalization of A.
Consider the  exact sequence

0 — A - - - > B - - - > B / A - - 00

of A -m odules. Then, applying the functor 1-1 ( . )  to this, we see that

(i=d)

H g A )= B IA (i=1)

(0) (i 1, d).

Hence it follows from [101  Satz 3  that A  is  a  Buchsbaum local ring. O f course

dim A /2,14(A)-=dim A hn BIA

= [I  l e ]- 1
=h .

Thus we have proved the assertions from (1) to (4).
Now consider th e  last o n e . L e t  EA  (resp. E R )  denote th e  in je c tiv e  envelope

E A (A /m) (resp. E R (B 1n)). Then

KA-=
HomA(In(A), EA)

by definition. O n the  other hand

Hom A (1- -g(A ), EA )=H0mA (M(B), EA)
- - HornR(M(B), Es)

,

and  so we have K A =B  a s  required . T his completes th e  proof o f Theorem (5.6).

Remark (5 .7 ) . Together with th e  example given by (2.2), (6) the example in
the proof o f Theorem (5.6) is obtained by "g lu e in g " . In  general, certain glueings
a r e  always Buchsbaum and  satisfy the condition (1) of Theorem (1.1). We will
prove this in  a  subsequent paper.
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