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Introduction

In the study of open Riemann surfaces, the method of orthogonal decom-
positions and that o f  linear operators are fundamental. As for the latter, the
normal operators introduced by L. Sario play an important role. H .  Yamaguchi
[24] modified the normal operators and defined regular operators by means of a
formal Green's formula. M .  Yoshida [25] discussed some relations between
those two methods by using the concept of regular operators ;  he, furthermore,
studied meromorphic functions whose boundary behavior is given by a  regular
operator. M. Shiba [18] introduced another type of boundary behavior which
is not necessarily given by regular operators, and he gave an extension of the
Riemann-Roch theorem of Kusunoki's type.

In this paper we shall introduce some new linear operators. Our operators
generalize the notion of regular operators and act on square integrable differentials
(not on functions !). The concept of principal differentials with respect to this
operator is similarly defined as that of principal functions. We shall show several
properties of principal differentials. As an application of principal differentials
we shall give a formulation of the Riemann-Roch theorem on an arbitrary open
Riemann surface. In a similar situation Abel's theorem will be proved.

Up to now we have two types of formulations for these theorems. L. Ahlf ors
[2 ], [3 ] and H.L. Royden [16] formulated the theorems in complex form (cf. B.
Rodin [13], Y. Sainouchi [17], O. Watanabe [21] e tc .). But these theorems are,
as was pointed out by R. Accola [ 1 ] ,  meaningful only for Riemann surfaces with
small boundaries, say , those o f th e  class O K D .  Y .  Kusunoki [6], on the other
hand, used real normalization and the results are valid for general surfaces (cf.
H.L. Royden [16], M. Yoshida [25], M. Shiba [18], [19] and O. Watanabe [22]).
Our present formulation is rather close to  the former in the sense that it is
described in complex form, b u t  it seem s to be m eaningful also for Riemann
surfaces with large boundaries. Furthermore, some infinite divisors a re  allowed
in our theory.

In  § 1 the definition and the fundamental properties of linear operators are



662 Fumio Maitani

g iv en . Our operator maps a  differential into another which has minimal Dirichlet
integral among a certain class of d ifferen tia ls . It can  be seen  that the image
differential has a  similar property as Kuramochi functions (cf. [4]). In  § 2 we
sh a ll g iv e  the definition of principal differentials for our operators. We first
investigate th e  relationships between principal differentials an d  reproducing
kernels for subspaces of the Hilbert space consisting of square integrable harmonic
differentials (cf. [14], [15], [24], [25]). N ext w e shall g ive th e extremal pro-
perty of principal differentials (cf. [6]) and the conditions for principal differentials
to be analytic. W e know that some principal differentials are closely related to
differentials w ith Shiba's boundary behavior. In  § 3 we investigate semiexact
principal differentials and observe the vanishing property of certain integrals
a long th e  ideal boundary . This vanishing property has close connections with
the bilinear relation, the characterization of semiexact canonical differentials and
so forth (cf. [8 ], [13 ], [20 ]). In § 4 we shall show on a general open Riemann
surface the existence of behavior spaces which correspond to Shiba's behavior
spaces. Using these behavior spaces, we shall formulate in  § 5 the theorem of
Riemann-Roch and Abel's theorem.

The author w ishes to  express his deepest gratitude to Prof. Y. Kusunoki
and Prof. T. Kubo fo r th e ir  encouragement and com m ents. The author also
thanks to  P rof. M . Watanabe fo r her valuable suggestions. He is grateful to
Prof. K. Matsui and Dr. M. Shiba for their useful and stimulating conversations
with him.

,§ 1. Linear operators on spaces o f differentials

1 . 1  The definition o f operators

Let R  be an arbitrary Riemann surface. As usual, two Lebesgue measurable
complex differentials on  R  a re  identified if  they are equal almost everywhere.
W ith this convention, the set of square integrable complex differentials on  R
forms a Hilbert space r= r (R )  over the complex number field C with respect to
Dirichlet's inner product

(col, (02) =(oe1y w2)R= wiC/4

where co i i g  is  the exterior product for co, and rot. (We denote by (6 the complex
conjugate of co, and by co* the conjugate differential of co.) M. Shiba considered
the same set as a Hilbert space A =A (R) over the real number field R  with the
inner product <01, (02>=Re (0 1, (02) (cf. M. Shiba [18]). In what follows, almost
a l l  the statements and proofs are  equally valid for r  and A .  So we shall be

r mainly concerned with r  and refer to A  if  a  statement has different forms for r
and A .  As for the notations of subspaces in  r  we follow Ahlfors-Sario [3] ;
for instance, r e , rn , r ,e , rh se , and r „  denote the spaces o f closed, harmonic,
semiexact, harmonic semiexact differentials, and the space o f differentials of
Dirichlet potentials (cf. [4 ]) respectively.
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Let F x  be a  closed subspace of rh, and F  be a closed set on R .  We consider
the following classes of differentials

x=rx+reo, X p= { W E  X ; (0=0 on F ) .

For a  measurable se t S2(cR), ((01, (02)f2 denotes S.
,(2(01(4, and 11(0 11=((o, (0)D.

Lemma 1 . The classes X  and Xp are closed linear subspaces of F.

Pro o f . We only show that they are complete. Let {con } be a Cauchy sequence
i n  X .  Each con h a s  a unique orthogonal decomposition : con=wn,1+con,0 with
con,,Erx and o , Œ I', , .  Since 110).,,,— (0.,%11 11(0.— winil f o r  i=0, 1, {(0.,1} a n d
{w„, 0 } a r e  also Cauchy sequences. Suppose they converge to ohErx  and wocre.
respectively. Then {co n } converges to coi -Hon E X .  In case that {co n } is contained
in  X F , we have, furthermore, 0-=lim Iloh - Hoo— to.11 1linllah - koo— conlIF=11(01+0)011Fn

O. Thus the  differential wi d-con belongs to XI'.

Let X F  be the orthogonal complement of XF in  X  and  at=u).Fr E X F  denotes
the projection of coE X  to X " .  Now we define an operator on X by the projection
from X  to X i '. The operator co-04: is linear over C. From th e  definition we
have

Lemma 2. I f  wE X, then (4—wE X F  and w  X F  ( i.e ., ae; i s  orthogonal to
the space X p ). Conversely, i f  w, w'E X satisf y  that co'—wEXF  and al j XF, then
co' -=-(14.

We also have the following (cf. DI.

Proposition 1 . For w in X, w.'; has the following properties:
(i) c4 = w  on F,
(ii) 04 is harm onic in R—F,
(iii) 11411=inf ; w'E X and w' =w on F}.

Pro o f . (i) Since of —co belongs to XF, --o)=0 on F .  (ii) For a connected
component G of R—F, an infinitely differentiable function fE C V G ) with compact
support in G is regarded as a  function on R  by setting f=-0  o n  R — G . Since
d fE  Fe o ( R )  a n d  d fE X F , w e  h a v e  0=(w', df)=-(a7, d f ) G  a n d  0=(w', d f* )
=(07, d f* ) G . By Weyl's lemma o l is harmonic i n  G , hence i n  R — F . (iii) If
to'—co belongs to XF, then 0/—coF=co'—co—(of —co)E XF, and 11a/112 =11a — 0t -i- 0/112

=110/ —w9 2+11(17 112 -__11(.01 2
, which implies (iii).

R em ark . If oh, w2 E X  coincide on F, then (0)1)'=((o 2) .  Thus we can define
(e -= o 4  b y  (co,)!,' f o r  any differential co such that ar=o4 on F  for some ohE X.
Note that co need not belong to X.

For later use we show a sufficient condition for o&-- - o). We shall denote by
the orthogonal complement of in
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Lemma 3 .  If a differential W E X satisfies that (1)=-r in R—F with TE '-d -T eo *,
then cof is equal to (o.

Pro o f . It suffices to note that fo r any a E XF,

(w, (7)=(0), 0- )F + (r , a )R -F -- - - (z -, a )= 0

1 . 2  The dependence of the operator on F  and X

T he  operator : (o—.(4 is clearly continuous. Now this operator changes as F
and  X  vary. So we shall study th e  dependence o f  t h e  operator on F  a n d  X.
First le t  a  space X  be fixed. Then we have

Lemma 4 .  (i) I f  F'DF, then (4 =M Y ; =((.4").Ç.
(ii) Let {F „} be an increasing sequence o f closed se ts . If F = U F n  is closed, then

w
F

xn} converges to (4  (in the sense of norm).

Pro o f . (i) Since XI,  is contained in  X F, o f  is orthogonal to X F , . By Lemma
2 w e  h a v e  (( Le y , _ o f .  N ext, w e see that (077— co belongs to X F and  that
(a77 is orthogonal to X I ' .  T hen  w e have (01')F =o7.

(ii) Since (otni, ot.—cem)=-0 for m n, w e  have

0 11 coF n — 0 7 7 7 1 112 =11cen112 - 110 7 '112 •
Similarly we have 0-1107112-1107'112. N o w  w e can  eas ily  see  th a t {(0Fii} i s  a
C auchy sequence. L e t  cooE X  b e  the  lim it. Then f o r  every  m 11(00— (011F,,,
=lim 11wF .—w11Fm=0 and wo -=a) on Fm . Hence wo=w o n  F .  O n  th e  other hand,

since XF CX F ,  0=lim (oln, d)=(w o , co') f o r  every co'eXF . By Lemma 2  we
n•-•eo

conclude that 0)0=07.

A s fo r the  dependence o f X, we have

Lemma 5. L e t  Irr n } b e  a  decreasing sequence o f  subspaces o f  r h • Let
xh=rx n +reh and X = r )X n . Then fo r  any co in  X , {(4' n }  converges to (4.

Pro o f . Since (X .)F  contains (X,)F fo r  7n n, we can deduce that {c()%} i s
a  C a u c h y  sequence ( c f .  th e  proof o f  Lemma 4 (ii)). T h e  limit differential coœ

belongs to X „  f o r  ev ery  n. Hence wo be longs to  X .  T h e  inequality I1cooll
=lim1104' 11 110411 gives w0-=o4 (cf. Proposition 1 (Hp).n_con

Now let { R }  b e  a  n o n  decreasing sequence o f  regions o f  R  such that
U R n = R . L et Fn be a relatively closed set of R n such that FnCFn-Fi (n=1, 2, •••),

and UF n -=-F is closed in  R .  L et Fx n (R n) and r (R )  be subspaces of T h (R n ) and

r h (R) respectively. By th e  way every co T(R n ) can be extended to an & T(R)
by setting 6,- =c0 o n  R n ,  =0 o n  R—R a . Hence F(R n ) can be regarded a s  a  sub-
space of F (R ).  We shall make use of this convention.
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Theorem 1. (c f. H . Y am aguchi [241) Suppose that X .=- Tx 7,(R .) - Freo(R .)
and x=rs(R)+reo(R) satisfy the following conditions:
(i) I f  a  sequence {o ) }  i n  U X. is w eakly convergent to  an  w o in  F (R ), i.e.,

lim o-)=(coo, a) f o r any a E r (R ) ,  then w o belongs to X.

(ii) For every (oE X, there exists {co.: co n e X .} . such that

con = c o  o n  F .  and lim
n

l on—MR —O.

Then we have that f o r every coE

h i l l —aer'll = 0 ,
n-•co

where {co.; co. X. } is a sequence given in condition (ii).

P ro o f. Since co. and (w.)Fx';i, are uniformly bounded in norm, we can find a
subsequence {(co0 )1;=} which converges to an coo in  r ( R )  w eak ly . W e  note that
coo e X  by condition (i). Let in be a  fixed positive integer and f m  be the charac-
teristic function of the F . , .  We have

((.00—(0, w0—w)Fm,==(04—(0, f.•((00— (0 ))

f . . ( 0 4 - 0 ) ) )

= l im ((o ) —(.0, fin,•(wo—w))F, 0 .,-..0

Since m is arbitrary fixed, we conclude that coo =co on F .  Next by condition (ii)
w e can find an E X . su ch  th a t 6.-=o4 on F .  and lim 11(7. - - 04111n7,= 0 .  Since

n

cr.=0)=con on F ., we have II((on) ;tll . 110- .11. Observe that

110411--11(0011. 1im11(0.0.'%.!ir0
12 11u,,11=110411

We find that co -=co 0 an d  {(0.0 1.; }  converges to coo . This completes the proof.

§ 2. Principal differentials

2 . 1  The existence and uniqueness o f principal differentials

Using a normal operator M. Nakai & L. Sario (cf. [15]) defined "principal
forms". In the present section we shall use the operator in § 1 to define "principal
differentials". We shall also discuss their existence and uniqueness.

Let O  b e  a  differential on a Riemann surface R  and F  be a  closed subset
of R.

Definition. W e ca ll a  differential co on  R  to  have (X , F ; 0-behavior if
co--0  belongs to X  and (co—O) x '=co— O . Further, the co is called a  (X, F ; O)-
principal differential (or (X , F ; ())-p.d.) if  it is harmonic in some open set which
contains F.
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W e n o te  that we can consider (X, F; 0)-p.d. only i f  0  is supposed to be
harmonic in  a  open  subset o f  R—F, because w-0=-(co-0)Ç is harmonic in  R—F.

Hereafter we assume that the  closed se t F satisfies : F  is a disjoint countable
u n io n  o f  closed regions F ,  each o f  whose relative boundary aFi  consists of a
finite number of analytic closed Jo rdan  cu rv es . Let 9  b e  t h e  class o f  those
F 's .  F or each F E 9  we se t  g)=-.2(F)-- - {P ;  P  is a  discrete closed set of R which
•does not meet F.} . Further, for F E 9  and P T ( F )  we consider
e_=e(F, P)= {0 ; Ei is a  closed 0-differential in  R — P such that (i) 0 is harmonic

on (R—F—P)UaF,(ii)1101Ii<co, (iii) 0*=0 for every corn-3F1O F ,

ponent F, o f F.} .
L et 0 a n d  0, be differentials i n  e (F , P ) such that 0±0 t=0  i n  R—F— P.

Clearly o+etEr. L et o) be the projection of 0-FOT to X and set O A  0,; X)=0—co.

Proposition 2 .  The dif ferential 0(0, 01 ; X ) is (X , F;0)-principal.

P ro o f .  B y m eans o f  o r th o g o n a l decomposition o f  .1", w e can  w rite  as
0+0t-=w+s-  w ith co Fx ± r ea a n d  ET1.-1-Fet .  Since 0—co is closed in  R—P and
—0f is coclosed in  R—P, 0(0, 01 ; X)=0—w=1--0t is harmonic i n  R — P . We

h a v e  then 0 -0 = - -w E X . Furthermore, since 0 -0 = z -E T -i-T :, i n  R—F, we
know by Lemma 3 (0 -0 7 = 0 -0 .  Hence O A  0,; X ) is a  (X, F; 0)-p. d..

T h e  (X, F; 0)-pd. O A  01; X ) which is constructed a s  above will be called a
<X, F; 0, 01)-principal differential (or (X, F; 0, 01)-p.d.).

Rem ark. We have  the  following equalities :

( 1 ) a0(0, 01 ; X)+b0(0', 0; X)=0(a0-1- b0', a0 1 -1-b0; X),

< 2 ) 0 ( 0 ,  01; X)=.0(0, 0 1 ; X ),

) 81; Xr=0(81, — 0; XL*) and O(01 ,  —0; X*)=0(0, 0 1 ; X±)*

where 5-Y- = {Co ; coE X} ,  X 1 .-- - F - + F e o  a n d  x*=r1c+re 0 .

Next we shall use

Lemma 6 .  (cf. [ 1 8 ] ,
 [2 4 ] , [2 5 ]) . Let G  b e  a  regulary imbedded connected

subregion. o f  R  w hose relative boundary  aG is  compact, and let V be the com-
plem ent o f C  in R .  For any closed C1 -differential a defined in a neighbourhood of

-f ,  the f ollow ing tw o statem ents are equivalent:
(i) al y , the restriction of a to  V, can be ex tended as a closed C 1-dif f erential a on
R so  that the support of a has a com pact intersection w ith C.

(ii) -=0.
OG

Theorem 2. Let F=C..1 F iE g ,  n < 0 0 ,  and 0  b e  a h arm o n ic  d if f e ren tial on



Square integrable differentials 667

(R— F— p)UaF such that .f a F i 0= a F i 0*-=0, 15in. T hen there ex ist a e(F, P>

and a (X , F; 0)-principal differential such that 0'•=0 on R— F— P.

P ro o f . By Lemma 6 we can find é* e(F, P) such that j=0, ei*=0* on
R — F— P. Then 0(j, 6. 4  ; X ) is clearly a  requested differential (cf. Proposition

There generally exist m any (X , F; 0)-p.d.'s fo r a  given 8 in  e ( F , P ) .  In
order to discuss th e  uniqueness o f  a  (X , F; 0)-p.d., we shall first observe

Lemma 7. Let F E  b e  c o m p ac t. I f  (re f ;  i s  ex act o n  F  an d  satisfies
a=a.1;, then a=0.

Pro o f . There is a  relatively compact neighbourhood V o f  F  o n  which a  is
exact. L e t  s  b e a  harmonic function in  V  such that d s = a .  Take a  function
k Q(12) such that h = 1  o n  F, = 0  on  R — V . We define a  differential a ' so that
a' =d (ks) in  V , = 0  o n  R — V .  Then a ' belongs to T e a  a n d  a— a' belongs to XF.
Hence (a, (7')= 0  and (a-r;, cr—cr')-=0. Since a = 4 ',  we have (a, a)=0.

We se t T V = fuE  rs  ; T he  r v  is clearly a  subspace o f  r'x. The
(X , F; 0)-p.d. is uniquely determined up to th e  elements o f TT, .  In  fact, if 01
and 02 a re  (X , F; 0)-p.d., then

(i) 01 - 02=01 - 0— ( 0 2 - 0 )  belongs to x nrh— rx ,

(ii) co1-02)F-=(01-0)F—(02—o)F=(o1-60)—(02-0)=0i-02.

Therefore 0 , - 0 2 E
L et r be a  non-dividing oriented closed curve o n  R .  We take a ring domain

V  such that r is a  boundary component o f  V a n d  V lie s  o n  th e  left s ide o f  r.
There is a  function f r Eci(R—r) such that

1 in  a  neighbourhood o f r in  V

0 in  a  neighbourhood o f th e  other component o f ay
0 o n  R— V .

T h e  di', belongs to e(17, 0). We s e t  a7 , s =- 0 ( 0 , d f r ; X ) .  If  we replace V
and f ,  by another ring  domain V ' a n d  a  function .tï- w hich satisfy t h e  same
conditions, w e  h a v e  that th e  (X, V '; 0 , df)-p.d. is equal to th e  (X, V ; 0 , d fr )-
p .d .. Hence o-7 , x  is independent o f th e  choice o f  V  and f 7 .

L et E,(F)= {A 5 , B ,}  be a  canonical homology basis o f F  modulo aF such that
(i) A i n B ,  consists o f  a  p o in t ,  (ii) (A 1UB i )n(A 5UB 5)= 0  fo r  i # j  a n d  (iii)
At x A ,=B i x  B.,= 0 , Ai x /3) = 0  fo r  i * j  and  A  ,x B ,=1, where A , crosses B, from
right to left. L et 17,'(F)= {A 5 , B ,, C,}  be a  homology basis o f  F.

Theorem 3 .  L e t  F e g  be com pact. Then TV  is spanned by

x, asp x, ac,, x; A j, Bj, Ci Si(F)}

f r =
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P ro o f . L et 0 E f l i .  Suppose th a t (0, 17Ap .)-=(0, aB p .)=(0, 0- c1, )-=0 for
every  j  and i. W e cu t F along Y (A J UB j ) and denote the resulting surface

b y  F ' .  W e can  take d fl i  so  th a t  its  support is contained in F .  Then by
Green's formula

0-=(0, f ) --=IF T4

4a A  J O— A i d  fASB 1 0 —
B i d fAi 5

ÇA,0

Similarly .ÇB  j 0-=0 a n d  c L 0-=- 0. This shows that 0  is exact on F .  By Lemma 7

we have 0=-0.

Corollary 3 .1  L e t F a g  b e  compact and OGO(F, P). For an  arbitrary
F;0)-Principal dif ferential g5, we can f ind a closed 0-dif ferential 01 E0(F, P)

in R—P such that 01 =0* in R—F—P and 0=0(0, 0 ;  X ) .  Moreover there exists
.a differential rG E -FP :0  which coincides with 0 -0  in R—F.

P ro o f . By Lemma 6 and Theorem 2 we can find Of so that 0-0(0, 0 ;  X )
E R . i .  Then by Theorem 3 we can write a s  0-0(0, 0; X)=E a,0(0, d f A i ; X)
±Ebi0(0, d f a ;  ; X)+Ec10(0, dfc i ; X). S o  01

-=- 0i+EaidfA i +EbidfB i +Ecidfa i

satisfies the first statement. Then the last statement is trivial.

2 .2  Reproducing differentials

There are some connections between principal differentials and reproducing
differentials fo r any subspace of T h , while B. Rodin, L. Sario, M. Yoshida and
H. Yamaguchi discussed for some subspaces of T h .  W e shall denote by GI the
space 101 +reo.

D efinition. W e s e t  a(0, 01 ; rx)=0(0, 01; X) - 0(0, 01; 0) an d  call i t  a
s  ;  0, 01)-reproducing differential (or (I" x  ;  0, 01 )-r. d.).

Proposition 3 .  (i) a=a(0, 0 1 ; r x ) E r x  .

(ii) (a), a)--=—(co, 0+0t) fo r any  w E r .  •

(iii) 1101 2 +2 Re (a), 0+61)110•11 2 +2 Re (a, 0+01')=-1 1 0- 112 f o r  any  wErz •

Pro o f . ( i )  We can write as

0(0, 01; X) ---=- 0—(wx+0)0)-=r — Ot

with ( 0 x E r x ,  ( D o e r10 and s-ET;,̀.--F-TA.
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Then OA 0,; 0)=0—(00=wx+z - - 0 t .  Hence a=0(0, 0,; X)—sb(0, 0 1 ; 0)=—co x E r v .
(ii) S in c e  a= --co x =r+o) 0 —(0-F0T), w e  h a v e  (w , a)=(co, 7-1--co0 )—(co, 0+01')

0 + 0 t) .  (iii) By (ii) w e have (a, 0+0t)=— (a, a ) which proves the second
equality of (iii). W e also have

11(0112+2 Re (w, 0 + 0 t) — Ell 0- 112 +2 Re (a, 0+0t)]

=(co, co)—[(co, a)+(o-, co)]-1-(a, a)

=(w—a,

N ow  w e apply Proposition 3 to specific kinds of differentials with singularities.
Let pE R  and  V, be a  param etric  d isc  about p  w ith  the  variab le  z. W e  set

fp ,  ql n=0
Vr = {p' ; I z(Y)1 <r} (0 F= 17112 and P.—{ • Take a q 171 1 1 .

{p} n
Then there exist real valued functions h n EC2(R— PO  such that

R  1o n  112
11„={ e  zn

0  on R— V,
(n 1).

Since d /4=1'd (n 0), b y  L em m a  6 th e re  e x is ts  a  real closed

C1-differential d—ht in  R—P u  su c h  th a t  d- -1/',.=.d ht on R — F . We put /7„=d h , and
en=d—h*. Let o.n ,  x =  g ( 7  J n 7  e  n  ;  r x )  and Tn = r n , x=cr(en, 72n ; r x ) •

Theorem 4. For WE ['s,

, q
(co, u o )= .f , 11(0112- 2  Re.çg co_ . —Rer ao

( w ,  0) LO , CO* 112 —2 Re w* _R e z i ,

where the paths o f integrations are taken in  V1.
Let w=d w, w*-=d w*, a n =d s„  and z l= d  t on V ,. Then for

(iii) ((0, n)
1 8 w  

(n-1)
(p ) (z_ i y )  7

! axn

11(0112
2 8' w1 ans,,

(n -1 )! axn (n-1)! R e  a x n  ( 1 ) ) ,

— 1  anw* 
(iv) (a), r n ) = .  (n —1) ! axn
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2 anw*1 an t- ',„'̀
lia)112+ (P)- Re (p).( n - 1 ) !  a xn — (n — 1)1 ax

Proof. (i) F o r  every  suffic ien tly  sm all s > 0 , let .1/7€ = {p 'e  V i ; Iho(p')1'
>i/E}u[p, g ], where cp, g ] is  a segm ent from p to  g  i n  V,. T h e n  w e  have
by Proposition 3

(w, cy0)=—((.0, 270-Fet)= - 1im(o), 720+et)v 1 -v;

= (0), ) 70)V1-  + liM  (w y enT 7 1-

e

= — [lim ow*+ lim — wfol
E-0 ,Ça(T71- 1 7 ;)

- - - w( o - w( P) =.rpw

(ii) In  a  similar way to (i)

(w, 7-0)= — (0), e0- 0 )= — (0)* , 720+enq n (0* .

(iii) L et C7,=7).-Fien  a n d  d—h, =-d(iit.). Then

(w, a(c„, —icn; ['))=—(w, cn—ic )----[(0), co+ciw*, co]
—

liM  (Cn , i(0J+ i(0*)*)V1- Vr7
.
-■0

= —lim (11,,,H-ifi)(o)±i(o*)r-0 5a(vi -vr )

— lirn 1 d (w+iw*)

1 d n  
 ( w + i w * ) ( P ) ,(n -1 )! d  zn

(0), 0- (C., —
i ;C n — iM .= (n — za )

1 dn.
( n - 1 ) !  d  z n

+10*)(P)

Since cr(72, en; rx)-- +a((C.+Cn)/2, ( - 7 Zn— iCn)/2
 ;  Tx), w e have

(w,
1 [  an, 

(w+iw*)(n)+  a n  (w—iw*)(p)]2 (n -1 ) !  a x n axn

1 anw  
(p ).( n - 1 ) !  axn

( iv )  Since 17(en, — 7).; rx)-=0;(((n— Cn)/2i, Tir), w e  have
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( 0 ) ,  v ) . =  1  [  a-. a. .
c w  i o x p )  (w +/w * )(P)21(n —1) ! axn axn

(n -1 )!  a x n  (P ) •

By Proposition 3 the second inequalities of (i), (ii), (iii) and (iv) are clearly satisfied.

For a  piecewise C 1-chain r-=E CA, A.+1] we consider E cf0210, ;  r i ) ,  where
776= 770 $(i=eo for p= p a and Q-=Pz-Eq. Then we see that for Fx , (w, Ea(YA, ; rx»

r

co. Particularly we know that Ea(7A, e.'9; rx )----a r,x  fo r a  closed curve T  (cf.

p. 667).
L e t sb„, 2xen ; — 27c72,2; X ), vi t y x =sb(dfk i , O; X )

and v , O; X ), where d f A , and d f i 3 j  a re  closed differentials given in
d z

2.1. Then 00, (resP. Sbô. x
d z

)  has the  singularities Re a t  p  and Re z— z(q)
dz d  z  at q (resp. Im a t p  and — Tm

— z

a t  q). T h e  On , x  (resp. x)z (q)11  has the singularities Re d a t p  (resp. Tm d a t p ) .  A s for 7,12, x  and z-B) .zn zn
we have

fA i=A ix r,

x+ 7 Bi, x-0 d f B i = B i  x r

Definition. These é n, O N'  X ,  VA ./. X  a n d  I- B p  x  a r e  called X-fundamental
differentials.

Remark. Let T x  have an  orthogonal decomposition F r = E f 'x i . Then we
have

( 1 ) a.(0, 01; rx)=Ecr(0, 01;

If r x c r y ,

( 2 ) r o - a ( e ,  e 1 ; F2,)=0(0, 01; r.tnry ),

i. e.,0 1 ;  Y ) —sb(0, 01; X)=0(0, 01; Xi nY)-0 (0 , 0 i ;  0 ).  Further we have

( 3 ) (1(0, 01 ; 01; X)-0(0, 0 1 ; 0)--=a(0,0,.; Px ),

( 4 ) a(0, 01 ; Fx )*=0(0, 0 1 ; X)* —OA 0,; 0)*

=0(0 i , —0; X-I*)-0(0,, —0; H) (H-_-r„-k Te o )

= G (0 D  —0; r.v')-0-(0i, - 0 ;  rh )

- - u m ,  - 0 ;  Pi!).

- 1  a n i e



{ d [E a . z
i
r, -1-Eb n i :,,,, ]

0
0=

o n  V1/2— {P}

o n  R— V,
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Particularly,

( 5 ) cr(Cn, ro ,
( 6 ) r , x = a ( e . ,  — 7) . ; rx ) = - 0-(72., PI)*

(7 ) rA ps=— (crA p.i.)*

( 8 ) 0", .-=(07, s i . ) *

These equalities allow u s  to construct some reproducing differentials from exact
principal differentials (cf. [14], [15], [24], [25]).

2.3 Extremal properties of principal differentials

A principal differential has the minimum Dirichlet integral among a  ce rta in
class o f differentials. So it is expected that principal differentials h a v e  some
other extremal properties.

L e t V, be a  parametric disc about p R  and O be a  closed 0-differential on
R — { p}  such that

L et 20 ,- -2 8 , x be th e  uniquely determined (X, 17 1— V112; 0)-p. d. (cf. Lemma 7). To
study extremal properties o f 20 which a re  similar to Kusunoki [6], we consider
th e  following classes of differentials :

V x = { 2; A is a  harmonic differential on R— {p} a n d  2--6+ X}

{A; A is a harmonic differential on R— {p} and  2 - 6 =z  o n  R — V1

fo r some z-G P-E T Z I .

A  differential A in  Vx U(n. can be written as

1 2=d f=d [ 1
n

E a . +Eb„. + E cizi+ E d,V ]
z

o n  l71 —{p}. Let

01=- 12 Vx ; (2, 2)R-v1 _- _--Re1 a v 1 fT1*}

V1={2;  ( 2 ,  2 ) R - v 1 - .

T h e  20 belongs to Q1 and Q .  In fact we can easily see

(1 ) (2o,
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w here  20=df a• Hence Q l and Q1 are non empty.

Theorem 5. The (X, 17 1— V112; 0)-Principal differential is a unique differential
which maximizes (resp. m inim izes) the expression J (2)=Re[Enanj.+Embnie.]
among the class Q1 (resp. Q1).

Pro o f . B y C orollary  3.1 th e re  e x is ts  a  differential re f ' --1-n ;  such that
20=7 o n  R— V 1 . Take A Q ( i = 1 ,  2). L e t  ds=0, d f i =2 , a n d  d f 2 =2 2 o n
V— {p}. T hen  w e have

< 2 ) (21, 2e)R-v1 =(21 - 0, r)R-v i = j a v  i (f 1— s)T-*

,

3 ) (22, 2e)R-v i =(22, 20 - 0)R-v i = -
6 v i (f e — s)2t

= j
ay i-

702t

N ow  le t 2, 2/EQIUQ, 2=d f ,  and O < r< L Then

( 4) (2, 2')v i -v r =5 IT * •acvi -vo
Hence we know

( 5 ) (2, 2)R-v r :  —Ref ,

( 6 ) (2o, 2e)R-v r = A v  f e : i t

) (21-2e, 2e)R-v,=—
a v r (fi —  f 6)4 f o r  2 1 E Q 1,

(8) (22-4 2e)R-v r = -
5 6 , 7 o(22-2 or f o r  22. ' r 'G Q  •

B y direct calculation we have

(9) ) Re f*= — 27[E n I (1.1 2 7 ,12- FE 6.1 2
7,2

1. ]+  o(r)

fo r 2EQ10(21,

(10) Re (2,-2 0 , 2 0 ), , r = —R49 v r (f i —f 0 )4',

=27 Re EE nd dn+E inE(c„,— 0„,)+ o(r) f o r  21 E01,

(11) Re (22-2e, 2o) E-v r = — Re5a v  io(22 - 20*

=-27v  Re CE ndn(dn — d ) - FE m13.(c.— c°.„)+o(r) for 2 2 E  ,
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1 where f o = E  an +  b .  
1
77i -FE c7  +E d;2i.71 2

By (9) we know that

lim [- R e  f,T*H-Re .f f 634]-=0 .
aVr

By th e  way we have

0 -112 - 2,911 2 =11M112 - 28PR-V 7

=lim[112111z-vr
- 112o Ill-vr  —2 Re (2 - 1e, 20)R - V 1r-O

fTt*d-Re.ç f0 - 2  Re (2 -2 e , 2 o)R-v ] .r-o aVr avr

Hence
—lim 2 Re (A- 2 0 , 20),R-v r  •r-O

From (10) and (11) the assertion follows.

R em ark . Suppose F x c . G .  Then 20, x E Q1, a n d  20 , By Theorem 5
we know that J (2e,x )=J (26,,,) implies 20, x -=2 0 ,,. Further, by Corollary 3 .1  we
can find some 0,E e (v1 -1 7 1 1 2 , {P}) and write as 20, x =0(0, 01 ; X), 2 ,  11=0(0, 01; Y ).
Here we see O=E 27ca n C,,±E2rb m , O i =E —27ria„C n + E  27tib„i &m . Hence we
see that fo r  or=d [E c,z i + E  d .,2 ']G T - n r y

0-=(o), 0(0, 01; Y ) - 0(0, 01; X ))

=-(a), o. (0, 01; 1" n r y ))

=4 7 [E  n a n d n + E  m b .c . i

(see th e  remark o f 2.2 and  the  proof o f Theorem 4).

Now suppose that 8 and  20, x  a r e  both real differentials. Let

31Q 1 -= {co; co is a  meromorphic differential such that co-FroE Q11

n o =  ; w is a  meromorphic differential such that CO- 1- (7)E .

T hen  we -=(284-i4)/2G MC2ir \MQ 2 . L e t  we 5'Lc2JU 3 ,10  a n d  w r i t e  i t  w =

d [E z
i

n +E c,),(w )z in] o n  V1—  {P }. Since J (w+ )=2 Re E na n cn (w), we have

Corollary 5.1 (c f  Y . K usunoki [6])

max {Re E nancn(w); (0E 510 =Re E nancn(wo)

=min {Re E n a n c.(w ) co,51Q 2} •
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2.4 Meromorphic principal differentials

We investigate some conditions for a principal differential to be meromorphic.
We consider the class

A(XF)=-{co—ico* ; wE X'}.

Proposition 4 .  L et 0a e(F, P) and 0 be a (X , F;0)-principal differential.
(i) I f  0 is analy tic in  R—P, then 0—i0* belongs to A(X F ).
(ii) I f  0 -0 *  belongs to A(X F ), there ex ists a  dif ferential a ETV  such that 0—a
is a (X , F;0)-principal dif ferential which is analytic in  R— P.

Pro o f . We use the representation 0-=-0—w with we XF.
( i ) Since 0  is analytic in  R—P, w e have

0 - 0 * , (04-w)—i(0±cu)*=w—ico* o n  R—P .

Since P  is discrete, 0—i0*e A(X F ).
(ii) Let 0—i0*-=1—i.2* withA X '  and  se t a=2—(o. T h en  aeXF a n d  0 -6  is
closed in  R— P. Furthermore,

0—i0*=0 — i0*—(co—iw*)

-=2—i2*—(w—ia)*) -=cr—icr*

so that 0—o- , i(0— a)*. Hence 0 — a is  ana ly tic  i n  R— P a n d  a  is harmonic
there. W e see  I t  f o l l o w s  t h a t  0—o- is a  (X , F; 0)-p. d. which is analytic
in  R—P.

Theorem 6. L e t 0  b e  a (X , F; 0, 0)-principal dif ferential f o r  F a g  and
8, oi Ee(F, P) (0,=0* in R—F—P). I f  0+0t is  orthogonal to any  dif ferential of
( r x — F - *)l..1(F- - P t ) ,  then 0-Fi0* is  a (X , F; 0+i0 1, 01 —i0)-principal dif ferential
which is analytic in  R— P.

Pro o f . From the representation

0=0—(cox -Fw0)=r x + .11-0i

with cox Fx , orx e r l t  and coo, ro e reo , w e have

8* .

T o show r E F ,  i f  Tz e  r t  then by the assumption

0=(0-Fet vx)=-(0* - 01, SI)

=(11 - - r0+04+4, 71)--=ert, r ) .

Hence r z =0EFt, which is a contradiction. T h u s  ex' belongs to Similarly
we see w [ ' . have now the representation

—
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w ith  iz le T r
z , It follows that i0* is a  (X, F; i0 1 ,  —i&)-p. d.. T h i s

gives the conclusion.

R em ark. In case the condition of Theorem 6  is equivalent to that
Bd-Ot i s  orthogonal to Fr . Indeed Fs n r t*  IC  fo r  r= r -.-krs(-4 - .  So there
is a  crEFs n r ,  cr* O . F o r every w E r z ,  at least one of a)- a a n d  co—o- belongs
to  T x — r - *  because aErx — r-*. I f  e-Fet i s  orthogonal to  rx—r-*, then
(01-61, w)=0, for

(e+et, w)=(0-FOt, (0-1-a)—(04-01',

=(0+0t, 0)— (7)±(04-0t,

Corollary 6.1 I f  r x =r-*, then fo r ev ery  (X, F; 0, 00-Principal dif ferential .

0  the meromorphic dif ferential 0-1-i0* is (X, F; 6+i0 1 , 0 1 —iO)-principal.

F or example, from th e  X-fundamental differentials rA i ,x , ra,,x , a n d  On , x we
can construct th e  meromorphic principal differentials VA J , ) ,  x ,  T B x,
On,x - Fig ,s (n_ -_1) a n d  sbo, x- Fiçbt, x . These differentials will p la y  th e  role of
Abelian differentials o f th e  first, the second and the third kind respectively (cf.
§ 5).

F o r th e  real Hilbert space A  we have analogously th e  following.

Theorem 6'. Let 0  be a (X, F; 0, 00-principal dif ferential in the real Hilbert
s p ac e  A . I f  0 +6 1  is  orthogonal t o  (Ax — iA - *)U(11.'r- - iA 1 ) , th en  0d -i0*  is  a
(X, F; 0 1 — i0 ) - p rin c ip a l  dif ferential which is analytic in R— P.

Corollary 6'.1 I f  A z =iA - *, then for every  (X, F; 0, OD-principal differential
0  the moromorphic dif ferential 0-Fi0* is (X, F; 0 +0 1 , 0 1 —i0)-principal.

It is noted that A x •-•=iA - * is one  o f the  cond itions fo r a  behavior space by
Shiba [1 8 ] (cf. Matsui [10]).

§ 3 Semiexact principal differentials

3 . 1  Differentials with (X, F; 0)-behavior

L e t  {Gn } b e a  canonical exhaustion o f  R  a n d  17,, - ---E(R)={A,, B .,} be an
associate canonical homology basis o f  R  modulo the ideal boundary o f R .  Let

g'=-{ F i G  ;  F i  is  compact and does not meet aGn.
{A i , B i E,E(R); A J UB J OEFi } is a homology basis o f  F i  modulo ,

aFi  a n d  th e  other II J U B ;  does not meet F.}.

In  this section we assume F E 9 1  a n d  Fs C r h s e . For a  ci ['s e , we often use
a  representation o--=d s. We note that s  is a  function o n  a  region R ' obtained
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by cutting R  along {A J UB,} which is determined up to an additive constant.

Lemma 8 .  I f  coGXr-T '  is harm onic on  aF, then WI R - F  h as  a  harmonic
extension across F.

Pro o f . L et w-=d w and wF=d w " .  Then w— wF i s  constant on each F i .
Since Re w and Im w are real analytic along aF, s o  are Re w "  and Im  w " . It
follows that le I R -F  and WI R -F  have harmonic extensions across aF.

We shall use the following Green's formula.

Lemma 9. (cf . [ 1 8 ] )
 L e t  G  be a regularly  im bedded region. Let a  and co be

closed 0-dif ferentials on "G-  and assume th at a is  semiexact. Let a =d s  on the
planar region 6' obtained by  cutting "0" along a canonical homology basis {NJ , .8 }
o f G  (mod aG). Then

(a, w*)G =- - - , , .ças A ' 13'. 13' A'..1

Lemma 1 0 .  Let coE X and F--=UF i E g ' .  Then fo r  decreasing sequences

such that rIFT=-F,,, UF g ' we have

lim of*=0

fo r  each i.

Pro o f . T h e re  is  a  function k F ,E  g (R ) su ch  th a t ( i)  k F 1 = 1  in  a  neigh-
bourhood of F 1, (ii) the support of d kF , is compact and does not intersect F—F i .
Since d kF , belongs to r e° and X F , by Lemma 2 and Lemma 9,

0= (o /, d kF i )=(wF , d kF i )R _F =lim (of, d kFi )R-Fu.F;,
71-.00

= Him ( ( o)F )FU F7 Au F R- FUF4n
-

*  
.of

n c e

We shall write lim as f  w F *  hereafter.
n - 0 0  J F7 ,3F,

Lemma 1 1 .  (cf . [2 4 ]) . For a Dirichlet potential f o and a closed differential
ca which are continuously differentiable in a neighbourhood of the ideal boundary,
we have

lim
GT,

foco=0 .
n-A

Now we can give a  sufficient condition for w F=w .

Proposition 5 .  Let F E g ' be compact and coGyYnT' be harm onic on R —F.
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Further, suppose that co satisfies the following:

(i) F i
co*=0 f o r each i,a

(ii) a)a-F.= gco* fo r  a n y  =daF

Then we have of =w.

P ro o f. Let w=d w, wF =d wF  on R — F. By Lemma 9

1107_ 0 412

=lim (wF_ w k .,/ _
n-..{ Ça(G„-F)

_ [S. ( w .p_ o ) ) .Ç ( 0 .7_,0 ) *H. ( 0 / _,0 ) . .f (0 7  _  0 ) 1 .
G a - F  A i Bi Bi A i

=UM N F*WF  W  )0 .1  — (07._ ( 0 ) 0 ) F* (07 _( 0 ) .f ( 0 .,*]}.
n.-.11.

(
a(Gn -F) Bi Bi Aj

(wF-0.0*— E (coF co) co* (co' — c.o) w * ]}
n ôG, G a-F A j Bi 131 Aj

F

(w F_ w ) ( 0 *
a

Now the first term  is equal to  (of, ce— w) R _F  w h ich  van ishes by  L em m a 2.
N e x t i f  w e  w r i te  wF— w=w x +w o w i th  d wz E r x  and a Dirichlet potential wo,
w e see  by  (ii)

ox(0*— E [ .ç d w  w * d . d  w  w * ]
aGn G a - F Bi Bi

=(w , d w x )R-F-F5 F /Tz w*=0

and by Lemma 11

00(.0— E [5 d w* -1  d w().Ç w*]=0ao7, O n - F  A i Bi Bi Aj

Hence we can deduce the second te rm  a lso  v an ish es. As for the last term also

vanishes, we note th a t  w' — w is  constant on each F, and b y  (i) w*=-0. ThusaF,
w e  have proved wF =0).

3.2. The boundary integrals of principal differentials

In the study of bilinear relations on an open Riemann surface, the standard
d e v ic e  is  to  c o n s id e r  classes of differentials whose certain integrals along the
ideal boundary vanish. Som e principal differentials seem to play a ro le  o f now
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mentioned differentials.
In  order to investigate th e  boundary integrals o f  p r in c ip a l differentials we

first show

Theorem. 7  L e t F E g '  and a, w e X n r i  (w-=d w). I f  a is represented by
a=z--Ert with rET1- and 70 E r e o on  R— F, then

( 0 .F,  w o R  F = E 0 0 . F * +  E - 0-.4 07).Ç r *D..
I aFi FI A i B i B i A i

P ro o f. W e first note  o--, -aF by Lemma 3. From Lemma 2 w e have

( o .F ,  c o F')R - F = ( a F y co)R-F=(ri - rt, (0)R-F= — E  (r - Frt (0)F1 •

Since w and 2--1-z-t belong to 1", w e know  that E (z-±z-t, (OF ,  is absolutely con-
vergent. Further, w e have

—E (r± r t  (0 )F 1

--.{— .fa F i l—Ver+ -1-11)* E[ -F(r rt)* (7)Ç erd-z-tr]
F, A i B i B i  A i

=-E{j wo.F*+ E [S.  r t 4 1-11.
aF$F , A j B i A i

Thus the assertion follows.

Rem ark. The condition fo r a is satisfied i f  o-  e q u a ls  so m e  (X, F ';  0)-p. d.
fo r  some F 'C F  and eE e(p -, P )  such that P c F — F ' and 0=0 o n  R—F.

Corollary 7.1 L e t  fa,, be  a  system o f  complex numbers such that
la11+ 1 6 1 1 # 0 . Suppose that r x  satisfies the following conditions: (i)

(ii) 2-=b1  2  fo r  any 2Erx and any j. Then under the same assumption as
A •1 Bi

in  Theorem 7 we have

( F  c o o R _ F ,_  
a l '  

0.F*

ELMS'  W F C I F * = 0
n — o o  aG7,

(d w=w),

(d w'= w 1' ) .

P ro o f. We note that by th e  assumption

z-* r x a n d ( 7 4 ( 7 4  V
*

= 0
A i B i B i A i

So we have by Theorem 7 th e  first assertion

( o .F, coF)R_F_=_aFf0-0.F*.
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Further we have

(0F, w F) R _  F u _ n = ( ( 0-F)FUU. , ( c0F)FUUn\ 12_) F U -0 \ a ( F u _

(v +, (0F)F-on= wFo.F*
0(F- Go

Hence

F  F * ■ •HMS. w  a  _—iun F  F *W — W  6
f l - O aG n n --.{o (F u a n ) (F-G n )

(6 F , COF )R - F O — Ii M  ± Z 1  C O F )F -G n

A s fo r  a  real Hilbert space A z  (A zCA hse) w e have

Theorem 7'. Let F 9 " and a, w E(A z +11.)(1A ' (w =d w ). I f  a  is repre-

sented by cr=v+z - t w ith z -EA - and r o E ll e o on  R— F, then a- F = a  and

<ai ', of>R _F -=—Re .f iTo-* ± E  R e h . r'e4 r*1oF F Aj B j Aj B j

Further, suppose that A z  satisf ies one of the follow ing three conditions:
(i) A C iA ,  and there ex ists a family L-={1 5 } o f  straight lines l 5 through zero

in C such that .r  A, 2El 5 fo r  any A A  and any j,A51 3 5

(ii) A -Z CiA t or A c A i ,  and there exists a system o f  real numbers {a5 , b5 } such

that la 5 1+16 5 1# 0  and a5 L i 2=b 5 f 2 fo r  any A A  and any  j,

(iii) ./1-, C iA t or A i`C.if t, and there ex ists a system o f complex numbers {a 5 . b5 }

such that la 5 I+Ib51#0 and c15 2 - =b 5 .f 2  fo r  any A A  and any
5

Then we have
A B5

<0.F , (0F/R-F — oF WaF*

lim Re wFo-F *=0 (d wF =a1).aan

L e t  r x C r h s e , r y C F , ,  a n d  s e t  X=rx-Fre., Y =r y +re o .  Suppose th a t (i)
T x j  f , ( i i )  th e re  ex is ts  a  system  o f  complex numbers { a,, b,}  such that

1c/2 1+16 51# 0  a n d  a,L À =b,.rB j 2 for any 2 e Fz U F, and any j .  Now l e t  d u  O(F, 13 )

be a sem iexact 0-differential in  R — P and  1) ()(F, P) be a  closed 0-differential

n -• o o  aGn
in  R — P such that u v = 0 , l im 5  fv -=0 f o r  a n y  d f r „  and uw=-0

n-co f3G nC G , ,
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fo r any w [ ' .  T h e n  fo r  (X , F ; d u) - p. d. yio  a n d  ( Y , F ;v)-p.d . çbo

f00.= —(00—d u, (0o — v)* )=0 (d f o= O.) .aGn

Further, if  00 a n d  00 a r e  meromorphic o n  R  and f 0 0 0 i s  holomorphic in  a  neigh-
bourhood o f th e  ideal boundary, we have

2 7 i E  R es 
R b ° =  —E l i °4Bi °°—Li

4 .fA.,°°] •
We shall m ention the real c a se . L e t  X = A x + A eoC A „  a n d  Y=.4 ,+ .4 , 0CA cc,

sa tisfy  th a t (1 ) A x I iA J , (2 ) each differential of A X UA Y sa t is f ie s  th e  period
condition in (iii) o f Theorem 7', o r  each differential of A z Ull .,  satisfies the period

c o n d it io n  in  (i) o f  Theorem  7'. H e re  w e  a ssu m e  t h a t  lim Im uv=0,Jac,,
lim1m1 f2.)=-0 for any dfG  A x  a n d  lim Im uoy=0 for any coE A y . Then for

aG n—. aGn

(X , F; d u)-p. d. 0 0 and  (Y , F; d. 00 w e  have

limIm f 0 0 0 = (d fc,=00) •
a G n

If  00 a n d  00  a r e  meromorphic o n  R  and f o çbo  i s  holomorphic in  a  neighbourhood
o f th e  ideal boundary, we have

2 7  R e  E  R es f c 4 - - - = — E  Im
h'A.,Çb4B,4-1,Ç64A,Çbd

T h e  subspaces with which we h a v e  been concerned seem  to be inter-
esting complex subspaces which correspond to  th e  behavior spaces treated by
M. Shiba [1 8 ]. We shall investigate the existence of such a  F., in  § 4.

Finally we refer to th e  regular operators.

Theorem 8 .  L et F F' be compact and a X  be a  0-differential which is
harmonic on aF.
(i) F or any co in  X r T '  which is exact (w=d w) on F

( 0 .F y  (0 1')R _ F = __ w 0 .F* .
aF

(ii) In case rx D rn o , f o r  any  co in  X n r i  which is semiexact (w-=d w) on F

( o .F,  ( .0 F)R _F = _  w o .F*

aF

P ro o f. L et kF  b e  a  C'-function such that kF =1  o n  F  and the  support of k/--
i s  co m p ac t and  does not intersect th e  homology basis o f  R — F . We define a
differential wi =d (k F w ) . Then wi re ,  in  c a se  (i) a n d  wiErko+rec, in  c a s e  (ii).
We have

(cF ,.,F) ,,.F
\ U  9  L U I

\
7,T) CI

F *  .aP
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If  r x Crh e , any C1-differential in  X  satisfies condition ( i )  a n d  therefore our
operator reduces to a canonical regular operator in the sense of H. Yamaguchi [24].

Corollary 8.1 Let rx rne o r  rh o c rs c rh s e . Then for

co, toF = d  w F WF CIF *  = 0  .
n - .c o  aGn

§ 4. E xistence  of some behavior spaces

Shiba showed that the R iem ann-Roch theorem o f  Kusunoki's ty p e  can be
extended by means o f  behavior spaces. A n example o f his behavior spaces is

where R r  denotes th e  space o f real differentials. B u t  in  our
case th e  ex is ten ce  o f  a  space r s  is not always triv ia l on  an  arbitrary Riemann
su rfa c e . To prove the existence, we shall use  Zorn's Lemma (cf. [23]).

Theorem 9 .  Let 5 =  {111 , B„}  be a  canonical homology basis o f  R  modulo
dividing cycles. Let {a1 , b,}  be a system of complex numbers such that 1a1 14-161 1#0.

Then there exists a subspace Es  o f  rh,„ such that (i) (ii) 0)=6.4 coA; B ;
fo r  any and any

P ro o f. W e set

rx 0 40E rh,„ ; a, A j or-=b 2 , B i co fo r  any j} .

Since Ts° contains r h m = r a  subspace is contained i n  P h , e •
 T h ere  ex is t

differentials rA j  a n d  7131 in  r h o  such that 7A  --.=-A i X r a n d  
r

z-
B "

.=B ,X r f o r  any
r

cycle r. Then th e  differential r„-=a,s-
A ,—b,z-

B ., belongs to rx o , because r, belongs
to r h o C r h s e  a n d  satisfies that

( i) 
Ai 

r,= B i r,=0 f o r  i * j ,

(ii) a J  r 3 :=-a;  (a  fr A i — b rB )=a ; b;A;

=b ;  ( a i rA .—bi rB ; )=b ;  r f .B; B ;

L e t  {G „} be a  canonical regular exhaustion with which S is associated and
w rite r= d  t„. Then fo r  any

0=er i , (7)=1iin{ t,a*— E
 A i Bi 

a* z 
A i

d  *1} .
n-•oo aan G n Bi 

We can assume that t ;  coincides with a  Dirichlet potential i n  a  neighbourhood

o f  th e  ideal boundary. Since lim.f
aGn
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a* 1-4  a* .

It follows that a* and Fx 0 D.r1.:. L et r  be the family of subspaces :

= {Ty  ; Fr 1 0 a n d  „D[ ' P *}. T h e  family r  is an ordered set with the partial
ordering by th e  s e t  in c lu s io n  r e la t io n . F o r  any linearly ordered subfamily
T= W yk} kEK o f  1 ,  w e  put T y = n r „ , .  It is clear that r v crx o .  If  r y k Dru t ,
then r t : c r t t c F r i . Hence r t :  is contained i n  F r . It fo llow s that F t*  is
contained i n  an y  r y „, e., r t * c n r y ,_=rr .  T h e  space Fr  belongs to r  and

ketc

satisfies I  „ D P  fo r an y  r  " E T By Zorn's Lemma r  contains at least one
m inim al elem ent. Let P .  be a m inim al element in T . I f  a  differential co in
is orthogonal to r-*, w b elo n gs to  f. W e have an orthogonal decomposition :

rx=r1/4+r.vnr'..
Suppose that r z nrsx' {0} a n d  co be a  non  triv ia l differential in  T s n r .  There
exists a  real number a  such that w±e"Co**0 a n d  (w+e'ac.7)*, (w+etaiii*)*)=0.
Let 17, denote a  subspace o f r x  whose element is orthogonal to  co+en.7)*. It is
clear that r x .1- '* .  Since (w±eia(7)*)*) belongs to we have

0=(a*, (w-FeiaCo*)*)=(o- , (cod-e'aCo*))

for any a  in  P x -L*. Thus pi , *Er/x ( rx). T h is  is a contradiction.

We can get th e  following in  th e  same way.

Corollary 9 . 1  Let fah  bi l be a system of real numbers such that la1 1+1b,1*0.

Then there exists a subspace r r  o f  rhse such that ( i )  rx=rx=r*, (ii) ai L i co

=b o) fo r  any w Er, and any j.

§  5  A formulation of the Riemann-Roch theorem

W e shall sh o w  th at t h e  theorems o f R iem an n -R o ch  an d  o f  A b e l o n  an
arbitrary open Riemann surface can be formulated by means of a  behavior space
P.D i n  § 4. T hey a r e  formulated i n  complex form. Infinite divisors a re  also
allowed. L e t { Vi l ( Vi= < 1 )  be a  family o f parametric discs on a Riem ann
surface R such that V int/ 3 =0 for j  a n d  { has n o  accumulating point in
R .  W e p u t  c = y v ,. L e t  8= {Ai , Bi } b e  a  canonical homology basis o f  R
modulo dividing cycles and  {G} be a  canonical regular exhaustion with which
E is associated. We assume that A,, B, and aGn  d o  not meet G .  Now, take a
system o f real numbers fai , bi l  (1,2,1+ bi I #0) and  le t r x  be a  subspace o f  r-  n s e

such that (i) (ii) co=b , co for any w erx  a n d  any j  (cf. Cor-
Ai B i

ollary 9.1).



684 Fum io M aitani

Definition. A  meromorphic differential 0  is  c a lle d  to  h a v e  X-behavior if
there exist a  G 7,  an d  an  w in  x=rs+reo such that 0=co o n  R— G — Gn.

Now the existence of meromorphic differentials below is fundamental :

0 A i  :  a  holomorphic differential with X-behavior such that

0A bif bi51;
Ai " B i

for any i ,

O B J  :  a  holomorphic differential with X-behavior such that

O B i
.=-

124
Ai ' B i

for any i ,

„ :  a  meromorphic differential w ith X-behavior w hich  has t h e  singularity

d ( )

1
only at p  ( z  is  a  fixed local parameter around p  and

0 „ , , :  a  meromorphic differential w ith X-behavior w h ich  h as sim ple poles of
residue 1 at p  and  o f residue —1 a t q  and  is regular analytic elsewhere.

The existence of 0 „  and 0 , , ,  is evident by Corollary 6.1. So we shall be con-
cerned with O A , only. W e set 0.41 =s-A1, x, where z- A ,, x  is the X-fundamental
differential. T h e n  0 A i  i s  c le a r ly  a  holomorphic differential w ith X-behavior.

Next, recall that .ç A 1)=-A ,X T  for any cycle r and orA, zE rx- , x i  r,x x

Then we have

a i
"'

VA., z-A, — b151 1 .
Ai Ai B i Bi

O n the other hand, since x belongs to i.1-'* = F x , we have a4 A i iz- 1 j , j, x
J B

Hence a4çbA r=bi
Ai ' B i '

5 .1  Riemann-Roch theorem

L et 5  be a  fin ite o r  infinite divisor o n  R  whose su p po rt is contained in
G =U V i  a n d  h as  a  "finitely many p o in ts  in  com m on with each V . W rite as

5 =5 ,1 5 ,, where 5 , , p p 1 2 • • •  p t v z • • •  and 5Q -=q 0  •••  q ,n  •••  a re  d is jo in t integral
divisors. We consider th e  following linear spaces over the complex number field :

S(X ; 1/6) { f ;  (i) f  is  a  single  valued meromorphic function o n  R , ( ii)  d f  has
X-behavior, (iii) th e  divisor of f  is  a multiple of  1/ô},

M(X ; 1/4)= {f ; ( i )  f  is  a  (multi valued) meromorphic function o n  R  such that

ai1 d f= b 1 , d f  fo r a ll j, ( ii)  d f  has X-behavior, (iii) the  divisor of
Ai B i

f  is  a m ultiple of 1 / 4 1 ,

D(X  ; 5) = { 0 ; ( i)  0  is  a  meromorphic differential which has X-behavior, (ii)



D(X; 1/Oq ) 
D(X;O )=dim
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the divisor of çb is a m ultiple of o and the num ber of poles of çb is
finite},

D(X; 1/ô q ) = {çb; (j) çb is a m erom orphic differential w hich has X -behavior, (ii)
the divisor of çb is a m ultiple of 1 / 0 q  and the num ber of poles of çL'
is finite}.

H ere , in  case  th a t O rl w e  id en tify  tw o  e lem en ts  f 1  
a n d

 f 2  o f  M (X ; l/O )  i f
and only i f  f1—f2 is constant.

W e  c o n s id e r  a  b ilin e a r  fo rm  d e f in e d  o n  th e  p ro d u c t sp a c e  M (X ;  l / ô )
x D (X ; 1/Oq):

h(f,çb)=2irilim Resfçb.
m - . 0 0  P j E G r t  P j

W e shall see  that h  is a  w ell defined bilinear form . S ince çb is regular a t each
p, additive constants (including periods) of f  have  no  e ffec t fo r the  residue  o f
fçb a t  p .  S o  w e  r e g a r d  f  a s  a  fu n c tio n  o n  R '==R — y(A 1 JB 1). F o r  a n y

f M ( X ; l / O )  and  any  çbED(X; l/ô q ), th e re  e x is t  a  G,, and differentials w,
s u c h  th a t  d f= w  a n d  ç b =  o n  R — G— G,,. Then by Corollary 7.1 and the period
conditions,

h(f, çb)=2ni lim Resfçb=2iri lim IR e s f ç b — Resfçb}
f l i O  P j E O r  P j m - . o  lG m f lR ' G rm f lR  V t

= l i m l Ç  f 1 f  d f f —f d f ] } _ 2 i R e s f
f l2 - o  t J a n 2a , ,  LJA JE1 JB1A 1

d f  Ç çb —f d f ] _ 2 r i Resfçb.
G , ,  .)A1J B 1 JB1A 1 21

Thus h (f ,  çb) is a finite complex value.
N ext le t f  belong to M (X ; l / O ) .  I f  d f  is  h o lo m o rp h ic  o n  R,

(d f ,  d f )= (d f ,  id f* )

=— ilim fd7— Ç  d f  d7_5  d f Ç  d71m- Gm A j B 1 B1 A1

=— ilim fd7=O,aa,,,

and hence d f  is identically zero.
Thus by a sim ilar argum ent to K usunoki [51, [61  (c f. [ 1 8 1 ) ,  w e  h a v e  th e

following

Theorem 10. (R iem ann-Roch theorem )

M(X; 1 /o )im 
 S (X ;  1/0)

w here the both sides m ay  be inf inite.
In  particu lar, if  5 7 j i s  a f inite div isor,
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(. D X; 1/50 dim S(X  ; 1/6)=deg O +1—min (deg 1 )  chm D (X ; 5 )  •

Corollary 1 0 . 1  L e t R  be a Riemann surface with a  finite genus g and
5 =5 ,1 6 , be a finite divisor. Then it holds that

dim S(X  ; 1/5)-='dim D(X ; 3)±deg 5— g+1.

Rem ark. If Ex  satisfies that (i) (ii) there exists a  system of non

zero complex numbers {a i , b ,}  such that a 4  c o = b ,  co for any coE Tx  a n d  any
A yB y

then we can form ulate a R iem ann-Roch theorem for S(X  ; 1/5) and D(X  ; 5),
where X  consists o f th e  complex conjugates of differentials in  X.

5 .2  Abel's theorem

L et 6 ,  and 5 , be disjoint (finite o r  infinite) integral divisors whose supports
, 1

a re  contained in  U 17 1,112(Vi.i/2={ zi I < -

2
} )  Furthermore, suppose that t h e  re-

strictions to each Vi  o f  5 ,  and 5 , have  the  same finite degree a n d  write them
a s  p i ,,••• p i ,„ ( i ,, q j ,1 •••  q i , „ ( i ) , where p i ,;  (resp. q i , ;) m ay coincide w ith p i , k

(resp. q i , k )  for j# 1 z . We denote by 5 th e  divisor 5 ,/5 ,•  W e assume that there
exists a  closed 0-differential 0  in  R—U {p i ,,, such that

{

n (i) • ( p  . )   ]
d E

z— z
E  l o g  ' i  i ' ' on  each Vi

( i ) 0 = i = 1 zi—zi(qi, ; )
0 o n  R—U V i  ,i

(ii) (0, 0)uw •-v • ) < c °  •

Rem ark. When 5 is given, it will be generally difficult to find a  O. How-
ever, f o r  a  given integral divisor 5, which is supported in  U V,, i/2 and  has no

accumulating poin t in  R , we can find a n  integral divisor 5 , a n d  a  closed C1 -
differential 0  satisfing conditions (i), (ii). In  fact, if  we take qi , ,  close to p i  so

za —z i (p, ) .that d [log ' ' is close enough to 0 uniformly on Vi, 112, then we
z,— z i (q i , 3 )

can find a  0  which satisfies (i), (ii).

F o r th e  system o f  real numbers {ap  b,}  which satisfies a.) '  Ûr=b i  w  for anyBs ;

r x , we further assume that a;  and  b  a r e  integers. N o w  w e  c an  s ta te  a
theorem o f Abel's type.

Theorem 1 1 .  (Abel's theorem)
The following two statements are equivalent.
(1) There exists a single valued meromorphic function such that
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(i) the div isor of f  is 3 , (ii) d log f  has X -behavior.
( 2 )  For any chain C=C i +C, with Ci CGn, C2CG n(R — G) and a c i =  ( p —qi. 5),

aC2 =  E  (p i, there ex ist integers m k , n k ((k  runs through a f inite subset JC

o f  {1, •••, g })  such that +crk i k `d -JC[M 4  A kç bA i +  nk  .s,, °A -f]P Cç b B j +  K [ M  k k
(P 13

+n4 O B ]  are integers fo r  all j .
Bk o

Pro o f . L e t  R '= R — l.)(A .U B ,) a n d  G = G n n R ' .  W e  s e t  h A ) =- 0A )  and

h B ,-+ B i  in  R ' .  Let f  be a meromorphic function which is asserted in  (1 ) . Since

d log f  has X-behavior, there exists a  finite se t o f  integers SC such that

ai f d log f= b 4  d  log f
Ai Bi

for iEE SC. Then w e have for iEE.'k

L i OA & i d arg OA d arg f=  —3i .) . d  a rg  f .
B i Ai Ai

We se t rn k=  n 7r B k

1  
 .ç d arg f  and  fi k =  ,

1  

 1 d arg f  fo r  k e <X . W e can take
L 7 r Akz 

integers nt'i , n  ( i< J C . )  s o  th a t  E (m 'illi+ n 'iB i) is hom ologous to C1 —C' (modisA n

aGn) fo r  some chain C ' on G . S e t  ,X--- . .Xn USC, rrik=74+ihk f o r  k E .K n je ,
=m'k f o r  k E X . ---.772k fo r  kES*—JC,,, and  so w ith n k . Then w e have

.ç ü sbAi +  ,R ( n i  A k 0Ai + n  B  k çbAj

=- ,Çc çbAi + k:k(mkLkOki L+nk OA; )
iC JC , JA

= lim E Res h A i  d log f +  E (m 4 Oiti + n  O A )
7 7 1 ,-.0 0 G 7k E : r c Ak k

1 i ;d log f— f- l iS b A jL id  log27ci 1.1aan ,""Al

1 + E 0 A ) .  d arg d  argf]
k Eae 47r [ÇA k B k Bk Ak

1 
= E h•

A i gbAi B i d arg f —L, i 0 A i L i d a rg f ],..z 27r

= {
1

,. A i d  arg f for j EE :ICi27c

0 for

T h e  same can be said fo r  OB j .  Thus w e get (2).



688 Fumio Maitani

Conversely we suppose (2). Let 0 , (resp. 0) b e  the r e a l (resp. imaginary)
part of 8  and çbi  b e  a  (X, F; 0 )-p. d., w h ere  F=Y (fi—  Vi,112). W e  set

01-=01-FiOt. Then 0, is  a (X, F; 0, Vi —i01 )-p.d. and hence it is a  meromorphic

function with X-behavior. Furthermore, 0 i satisfies ai L, C = b ,L O ,  fo r  a n y  i.

Setting 0-=0,-1-27rif E  (m A  + n ;O B , )+  E (m k A .0 , + n k 0 B , ) ,  w e have
I E J C n - kOEJC

Iim2jri E Res hA ,0
Gn ,

=-27rif
A

E (m/4 0A.+71 OB,)E E (mi .0 , 4 i ) + .
tiG n A i Bi k.XE Bk Aj

Hence
1  f

2 7 r i  j A i 0= lim E Res hAi.04- 
iE .K

E  (7.74 0A.,.-Fn O A )
„, Ai B i

+ E ( m 0 A i ± n 4  O A )
kES Ak Bk

c 0 A j +  X c (n lk  .f A  k çb A j+ n  k B  k 0A )

Thus
1  

. 0  is  an in teger. S im ilarly 
1  

. 0  is  an in teger. It fo llow s that
G 7 / 2  A j G I N  Bj

P
f(p)-•=exp 0  i s  a single valued meromorphic function and h as  the required

properties in (1).

Corollary 11.1 The following two statements are equivalent.
(1') There exists a single valued meromorphic function f such that (i) the divisor

o f  f  is 5, (ii) d log f has X-behavior, and (iii) a 4  d arg f= b i, d arg f  fo r  any i.
Ai Bi

(2') For any chain C in  (2) o f  Theorem 11 which is contained in R', AJ and

B
i  

are integers fo r  all j.

A meromorphic function f in (1 ') is uniquely determined up to a non zero
multiplicative constant.
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