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Introduction

In the study of open Riemann surfaces, the method of orthogonal decom-
positions and that of linear operators are fundamental. As for the latter, the
normal operators introduced by L. Sario play an important role. H. Yamaguchi
[24] modified the normal operators and defined regular operators by means of a
formal Green’s formula. M. Yoshida [25] discussed some relations between
those two methods by using the concept of regular operators; he, furthermore,
studied meromorphic functions whose boundary behavior is given by a regular
operator. M. Shiba [18] introduced another type of boundary behavior which
is not necessarily given by regular operators, and he gave an extension of the
Riemann-Roch theorem of Kusunoki’s type.

In this paper we shall introduce some new linear operators. Our operators
generalize the notion of regular operators and act on square integrable differentials
(not on functions!). The concept of principal differentials with respect to this
operator is similarly defined as that of principal functions. We shall show several
properties of principal differentials. As an application of principal differentials
we shall give a formulation of the Riemann-Roch theorem on an arbitrary open
Riemann surface. In a similar situation Abel’s theorem will be proved.

Up to now we have two types of formulations for these theorems. L. Ahlfors
[2], [3] and H.L. Royden [16] formulated the theorems in complex form (cf. B.
Rodin [13], Y. Sainouchi [17], O. Watanabe [21] etc.). But these theorems are,
as was pointed out by R. Accola [1], meaningful only for Riemann surfaces with
small boundaries, say, those of the class Ogp. Y. Kusunoki [6], on the other
hand, used real normalization and the results are valid for general surfaces (cf.
H.L. Royden [16], M. Yoshida [25], M. Shiba [18], [19] and O. Watanabe [22]).
Our present formulation is rather close to the former in the sense that it is
described in complex form, but it seems to be meaningful also for Riemann
surfaces with large boundaries. Furthermore, some infinite divisors are allowed
in our theory.

In §1 the definition and the fundamental properties of linear operators are
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given. Our operator maps a differential into another which has minimal Dirichlet
integral among a certain class of differentials. It can be seen that the image
differential has a similar property as Kuramochi functions (cf. [4]). In §2 we
shall give the definition of principal differentials for our operators. We first
investigate the relationships between principal differentials and reproducing
kernels for subspaces of the Hilbert space consisting of square integrable harmonic
differentials (cf. [14], [15], [24], [25]). Next we shall give the extremal pro-
perty of principal differentials (cf. [6]) and the conditions for principal differentials
to be analytic. We know that some principal differentials are closely related to
differentials with Shiba’s boundary behavior. In §3 we investigate semiexact
principal differentials and observe the vanishing property of certain integrals
along the ideal boundary. This vanishing property has close connections with
the bilinear relation, the characterization of semiexact canonical differentials and
so forth (cf. [8], [13], [20]). In §4 we shall show on a general open Riemann
surface the existence of behavior spaces which correspond to Shiba’s behavior
spaces. Using these behavior spaces, we shall formulate in §5 the theorem of
Riemann-Roch and Abel’s theorem.

The author wishes to express his deepest gratitude to Prof. Y. Kusunoki
and Prof. T. Kubo for their encouragement and comments. The author also
thanks to Prof. M. Watanabe for her valuable suggestions. He is grateful to

Prof. K. Matsui and Dr. M. Shiba for their useful and stimulating conversations
with him.

§1. Linear operators on spaces of differentials

1.1 The definition of operators

Let R be an arbitrary Riemann surface. As usual, two Lebesgue measurable
complex differentials on R are identified if they are equal almost everywhere.
With this convention, the set of square integrable complex differentials on R
forms a Hilbert space I'=I"(R) over the complex number field C with respect to
Dirichlet’s inner product :

(@, o=y, wn={ w5t

where w,@¥ is the exterior product for w, and @f. (We denote by & the complex
conjugate of w, and by w* the conjugate differential of w.) M. Shiba considered
the same set as a Hilbert space A=A(R) over the real number field R with the
inner product {w;, w,>)=Re (w,, ®,) (cf. M. Shiba [18]). In what follows, almost
all the statements and proofs are equally valid for I" and 4. So we shall be

M mainly concerned with I" and refer to A if a statement has different forms for I”
and A. As for the notations of subspaces in I we follow Ahlfors-Sario [3];
for instance, I, I, I, Ihse, and I,, denote the spaces of closed, harmonic,
semiexact, harmonic semiexact differentials, and the space of differentials of
Dirichlet potentials (cf. [4]) respectively.
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Let I; be a closed subspace of I}, and F be a closed set on R. We consider
the following classes of differentials :

X=I'+T,, Xp={we X; w=0 on F}.

For a measurable set 2(CR), (w;, w,)o denotes Sgw,a")’{, and |ol|2=(w, w)o.

Lemma 1. The classes X and Xr are closed linear subspaces of I.

Proof. We only show that they are complete. Let {w,} be a Cauchy sequence
in X. Each w, has a unique orthogonal decomposition: w,=wy,;+ ., With
Wp €L and w,, 1. Since |wg, i—wn, | Slwp—ownl for i=0, 1, {w. and
{w..o} are also Cauchy sequences. Suppose they converge to w, €1 and w1,
respectively. Then {w,} converges to w,+w,X. In case that {w,} is contained
in Xz, we have, furthermore, 0=lni£r°1° ||wl—|—co0—a)n||g}‘i_r.rolo o, +wo—w, | r= w4+l »

>0. Thus the differential w,+w, belongs to Xp.

Let XF be the orthogonal complement of X in X and w"=wis X¥ denotes
the projection of we X to X*. Now we define an operator on X by the projection
from X to X*. The operator w—f is linear over C. From the definition we
have

Lemma 2. If we X, then of—w<s Xr and wf | Xr (i.e., % is orthogonal to
the space Xp). Conversely, if w, o' € X satisfy that o —w€ Xr and ' | Xr, then
o =wk.

We also have the following (cf. {4]).

Proposition 1. For w in X, wf has the following properties:
(i) of=w on F,
(i) % is harmonic in R—F,
@ii) |wE||=inf {|o’|; w’'€X and o’'=w on F}.

Proof. (i) Since w—w belongs to Xr, " —w=0 on F. (ii) For a connected
component G of R—F, an infinitely differentiable function f€C%5(G) with compact
support in G is regarded as a function on R by setting f=0 on R—G. Since
dfel(R) and dfeXr we have 0=(0f, df)=(0", df)e¢ and 0=(w¥, df*)
=(f, d f*)s. By Weyl's lemma o is harmonic in G, hence in R—F. (iii) If
o —w belongs to Xp, then o —wf=0'—w— (0" —w)€ Xp, and |o'|*=| 0’ — o'+ o"||?
=| o’ —of|?+ |0’ |?2 || w”||?, which implies (iii).

Remark. If w,, v, X coincide on F, then (w,){=(w.)5. Thus we can define
oF=wE by (w,)f for any differential w such that w=w; on F for some w, € X.
Note that o need not belong to X.

For later use we show a sufficient condition for wf=w. We shall denote by
I': the orthogonal complement of I in I},
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Lemma 3. [If a differential w< X satisfies that w=t in R—F with t€ '+ g%,
then W% is equal to w.

Proof. 1t suffices to note that for any oce Xy,

(w, 0)=(w, 0)r+(z, 0)p-r=(z, 0)=0.

1.2 The dependence of the operator on F and X

The operator : w—w% is clearly continuous. Now this operator changes as F
and X vary. So we shall study the dependence of the operator on F and X.
First let a space X be fixed. Then we have

Lemma 4. (i) If F'DF, then of=(w5)t =(w¥')E.
(ii) Let {F.} be an increasing sequence of closed sets. If F=\UF, isclosed, then

{wEr} converges to w% (in the sense of norm).

Proof. (i) Since Xp is contained in X, oF is orthogonal to Xr. By Lemma
2 we have (0")f'=wF. Next, we see that (0™ ) —w belongs to Xy and that
(o™)F is orthogonal to Xr. Then we have (o™ ) =oF.

(ii) Since (wfm, w'r—w@"m)=0 for m=n, we have
0= [0 r—of 2= |*—|lw™™ 2.

Similarly we have 0=|w"||*—|@”?|%. Now we can easily see that {0} is a
Cauchy sequence. Let w,€X be the limit. Then for every m |w—olr,
=lim lo"*—w|r,=0 and w,=w on F,. Hence w,=w on F. On the other hand,
since XpCXp,, 0=lim (0", o')=(wy, ©’) for every o’'€Xr. By Lemma 2 we

conclude that w,=w”.

As for the dependence of X, we have

Lemma 5. Let {I,} be a decreasing sequence of subspaces of I,. Let
Xo=I4,+1 and X=NX,. Then for any o in X, {wf .} converges to wi.

Proof. Since (Xn)r contains (X,)r for m=n, we can deduce that {wf } is
a Cauchy sequence (cf. the proof of Lemma 4 (ii)). The limit differential w,
belongs to X, for every n. Hence w, belongs to X. The inequality [wol
=Li££1o lwf ISkl gives wo=w% (cf. Proposition 1 (iii)).

Now let {R,} be a non decreasing sequence of regions of R such that
UR,=R. Let F, be a relatively closed set of R, such that F,CF,., (n=1, 2, ---),

and UF,=F is closed in R. Let I, (R,) and [:(R) be subspaces of I,(R,) and

I',(R) respectively. By the way every wel(R,) can be extended to an @< (R)
by setting @=w on R,, =0 on R—R,. Hence I'(R,) can be regarded as a sub-
space of I'(R). We shall make use of this convention.
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Theorem 1. (cf. H. Yamaguchi [24]) Suppose that Xp=Ig (Rn)+1eo(Rr)
and X=I"(R)+1I.(R) satisfy the following conditions:
(i) If a sequence {w,} in \nJX,, is weakly convergent to an w, in I'(R), i.e.,

lim (w,, 6)=(w,, 0) for any o=l (R), then w, belongs to X.

(ii) For every we X, there exists {w,: w, € Xy} such that

wn=w on F, and lim|w,—o|g,=0.
-0

Then we have that for every we X

lim | (@) —w] =0,
where {w,; 0, € X} is a sequence given in condition (ii).

Proof. Since w, and (w,)ir are uniformly bounded in norm, we can find a
subsequence {(w,)%»} which converges to an w, in I'(R) weakly. We note that
w,€ X by condition (i). Let m be a fixed positive integer and f, be the charac-
teristic function of the F,. We have

(@o—w, W— W), =(Wy—, fn(W—w))
=lim (@.)3y~o, fn(@s—w))
=lim (@)5~o, fn (@—@)r,=0.
Since m is arbitrary fixed, we conclude that wy,=w on F. Next by condition (ii}
we can find ¢,€X, such that ¢,=w¥ on F, and ,l.l..rf} lon—wkllg,=0. Since

o,=w=w, on F,, we have [(w,)fzl|=llo.l. Observe that

lwfl = llwoll =lim [(@)zyslim o, =[] -
s oo

We find that wf=w, and {(®,)5*} converges to w,. This completes the proof.

§2. Principal differentials
2.1 The existence and uniqueness of principal differentials

Using a normal operator M. Nakai & L. Sario (cf. [15]) defined “principal
forms”. In the present section we shall use the operator in § 1 to define “principal
differentials”. We shall also discuss their existence and uniqueness.

Let 8 be a differential on a Riemann surface R and F be a closed subset
of R.

Definition. We call a differential @ on R to have (X, F:6)-behavior if
w—0 belongs to X and (w—60)i=w—6. Further, the w is called a (X, F; 6)-
principal differential (or (X, F; §)-p.d.) if it is harmonic in some open set which
contains F.
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We note that we can consider (X, F;6)-p.d. only if & is supposed to be
harmonic in a open subset of R—F, because w—0=(w—60)% is harmonic in R—F.

Hereafter we assume that the closed set F satisfies : F' is a disjoint countable
union of closed regions F; each of whose relative boundary oF; consists of a
finite number of analytic closed Jordan curves. Let & be the class of those
F’s. For each FeTF we set P=P(F)={P; P is a discrete closed set of R which
does not meet F.}. Further, for FEg and P P(F) we consider
O=0O(F, P)=1{0; 6 is a closed C'-differential in R— P such that (i) # is harmonic

on (R—F—P)JdF, (i) [0 <so, (iid) | _6={ 6*=0 for every com-

ponent F; of F.}.
Let 8 and 4, be differentials in O(F, P) such that 6+6%*=0 in R—F—P.
Clearly 0+60%<I. Let o be the projection of §+6% to X and set ¢4, 0,; X)=0—w.

Proposition 2. The differential ¢(0, 0,; X) is (X, F;0)-principal.

Proof. By means of orthogonal decomposition of I, we can write as
O+0f=w+7 with wel,+1,, and tel':++1'%. Since §—w is closed in R—P and
z—0% is coclosed in R—P, ¢, 0,; X)=0—w=r—0% is harmonic in R—P. We
have then ¢—0=—weX. Furthermore, since ¢—0=rl:+I% in R—F, we
know by Lemma 3 (¢—60)"=¢—60. Hence ¢(0, 0,; X) is a (X, F; 6)-p.d..

The (X, F; 0)-p.d. ¢(0, 6,; X) which is constructed as above will be called a
(X, F; 0, 6)-principal differential (or (X, F; 6, 6,)-p.d.).

Remark. We have the following equalities :
(1) ag@, 0,; X)+b(¢, 01 ; X)=¢(al+b0', ab,+b0;; X),
(2) ¢@, 0, X)=¢@, 6,5 X),
(3) ¢, 0,; X)*=¢(6,, —0; X**) and @@, —0; X*)=¢@, 0,; X*)*
where X={@;we X}, X*=I++1} and X*=I"*+T,,.

Next we shall use

Lemma 6. (cf. [18], [24], [25]). Let G be a regulary imbedded connected
subregion of R whose relative boundary 0G is compact, and let V be the com-
plement of G in R. For any closed C'-differential ¢ defined in a neighbourhood of
V, the following two statements are equivalent:

(i) o|v, the restriction of o to V, can be extended as a closed C'-differential & on
R so that the support of & has a compact intersection with G.

Gi) Saa":O'

Theorem 2. Let F=\7J Fieg, n<oco, and 0 be a harmonic differential on
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(R—F—P)JoF such that | _0={ 0*=0, 1<i<n. Then there exist a = O(F, P)
and a (X, F; 6)-principal differential such that §=6 on R—F—P.

Proof. By Lemma 6 we can find §, #*<O(F, P) such that =6, *=6* on
R—F—P. Then ¢(f, 6%; X) is clearly a requested differential (cf. Proposition 2).

There generally exist many (X, F;#)-p.d.’s for a given @ in O(F, P). In
order to discuss the uniqueness of a (X, F; 6)-p.d.,, we shall first observe

Lemma 7. Let FEF be compact. If o€l, is exact on F and satisfies
og=o%, then o=0.

Proof. There is a relatively compact neighbourhood V of F on which ¢ is
exact. Let s be a harmonic function in V such that ds=¢. Take a function
keCi(R) such that #=1 on F, =0 on R—V. We define a differential ¢’ so that
o’=d(ks) in V, =0 on R—V. Then ¢’ belongs to I, and ¢—o¢’ belongs to Xp.
Hence (o, ¢’)=0 and (6%, 6—0¢’)=0. Since o¢=0%, we have (¢, 0)=0.

We set ['f'={oel;; 6f=0}. The I'i! is clearly a subspace of I,. The
(X, F; 0)-p.d. is uniquely determined up to the elements of I'{Z. In fact, if ¢,
and ¢, are (X, F; 6)-p.d., then

(1) di—¢o=¢—0—(¢—0) belongs to XN\[H=I",
(ii) (</’1_sz)F:(S[’l_0)F’_(¢2—0)F:(¢1"0)_(¢'2_0):¢1—(/)2-

Therefore ¢,—¢g, =I5,

Let 7 be a non-dividing oriented closed curve on R. We take a ring domain
V such that 7 is a boundary component of V and V lies on the left side of 7.
There is a function f,eC(R—7) such that

1 in a neighbourhood of 7 in V
fr=7 0 in a neighbourhood of the other component of oV
0on R—V.

The d f, belongs to O(V, 0). We set 0r.o=—¢0, d f;; X). If we replace V
and f, by another ring domain V’ and a function f; which satisfy the same
conditions, we have that the (X, V’/:0, d f4)-p.d. is equal to the (X, V:0, d -
p.d.. Hence o, ; is independent of the choice of V and f,;.

Let 5(F)={A;, B,;} be a canonical homology basis of F modulo dF such that
(i) A;NB; consists of a point, (ii) (A;\IYB)N(A;JB)=0 for i#; and (iii)
A;XA;=B;X B;=0, A;XxB;=0 for i#j and A;X B;=1, where A; crosses B; from
right to left. Let 5'(F)={A;, Bj;, C;} be a homology basis of F.

Theorem 3. Let FEF be compact. Then 't is spanned by

{UAj..zy O'Bj..ry UCi.I;Ajv Bj.y CtEE/<F)} .
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Proof. Let ¢eI't'. Suppose that (¢, 04,2)=(¢, 05, 2)=(p, oc,)=0 for
every j and i. We cut F along \U (A4;UB;) and denote the resulting surface
J

by F’. We can take dfj; so that its support is contained in F. Then by
Green’s formula

0=(g, 04, )= d1)={__Fugp
=L 2L T LT

ZSA,¢'

Similarly SB ¢=0 and Sc ¢=0. This shows that ¢ is exact on F. By Lemma 7
J i
we have ¢=0.
Corollary 3.1 Let FEF be compact and 0=O(F, P). For an arbitrary
(X, F; 0)-principal differential ¢, we can find a closed C'-differential 6,€6(F, P)

in R—P such that 6,=60* in R—F—P and ¢=¢(, 6,; X). Moreover there exists
a differential c€l's+T'% which coincides with §—6 in R—F.

Proof. By Lemma 6 and Theorem 2 we can find 6] so that ¢—¢(6, 0;; X)
€I'f’. Then by Theorem 3 we can write as ¢—¢(0, 0 ; X)=2 a;¢(0, d f4;; X)
+2bj¢'(01 de,-? X)+20i¢(0, dfci; X). So 01=0{+Zajdej+2bjdej+EcidfCi
satisfies the first statement. Then the last statement is trivial.

2.2 Reproducing differentials

There are some connections between principal differentials and reproducing
differentials for any subspace of I}, while B. Rodin, L. Sario, M. Yoshida and
H. Yamaguchi discussed for some subspaces of I,. We shall denote by O the
space {0} +1%.

Definition. We set o8, 6,; [)=¢@, 0,; X)—¢(@, 0,;0) and call it a
([ 6, 0,)-reproducing differential (or (I';; 6, 0,)-r.d.).

Proposition 3. (i) o=0, 0,; [)l:.
(ii) (@, o)=—(0w, 6+0%) for any wel;.
(iil) |o|*+2 Re (0, 6+6%)=|al?*+2Re (o, 0+0)=—|al® for any o€l .
Proof. (i) We can write as
@0, 0,; X)=0—(wz+w)=r—0%

with w,ely, wsly and c€ls+1E.
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Then ¢(0, 6, ; 0)=60—w,=w,+7t—6%. Hence a=¢(0, 6,; X)—¢@, 0,;0)=—w, I
(i) Since o=—w.=t+w,—@+6%), we have (0, 0)=(w, t+w)—(w, 6+6%)
=—(w, 6+06%). (iii) By (ii) we have (o, 6+6%)=—(0s, o) which proves the second
equality of (iii). We also have

lwl*4+2 Re (@, 64+6%)—L|oll*+2 Re (g, 6+6%)]
=(0, 0)—[w, 0)+(o, ®)]+(a, o)
=(w—o0, 0—0)=0.

Now we apply Proposition 3 to specific kinds of differentials with singularities.
Let peR and V, be a parametric disc about p with the variable z. We set

- {p, ¢} n=0
Ve={p"; |z2(p")| <r} (0<rZ1), F=V,—V,,,and Pn={ (8 - Take a g Vy)s.
n=

Then there exist real valued functions h,=C%R—P,) such that

1 -
—2——(log |z|—log [z—z(g)]) on Vi,
ho= T
0 on R—V,,
L rel on 7
ho=] 2rm z
n (n=1).
0 on R—V,

Sinceg dh;‘.‘=S[ led h¥=0 (n=0), by Lemma 6 there exists a real closed

1z1=1/2

Ci-differential d 4% in R—P, such that d h%=d i} on R—F. We put p.=d h, and
E,=dh¥. Let Un=0'n.z:0'(77m En; Fz) and 7,=7,, =0, —Nn; Fx)

Theorem 4. For wel,

(i) (w, ao)zng , lolz—2 Resqwg~ReSq Go,
D D p
(if) @ =0, lo*|-2Re| w*z—Re'ss,
y4 b4 p
where the paths of integrations are taken in V..
Let w=dw, w*=dw*, g,=ds, and ti=d tf on V.. Then for n=l,

(i) A n)zm—_ll)—!—g%‘f(m, (z=x+iy),
e 2 0w o 1 o 0"sa
lol* = T e P2~ oy Re G (2
— LPYIE S
(iv) (@ )= LW

(n—1)! ox™
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L. 2w 1 G
o+ g (D2 T Re—5 ().

Proof. (i) For every sufficiently small ¢>0, let Vi={p'€V,; [h(p")I
>1/e}\J[p, q1, where [p, ¢] is a segment from p to ¢ in V,. Then we have
by Proposition 3

(@, 69)=—(o, 770+6>S)=—1£ig)1 (@, Do +E¥v,-v

-’:—[11_{{,1 (@, Dodv,-v! +1£i_{1;1 (o, Sﬁ)m-v;]

T Tox . - 3
- [hmga(yrvé)how +iim —| wE,]

e-0 O(Vl—Vé)
=w(q)—w(p)=ng
D
(i) In a similar way to (i)
. q
(@, T)=—(, &—nb)=—(o% 770+$%'>=Spw*.
(iii) Let {u=7u+if, and d h¥=d(A%). Then

(@, 0@, =il ; Te)=—(0, L—ilH=—[(w, T)+(io*, T)]

=—lim ,, T 1r,-v,

= —1lim ——zg oy, (RO i0%)
V1=V

-0

__hm;g 1
=0 2T Javy Z

1
(n—l)—' d P (w—Hw*)(p),
(@, 6Cn, —iln; I'))=—(0, {—1lH)=—(®, {n—1CF)

= 11), iz ,,(w-l-zw*)(p)

Since o(n, &n; I2)=0((La+Ea)/2, (—iLa—iCs)/2; I;), we have

(o, Un):ﬁl: (w—l-lw*)(p)-l- (w—tw*)(p)]

1 o"w

==l ax P

(iv) Since 0(&a, —9n; Ie)=0((La—Cn)/2i, (—iln—1Cn)/2i; I;), we have
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1 5" . ?
(@ )= D)1 [ax" (w=tw(P)=3

-1  orw*

== oxr -

)|

X

By Proposition 3 the second inequalities of (i), (ii), (iii) and (iv) are clearly satisfied.

For a piecewise C'-chain y=3[p;, pis:] we consider X o(%§, &§;;), where
n6=1n0, §§=& for p=p; and g=p;+;. Then we see that for w€ I, (0, Za(7}, &; =)

=Srw. Particularly we know that Xa(ni, &; I';)=0, . for a closed curve 7 (cf.

p. 667).

Let ¢'n.x=¢'(27r7]m 2n€q; X), ¢'§.,z=¢(27f$n, _27r7]n ; X)), TAj.I:¢(dej’ 0; X)
and 7z, .=¢(d f5, 0; X), where d f4; and d f5; are closed differentials given in
dz

dz dz z=2(4)
at ¢ (resp. ImT at p and —Im =2 at q). The ¢, . (resp. ¢.z) (n=1)

2.1. Then ¢,, . (resp. ¢ ) has the singularities Re%i at p and —Re

has the singularities Re d at p (resp. Imd at p). As for 74, and g2

we have

zn Z'n

[, Capetraga=] afu=a,xr,
ST(TBI' z+7-'Bj. IL):ST dej:BjXr .

Definition. These ¢n, 2, ¢n. 2 Tazo and g, are called X-fundamental
differentials.

Remark. Let I, have an orthogonal decomposition I;=>I;,. Then we
have

(1) a0, 6,;')=%00, 0,;I%)).
It r.cr,
( 2) 0(0: 01 H Fy)_a(ﬁy 01 H rx)::o(e’ 01 5 r;‘nr‘y) ’

ie, ¢, 0,; Y)—¢@, 0,; X)=¢@, 6,; X*NY)—¢@, 6,; O). Further we have

(3) 0@, 0, T)=¢@, 0:; X)—~§@, 0,; 0)=0(8, b, I),

(4) a0, 0:; I'y*=¢(0, 6,5 X)*—¢(6, 6,; O)*
=0, —0; X*) =0, —0; H)  (H=[p+T1%)
=00, —0;I's*)—0(0,, —0; 'y)
=—a(l,, —0;1%).
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Particularly,

(5) Gy —Cn, [ =0, —1Cn; T2),

(6) T 2=0En, — 70 [2)=—0(0a, &n; ¥ =—(0n.2)%,
(7) Taye=—(04;21)%,

(8) ez =(Pn, z1:)* .

= These equalities allow us to construct some reproducing differentials from exact
principal differentials (cf. [14], [15], [24], [25]).

2.3 Extremal properties of principal differentials

A principal differential has the minimum Dirichlet integral among a certain
class of differentials. So it is expected that principal differentials have some
other extremal properties.

Let V, be a parametric disc about pR and 6 be a closed C'-differential on
R—{p} such that

1 1
o d[Ean7+2bm'§—m] on Vy,—{p}

0 on R—V,

Let A9=A244, , be the uniquely determined (X, Vi— Vi 0)-p.d. (cf. Lemma 7). To
study extremal properties of 1, which are similar to Kusunoki [6], we consider
the following classes of differentials :

Q,={a: 2 is a harmonic differential on R—{p} and Ai—f€ X},
0”=1{2: 1 is a harmonic differential on R— {p} and 2—f=z on R—V,
for some rel't+I%} .
A differential 2 in Q,\JQ% can be written as

1=d f=d| Sae e 4 Sbn o + D+ S
z z

on 17,—{1)}. Let

0i={2€Q%; (i Vn-v,=—Re| f7},

0:={1€Q4; @ Dpv, = —Re{ 777}

The A, belongs to QL and Q. In fact we can easily see

(1) (40, lo)R—Vl:—SaylfoZ’}‘ ’
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where 4y=d fy. Hence Q! and Q2 are non empty.

Theorem 5. The (X, 171—V,/2 ; O)-principal differential is a unique differential
which maximizes (resp. minimizes) the expression J(A)=Re [Xnands+Smbmtm]
among the class QL (resp. Q2).

Proof. By Corollary 3.1 there exists a differential zel't+I"% such that
Ap=t on R—V, Take 2;€Q% (i=1,2). Let ds=6, df,=2, and df,=2, on
V—{p}. Then we have

) Ao, 200rer, =0, Doy =—(  (fi=)7*
=-{,, .
(3) Ry 200m-v,= ey 20— Omov, == TFo—o)2%
1
—_ Foa%
- Savlf“"z2 :
Now let 2, ’=Qi\JQZ A=df, and 0<r<1. Then
(4) @, ZI)V"V':Sa(Vl-anX,*'
Hence we know
) A Dav,S—Rel_ 7%,
(6) o, 2)eev, ==, FoT
¢a) (W20, 2, == (f=fo%f  for neQl,
(8 (=20, 20)a-v, == Folh—2)*  for %eQ:.

By direct calculation we have

(9) Re[ | fTt=—22[5n| anl* 5+ 5 ml b | o)
for 2€Q1UQ3,
(1) Re(hi—2s, 20dn-v,=—Re| (/0¥
=27 Re [3 nd@(da—d2)+ 3 mbw(cm—c2%)+o(r) for 2,€0!,
Al Re(A—2, zg)R_V,=—Regayrf,,(zz—zo)*

=—27Re [ na(dn—d)+3> mbmlcn—c%)+o(r)  for 2,€0%,
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where fy=23 an—zln—+2 bm—;m——i-Z) 72+ dZ.

By (9) we know that

lrl-r.? [—ReSaVer*+ReSJVrf0§3‘]=0 )

By the way we have

0=l12=2l*=lim[[2—2%-v,

=LmlI2]%-v,~20l%-v,—2 Re (2—25, 20)r-v,]

70

élim[—ReSaV fi*+ReSaV foZk—2 Re (A—2y, 19>R_V,].

Hence
0= —Irl_l.'{)l 2Re (A—12y, Zﬂ)R—V,. .

From (10) and (11) the assertion follows.

Remark. Suppose I,CI',. Then 2 .€Q) and A5, ,£Q% By Theorem 5
we know that J (2s,.)=J (4¢,,) implies 44, ;=44,,. Further, by Corollary 3.1 we
can find some 6, O(V,— V., {p}) and write as 24, ;=¢@, 0,; X), A9, ,=¢(0, 0,; Y).
Here we see 0= 22a,ln+327bnlm, 6.=2 —2mia,ln+3 27ibpln. Hence we
see that for w=d[X c;z*+X dz']el':N[}

0=(w, (0, 6,; Y)—¢(8, 6,; X))
=(w, 6(0, 0,; I'sN)
=47[3 1@ pda+Y Mbmcm]
(see the remark of 2.2 and the proof of Theorem 4).
Now suppose that # and 2y, , are both real differentials. Let
MO'={w; w is a meromorphic differential such that w+&c@Ql},
MQ*={w; w is a meromorphic differential such that o+ Qz}.

Then wy=Qs+i2F)/2e MQ*NMQ?. Let weMO'IMQ* and write it w=
4[2 ar - +E cal@)z] on Vo= {p). Since J (@+@)=2Re X nascyw), we have

Corollary 5.1 (¢f Y. Kusunoki [6])
max {Re 3 naqca(w); 0= MO} =Re 3 na,cq(wg)

=min {Re X na,c(w); o= HQ? .
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2.4 Meromorphic principal differentials

We investigate some conditions for a principal differential to be meromorphic.
We consider the class

AXF)={w—iw*; v XT} .

Proposition 4. Let 0= O(F, P) and ¢ be a (X, F; 0)-principal differential.
(i) If ¢ is analytic in R—P, then 6—10* belongs to A(XF).
(ii) If 60—i6* belongs to A(XF), there exists a differential s €I'%? such that y—o
is a (X, F; 0)-principal differential which is analytic in R— P.

Proof. We use the representation ¢=0—w with we X*.
(i) Since ¢ is analytic in R—P, we have

0—it*=(¢+w)—i(p+ vy =w—iv* on R—P.
Since P is discrete, §—if*c A(XTF).
(i) Let §—if*=21—iA* with 1€ X¥ and set c=1—w. Then o€ X¥ and ¢—o is
closed in R—P. Furthermore,
P—ip*=0—10*—(w—iw*)
=1—iA*—(w—iw*)=0c—ic*,
so that ¢—o=i(¢—o)*. Hence ¢—o is analytic in R—P and ¢ is harmonic

there. We see ol'f!. It follows that ¢—o is a (X, F; 6)-p. d. which is analytic
in R—P.

Theorem 6. Let ¢ be a (X, F; 0, 0)-principal differential for FEF and
8, 0,<O(F, P) (,=6* in R—F—P). If 0+6% is orthogonal to any differential of
(L—TsIT5—TI%), then $+ig* is a (X, F; 0410, 0,—i0)-principal differential
which is analytic in R—P.

Proof. From the representation
p=0—(w;tw)=1,+75—0%
with w,€l;, 7.€'; and w,, o1, We have
6*—0,=t*—r,twrtowt.
To show t*el,, if r,&'% then by the assumption
0=(0+06%, 75)=(0*—6,, %)
=(t¥—totwitof, tH=(%, 7).

Hence z,=0I%, which is a contradiction. Thus <% belongs to I’,. Similarly
we see w¥el't., We have now the representation

igr =i, +ick—ity= —iw¥—iw§+if*
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with ic¥el,, —iwtels. 1t follows that ig* is a (X, F;i0, —if)p.d. This
gives the conclusion.

Remark. In case I':&I'*, the condition of Theorem 6 is equivalent to that
f+0% is orthogonal to I',. Indeed I';N[*+ {0}, for ['*=I":+I,N[% So there
is a oel';N\['*, 0+0. For every wel’,, at least one of w+o0 and w—o belongs
to I',—I'i* because oel,—I'i*. If 6+6% is orthogonal to I',—I'+* then
(6+6%, w)=0, for

(0+46%, 0)=(0+06%, w+o)—(0+6%, o)
=(0+6%, w—0o)+(0+6%, o).

Corollary 6.1 If I',=I"+* then for every (X, F; 0, 0,)-principal differential
¢ the meromorphic differential ¢+ig* is (X, F; 6+16,, 6,—10)-principal.

For example, from the X-fundamental differentials T4z TBjo aDd @n . We
can construct the meromorphic principal differentials 7,4, .+it%; -, T8 2T 17h; 2»
On, o +i% 2 (n=1) and ¢y, .+igf .. These differentials will play the role of
Abelian differentials of the first, the second and the third kind respectively (cf.
§5).

For the real Hilbert space 4 we have analogously the following.

Theorem 6’. Let ¢ be a (X, F; 0, 0,)-principal differential in the real Hilbert
space A. If 0+0F is orthogonal to (A,—iAz)J(A:—id%), then ¢+ig* is a
(X, F; 0-+16,, 6,—10)-principal differential which is analytic in R—P.

Corollary 6'.1 If A,=iAL* then for every (X, F; 6, 0,)-principal differential
¢ the moromorphic differential ¢p+ig* is (X, F; 0+1i6,, 6,—160)-principal.

It is noted that A,=i4%* is one of the conditions for a behavior space by
Shiba [18] (cf. Matsui [10]).

§3 Semiexact principal differentials
3.1 Differentials with (X, F; 0)-behavior

Let {G,} be a canonical exhaustion of R and Z=5(R)={A,, B,;} be an
associate canonical homology basis of R modulo the ideal boundary of R. Let

9’={ Ql F,eg; F; is compact and does not meet 0G,.
{A,, B,e&(R); AjJB;CF;} is a homology basis of F; modulo
0F; and the other A;\UB; does not meet Fi.}.

In this section we assume Fe’ and I',C[ . For a o[, we often use
a representation o=ds. We note that s is a function on a region R’ obtained
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by cutting R along {A;\JB;} which is determined up to an additive constant.

Lemma 8. If w€ X[ is harmonic on OF, then w%|g-r has a harmonic
extension across OF.

Proof. Let w=dw and w=dwf. Then w—w" is constant on each F;.
Since Re w and Im w are real analytic along 0F, so are Re w®” and Im wf. It
follows that w%|z-r and of|z-r have harmonic extensions across oF.

We shall use the following Green’s formula.

Lemma 9. (cf. [18]) Let G be a regularly imbedded region. Let o and w be
closed Cl-differentials on G and assume that o is semiexact. Let o=ds on the
planar region G’ obtained by cutting G along a canonical homology basis {A}, Bj}
of G (moddG). Then

o _ _ _
(0, @%)o= Saasw-’rE[L;aSng SB;O'SAgw] :
Lemma 10. Let we X and F=\iJFiE§'. Then for decreasing sequences F?
such that N\F=F;, UFI€Z’ we have

limS @™*=0
F}-F;° 0F7}

for each 1.
Proof. There is a function kp,€Cj(R) such that (i) kr,=1 in a neigh-

bourhood of F;, (ii) the support of d kp, is compact and does not intersect F—F;.
Since d kp, belongs to I'¢; and Xp, by Lemma 2 and Lemma 9,

0:((0[" d kFi)z(wa d kFi)R—leli_I}l (wF» d kFi)R—FUF;'IL

. n .
=lim (@77, d kpa-rorg=lim | oF*.
n-soo n-sc0 aF,.

We shall write lim Sa Lo as S w™* hereafter.
n-—+co

F oF;

Lemma 11. (cf. [24]). For a Dirichlet potential f, and a closed differential
w which are continuously differentiable in a neighbourhood of the ideal boundary,
we have

limSaG Fow=0.

-0
Now we can give a sufficient condition for w"=w.

Proposition 5. Let FEF’ be compact and ws XN be harmonic on R—F.
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Further, suppose that w satisfies the following :

(i) Sap w*=0 for each i,
1

(i) (@ Oa-r=—|

aF§w* for any o=ds<l,.

Then we have o =w.

Proof. Let w=d w, o*=d w¥ on R—F. By Lemma 9

o —wl|?®

=lim {Sa«;n-m(u)F_ wiw"—w)*

N -0

—an-F[SAijBj(wF_w)*_SaijAj(wF_w)*]}
g et N e W e Wl |

_Liglo{gaan( wr—wo —GnE—F[SAj(wF_w)Sij* —SB ‘(wF_w)SAjw*]}

J
TF %
+ Sar( wf—w)w* .

Now the first term is equal to («®, " —w)z-r which vanishes by Lemma 2.
Next if we write wf—w=w,+w, with d w,€Il; and a Dirichlet potential w,,
we see by (ii)

lim{g Tt — 3 U dwa w*——s dwzg w*]
n-oJaGp Gp-FLJ4j Bj Bj 45

=(w, d w,>R-F+SaFw,w*=o

and by Lemma 11

]im{s To*— 3 [S mg w*—~S d—ws w*]:O.
n—0c0 Gy Gp-F Aj Bj Bj Aj

Hence we can deduce the second term also vanishes. As for the last term also

vanishes, we note that w¥—uw is constant on each F; and by (i) Sap w*=0. Thus
we have proved of=w. ‘

3.2. The boundary integrals of principal differentials

In the study of bilinear relations on an open Riemann surface, the standard
device is to consider classes of differentials whose certain integrals along the
ideal boundary vanish. Some principal differentials seem to play a role of now
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mentioned differentials.

In order to investigate the boundary integrals of principal differentials we
first show

Theorem. 7 Let FEF' and o, we XN (w=d w). If o is represented by
o=t+7¥ with r€l': and r,€l,, on R—F, then

F o F — — P Lk P *__ - *
(¢F, w )R—F—;{ San—wa + 121 [SAijBj‘r SijSAjt ]} .
Proof. We first note 6=0¢F by Lemma 3. From Lemma 2 we have
(oF, 0")p-p=(0", W)p-p=(t+¥, w)R-F=—Zi‘. (z+7¥, W), .

Since w and z+4c¥ belong to I, we know that 3 (r+¥, w)r, is absolutely con-
1
vergent. Further, we have

“z‘: (z+73, w)r;

— _ = = Fx - *__ Py *
_;{ Sapiwa + Fi [SAijBjT SijSAjT ]} '
Thus the assertion follows.

Remark. The condition for ¢ is satisfied if ¢ equals some (X, F’; 6)-p.d.
for some F/'CF and §=O(F’, P) such that PCF—F’ and =0 on R—F.

Corollary 7.1 Let {a;, b;} be a system of complex numbers such that
lajl+1b;1 #0. Suppose that I, satisfies the following conditions: (i) ['tCI'%,

(ii) ajSA ‘2:bjSBj2 for any A€y, and any j. Then under the same assumption as
J

in Theorem 7 we have

(a”, wF)R-F=—SaFwUF* (dw=w),

limS wFaF*=( (d wF=w".
3G

n—00,
Proof. We note that by the assumption
*el, and S “_’S r*—S GS *=0.
A! Bj Bj Aj
So we have by Theorem 7 the first assertion

F _F — - _Fx
@ = wo .
(aF, )r-F SaF
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Further we have

F _F _ F\FUG F\FUG = TF .~
(07, 0")r-ruz, =(a")™ ", (@) pug, ==\ W
» @ )r-rua, ’ Ven 3CFUG )
£ F — F _Fx
T+7T8, 0 )p- —S wfef™*.
( 0> )F Gn AF-Gp
Hence
limg wFGF*zlim{ wFaF*—S wFoF*}
n-oJ)aGy n—oo LG(FUG p) O(F-Gp)

=—lim (¢¥, @")g-rpuz,—lim (r 4%, @ )r-q,
—+00

N 00

=0.
As for a real Hilbert space A, (A4,CA4,,) we have

Theorem 7'. Let FEF and o, wE(A+ Ap)NA* (w=dw). If o is repre-
sented by o=t+7¥ with t€ A% and r,€ A,, on R—F, then 6*=0¢ and
Further, suppose that A, satisfies one of the following three conditions:
(i) AiCid%, and there exists a family L=/{l;} of straight lines l; through zero
in C such that SAjZ, SBj,lel,- for any A€ A, and any j,
(ii) A:Cid% or A3C A% and there exists a system of real numbers {a;, b;} such
that |a;|+1b;] #0 and ajSAj,l:b,-Sle for any A€ A, and any j,
(iii) AiCid% or ALC A% and there exists a system of complex numbers {a,, b;}
such that |a;|+1b;1#0 and ajSAjZijSle for any A€ A, and any i.

Then we have

<0'F, COF>R_p=—ReS Fwo'F* y

0.

lim ReSaG WFoF*=0  (d wf=oF).

n—c0

Let I'.Clhse, I,y and set X=I.+I,, Y=Iy+I.. Suppose that (i)

I, 1 * (i) there exists a system of complex numbers {a;, b;} such that

la;]+1b;]#0 and ajSA z=b,.gB 2 forany A€, UT, and any j. Now let due O(F, P)
j j

be a semiexact C!-differential in R— P and ve@(F, P) be a closed C-differential

uv=0, Limg fv=0 for any dfel’, and limSaG -t

=00 3G iy N—oo

in R—P such that limS
n-oo) oG

n
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for any wel',. Then for (X, F;du)-p.d. ¢, and (Y, F;v)-p.d. ¢,

N0,

limSaano¢a=—(¢o—d U, Go—N)=0  (dfo=g,).

Further, if ¢, and ¢, are meromorphic on R and fu, is holomorphic in a neigh-
bourhood of the ideal boundary, we have

ZaDY Resf°¢°:_E[SA,%SB,%_S@%SM%] )

We shall mention the real case. Let X=A4,+4,,CA4; and Y=A,+ A,,C Ao
satisfy that (1) A,1iA4%¥ (2) each differential of A, JA, satisfies the period
condition in (iii) of Theorem 7/, or each differential of A,\J A, satisfies the period

~

condition in (i) of Theorem 7’. Here we assume that Ilim Im)aa uy=0,
n

N—co

N0 -0

(X, F;du)-p.d. ¢, and (Y, F;v)-p.d. ¢, we have

lim ImSﬁG fv=0 for any d fe 4, and lim ImSaG uw=0 for any we4,. Then for

lim ImSaG"fogbo:O dfo=gs).

n—+co

If ¢, and ¢, are meromorphic on R and fo, is holomorphic in a neighbourhood
of the ideal boundary, we have

27 Re 2 Res foho=—2 Im[g AjsboS Bjsbo-s a,~¢°S Aj¢o] :

The subspaces I', with which we have been concerned seem to be inter-
esting complex subspaces which correspond to the behavior spaces treated by
M. Shiba [18]. We shall investigate the existence of such a I'; in §4.

Finally we refer to the regular operators.

Theorem 8. Let FEF' be compact and o€ X be a C'-differential which is
harmonic on OF.
(i) For any w in XN\I'* which is exact (w=d w) on F

(o, a)F)R—F:_S Wa™* .
aF
(1) In case I'yDl o, for any w in XN\ which is semiexact (w=d w) on F

(oF, wF)R—F:_S FWGF* .

a

Proof. Let kr be a C'-function such that kx=1 on F and the support of kp
is compact and does not intersect the homology basis of R—F. We define a
differential w,=d (kpw). Then w,&l,, in case (i) and w,e€l},+1., in case (ii).
We have

(oF, @ )g-r=(a”, &F)p-r=(0”, wl)a-p=—SaFwUF*-
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If I',Crl,, any C'-differential in X satisfies condition (i) and therefore our
operator reduces to a canonical regular operator in the sense of H. Yamaguchi [24].

Corollary 8.1 Let I',CIl',, or [, <I',Cl .. Then for

=00,

0, c€X, wf=d w?, limgaa wFef*=0.
n

§4. Existence of some behavior spaces

Shiba showed that the Riemann-Roch theorem of Kusunoki’s type can be
extended by means of behavior spaces. An example of his behavior spaces is
Az=grln~+1irlhse, where pI" denotes the space of real differentials. But in our
case the existence of a space I, is not always trivial on an arbitrary Riemann
surface. To prove the existence, we shall use Zorn’s Lemma (cf. [23]).

Theorem 9. Let 5={A;, B;} be a canonical homology basis of R modulo
dividing cycles. Let {a;, b;} be a system of complex numbers such that |a;|+|b,] #0.

Then there exists a subspace 'y of I'nse such that (i) [y=1IL*, (ii) a,-gA .w=bjSB.w
for any wel'; and any j. ! !

Proof. We set
[’zoz{wel’hse;ajg cu:bjg w for any j}.
4j Bj
Since [';, contains [n=1[3%, subspace I'i* is contained in [, There exist

differentials 74, and 73, in I, such that SrAj=A,><r and Srgszjxr for any
r r

cycle 7. Then the differential z;=a;z4,—b,75; belongs to I';, because r; belongs
to [',,Cl', and satisfies that

(i) SAirjngirjzo for i#j,
(ii) ajSAjrj=a,SAj(ajrAj—bjtgj)=a,-bj

:bjSBj(ajTAj—bjTBj)':bjSBjZ'j .

sl

Let {G,} be a canonical regular exhaustion with which & is associated and
write ;=d t;, Then for any s&l';,

0=(zj, a)=LiI£1°{SaGntj&*— 621)‘ I:SAir,-gBia*—SBieri&*]} .

We can assume that #; coincides with a Dirichlet potential in a neighbourhood

of the ideal boundary. Since Limgae t;6*=0,
ol P
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0=S TJS 6*-‘S TjS 6'*.
4; "JBj By "JAj

It follows that a,SA &*:b,SB 6* and I',,DI't*. Let 1 be the family of subspaces :
j i

r={r,;ry,cr,, and Iy/OI't*}. The family 7" is an ordered set with the partial
ordering by the set inclusion relation. For any linearly ordered subfamily
Yi={ly,}sex of 1", we put F"Zk@r”k' It is clear that I',CI%,. If I',,DI,

then Iy¥Cly*cl,,. Hence I'y¥ is contained in I',. It follows that I';* is
contained in any I7,,, i.e, F;*Ckml"“=[’,,. The space I'y belongs to 77 and
€x

satisfies I",,DI", for any [,,€Y;,. By Zorn’s Lemma 2 contains at least one
minimal element. Let I, be a minimal element in 7. If a differential w in I,
is orthogonal to I't* w belongs to I'¥. We have an orthogonal decomposition :

Suppose that I',\[*+ {0} and @ be a non trivial differential in I ,~I'f. There
exists a real number a such that w+ei®@*#0 and (w+e%a@*, (w+e @ )*)=0.
Let I, denote a subspace of I, whose element is orthogonal to w+e®*@w*. It is
clear that I',DI=*. Since (w+e*@™)*) belongs to I, we have

0=(o*, (w+e'@)*)=(o, (w+e@*))
for any ¢ in I'2* Thus T72*cI", (£I",). This is a contradiction.

We can get the following in the same way.

Corollary 9.1 Let {a;, b;} be a system of real numbers such that |a;|+1b;| #0.
Then there exists a subspace I'y of [use such that (1) [=I,=I%% (i) a,S w

45

:bjSBja) for any wel, and any j.

§5 A formulation of the Riemann-Roch theorem

We shall show that the theorems of Riemann-Roch and of Abel on an
arbitrary open Riemann surface can be formulated by means of a behavior space
I'; in §4. They are formulated in complex form. Infinite divisors are also
allowed. Let {V,} (V;={|z:| <1) be a family of parametric discs on a Riemann
surface R such that Vif\Vj:O for i#j and {V;} has no accumulating point in
R. We put G=L‘)Vi. Let §={A; B;} be a canonical homology basis of R

modulo dividing cycles and {G,} be a canonical regular exhaustion with which
Z is associated. We assume that A;, B; and dG, do not meet G. Now, take a
system of real numbers {a;, b;} (|a;|+1b;]#0) and let I, be a subspace of [

such that (i) I'=Lp=I"%%, (ii) ajSA .wzb,SB o for any wel; and any j (cf. Cor-
ollary 9.1). ’ !
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Definition. A meromorphic differential ¢ is called to have X-behavior if
there exist a G, and an o in X=I";+I, such that ¢=w on R—G—Gn.

Now the existence of meromorphic differentials below is fundamental:

¢a; : a holomorphic differential with X-behavior such that

a,-SAigij_—_biSBigbAj—biéi,- for any 1,

¢s; : a holomorphic differential with X-behavior such that
aiSAi¢Bj=biSBi¢Bj~ai6U for any 1,

¢n. p: a meromorphic differential with X-behavior which has the singularity
n

1 .
d(z—) only at p (z is a fixed local parameter around p and n=1),

¢$pq: @ meromorphic differential with X-behavior which has simple poles of
residue 1 at p and of residue —1 at ¢ and is regular analytic elsewhere.

The existence of ¢, , and ¢, , is evident by Corollary 6.1. So we shall be con-
cerned with ¢4; only. We set ¢4,=74; ,+17%, 5, where 74, is the X-fundamental
differential. Then ¢,, is clearly a holomorphic differential with X-behavior.

Next, recall that ST(TAj'I_FTAj‘Il):ijr for any cycle 7 and TAj‘IEFé, z-Aj,xleFx.
Then we have

a-g (I =—a-S TA. l:—bS T4, 1:[;.5 4. . —bi0:;.
Z-Ai Aj z i 4; AJ.I i B; AJ.J: T B; Aj,x Vij

On the other hand, since 7% ;= belongs to iI+*=I", we have G‘SA itk j,z=biS 1 oz
i Bj

Hence aiSAigbAj:biSBigbAj——biéij.

5.1 Riemann-Roch theorem

Let 0 be a finite or infinite divisor on R whose support is contained in
G:\ijVi and has a finitely many points in common with each V,. Write as
d=0,/0,, where 8,=p#1p4e--- pm ... and d,=qiigs? -+~ ¢g4y» --- are disjoint integral
divisors. We consider the following linear spaces over the complex number field :
S(X;1/8) ={f;(i) f is a single valued meromorphic function on R, (ii) d f has

X-behavior, (iii) the divisor of f is a multiple of 1/4},
M(X;1/6,)=1{f; () f is a (multi valued) meromorphic function on R such that
aiSA~df=biSB'df for all 7, (ii) d f has X-behavior, (iii) the divisor of

f is a multiple of 1/d,},
D(X;08) ={¢;() ¢ is a meromorphic differential which has X-behavior, (ii)
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the divisor of ¢ is a multiple of § and the number of poles of ¢ is
finite},

D(X;1/6,) ={¢; (i) ¢ is a meromorphic differential which has X-behavior, (ii)
the divisor of ¢ is a multiple of 1/d, and the number of poles of ¢
is finite}.

Here, in case that d,#1 we identify two elements f, and f, of M(X;1/d,) if
and only if f;—f, is constant.
We consider a bilinear form defined on the product space M(X; 1/0,)
XD(X;1/3,):
h(f, o)=2n1li R .
(f, p=2milim pjglam pgsf¢
We shall see that & is a well defined bilinear form. Since ¢ is regular at each
p;, additive constants (including periods) of f have no effect for the residue of
f¢ at p, So we regard f as a function on R'=R—U(A;UB;). For any

feM(X;1/0,) and any ¢ D(X; 1/4,), there exist a G, and differentials w, s€ X
such that d f=w and ¢=0 on R—G—G,. Then by Corollary 7.1 and the period
conditions,

h(f, §)=2rilim 3 Resfgp=2ni lim { % Resfg— % Res 4}

j€CGm Pj

], - Bl 1,05 e

Mm—roo

- Gzn [SAid fSBi¢—SBid fSAi¢] _27”.ZR‘1?Sf¢ )

Thus A(f, ¢) is a finite complex value.
Next let f belong to M(X;1/d,). If df is holomorphic on R,

df,df)=@f, idf"

= _i}iﬂ{gaamfd f_ GZ,,:L [Sud fSBid_f_SBid fSAi(rf]

=—ilim Saam fa7=0,

m-—co

and hence d f is identically zero.
Thus by a similar argument to Kusunoki [5], [6] (cf. [18]), we have the
following

Theorem 10. (Riemann-Roch theorem)

MX;1/3,) _ .. D(X;1/3,)
S(X;1/6) D(X;0)

where the both sides may be infinite.
In particular, if 0, is a finite divisor,

dim
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D(X; 1/3,)

dim S(X ; 1/6)=deg d,+1—min (deg d,, 1)—dim DX 0)

Corollary 10.1 Let R be a Riemann surface with a finite genus g and
8=0,/0, be a finite divisor. Then it holds that

dim S(X; 1/6)=dim D(X; 6)+dego—g—+1.

Remark. If I, satisfies that (i) I,=I":*, (ii) there exists a system of non
zero complex numbers {a;, b;} such that aiSA w:biSB o for any wel’; and any 1,
1 i

then we can formulate a Riemann-Roch theorem for S(X;1/6) and D(X;d),
where X consists of the complex conjugates of differentials in X.

5.2 Abel’s theorem
Let 6, and d, be disjoint (finite or infinite) integral divisors whose supports
. . 1
are contained in UV, l/?‘(Vi,m:{lzil <?}). Furthermore, suppose that the re-
1

strictions to each V; of §, and J, have the same finite degree and write them
as pi1 Pincys i1t Gincy, where p;; (resp. ¢q ;) may coincide with py
(resp. ¢4, ) for j#k. We denote by o the divisor 6,/d,. We assume that there
exists a closed C*-differential & in R—klj{pi_j, g } 15V such that

d[nﬁ) logm] on each V.
(i) 6= j=1 z:—24(q1, ;)
0 on R—UV;,

(i) (@, 0)g(Vi-1—’i,1/2><°° .

Remark. When ¢ is given, it will be generally difficult to find a §. How-
ever, for a given integral divisor d, which is supported in UV, ;;; and has no
1

accumulating point in R, we can find an integral divisor J, and a closed C'-
differential 6 satisfing conditions (i), (ii). In fact, if we take ¢, ; close to p; ; so

zi—2{(Ps. )
that d[log———zi_zi e

can find a 6 which satisfies (i), (ii).

] is close enough to 0 uniformly on Vi—Vm,g, then we

For the system of real numbers {a;, b;} which satisfies a,SA w:bjSB o for any
j i

wel’,, we further assume that ¢; and b; are integers. Now we can state a
theorem of Abel’s type.

Theorem 11. (Abel’s theorem)
The following two statements are equivalent.
(1) There exists a single valued mervomorphic function such that
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(1) the divisor of f is @, (i) dlog f has X-behavior.
(2) For any chain C=C,+C, with C;CG., C,CGN(R—G,) and 3C1:%} (Pi.;—ai.

BC2=R§ (pi,;—4qu, ), there exist integers my, ny((k runs through a finite subset X
of {1, -, g}) such that SC¢41+ k%[m"gugb”-*-nkgmgb‘f]’ S $ost ,E,([ SAk¢Bf
+nkSB gbgj] are integers for all j.

k

Proof. Let R'=R—\U(AJB) and Gi=G,nR. We set hAJ.=S¢,,,. and
hs j:Sg[;Bj in R’. Let f be a meromorphic function which is asserted in (1). Since

dlog f has X-behavior, there exists a finite set of integers X such that
aisud log f:biSBid log f
for ie X. Then we have for i& X

SAigbA,SBid arg f——SB:/u,Lid arg f= _5”Sud arg f.

1 ~
o S”d arg f for keX. We can take

integers m}, n} (I€X,) so that .‘g (m;A;+niB;) is homologous to C,—C’ (mod
1&Xp

We set rh,,=—217SB darg f and #,=
k

0G,) for some chain C’ on GJ,. Set J(:JC,LUJC, my=my+m, for kEJCr\J?,
=m} for ke H,—K, =m, for kE X—X, and so with n,. Then we have

[t 2] gt 0]
=Sc¢Aj+ iezx:n méSAi¢Af+n£SBi¢AJ)+ k‘:'f‘;‘c(mkSA k('/)AJ_I_ " kSBk¢Aj>

=lim E Res h4,dlog f+ E (mkg k¢Aj+nkSBk¢Aj)

m-co Gy

:%lim {Saomm ;dlog /— 3 [SAig[)A ngid log f—SB:/)AJSAid log f]}

Tl m—oo

B gl 008, gl done ]
:ig?c'fl{[shgbhgﬂid arg f—SBi¢AjSAid arg f]

1 5
—kz—nhjdargf for jek&

0 for jeX.

The same can be said for ¢, Thus we get (2).
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Conversely we suppose (2). Let 6, (resp. 6;) be the real (resp. imaginary)
part of 6 and ¢, be a (X, F; 6, 0;)-p.d, where F=U(V,—V..:). We set

@,=¢,+ipt. Then @, is a (X, F; 6, 6;—i6,)-p.d. and hence it is a meromorphic

function with X-behavior. Furthermore, @, satisfies aiSA (DlzbiSB @, for any 1.
i i

Setting (D:(D1+27ri{i§ (m2¢4i+n§gb3i)+kgx(mkghk-l-nkgbgk), we have

m-—+oo

lim27i 3 Res /4, ®
Gm

= Eﬂ{gmmh”@ n ;L‘:; [SAi¢AfS BiQ—SBi¢AjSAi¢]}

— —Zni{ > (m’iSAigbAj‘l‘ néSBi(/)Bi)'F :éx(m"gng‘”_l_nkS3k¢A’)+SA Q.

i€rq j
Hence
Z—}JSM@: lim 2 Res ki, 0+ 3 (mi], gu+ni], g4,)

+k§x(mkSAk¢Aj+nkSBk¢Aj)

:Sc¢4j+ Z (mkSAk¢Aj+nkSBk¢Aj> '

kEX

Thus —1~—S @ is an integer. Similarly —I—S @ is an integer. It follows that
21 )4y 271 JB;

f(p)=exp Sp@ is a single valued meromorphic function and has the required
properties in (1).

Corollary 11.1 The following two statements are equivalent.
(1Y There exists a single valued meromorphic function f such that (i) the divisor

of f is 8, (ii) dlog f has X-behavior, and (iii) aiSAid argf———biSBid arg f for any 1.
(2 For any chain C in (2) of Theorem 11 which is contained in R’, chbAj and
chij are integers for all j.

A meromorphic function f in (1') is uniquely determined up to a non zero

multiplicative constant.
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