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Introduction

We consider the following system of semi-linear partial diffential equations
for u(x, t) and v(x, 1):
a—u—la—u*au—uv
at ox ’
(1)

v ov
W—pﬁ—bv-l-uv, (t>0, —co< x < +00),

with the initial data:

y0= ’
(2) {u(x )=e(x)

v(x, 0)=¢(x),

where 2, g, a and b are real constants. And we suppose A#y, for if 2=y, then
the system (1) would reduce to a system of ordinary diffential equations. Fur-
thermore we suppose

3 { 0=¢()=M, 0=¢gN=M, (—co<x<+00),

#(x), Px)EB(—00, 00),

where B'(—oo, +o0) means the function spaces of all C' functions with bounded
first derivatives defind over (—oo, +o0) and M is a positive constant.

The system (1)-(2) has an ecological meaning, when a is positive and b is
negative. That is, the system (1) can be considered as describing a development
in time of two elements of prey wu(x, {) and predator v(x, {) running on a straight
line with the speed of 2 and g respectively. As to the constant ¢ and b, we may
consider them as a rate of natural multiplication of prey without predator and a
rate of natural extinction of predator without prey respectively.

§1. Preliminary

By setting %——:r and a=¢ in (1), we have b=ye and the system (1) can be

written as follows:
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au_la_u_
() at  “ox MUY
dv ov

o ya =rev+uv.

If we put e=0 in (4), then we get

ou xau_
(5) FI T
{
v _ 0v_
ot Fox MU

The exact solutions of the system (5) with the initial data (2) can be seen in
Hashimoto, H. [1] and Hirota, R. [2] etc. Now we put these exact solutions as
uo(x, t) and vo(x, t). Then it is obvious that wu.(x, ) and v,(x, ) are bounded
together with their first derivatives with respect to x and ¢ and non-negative over

(6) r=(—00, +0)x[0, T], (T>0).

(See, for example, Yoshikawa, A. and Yamaguti, M. [5]).
Under these properties, we can set as follows:

A=max{ sup wucx, t),0 sup v.x, 1)},
(z, )EQT (z, HERT
where d=max{l, [7]}.

L=max {%(em—l), ﬁ(em—n} .
(7

9
P=max{ sup l auo(x, t) } ou(x, t) ’
(z,0)€Qp (z, t)eQT ot
’ 3v0(x t) ove(x, 1) ‘}
(z, z)eQT 'z, 0EQ ot ’

Qr=+vL(©6+2L) .

The purpose of this paper is to obtain the solutions u(x, t) and v(x, t) of the
Cauchy problem (4)-(2) in the following form:

{ u(x, 1)=25-oua(x, t)e",
v(x, H=%_ova(x, )e*, (x, DE2r.

(8)

Here, u,(x, t) and vy(x, t) are solutions of the Cauchy problem (5)-(2), and u.(x, 1)
and v,(x, t) (n=1) are solutions of the systems of linear partial diffential equations
for u,(x, t) and v,(x, t):

3aut,, ‘1%=un_1—(unvo+ et ueva)

0Un 0Un
%— ali =V Va1t (Un Vot -+ FUVR),

(9)

with the initial data
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ua(x, 0)=0,

(10)
{ valx, 0)=0, (n=1).

Note that (9) can be obtained by substituting (8) into (4) and by arranging on
the power of e. The formula (8) indicates that the solutions of the Cauchy
problem (4)-(2) are analytic functions of e.

Here, we may give what is called Haar’s inequality which is used in proving
several lemmas is the next section. Suppose that the following system of linear
partial differential equations is given:

%_51%‘—_—(111(% Huytan(x, Du.+bi(x, 1),
ot ox
aau; —Cer A aauz—azz(x; Dyt ase(x, Dustbsx, 1),

with the initial data:
{ ui(x, 0)=¢(x),

uz(x, 0)=g¢(x),

where ¢; and ¢, are constants such that ¢;<c, a;i(x, t) and b;(x, t) (1=1, j=2)
are supposed to be continuous over (—oo, +00)X[0, 400). Furthermore we
suppose that ¢,(x) and ¢,(x) are continuous together with their first derivatives
over (—oo, +o0). Now, in the following figure let us put a closed domain
inside a triangle as D and [x,+c,T, xo+¢,T] as D,.

¢

By setting

a= max { sup Iau(x, i},
151,752 (x,

b=max { sup lbt(x, Hit,

1sis2 (=,t

h= max{sup|¢ (01},

1sis2 Z€ED

Haar’s inequality can be written in such a way that
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(11) e, DI, fualx, )] She e "—(etot—1)

<he 2“T+—§%—(e2”—1), (x, heD.

§2. The proof of several lemmas

Lemma 1. The solutions u,(x, t) and v,(x, t) of the Cauchy problem (9)-(10)
can be estimated over Q1 as follows:

12) lualx, ], lvalx, )| =a.QF,
where

1 ; n=1,2,3,
(13) an={

An-1G1+ - +a305-2; n=4.

Proof. First we will show that (12) holds for n=1. If n=1 in (9) and (10),
we have

0 0
T:Tl_xai;z(‘vo)ux"‘(—uo)vl'i‘uo ,
(14) P F
1 %‘/‘a_l;l_:voul'l‘uovrkrvo ,
u,(x, 0)=v,(x, 0)=0.

Applying Haar’s inequality (11) to the system of partial differential equations (14)
for u,(x, t) and v,(x, t), we get

e, DI, [ose, DS (@~ DS (4 DSLE0r=0,0r,

where A, L and Qr are given in (7). In the same way, we can also show that
(12) holds for n=2, 3.

Secondly, if we suppose that (12) holds for n (n=4), then we will show that
(12) holds also for n+1. For n+1, (9) and (10) can be written as follows

61;,;+1 — ag:f‘ =(—vUns1F(—U)Var1FUn—(Unvi+ - Fusv2),
(15) 5 5
%T;H —H 1;1;1 =VUnsr T UVnsr FTVa+H(Un v+ -0 F1u10,),
Unsi(x, 0)=0,
(16)
Unia(x, 0)=0.

Here, applying Haar’s inequality (11) to the system (15) of linear partial differential
equations for u,.,(x, t) and v,+,(x, t) with initial data (16), we get

[un—(Unvi+ - Fuv) [ S un |+l ual v+l vallusl)
FUunal lvel+ - +lusl [V2-1]) S anQF ~H0+2L)
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+(ar-1a:t+ - +0200-1)QF .
Therefore, by applying Haar’s inequality (11) to (15) and (16), we get

[Uner(x, D), [Vnaa(x, D £{a. Q% (0+2L)+(an-1a,+ -

1
2A

+a,a5-1)Qr} 55 (e*T—1)

£a,a,QF L6+ 2L)+(an-1a,+ - +a:a,-)LOQF
S(@na;+ o +020,)0F =0, QF .

Hence, we get the inequality (12) also for n+1. Therefore by induction we get
the estimate (12) and the formula (13) for all n=1. Q.E.D.
Lemma 2. The radius of convergence of a series X n-,a,2" generated by the

sequence {a,} defined in (13) is equal to % Here, z is a complex variable.

Proof. By using (13) and adjusting formaly each coefficient of z,(n=1), we
have

an D=3 0nZ" =012 252 2" .

Now, we set

(16) f(D)=%_1a.2".
Then, by (17), we have

{f(@)}*—(z+1Df(2)+22+2=0.

Solving this quadratic equation for f(z) and observing that f(0)=0 by (18), we get

(19) f(z)=%(z+l—x/—(H—z)(l—Sz)) .

. 1 . .
From this, because z=—1 and =7 are singular points of f(z), we can see that

1

the radius of convergence of f(2)=>%-1a,2" is equal to T

Q.E.D.

Lemma 3. For any T>0, if we choose arbitrarily ¢ as |¢| <—3é)—2—, then the
T

right-hand sides of (8) converge uniformly over 2r. Here, 2r and Qr are de-
fined in (6) and (7) respectively.

Proof. From (12) we get
1

T

[un(x, De™ =an,QF "=

a.(Q3e)".
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Then we get

1
[ Za=oualx, De™|Sulx, t)+——
Qr
Therefore, Lemma 2 shows that X5_,u™(x, t)e® converges uniformly over 2r.
In the same manner we can see that X n_,v.(x, f)e™ also converges uniformly
over Q7. Q.E.D.

7=102(Q7)" .

Now, we will show that the right-hand sides of (8) are differentiable term by
term with respect to x and ¢, and that the derivatives satisfy the following
relations :

ou(x, t)_Em oun(x, t) o oulx, t) . Oualx, t) ,
ox <" ox ’ T T
(20)
dv(x, t)—Z“’ 0va(x, 1) ot ov(x, 1) <. Ovalx, )
ax <" ox Y TR B TR
Here, for n=0 we put as follows
Oun(x, t) . 0va(x, t)
(21) T_un(x; t)) —Tx— n(xr t)
Oun(x, t) _ _ 0v,(x, t)
T:un(x’ t)y T n(x» t)

By using (21) and differentiating both sides of (9) and (10) with respect to x, we
get

0fl,

ot ( vO)ﬁn—l_(_uo)ﬁn'l‘Un-l_(unﬁo"}‘ +u1l7n-1)
(22) _(un-1U1+ +ﬁovn) ,
%Zi;——#%‘:Uoﬁn+uoﬁn+rﬁn_1—|—(u"fjo+ e d gDy

F(Tp-vit o +ov,) (1),
with initial data
ﬁn(x: O)=0 ’

23
@ {ﬁn(x’ 0)=0, (n=1).

In the same way, by differentiating both sides of (9) with respect to ¢, we get

%_ 3au,. =(—vo)itat(—u)Dnt@n-1—(UnDoF = +Uybn-1)

(24) —(@p-1 U1+ oo+ F VL),

aaﬁtn _‘u%_vou F oD+ Pn 1+ (Unbot -+ FUiDn-1)

A (g4 - FHov,) (n=1).

As to the initial data for #,(x, t) and #,(x, t) (n=1), by using (9), (10) and (23)
we get
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i (x, 0)=ue(x, 0)=¢(x),
(25) oi(x, 0)=rvo(x, 0)=7¢(x),
#a(x, 0)=0,(x, 0)=0, (nz2).

Under these preparation, we can prove three more lemmas:

Lemma 4. For @,(x, t), 9.(x, t); f.(x, t), Ua(x, t) defined in (21), we get the
Sollowing estimates over Qr:

(26) la(x, D], |0a(x, )| SdaMe*TQF 2+ Pc,Q%, (n=1),
27 lEa(x, )], [9a(x, )| = PcQ%, (nz1),
where

@8 {c1=1, ca=2(an+an-1C;+ - +a:iCn-1)—Cn-r, (0=2),

di=1, d.,=2(a,dn-1+ - +an-1d1)—dn-y, (n=22),

M and a sequence {a,} are defined in (3) and (13) respectively, and A, Qr and P
are defined in (7).

Proof. To prove this by induction, first we will show that #,(x, ) and
7,(x, t) satisfy (26) for n=1. By setting n=1 in (24) and (25), we have a system
of linear partial differential equations for #,(x, t) and #,(x, #):

0 o
BL;I —2 az;: =(—v0)#+(— )0, +(THo— Ao, — oD,) ,
29
) ov, 0D,

_at_‘/-!‘gx-—_— Vol 1+ oDy +(To+ Doty +o0y) ,

with the initial data:

{ ﬁl(x’ 0):¢(x) ’
0y(x, O)=r¢(x).

(30)

Then, from (7) we get
o { | #o—Douy—itov,| = P142L)= P(0+2L),
|70+ Dous+#tov,| = P(I71+2L)= P(6+2L),
where 6=max {1, |7]}. Applying Haar’s inequality (11) to (29) and (30), and
by considering (31) we get
l@(x, t)| =Me*4 T+ P(5+2L)—21A—(e2”—1)§dlMe“T+c1PQ% ,

and in the same way, we get also

|9,(x, )| =d;Me** T+, PQ},
where ¢,=d;=1.
Secondly, we will show that if (12) holds for n (n=2), then (12) holds also
for n+1. Replacing n by n+1 in (24), we have



632 M. Yamaguti and S. Niizeki

ai;?—l —Zi%i:(_vo)an+l+(_uo)z?n+l+ Un

—(Uns1lot - Fui0p)— (A v+ - +#HoVner),

o o0p _ _ _
ant“ —[J'T;ﬂ‘=voun+1+uovn+1+7'vn

(32)

F(UnsaDot - Furln) H(@nvi+ - F+oVa).
Ane by (3) and (7), we have
|t —(UnrBot o+ Furl)—(@nvi+ - FHoVnsr)l
S al+ 1wl 10a |+ a1 DF(tassl [Tl 4+ -+ + e | [9-121)
H(@n-1] Vel 4 -+l [Vanl)
S(daMe*TQF ¢ PQF)1+2L)+2{an POQFT ™!
+a,QF (d:Me** T+, PO+ -+ + a:Q%(dn- 1 Me* 4T QF !+ ¢, PQF' %)}
=(d Me*TQF *+c. PQF)1+2L)
+2{(ans1tancit - +asca-)PRF+Me** (and,+ -
+a:dn-)QF 7} .
In the same way, we get
[79n+(UnrBot -+ FusTa)F (vt o oV n41)|
S(daMe**TQF *+c. PQF X1 +2L)
+2{(@ns1tancit -+ +a2a-) PQFH!
+Me* T (and,+ - +a:dn-)QF .
Under these circumstances, by applying Haar’s inequality (11) to (32) we get

| #nsr(x, )], |Tnaa(x, B)] édn+1M32ATQ%‘"+PCn+1Q2T"+2-

Therefore by induction we can see that the estimate (26) hold for all n=1.
In the same manner, we can prove the estimate (27). Q.E.D.

Lemma 5. Both the series Yn-i1cn2" and Xn-,d,z" generated by {c,} and

{d.} defined in (28) have % as radius of convergence. Here, the variable z 1is
complex number.

Proof. We set g(z2)=>%-1¢,2". Then, by (28) we have
1
An-1C1F -+ +alcn—1=§'(cn+cn-l)_an .

By using (18) and the above relations, we get the following formal relation:
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f(2)g(2)=a,6,2+(asc,+ a,¢0)2°+ -+ +(anciFan-10aF - +ayca)z™ 1+ -

1
:22+{%‘(03+02)‘03}23+ +{?(Cn+1+cn)_an+1}2n+l+
=2+ }_‘,n 3Cn2"t+—= 22" 2Cn2" =2 %=gAn2™
1 1
=7(1+2)g(2)—f(2)+—2*z .

By using f(z):%{(z+1)—x/(l+z)(l—32)} derived from (19), if we solve the linear
equation for g(z), we get

-1
Since g(z) has two singular points at z=—1 and z=—31—, the radius of convergence
of the series g(z)=X%-i1¢azn is equal to 3

Next, if we set A(z)=>5-:1d.2", in the same way as g(z), we get

h(z)= 22°+z
T2/ (1+2)(1-32)°
Hence, the radius of convergence of > %.,d,z" is also equal to % Q.E.D.
Lemma 6. For any T >0, if we choose arbitrarily ¢ as |e|<z—=5, then the

3Q
right-hand sides of (8) are differentiable term by term with respect to x and t,
and the right-hand sides of (20) converge uniformly over 2r.

Proof. From (26) and (27), we get

Y 1 _ Me?AT
| 7., Lt D Az, D SMET S 4 (@) + PE5yca(Q3e)" .
ot Q7
in the same way, we get
0va(x, t Me*AT \
|5, 20 B ) < M s du(Q2e) + PR s cal @i,
ot Q7
a n yt a n )t 9
‘20'7 % " {2" l—g‘%—) SPY5aica(Qie)™.

Considering the above estimates and using Lemma 5, we find that for any & such

that |e| <——, the right-hand sides of (20) converge uniformly over £;. Therefore

Q2 '
the right-hand sides of (8) are differentiable term by term with respect to x and ¢.
Q.E.D.
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§3. The proof of Theorem

Here, we will summarize the contents mentioned in §1 in the form of a
theorem :

Theorem. For any T >0, if we choose ¢ arbitrarily as Ie|< Qz’ then the
solutions of the Cauchy problem (4)—(2) can be expressed in the form (8) and the
right-hand sides of (8) converge uniformly over Q2r. Here, 21 and Qr are defind

in (6) and (7) respectively.

Proof. By the initial data (10) and the fact that wu.(x, t) and v(x, t) are
solutions of the Cauchy problem (5)-(2), we can easily see that the solutions u(x, t)
and v(x, t) of the Cauchy problem (4)-(2) expreesed as (8) satisfy the initial data
(2). And by Lemma 3, Lemma 6 and (9), we can see that u(x, ¢) and v(x, t) in
(8) satisfy the equation (4). Consequently, we come to the conclusion that u(x, t)
and v(x, t) in (8) are solutions of the Cauchy problem (4)-(2). Q.E.D.

Remark: In the theorem mentioned above, first we give T>0 arbitrarily

and then according to T we choose ¢>0 arbitrarily as |e| <==. Even if, con-

?’QT

versely, we first give ¢>0 arbitrarily and then according to ¢ we choose T>0

as |e| <447, the theorem mentioned above holds as well. The latter can be

3Q

proved in the same manner as the former.

In conclusion, the authors wish to express their hearty thanks to Prof. S.
Mizohata, of Kyoto University, who suggested to them the proof of Lemma 2.
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KyoTo UNIVERSITY
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Ko6cHI UNIVERSITY
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