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1. Introduction

The purpose of this paper is to prove the following

Theorem (1.1). For a Noetherian local ring A with maximal ideal m the
following two conditions are equivalent.

(1) A is a Buchsbaum ring and Hi(A)=(0) for i#1, dim A.

(2) The Rees algebra R(q)= G?Oq" is a Cohen-Macaulay ring for every param-
eter ideal q of A.

In this case R(q™) is also a Cohen-Macaulay ring for every parameter ideal q and
Sfor every integer n>0.

Here H}(A) denotes the i-th local cohomology module. Now recall the defini-
tion of Buchsbaum rings. Let A be a Noetherian local ring with maximal ideal
m. Then A is called a Buchsbaum ring if the difference

Li(A/0)—e4(a)

is an invariant I(A) of A not depending on the particular choice of a parameter
ideal q¢ of A, where e (q) denotes the multiplicity of A relative to q. This is
equivalent to the condition that the equality

(a1, @z, 03) @i=(ay, Gy, -+, G3): M

holds for every 0=:<d and for every system a,, a,, -+, ag of parameters for A,
where d=dim A (c.f. [14], Satz 10). The theory of Buchsbaum rings has started
from an answer of W. Vogel [18] to a problem of D. A. Buchsbaum [2] (c.f. p.
228). The basic properties of Buchsbaum rings were discovered by J. Stiickrad
and W. Vogel ([14] and [15]), and our theorem (1.1) guarantees that certain
Buchsbaum rings are characterized by the behaviour of Rees algebras relative to
parameter ideals. This is a new point of view in the study of Buchsbaum sin-
gularities (c.f. [4] and [16]).

Recently G. Valla [17] proved that, if a Noetherian local ring A is Cohen-
Macaulay, then so is the Rees algebra R(q™) for every parameter ideal q of A and
for every integer n>0 (c. f. [3] for a shorter proof). Our research was motivated
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by a partial answer of Y. Shimoda [12] to the question whether the converse of
Valla’s result is true. He solved this problem in case A is an integral local domain
of dimension 2. A complete answer comes from our theorm (1.1) and is stated
as follows.

Corollary (1.2). Let A be a Noetherian local ring and assume that depth
A+1. Then A is a Cohen-Macaulay ring if and only if so is the Rees algebra
R(@Q™) for every parameter ideal q of A and for every integer n>0.

Of course this is not true in case depth A=1 (c.f. (5.6)).

Our theorem (1.1) will be proved in Section 4. In Section 2 we will give some:
results on Buchsbaum modules which we need in Section 4 in order to compute
the depth of Rees algebras relative to parameter ideals. In Section 3 we will
show that every Noetherian local ring is at least Buchsbaum if all the Rees
algebras relative to parameter ideals are Cohen-Macaulay. In Section 5 we assume
that A is a Buchsbaum local ring with canonical module K,. The aim of this
section is to prove that K, is a Cohen-Macaulay module if (and only if) Hi(A)=(0)
for every 1<i<dim A. Of course this is the same condition as (1) of Theorem
(1.1) in case depth A>0.

In the following we denote by A a Noetherian local ring of dimension d and
with maximal ideal m. Hj(-) will always stand for the i-th local cohomology
functor.

2. U(aM) as a Buchsbaum module

First we recall the definition of Buchsbaum rings, or more generally that of
Buchsbaum modules. Let M be a finitely generated A-module of dimension 7.

Definition (2.1) M is called a Buchsbaum module if the difference
[ M/qM)—ey(q)

is an invariant I(M) of M not depending on the choice of a parameter ideal q of
M, where ey(q) denotes the multiplicity of M relative to g.

This is equivalent to the condition that every system a,, a,, * -, a, of param-
eters for M is a weak sequence, i.e., the equality

(ay, as, =, a)M :a:4,=(a;, @y, =+, a)M:m

holds for every 0=Zi<r (c.f. [14], Satz 10). A Noetherian local ring is said to be
a Buchsbaum ring if it is a Buchsbaum module over itself.

Examples (2.2). (1) A finitely generated module M is Cohen-Macaulay if
and only if M is Buchsbaum and I(M)=0.

(2) Suppose that A is a Buchsbaum ring with dim A=d>0. Then the max-
imal ideal m of A is a Buchsbaum module and I(m)=I(A)+d—1 (c.f. [5], (2.4)).
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In particular, if A is a Cohen-Macaulay ring of dimension 2, then m is a Buchsbaum
module with I(m)=1. This seems to be a simplest example of Buchsbaum modules
which are not Cohen-Macaulay.

(3) Suppose that d=dim A>0 and let V be a {-dimensional vector space over
A/m. Let B=AXYV be the idealization of V by A. Then B is a Buchabaum
ring if and only if so is A. In this case dim B=d and I(B)=I(A)+t (c.f. [5],
(2.8)). In particular, if A is a Cohen-Macaulay ring, then B is a Buchsbaum ring
with I(B)=t. Thus for arbitrary integers d>0 and t=0 there is a Buchsbaum
local ring B such that

dim B=d and I(B)=t.

(4) Suppose that A is a Buchsbaum ring which is not Cohen-Macaulay. Then
any formal power series ring over A is not a Buchsbaum ring (c.f. [11], (4.6)).

(5) Let k be a field and R=k[|s, t|] a formal power series ring. We put
A=F[|s% s%, st3, t*|] in R. Then it is well-known that A is not a Cohen-Macaulay
ring. However A is Buchsbaum and I(A)=1.

(6) Let k£ be a field and R=Fk[|x,, xs, -, X4, Y1, Y2 ***, Va|] a formal power
series ring. We put A=R/a where

a=(xy, Xz 4 XIN(Y1, Y2 0y Va) -

Then A is a d-dimensional Buchsbaum ring and I(A)=d—1. Moreover
A/m (=1
0  G#1, d)

Hi(A)=

(c.f. [10], p. 469).
(7) Let d>0 and hy, hy, -+, hqy-;=0 be integers. Then there exists a Buchs-
baum local ring A such that

dim A=d and dimumHi(A)=h; for all 0=i<d.

(Here dim,,.Hi(A) denotes the dimension of H:(A) as a vector space over A/m.
See (2.6), (3).) Moreover it is known that, if h,=0 (resp. d=2 and h,=h,=0),
then the ring A may also be taken to be an integral domain (resp. a normal
domain). See [5].

Let M be a finitely generated A-module.

Definition (2.3). Assh,M={peSupp,M;dim A/p=dim,M}. Notice that, for
an element a of m, dim,M/aM=dim,M—1 if and only if a< GA\\{ N p. Let N be
an A-submodule of M and PeAssha

N=_N Ny

PEAssgM N

a primary decomposition of N in M.

Definition (2.4). Uy(N )=p N Np).

EAsshqM /N
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As every pe Assh,M/N is a minimal element of Supp,M/N, this definition does
not depend on the choice of a primary decomposition of N. Usually we denote
Uy(N) simply by U(N). Notice that Ass M/U(N)=AsshM/N.

Now we are prepared to state the main result of this section.

Theorem (2.5). Suppose that M is a Buchsbaum A-module of dimension r>0.
Let a be an element of m and assume that dimyM/aM=r—1. Then

(1) U(aM) is also a Buchsbaum module and dim U(aM)=r.

I(M)—(r—1)-dimmHy(M)  (r22)
@ I(U(aM))={

(r=1).
min{2=i<r; Hi(M)#(0)} (r=2 and depth,M>0)
3) depth U(aM)={ 0 (r=2 and depth M=0)
1 (r=1).

In order to prove this assertion we need some results on Buchsbaum modules.

Lemma (2.6). Suppose that M is a Buchsbaum A-module of dimension »>0.
Let U=U(0)) in M. Then

(1) Assh,M=Ass, M\ {m}.

(2) M/U is again a Buchsbaum module with dim,M/U=r and depth AM/U>0.

3) m-HIM=() for all 0=i<r. In particular HY(M)=[0:m]y=U.

(4) Let a be an element of m and assume that dim M/aM=r—1. Then M/aM
is again a Buchsbaum module. Moreover

Hi(M/aM)=Hi{M)DH* (M)
for all 0=i<r—1, and there is an exact sequence
0 —> Hy~(M) —> Hy~*(M/aM) —> Hy(M) —> Hi(M) —> 0
of A-modules.
5) I(M)=:§t(r;1)-dimA,mH,f}(M). (Here dimynHY(M) denotes the dimension

of Hi(M) as a vector space over A/m.)

Proof. (1) This is trivial since Ass,M/U=Assh,M and since m-U=(0) (c.{.
[14], Satz 5).

(2) See [14], Korollar 13.

(3) See [10], Hilfsatz 3 and its proof.

(4) See [14], Korollar 6 for the first assertion. Consider the second one.
Fist notice that U=[0:a]y. Then we have two exact sequences

g I
0O—w—U—M—aM—0 and 0 —aM — M —> M/aM —> 0

where f-g(x)=ax for all xeM. Apply the functor Hi(-) to the second sequence
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and we get a long exact sequence
(*) - —> Hi(aM) —1> Hi(M) —> Hi(M/aM) —> H}**(aM) L Hi* (M) —
On the other hand, as m-U=(0),
Hi(M) —> Hi(aM)

is an epimorphism (res. an isomorphism) for i=0 (resp. i>0). Thus, considering
the following commutative triangle

Hi(aM) = H5,(M)

N

Hu(M)

we conclude that the map Hi(aM)—> Hi(M) is 0 for every 0=i<r because
aHLM)=(0) for 0=<i<r by (3). Hence from the long exact sequence (*) we ob-
tain exact sequences

**) 0 —> HY{(M) —> Hi{(M/aM) — HL* (M) — 0 (0=i<r—1)
and
0— Hi-¥(M) —> HL'(M/aM) —> H}, (M)——>H’(M)——>0.

Of course the sequence (**) splits as Hi(M/aM) is a vector space over A/m.
(5) See [10], Satz 2.

The following striking result is due to J. Stiickrad and W. Vogel [16] and
J. Stiickrad [13].

Lemma (2.7). Let M be a finitely generated A-module. If the canonical
homomorphisms

hj: Exti(A/m, M) — Hi{(M)=lim Extji(A/m", M)

are surjective for all i#dim,M, then M is a Buchsbaum module. In case A is a
regular local ring, the converse is also true.

Proof of Theorem (2.5).
If =1, then the assertions are trivial because aM=M/HY M) and U(aM)=aM
in this case. Now consider the case r=2. First we will show that

(@) Ha(U(aM)=H{(M),
(b) Hu(U(aM))=(0),
and (¢) Hu(U(aM)=Hu(M) (i22).
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Apply the functor Hi(:) to the following two exact sequences

* 00— aM — UlaM)— Ul aM)/aM — 0,
and
0—U(0)— M—aM—0.

Then we see

Hi(aM)=Hi(U(aM)) for i=2
and
**) Hi(M)=Hi(aM) for >0,

because U((0)) and U(aM)/aM (=U ;.x((0))) are vector spaces over A/m (c. f. [14],
Satz 5). Summarizing them we have the assertion (c). Moreover, applying the
functor Hi(-) to the exact sequence

0— U(aM)—> M —> M/U(aM)— 0,

we have the assertion (a) because depth M/U(aM)>0 (c.f. (2.6), (2)).
Now let us prove the assertion (b). Apply the functor Hi(-) to the sequence
(*) and we have an exact sequence

() 0 —> HY(U(aM)) —> U(aM)/aM —> Hi(aM) —> HXU(aM))—> 0.
On the other hand we see
UlaM)/aM=HYM)YPHLM)
by (2.6), (4) because U(aM)/aM=U y,;.5((0)) and Uy .x((0))=HS(M/aM). Thus,
recalling Hi(aM)=HLM) by (**) and HY(U(aM))=H%M) by (a), we conclude that
Hi(U(aM))=(0)
by the exact sequence (***) of vector spaces over A/m.
Now let us prove Theorem (2.5). It follows from (a), (b) and (c) that

B ) dim U@ M) =) —(r—1)- dim g HA(M)

(c.f. (2.6), (5)). Moreover we have by (a), (b) and (c) that

dim,U(aM)=r
and

min {2<i<r; Hi(M)#(0)} (depth,M>0)
depth U(aM)=

(depth,M=0).

Thus it suffices to show that U(aM) is a Buchsbaum module. For this purpose,
after passing through the completion of A, we may assume without loss of
generality that A is a regular local ring.

Now apply the functor Extj(A/m, -) to the sequence (*) and we obtain a
commutative diagram

Exti(A/m, aM) —> Exti(A/m, U(aM)) — Exti(A/m, UlaM)/aM)
| hix | hécans |
Hi(aM) Hi(UaM)) Hi(U(@M)/aM)=(0)
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with exact rows for every 0<i<r, where the vertical maps are canonical
homomorphisms. On the other hand, as aM=M/U((0)) is a Buchsbaum module of
dimension r (c.f. (2.6), (2)), we see by (2.7) that hi, is a surjection for every
i#r. Hence so is hjwu, by the above diagram and we conclude again by (2.7)
that U(aM) is also a Buchsbaum module. This completes the proof of our asser-
tion.

Corollary (2.8). Under the same situation as (2.5), U(aM) is a Cohen-Macaulay
module if and only if r=1 or
HYM)=(0) for i1, r.
Remark (2.9). Let M be a finitely generated A-module of dimension 2 and
suppose that m- HY(M)=m- H){(M)=(0). Then U(aM) is a Buchsbaum module with
I(U(aM)):dimA/mHuox(M)

for every element a of m such that dim M/aM=1. But such M is not necessarily
a Buchsbaum module. For example, let

A=k[lx, y, z, w|1/(x, )Nz, wIN(x?, y, 2%, w)

where k[ | x, y, z, w|] is a formal power series ring over a field .. Then dim A=2
and HY(A)=H\(A)=Fk. As W. Vogel mentioned in [19], A is not a Buchsbaum
ring.

3. In this section we will prove the following

Theorem (3.1). Suppose that the Rees algebra R(q)= 6290 q™ is a Cohen-Macaulay

ring for every parameter ideal q of A. Then A is a Buchsbaum ring.

For this purpose we need a few lemmas. Of course we may assume d=
dim A>0. For a moment let a,, a, -, ag be a system of parameters for A.
We put q=(ai, a,, ***, ag) and R=R(q). Notice that the ring R can be canonically
identified with the graded A-subalgebra

AI:GIX, asz Tty adX]

of A[X], where X is an indeterminate over A. By Ut we denote the unique
graded maximal ideal of R, i.e.,

M=0m, a, X, a,X, -+, agX).
Recall that

(c.f. [9] and [17]). We put
D:(aly az"'ale Tty ad+ad-1X’ adX)'

Lemma (3.2). M=+/Q. In particular,
ay, a+a X, -, aatag-1 X, agX
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1S a system of parameters for Ruy.

Proof. Suppose a;Xe+/Q for some i. Then a;., X4/, as
(a;1 X)Y=(a;+a;-1X) a1 X—a;-ra; X .

Hence it follows by induction on ¢ that a;X€+/Q for all 1=<i<d, which yields
also C+/Q as a;+a;-; X€Q by definition. Thus MC+/Q, which implies M=+/.

Corollary (3.3). R is a Cohen-Macaulay ring if and only if

ay, st a; X, - agtag-, X, a. X

is an Rp-sequence.

Proof. If a,, a;+a, X, -as+aqs-1 X, a; X forms an Ry-sequence, then Ry is a

Cohen-Macaulay local ring by (3.2). Thus R is globally a Cohen-Macaulay ring
by virtue of [9], Theorem. The converse is trivial.

Lemma (3.4). Suppose that R is a Cohen-Macaulay ring. Then
(@, @y =+, Qg-1):ag=(ay, Gy, *+, Ag-1) 1 AF
for every integer n>0.

Proof. It suffices to show a:ajCa:a; where a=(ay, a5 -+, ag-1). If d=I,
this is trivial as a, is A-regular. Consider the case d=2. Let » be an element
of A and assume that ra}=sa, for some s€A. Then we have s€a,R since
a,(r-a,X)=s-a,X and since a,, a,X is an R-sequence by (3.3). Let s=ta, for some
te A, and we have ra,=ta, as ral=as=a,(ta,).

For the case d=3 we need the following

Claim. Let ¢ be an element of a and assume that c€q% Then c-a§-*caa?2
Proof of the claim.

d-1
Let us express ¢c= Zlaibi and put
=

I=({a;— a1 X} r1sisa-2 @1 X).
Then

d-1
aq-cal X% 1= ElaiX- b;ad-2X4-?

and a;=a;,, X mod ] for every 1=j=<d—2. Observe the equations
a; X bad X% ?=a; , X -b;ad X% %= .. =0, X-b;a§ 2 X% '=0mod |
(1<i=<d-—1), and we have
aq-cad?Xéte].

On the other hand we see by (3.3) that a4, ag-1—asX, -+, a;—a.X, a,X is an Ry-
sequence. Thus cai*X%'€IRy, i.e,
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fread X te]

for some fe R\T. Now let us express
d_
) fead X =T (00 X)gO+a, X g

with g, geR. Let g§” (resp. g;) denote the coefficient of the term X/ in g®
(resp. g). Then, comparing the term X¢-! in the equation (*), we see

d-2 d-2
forcad 3= iZl a; g, — Zx A:1892 0+ 01842
= =

As f, is a unit of A, this equation implies that

cad-*eqaqd-?
as desired.
Proof of Lemma (3.4) (Continued).
Let » be an element of A and assume that raj<a. We put
I=(a;, {a;—ai-1 X} 2si5a-1, e X).
First notice that
d—2

d-2 . :
rag(ai—aiX)*t=rag- B (D" )ag (e X

=rad '+ iz;)j(—l)i(dzz)adX- raj_jad?ixi!

On the other hand, as rajeanq? we have ra¢-'€aq?"? by the above claim.
d-1

Now let us express rad = .Elaibi with b;€q%"2% Then, since ¢;=a;-,X mod I, we
=

observe that a;b;=a;-,*b;X= - =a,-b;X*"'=0mod I (1=i=d—1), which implies

rai'=0mod I.
Thus
raq-(ag—aq- X)4 el

and so we have ra,E IRy because a;—aq-; X is Ry/IRy-regular by (3.3). Hence
f‘ radE I

for some fe R\9:. Comparing the constant term similarly as in the proof of the
above claim, we see that

ragEqa
as required. This completes the proof of our assertion.
Proof of Theorem (3.1).

Let ay, a,, -, a4-1, @ and a,, a,, *++, ag-1, b be two systems of parameters
for A. In order to prove A is a Buchsbaum ring, it suffices to show
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a:a=a:b

where a=(ay, a,, -+, aq-;) (c.f. [14], Satz 5). Of course, by the symmetry be-
tween a and b, we have only to prove

a:aCa:b.

d-1
Let n>0 be an integer such that b"a+aA and express b"= Zlaixi+ax with
=
xi, XEA.
Now let r be an element of A and assume that raca. Then we have rb"€a

d-1
as rb"= > a;-rx;+ra-x and as rasa by the assumption. Hence r€a:5b" and so
i=1

r€a:b by (3.4). Thus we have a:aCa:b as desired, and this completes the proof
of Theorem (3.1).

Remark (3.5). A Noetherian local ring A is not necessarily a Buchsbaum
ring even if R(q) is a Cohen-Macaulay ring for some parameter ideal q of A.
For example, let k[|s, t|] be a formal power series ring over a field £ and put

A=k[|s? st, t, $°|]
in k[|s, t|]. Then R((s%, t)) is a Cohen-Macaulay ring but A is not a Buchsbaum
ring.
4. The depth of R(q)

In this section suppose that A is a Buchsbaum ring and let a=ay, a,, -+, aq
be a system of parameters for A. We put

q=(ay, as, *-, az) and R=R(q).

For a finitely generated R-module E we denote dimgyEw (resp. depthzpFEm)
simply by
dim E (resp. depth E)

where M=(m, ¢, X, a,X, -+, agX), the unique graded maximal ideal of R. The
main purpose of this section is to prove the following

Theorem (4.1).

depth,U(aA)+1 (depth A>0)
depth R=

(depth A=0).
We put q;=(as, a5, -+, a;) (0<i=d) and begin with
Lemma (4.2). U(q:)N\q™"=q.q™" ! for every integer n>0 and for every 0=i=d.

Proof. This is trivial in case i=d.
Suppose i<d and that the assertion holds for :+1. First notice that

UladNna™CU@+)Na™.
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In fact, if i=d—1, then U(q:;+1)=q. Hence U(q)Nq*Cq*=U(q:+1)Na™ clearly. In
case 1<d—1, we have U(q;)=q;:m and U(q41)=0:4::m by (2.6), (3). So Ulq,)C
Ulq:4+1) as q:Cqi+1, and the claim follows.

Let x be an element of U(q;)N\q™ Then x€U(q:+1)N\q™ as we have remarked
above. On the other hand we know

Ui+ )N =0q:9" ' +as40"?
by the assumption on . Thus x may be expressed as
x=y+ainf

where yeq;q® ! and feq® ! Recalling a4, f=x—y<U(q), we get feU(qy)
because a;,, is A/U(q;)-regular.
If n=1, then a;+,f€q; since U(q;)=q;:m. Therefore x=y+a;y,f<q;, and so
we have
UQ@dNna=q:

in this case. Now suppose n=2 and assume that

Uldna™'=qq" 2.
Then, as feU(q:)Nq™, we see f€q.q"* and hence ai+if€0q:q""". Thus x=y
+aifEq:0" " as required. This completes the proof of our assertion.

Corollary (4.3). U(aA)Nq"=aq™ ! for every integer n>0.

Let h: R— A be the canonical projection. We denote U(aA) by ,U(aA) when
we consider it via A an R-module. Moreover we regard ,U(aA) as a graded
module trivially, i.e.,

[nU@A)]y=U(aA) and [,U(aA)],=(0) for n+#0.

Proposition (4.4). There is an exact sequence
0 — ,U(aA) — R/(aX) — R((¢+U(aA))/U@A) — 0

of graded R-modules.

Proof. Let f:R— R((g+U(aA))/U(aA)) be the canonical epimorphism and put
I=Ker f. Then I>aX, and [ is a graded ideal of R. Let z be an element of I,
(n>0) and express z=bX" (beq™. Then beU(aA) and so, by (4.3), we have
b=ca for some c=q™!. Hence

z=aX-cX"!

and this implies that goln:(aX). Of course I,=U(aA) and it is a routine work

to check
2U@A)=1/(aX)
as graded R-modules.

Cerollary (4.5) ([1]). R is a Cohen-Macaulay ring if so is A.
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This is proved by induction on dim A. But we omit the detail as this fact has
been already known by J. Barshay [1].
We note

Lemma (4.6). Suppose that depth A>0. Then aX is a non-zerodivisor of R.
Lemma (4.7). dim ,U(aA)=dim A and depth ,U(aA)=depth,U(aA).

Proof. These follow from the isomorphisms
H&(nUlaA) = Ho(U(aA)),
where ,H&(U(aA)) denotes Hi(U(aA)) considered an R-module via h: R— A. For
the first assertion recall that dim,U(aA)=dim A by (2.5), (1).

Proposition (4.8). Suppose that dim A=2. Then, if depth A>0, R is a Cohen-
Macaulay ring.

Proof. We put A=A/U(aA) and §=qA. Then R(q) is a Cohen-Macaulay ring
of dimension 2 by (4.5) because A is a Cohen-Macaulay local ring of dimension 1.
Consider this fact together with the exact sequence

0 —> yU(@A) — R/(aX) — R@)—> 0

given by (4.4). Then we see depth R/(aX)=2 as depth ,U(aA)=2 by (2.5) and
(4.7). Therefore depth R=3 since aX is a regular element of R (c.f. (4.6)). Thus
Ry is a Cohen-Macaulay local ring. Hence the assertion follows from [9], Theorem.

Remark (4.9). Let A be the example given by (2.2), (5). Then M. Hochster
and J. Roberts [9] showed that R(q) is a Cohen-Macaulay ring for the parameter
ideal q=(s*, #*), and mentioned by this example that a ring retract of a Cohen-
Macaulay ring is not necessarily Cohen-Macaulay. Our result (4.8) guarantees
that the Rees algebra R(q) is a Cohen-Macaulay ring for every parameter ideal
q of A. See also Y. Shimoda [12].

Proof of Theorem (4.1).
(1) (depth A>0) We have to show

depth R=depth,U(aA)+1.

Assume the contray and choose d=dim A as small as possible among such coun-
terexamples. We put

A=A/U(aA), q=(q+U(aA))/UaA) and R=R(@).
Then d=3 by (4.8) and, by the minimality of d, we see
depth R=depthzU(bA)+1

where b=a, mod U(aA). We put s=depthzU(bA). Notice s=2 by (2.5).
If d=s+1, then depth R=d and so, by the exact sequence
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0 —> ,U(@aA) —> R/(aX)—> F — 0
given by (4.4), we have
depth R/(aX)=depth ,U(aA).

Hence depth R=depth,U(aA)+1, but this contradicts the choice of d. Thus we
conclude s<d—1.

Claim. Hi(A)=(0) for 2=i<s and H3'(A)+(0).
Proof of claim.
Apply the functor Hi(-) to the following two exact sequences

0 —> bA —> U(A) —> UbA)/bA —> 0
and
0 —> UaA)/aA —> AJaA—> A —>0.

Then we get
HYUWbA)=HYA) (resp. Hi(A)=Hi(A/aA))
for every i=2 by the first (resp. second) sequence. Thus we see by (2.6), (4) that
Hi(UbA)=Hi(APHI(A)

for every 2=i<d—1.

Suppose s=2. If HZ(A)#(0), then depth,U(eA)=2 by (2.5). So we have
depth R/(aX)=2by (4.4), because depth R=3. This asserts depth R=3=depth,U(aA)
+1, which is impossible. Thus we conclude Hi(A)=(0) in this case. Of course

HY(A)=HX(U(bA))#(0).
Now consider the case s=3. Then
HYUbA)=HLA)DH(A)=(0)
for 2<i<s—1 and
Hi(U(bA))=Hi(A)DH:(A)#(0) .
Hence Hi(A)=(0) 2=<i<s) and H;"*(A)#(0) as required.

Now back to the proof of Theorem (4.1). It follows from the above claim
and (2.5) that

depth,U(aA)=s+1.
On the other hand
depth R=s+1.
Hence depth R=depth,U(aA), which implies by (4.6) that
depth R=depth,U(aA)+1

—— this is a contradiction.
(2) (depth A=0) Let x be a non-zero element of A such that xm=(0). Then
xW:=(0) and so we have depth R=0 in this case.
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Example (4.10). Let d and ¢ be integers with d>¢=2. Then there is a
Buchsbaum ring A such that

dim A=d and depth A=t
(c.f. (2.2), (7) and [16], Theorem 3). In this case
dim R(q)=d+1 and depth R(q)=t+1

for every parameter ideal q of A. Of course R(q) is not a Cohen-Macaulay ring.

Corollary (4.11). Suppose that depth A>0. Then the following condition are
equivalent.

1) Hi(A)=Q) for i#1, d.

(2) The Ress algebra R(q) is a Cohen-Macaulay ring for every parameter
ideal q of A.

(3) There is a parameter ideal q of A, for which the Rees algebra R(q) isa
Cohen-Macaulay ring.

(4) The A-module U(aA) is a Cohen-Macaulay module for every element a of
m such that dim A/aA=d—1.

(5) There is an element a of m such that dim A/aA=d—1. for which the A-
module U(aA) is Cohen-Macaulay.

If A has the canonical module K4, one may add further

(6) K4 is a Cohen-Macaulay module.

Proof. The equivalence of the conditions from (1) to (5) follows from (2.5),
(2.8) and (4.1). The proof of the equivalence of the conditions (1) and (6) will be
found in the next section.

Proof of Theorem (1.1).

The equivalence of the conditions (1) and (2) is now clear by (3.1) and (4.11).
Now consider the last assertion. Let q be a parameter ideal of A and let n>0
an integer. Then R(q”)=i€zBoq"” is a direct summand of R(q) as an R(q")-module.

Moreover R(q) is a module-finite extension of R(q™). Thus the result follows from
[7], Proposition 12. This completes the proof of Theorem (1.1).

5. The canonical modules of Buchsbaum rings

The purpose of this section is to prove the equivalence of the conditions (1)
and (6) in Corollary (4.11). Now suppose that A is a Buchsbaum ring.
First we recall the definition of canonical modules. Let A (resp. E) denote
the completion of A (resp. the injective envelope Ez(A/f) of the residue field A /).
Definition (5.1) ([6]). An -module K, is called the canonical module if
AQ4K ,=Homy(Hi(A), E)

as A-modules.
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The canonical module is uniquely determined up to isomorphisms if it exists.
In case A is a homomorphic image of a Gorenstein local ring B, then A has the
canonical module and it is given by

K,=Ext3(A, B)

where s=dim B—dim A (c.f. [6], Satz 5.12).
In what follows we assume that A has the canonical module X,. Recall that
dim K, =dim A (c.f. [6]).

Lemma (5.2). Suppose A is complete and d=dim A>0. Let a be an element
of m such that dim AJaA=d—1. Then

(1) a is Ky-regular. In particular, depth K,>0.

(2) There is an exact sequence

0— K,/aK4—> K4 —> HEH(A)—> 0
of A-modules.

Proof* Apply the functor Hom,(-, E) to the sequence given by (2.6), (4).
Then we obtain an exact sequence

a
0—> Ky—> K4 —> Kyjqa —> HEY(A)—> 0 ,
because HZ '(A)=Hom(HE '(A), E). This yields all the results we claimed.

Corollary (5.3). depth K,=2 if dim A=2. In particular K, is a Cohen-
Macaulay module if dim A=2.

Proof. We may assume that A is complete. Let a be an element of m such
that dim A/aA=dim A—1. Then depth K,,,,>0, and K /aK, is contained in
Kijaa (c.f. (5.2)). Hence depth K,=2 as a is K -regular. The second assertion
is obvious.

The equivalence of the conditions (1) and (6) in Corollary (4.11) comes from
the next

Theorem (5.4). K, is a Cohen-Macaulay module if and only if

Hi(A)=(0) for 1<i<dimA.

Proof. We may assume A is complete. By (5.3) we may assume further
d=dim A=3. Let a be an element of m such that dim A/aA=d—1.

First notice that K, is a Cohen-Macaulay module if and only if K, .. is a
Cohen-Macaulay module and Hg *(A)=(0). For, suuppose that K, is Cohen-
Macaulay. Then depth K /aK,=d—1=2. On the other hand depth K,,,,=2 by
(5.3). Hence we see by the exact sequence given in (5.2), (2) that

HE~(A)=(0),
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because the length of HE (A) is finite. Thus K4 ,.=K,/aK,, and hence K,/qo4
is Cohen-Maulay. The converse is trivial.

In case d=3, we have by (5.3) and the above fact that K, is a Cohen-Macaulay
module if and only if H3(A)=(0). Now suppose d=4 and assume that our asser-
tion holds for d—1. Then

K, is a Cohen-Macaulay module
& K474 is Cohen-Macaualy, and HE '(A)=(0)
& Hi(A/aA)=(0) for 1<i<d—1, and H% '(A)=(0) (by the assumption on d)
& HY(A)DHL(A)=(0) for 1<i<d—1 (by (2.6), (4))
© Hi(A)=(0) for 1<i<d.

This completes the proof of Theorem (5.4).

Question (5.5). Is K, a Buchsbaum module? If dim A=3, this is true and
I(KA):dlmA/mHl?x(A)

Proof. As usual we may assume that A is complete. Let a be an element of
m? such that dim A/aA=2. Then a is K -regular and there is an exact sequence
0—> K4/aKy—> Kpjoa —> HI(A)—>0

of A-modules (c.f. (5.2)). Apply the functor Hi(-) to this sequence and we have
that

(*) Hi(Ka/aK)=Hi(A),

as K404 is a Cohen-Macaulay module of dimension 2 by (5.3) and as m- H(A)=(0).
This yields by [10], Satz 3 that K,/aK, is a Buchsbaum module, and hence so is
K, by the choice of a (c.f. [19], Theorem). For the second assertion notice that

Hi(K4/aK)=Hi(K,)
(c.f. (2.6), (4)). Then we see by the equality (*) that
I(K )=dim 4mH:(A)

because I(K4)=dim 4,,H:(K,) by (2.6), (5). This completes the prcof of our assertion.
We will close this paper with the following

Theorem (5.6). Let d=2 and h=1 be integers. Then there is a Buchsbaum
complete local domain A which satisfies the following conditions: (1) dim A=d.
(2) Hi(A)=(0) for i#1,d. (3) dimyHi(A)=h. Hence depth A=1. (4) The nor-
malization B of A is a regular local ring and mBCA. In particular Sing A= {m}.
(5) K,=B.

Proof. Let K/k be an extension of fields with [K:k]=h+1 and B=
K[| xy, x5, =+, x4|] a formal power series ring over K. We put

A={feB;f0,0, -, 0)k}
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and P=Fk[|x;, xs -+, x¢|1. Then A is an intermediate ring between P and B.
Moreover A is a Noetherian complete local ring with dim A=d, because B is a
module-finite extension of P. Let m (resp. n) denote the maximal ideal of A
(resp. B). Then n=m, since

n={feB: f0, 0, -, 0)=0} C A

by definition. In particular mBC A and so B coincides with the normalization of A.
Consider the exact sequence

00— A—> B— B/A—0
of A-modules. Then, applying the functor Hi(-) to this, we see that
HYB) (i=d)
Hi(A)=1 B/A (=D
) (i#1, d).
Hence it follows from [10], Satz 3 that A is a Buchsbaum local ring. Of course
dimywH\(A)=dim4wB/A
=[K:k]—1
=h.

Thus we have proved the assertions from (1) to (4).
Now consider the last one. Let E, (resp. Egz) denote the injective envelope
E(A/m) (resp. Eg(B/n)). Then

K4=Hom 4(HI(A), E.)
by definition. On the other hand
Hom ,(H#(A), E)=Hom(H¥(B), E.)
=Homg(H4B), Ep)
=B,
and so we have K,=B as required. This completes the proof of Theorem (5.6).
Remark (5.7). Together with the example given by (2.2), (6) the example in
the proof of Theorem (5.6) is obtained by “glueing”. In general, certain glueings

are always Buchsbaum and satisfy the condition (1) of Theorem (1.1). We will
prove this in a subsequent paper.
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