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Introduction

We consider th e  following system of semi-linear p a rtia l diffential equations
fo r  u(x, t) and v(x, t):

au au
at ax=au—uv

av au
at —p  ax —bv-Euv , ,

 

(1 )

 

( t> 0 , —
0 0 < x < + 0 0 ) ,

   

with the initial data :
u(x, 0)=95(x),

t v(x, 0)=0(x),

where 2, p, a and b a re  real constan ts . A nd  we suppose Â*p, fo r  if  2=p, then
th e  system (1) would reduce to a  system of ordinary diffential equations. Fur-
thermore we suppose

() 0(x)5M, ( -00<x<+00 ),

t 95(x) , 0 ( x ) 1( _ œ ,  + œ ),

where Q3'(-00, +00) means th e  function spaces o f all C1 functions with bounded
first derivatives defind over ( -00, +00) and M  is a positive constant.

T he  system (1)-(2) has a n  ecological meaning, when a  i s  p o sitiv e  a n d  b  is
negative. That is , the  system (1) can be considered a s  describing a development
in time of two elements o f prey u(x, t) and  predator v(x, t) running o n  a  straight
line with th e  speed o f 2 and p  respectively. A s to the constant a and b, we may
consider them a s  a  ra te  o f  natural multiplication of prey without preda to r and  a
ra te  o f  n a tu ra l ex tinc tion  o f predator w ithout prey respectively .

§  1 .  Preliminary

By setting —

b
and a=e in  (1), we have b=rs and  the  system (1 ) can bea

written a s  follows :

( 2 )

( 3 )



( 9 ) {
au n ,   Ou,, , „  _ (u  4 -  • "  +7402) n) P
at A  ax n 1  n vo

Ou,, Ou,, 
at ax ---rv._,+(unvo+ +uiun),
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( 4 )

{  au au 

av av
at

at 1.
`  ax

Ox e u  — U V  ,

=re v + u v

If  w e  p u t 6=-0 in  (4), then w e get

Oua u
Aat ax

ava v
at —P .

The exact solutions of the system (5) w ith  th e  in it ia l d a ta  (2 ) c a n  b e  s e e n  in
Hashimoto, H. [1 ]  and  Hirota, R . [2 ] e tc . N o w  w e  p u t these exact solutions as
uo(x, t) and vo(x, t). T h e n  i t  is  o b v io u s  th a t  uo(x, t )  a n d  vo (x, t )  a r e  bounded
together w ith their first derivatives w ith respect to x and t and non-negative over

( 6 ) +00)X [0 , T] , (T>0) .

(See, for example, Yoshikawa, A . and  Yamaguti, M . [5]).
Under these properties, we can se t a s  follows :

A=max { s u p  uo(x , t), 3  s u p  v o (x, t)}oEsar ( X ,  0E2 T

w here 3 =max {1, ri} •

{

3 1
1 ),   2 A   (e 2A.r_1)}--2-(e 2 A T

aun(x, t)i
at

av o (x, t)  1.at

\ QT -= -VL(6+2L) .

T h e  purpose o f th is paper is to  obtain  the solutions u(x, t ) and v(x, t) of the
Cauchy problem (4)-(2) in  the  following form :

u(x , t)=EZ=o un(x, t ) " ,

( 8 ) 1 v(x, t)=- 0 v . ( x ,  t ) e n , (x , t)E ,Qr •

Here, uo(x, t) and 1)0(x, t) are solutions of the Cauchy problem (5)-(2), and un (x, t)
and vn (x, t )  (n _ l) are solutions of the systems of linear partial diffential equations
fo r un(x, t) and  vn (x , t):

( 5 )

( 7 )
P= m ax { sup

( X ,  t)ED

   

sup
oe.f2T

    

, sup
( X ,  t)ES2

,  sup
( X ,  t)ES2

w ith  the initial data
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un ,(x, 0 )=0,
(10)

v„(x, 0)=0, (n .

Note that (9) can be obtained by substituting (8) into (4) and by arranging on
the power of E. The formula (8 ) indicates that the solutions of the Cauchy
problem (4)-(2) are analytic functions of 6.

Here, we may give what is called Haar's inequality which is used in proving
several lemmas is the next section. Suppose that the following system of linear
partial differential equations is given :

au, au,
at —c,  ax  =aii(x, t)u1±a12(x, t)u2-4-b,(x, t),

au2 au2 , 4\

at  — c 2  ax t  A i m a 22k x ,  t ) / / 2 - 1- u 2 x ,  c )

with the initial data :
f  u i (x , 0) -

-
-
02(x)

1
 u o(x, 0)=02(x),

where c ,  and co are constants such that ci <co. a„(x , t) and bi ,(x, t) j- 2)
a r e  supposed to be continuous over (—co, +00)X [0, +00). Furthermore we
suppose that 01(x) and 02(x) are continuous together with their first derivatives
over (—co, +co). Now, in  th e  following figu re  le t u s  p u t a  closed domain
inside a triangle as D and [x o +c,T, x 0 +c 2 T ]  as Do.

xo, T)

x0- 1--c2T
xo-kc i T

By setting
a= max {  sup I a,,(x, 01}

1 6 1 , .7 5 2  (x , t)E D

b=max { sup I bi(x, 01}
1Z 05 2  (X ,  t)E D

h=max{sup çbi(x)1}
1 5 i5 2  X E D 0

Haar's inequality can be written in such a  way that
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(11) lui(x, 01, 1n2(x, 2 a t+  2
b
a   ( e 2 a t_ 1 )

he 2 a r +  2ba (e2ar_1), (x , t)ED.

§ 2 .  The proof o f  several lemmas

Lemma 1. T he solutions u n (x , t) and v,i (x , t) of  the C auchy  problem (9)-(10)
can be estimated over D r  as  follows:

(12) lu.(x, 1v.(x, t ) f 1 2 n  -1

1 ; n=1, 2, 3 ,
(13) a i,= {

••• -Fa2 a_ 2 ; n 4 .

Pro o f . First w e w ill show that (12) holds fo r  n = 1 . I f  n=1 i n  (9) a n d  (10),
w e have

av, av,
at axp —vould-uovi+rvo

uicx, o>=v,(x, 0)z=0.
Applying Haar's inequality (11) to th e  system of partia l differential equations (14)
fo r  u i (x , t) and  v i (x, t), we get

I v i(x ,
A (e 2 A t 1 ) < _

1
tn2At

— 2A 2

where A , L  and  Q T  a re  given in  (7). In  th e  same w ay, we can also sh o w  that
(12) holds fo r n=- 2, 3.

Secondly, if  w e suppose that (12) holds fo r  n (n -.4), then we will show  that
(12) holds also fo r  n-1-1. F or n+1, (9) and (10) can be written as follows

aU aU
4 + 1at 2 nax . "  = ( — V 0 )U n + 1 ± ( - 7 2 0 )V n + 1 4 - U n — ( U n V I +  + U iV n )

(14)

I au, au, 
at ax = ( vo )u i - 1- (—uo)vi-Fuo

(15)
avn+1 aVn+1

at ax =2 1 0Un-F1+ U oVn -F1±1Vn — K U nV1 +  • • •  +V IV O  ,

un+ i(x, 0)=0
(16)

vn+i(x, 0)= 0.

Here, applying Haar's inequality (11) to the system (15) of linear partial differential
equations fo r  un+i(x, t) and vn+1(x, t) with initial data (16), we get

lun — (unvi+ •••

+(In.-111yd+ ..• +1u211v.-11)5a.QP-'(3+2L)
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+( a n , a 2 + ••• a 2 a . - 0 Q P

Therefore, by applying Haar's inequality (11) to (15) and (16), we get

un+i(x, 01, I v.+I(x, fanQP-1(5+2L)+(an-1a2+ •-•

+a2an-1)(274 
1

2 A  
(e 2 A T  —1)

ana1Qin - 1 L (3 +2 L )+(an -1 a2 + •••  a2 an -1 )L Q P

5.(a n a i + ••• 2n+1..._. 2n+1

Hence, we get the  inequality (12) also for n + 1 .  Therefore by induction we get
the estimate (12) and the formula (13) for all n 1. Q. E. D.

Lemma 2 .  The radius of convergence of  a series E Z - i a n z n  generated by  the
1sequence {a n }  defined in (13) is equal to —
3

. Here, z  is  a complex variable.

P ro o f .  By using (13) and adjusting formaly each coefficient of z n (n 1), we
have

(17) Èn°=, a n zn =E;'7=1 tine  • EZ=2 a n zn .

Now, we set

(16) f(z)=E,7=, a n zn

Then, by (17), we have

{f(z)} 2 ( Z ±  1).A.2)+ Z2 + Z = 0  .

Solving this quadratic equation for f ( z )  and observing that f(0 )=0 by (18), we get

1
(19) f ( z ) = -

2
(z + 1 —A/(1+z)(1-3z)) .

From this, because z = —1 and z= 1  a re  singular points of f ( z ) ,  we can see that
3

the radius of convergence of f(z)=E7,-- 1 an zn is equal to —
1

3
Q. E. D.

Lemma 3 .  For any  T>0 , i f  w e choose arbitrarily  E  as lei< then the
1 

righ t-hand sides o f  (8 ) converge unif orm ly  ov er Q T . H ere, Q T  and Q T  are  de-
f ined in (6) and (7 )  respectively.

P ro o f .  From (12) we get

1  
I nn(x , 0E 1'1  — an Q r'e n = an(W E)n

, CT
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Then w e get

1  
r: = 0  It n ( X  t ) S n  5.T 1 o(X

Q  T  
E Z =1  a n(Q 1 . 6 ) n  •

Therefore, Lemma 2  shows t h a t  E;7. 0 un(x, t ) E n  converges unifo rm ly  over Q .
In  the sa m e  m a n n e r  w e  c a n  se e  th a t n7=0 vn (x , t)en also converges uniformly
over Q .  Q. E. D.

Now, w e w ill show th a t the right-hand sides of (8) are differentiable term by
te rm  w ith  respect t o  x  and  t, and t h a t  the derivatives satisfy the following
relations :

au(x, t) _ r n o  a u n (x, t) n a u ( x ,  t ) aun(x, t) 
-s  , =E7,-, ,ax ax at at

av(x,a v „ ( x ,  t) av(x, t) avn(x, t) s  , -= E`.° -0ax ax at - at
Here, for n 0  w e  put as follows

au n (x, t ) avn(x, t) 
=fin(x , =7)n(x , t),ax ax

aun (x, t) av n (x , t)
=F in (x , t ) ,  =i)n(x , t).at at

B y using (21) and differentiating both sides of (9) and (10) w ith  respect to  x, we
get

aila i l  
n  — 2  n  = (  v 0 ) 17 n + ( - 1 2 0)Vn+Un-1 — ( 11 0 0 + +1Z1-07,1)at ax

•••

axat •
 te a l %  =v + u  +TV  -1-4- (u  Do+ ••• + U lD n -1 )O n O n n n

+ ( f in - 1v 1 +  • • •  + f l ovn) ( n 1 ) ,

w ith  initial data
gn(x, 0 )= 0 ,

(23)
Zin(x, 0)= 0 ,

In the sam e way, by differentiating both sides of (9) w ith  respect t o  t ,  w e get

au aRn n=(----n o )f in +(— u 0 )D n +f in -1 — (u 0 0 + •-•at ax

•••
az). ap-„ _ _
atn ax = vou n d -u ov„ -F rv ._ ,+ (u n i,- 0+ ••• +uiDn-,)

••• + Rovo

As to  the initial data for Ft„(x , t) and iin(x , t) (n _ 1 ), by using (9), (10) and (23)
w e get

(20)

(21)

(22)

(24)
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0)=u 0 (x , 0 )=0 (x),

(25) Di(x, 0)=7v o(x, 0)=795(x),

Fin(x, 0)=Dn(x, 0 )=0,

Under these preparation, we can prove three m ore lemmas:

Lemma 4 .  For R.(x, t), Dn(x, t); n(x, t), 5n(x, t) defined in  (21), we get the
following estimates over Q T :

(26) IFIn(x, 01, IF).(x, nme2ArQp-z+pcn-1

(27) 1 îln(x , 01, IN (X , t)i -5PC nQ P (n 1),

where
f c 1 =1, cn=2(an+an- 1 c1+ •••

(28)
1 d1 =1, dn=2(a1dn-1+ ••• (n 2),

M  and a sequence {a n }  are  defined in  (3) and (13) respectively, an d  A , Q T  and P
are  defined in  (7).

P ro o f . To prove this by induction, f ir s t  w e  w ill sh o w  th a t  g i (x ,  t )  and
t) satisfy (26) fo r  n = 1 . By setting n=1 in  (24) and (25), we have a system

of linear partial differential equations fo r  Fti (x , t ) and 13 1 (x , t ):

{
au i atti 
a ta x  = ( — vo)Ri+( —u o)Di - Kao — Rou i—r ioDi),

a vi a v i  
at ax

with the initial data :

(30)

Then, from (7) we get

f I Ro — Doili — a0 V i P(1+2L) . _. P(6+2L) ,
(31)

1 I ri70+Dou,+Rovil--5P(Ir1+2L)_P(3+2L),

where 3=max {1, 1711. Applying H aar's inequality (11) to  (29) a n d  (30), and
by considering (31) we get

1  
0 1  

m e 2 A T

2A ( e
2AT 1 ) ‹d i M e 2AT± c i pCn

an d  in  th e  same w ay, we get also
i me 2AT+c i pcn ,

where c1 =d 1 =1.
Secondly, we will show  that if  (12) holds fo r  n (n..2), then (12) holds also

fo r  n +1 . Replacing n by n+1 in  (24), w e have

(29)
--voTt i - I- u0171+(Do+ Doui+ a opi),

f 0 ) = - 9 5 ( x )  ,

D1 (x, 0 ) =1 ( x ) .
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a tin+ 1a n n + 1  
2 =--l— VO)Un-1-1-1-(— UOVn+i±Unat ax

— (un+lvo+ "• +u 1v.)—(unv1+ ••• +goVn4-0

avn+ , avn+ ,
at ax

_
= v o u n + 1 + u o v n + , + r v n

+(un+ 1v0+ ••• +u,vn)+(unvi+ ••• ± u o v  •

A ne by (3 ) and (7), we have

I an—(un+if)0+ + u fv . )— (f in v ,+ -Frio n + 01

INI+IFtn1 I vil)+(lu.+,11 -001+ +1u211f)n-1D

+(lFtn_il I vz1+ + Fiol I vn+11)

-c„P Q P )(1+ 2L )+ 2{a n ,P Q P + 1

H-a n QP - 1 (d i Me 2 " d - c i
PQD-F ••• H-a2V T(dn ime2A rQp-4+cnpQin-2)}

___(ci n m e 2A ro v -2 c n PQP)(1+2L )

+21(an+1±anc1+ ••• -Fa2c.-1)PQp
+ i + m e 2 4 T (and1+

±a2dn-1)QP - 1 1

In the same way, we get

I ••• uivn)+(fin v 1+ • + ttovni-1)

< (d n M e 2ATV -2 ± C itP Q P ) ( I r  +2L)

+2{(a n + 1 -Fa n c1 +  •-• ± a2cn -i)P Q P '

± M e 2 A T (a n d i +  •-• 4- a2dn-1)QP - 1 1 •

Under these circumstances, by applying Haar's inequality (11) to (32) we get

Pc .+1 Q r z •I U n + I(X , 0 1 , I N-E i(X , t)I dnA-1A/1 ATQr+e 2 ^-

Therefore by induction we can see that the estimate (26) hold for all
In the same manner, we can prove the estimate (27). Q. E. D.

Lemma 5. Both the series E ,̀7- i cn z n and E ; . _=i d n zn  generated by {cn } and
1

{4 }  defined in  (28) have —
3  

as radius of  conv ergence. H ere, the v ariable z  is
complex number.

P roo f. We set g(z )=E `L i cn z n .  Then, by (28) we have

"• ± aicn -i= v n - rcn-i) — an •

By using (18) and the above relations, we get the following formal relation:

(32)
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f (z )g(z )= a l c iz 2 +(a2c 1 + aic2)z 3 + • • • ±(a nc 1+ a n - ic 2 + •  + a l c n )z " 1 + •-•

f f
=z 2+1---(c 3 H -c2)— aalz 3+ ••• -H t(c. + 1-1-cn)—an + i l z " 1 +  •••
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1 1
=z 2 + -

2
E7

=
3cnz n + -

2
zE = 2cne — E',7=3 a nzn

4 ( 1 + z )g ( z )— f ( z )+

1By using f ( z ) = -
2

{(z+1)—A/(1 +z)(1 —3z)} derived from (19), if we solve the linear

equation for g(z ), we get
—1 g ( z ) —

A,/(1+ z)(1 —3z)
+ 1 .

1
Since g(z ) has two singular points a t z = - 1  and the radius of convergence

of the series g(z)-=-E7= i c n z n  is equal to

Next, if  w e set h(z).-=- =1 d n z n , in the same way as g ( z ) ,  we get

2z2 ±z  
h ( z ) =

2,V (1±z)(1 —3z)

Hence, the radius of convergence of d n zn  is also equal to 1 Q. E. D.3 •

1 Lemma 6 .  For any  T > 0 , i f  we choose arbitrarily  e  as I e l< , th en  the

right-hand sides of (8 )  are  dif ferentiable term  by  term  w ith respect to  x  and t,
and the right-hand sides o f (20) converge uniform ly  over Q T .

Pro o f . From (26) and (27), we get

au n (x, t) 
È ,7=1 at

in the same way, we get
av n (x , t)

at

m e 2AT
r t n (X ,  t)En 1 E;7=1 d n(Q1-e)n PE7,-1cn(QiEr

m e 2Ar

Qy ,

E`,7= ldn (Q I , E )n +  P r ,7 = ic n (Q )T h  ,

au n ( x ,  t) n
E77-i ax

av n (x, t) nax e PE7-1c.(Q , e) 11 .

Considering the above estimates and using Lemma 5, we find that for any E such
1 that I s I < , the right-hand sides of (20) converge uniformly over Q .  Therefore

the right-hand sides of (8) are differentiable term by term with respect to x  and t.
Q. E. D.
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§ 3. The proof o f Theorem

Here, we will summarize the contents mentioned i n  § 1 i n  t h e  form o f  a
theorem :

1  Theorem. For any  T >0, i f  w e choose s arbitrarily  a s  le i< 
3 Q I :  

then the

solutions of the Cauchy problem (4)—(2) can be expressed in the f orm  (8) and the
right-hand sides o f (8) converge uniform ly  over Q .  H e re , Q T  and Q T  are defind
in  (6) and (7) respectively.

Pro o f . By the  in itia l data  (10) and  the  fac t th a t uo(x, t )  a n d  vo(x, t )  are
solutions of the Cauchy problem (5)-(2), we can easily see that the solutions u(x , t)
a n d  v (x , t) of the Cauchy problem (4)-(2) expreesed a s  (8) satisfy the initial data
(2). A nd by Lemma 3, Lemma 6 and (9), we can see that u(x , t) and  v (x , t) in
(8) satisfy th e  equation (4). Consequently, we come to the conclusion that u(x , t)
a n d  v (x , t) in  (8) are solutions of the Cauchy problem (4)-(2). Q. E. D.

Remark :  In  th e  theorem mentioned above, first we give T >0 arbitrarily
1 

a n d  then according to T  we choose s > 0 arbitrarily a s  l e < 3 Q 2 •  E ven if, con-

versely, we first give s > 0 arbitrarily a n d  then according to E  we choose T > 0
1 

a s  e  < 3 Q „ th e  theorem mentioned above holds a s  w e l l .  T h e  la t t e r  can be

proved in  th e  same manner as the former.

In conclusion, the authors wish to express their hearty thanks to Prof. S.
Mizohata, of K yoto University, who suggested to them th e  proof o f Lemma 2.
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