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Introduction

The study on the existence of analytic mappings of a Riemann surface
into another generally involves much difficulty. Obstruction lies, above all, in
the non-planer character of the image surface. The purpose of the present
paper is to investigate analytic mappings of what we call a Riemann surface of
finite type into a torus. Namely, the domain surface Ry is a closed Riemann
surface with a finite number (=N) of points (punctures) removed. The image
surface, on the other hand, is a closed surface T of genus one. In such a case,
we can make use of the finite complex plane which is the universal covering
surface of T.

After preparing some fundamental facts, we shall first prove a theorem
(Theorem 1) which gives a necessary and sufficient condition for the existence
of an analytic mapping f of Ry into T with two prescribed properties; one is
purely topological and the other is purely analytic. The topological condition
imposed on f is the assignment of the homomorphism between the first homo-
logy groups which is to be induced by f, and the analytic condition is the pre-
assignment of the behavior of f near the punctures (which are the isolated
singular points of f). Theorem 1 is proved by means of real normalization of
periods of Abelian differentials, while we shall later make use of complex nor-
malization to prove a corresponding theorem (Theorem 5). These two results,
Theorems 1 and 5, are thus the same in essence. Each of them has, however,
an advantage over the other in applications. Compare Theorem 6 with Theorem
7.

Historically, such a problem was first considerd for closed surfaces (N=0).
The existence and the determination of explicit form of the mapping f were
mainly studied. See Krazer [8], the last chapter. We shall also recall some
relevant known facts: For any homomorphism between the first homology
groups of a closed surface of positive genus and a torus, there always exists a
continuous mapping which induces the homomorphism (H. Hopf [7]). An analytic
mapping, however, does not necessarily exist (Gerstenhaber [4]). On the con-
trary, if the domain surface has N punctures, N=1, then every homomorphism
between the homology groups is induced by an analytic mapping of Ry into 7. In
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other words, for noncompact surfaces, homomorphisms arising from analytic
mappings are subject to no restrictions. This can be easily seen if we use the
well-known theorem due to Behnke and Stein (see Kusunoki-Sainouchi [117; cf.
also [10]). We are thus particularly interested in the behavior of an analytic
mapping f which induces the given homomorphism between the homology groups.
See Theorem 9. By a theorem of Ohtsuka ([13]) f assumes every value in T
whithout exception (in any neighborhood of punctures to which f cannot be ex-
tended holomorphically).

We shall also prove that the analytic singularity of f is (uniquely) determined
in a canonical manner by the induced homormorphism of the homology groups.
See section 11. We shall prove furthermore that, for a fixed homomorphism, the
singularity can be chosen so as to be a meromorphic function on the Bers fiber
space over the Teichmiiller space (Theorem 10).

Beside these, we shall discuss some other related topics such as the unique-
ness (Theorem 4), relations of our results to the classical theory (Theorems 2,
11, 11’ etc.), the existence of analytic mappings with a simpler topological pro-
perty (Theorems 6 and 7) and so forth. It can be easily seen that there is a
close connection between Theorems 6, 7 and the classical Abel’s theorem (cf.
[9], [15]). When the domain surface is also of genus one, Theorem 2 reduces
to a theorem which is stated in Helfenstein [6]. See Theorem 2’.

Through the paper C (resp. R) denotes the complex (resp. real) number
system. We shall also use the letter Z (resp. @) to denote the set of all integers
(resp. rational numbers).

I. Preliminaries

1. Let R, be a closed Riemann surface of genus g=1. We fix a canonical
homology basis {A4;, B;}4-, ([15]). Namely,

AiXszﬁijl)

i’ ]:1) 2: e, g
AiXAj=B,-><Bj=0

Furthermore we may assume that A; B; are analytic Jordan curves and
AiNA;=B:N\B;=A:N\B;=0, i#j; A;NB; consists of a single point. Let p,, p,,
-+, py be N distinct points of R,. We shall allow N to be zero. Then the
surface Ry=R,—{p:, ps, -, P} is a Riemann surface of finite type (g, N).
Without loss of generality, we may assume that p, does not lie on A; and B;.
Take parametric disks U, about p, so small that U,N\U,=0 (k#[) and U,NA;
=U,NB;=0 (k=1,2, - N; j=1,2, -, g). If we set D,=—0U,, it is easily seen

that {A4;, B;; Dk}j=1.z,...,gN forms a canonical homology basis of Ry. If Ry is
=1,2,,N~-1

1) The intersection number 7y x6 of two l-cycles 7,0 is defined to be +1 if the cycle §
crosses 7 from its right to left. This definition agrees to those in [10],[15] etc..
Note that the definition in [1] has the opposite sign and that my former paper [14]
adopts the definition of [1].
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viewed as an abstract open surface, the ideal boundary of Ry is denoted by
0Ry. Clearly, 0Ry consists of N components I3, -+, I'y corresponding to the
points py, *++, dy.

Denote by H,(Ry) the one-dimensional homology group of Ry with integral
coefficients, N=0. We denote by H,(Ry, 0Ry) the one-dimensional homology
group of Ry modulo dividing cycles (cf. [1]). The group H,(Ry, 0Ry) is iso-
morphic to H,(R,) and is generated by the equivalence classes of A;, B;, j=1, 2,
-+, g. On the other hand, H,(Ry) is the free abelian group generated by the
homology classes of A;, B; and Dy, j=1, 2, -, g; k=1, 2, ---, N—L

Let z, be a fixed local variable which maps U, onto the unit disk |z,|<1
and z,(p.)=0, k=1, 2, ---, N. We shall call a differential ¢ on Ry an Abelian
differential if (i) ¢ is meromorphic on Ry, (ii) the polar singularities of ¢ are
finite in number. Since Ry is of finite type, ¢ can be expanded in a Laurent
series of powers of z, about p,:

= aP &
=] £ -2+ 2 bz,
n=1 Zp n=0

k=1, 2, ---, N. Every Abelian differential on R, can be naturally identified with
an Abelian differential on Ry. However, not every Abelian differential on Ry
necessarily rises from an Abelian differential on R,. Although every Abelian
differential on Ry is analytic on R, except for a finite number of isolated
singularities, it may have essential singularities at some points of {py, ps, -, pw}-
If ¢ is an Abelian differential on Ry, the residue of ¢ at I', is defined by

I?"eks o= on SDng=a§k).
It is known that the residue of ¢ at I, is determined uniquely regardless of the
choice of a local variable about p,.

An Abelian differential ¢ on Ry is called of the first kind if ¢ can be
identified with an Abelian differential on R, which is of the first kind (in the
classical sense). [On the contrary, the differentials of the second and third
kinds may be allowed to have non-polar (essential) singularities at the points of
{p1, P2, -+, px}. Namely, ¢ is called of the second kind if ¢ has no non-zero
residues on Ry (including the residue at [, k=1, 2, ---, N); otherwise ¢ is called
of the third kind.] Note that we have defined the class of the differentials of

the first kind independently of the existence of the set {p,, p», -, Pn}-
Proposition 1. Let ¢, ¢ be Abelian differentials on Ry.
(i) If ¢ is of the first kind, we have (Riemann’s inequality)
g

2m & [, ol o= (1, o, 01, 00,9)>0.

provided that ¢=0.
(i) If ¢ is of the first or second kind, then
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2mi- 2 Res ¢¢2): fi (SMgDSng/)——SngDSAjgb),

=1

@ being a single-valued integral of ¢ on the planar surface R;"ZR”—j\ZJ; (A;VIB)).

Corollary. Suppose that an Abelian differential ¢ of the first kind satisfies

SA-¢=stj’ SBSD-_“tjij CjECy Sjy tjERy j=1, 2: tty g.
J J
Then ¢=0.

2. Let ¢f, -+, ¢¥ be the normal differentials of the first kind with respect
to the homology basis {A; B;}%,. That is,

[ ot=du, i,j=L2 &
45
We set

Tij:SBJSD:'k) ir ]:1, 2, e, g

Then, as is well known, T=(z;);, je1,5...¢ IS & gXg symmetric matrix with
complex entries and furthermore Im ¥=(Im 7;,);, j=1,..., ; IS positive definite. See
e.g., [15], Vol. II, p. 114.
g—times g—times
Set C,=C*X .-+ XC*, C*=C—{0},and C¢=CX --- XC.
We shall first prove the following

Proposition 2. Let a g-row vector 3=, =, {,)EC, be fixed. Then for any
ar, BrEC* which are not real multiples of Cp, k=1, 2, ---, g, there are Abelian
differentials of the first kind @(Ax, ar) and ¢,(By, Bi) such that

SAj¢s(Ak, ak)/er (SBj¢L(Aky ak)+ak5jk)/Cj:

(1, 280 =pssss)ics, [, 9B BV

are all real numbers, j=1, 2, -, g.  Each differential ¢,(A;, o)) is determined
uniquely by 3 and a,. Similarly ¢,(By, Bs) is uniquely determined by 3 and Bi.

Proof. For each k=1, 2, ---, g, consider the system of linear equations

M

-,
Il
[

xiCiTij_xg+jCj=_ak5jk
(1) ]:ly 2’ Tty g‘

g 4 & -
21 X CiTij— X g4 Cj=—Q 105
&

2) The sum of residues here includes the residue of @¢ at Iy, k=1,2,---,N. (We can
obviously define II{es @¢ etc. despite the fact that @¢ is not an Abelian differential on
&

Ry. Cf. [14]).
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Since the determinant of the matrix

[CiTij» —Ci5ij]

Eizis, —Cibij Jijerons

is 2i(—1)%|C, - L,1%det (ImE) =0, system (1) has a unique solution x;=a,;,
Xgri=0h;, J=1, 2, -, g. Clearly (@, -=-, @pg; &k, -+, &kg) is also a solution of

(1). Hence by uniqueness a,; and ak; are all real numbers. We can easily
verify that the holomorphic differential

O(As, ar)=anlipT+ - +ae 0%

satisfies the following period conditions :

[ SA ¢A(Ak; ak)':aijj
Jj

(2) j=1’ 2’ 8.

1 SBjGZSs(Ak, ak):a;szj_akajlz
A similar reasoning yields that the system of equations

g
El X&iTij— X g4 8=—BrTej
(]-l) j:]-r 2: e, 8

P - _
121 X:&iTiy— X g4 /85=—BrTrs

has a unique real solution x;=pf; Xg4;=PBk; Jj=1,2, -, g (for each fixed
k=12, -, g). Setting

g
¢a(Bk» ,Bk): §1 (,BkiCi'i',Bkaik)QD:'k ’
we obtain a holomorphic differential ¢,(B,, 8:) which satisfies
SAJ¢3(Bky ng):ﬁijj']'ﬂkajk
(2/) j:l, 2} i ’ g'
[, 8.8 B0=8it,
i
Thus we have proved the proposition.
As a simple corollary of Proposition 2 we have

Proposition 3. Let 3=(,, -+, {,)EC, be a fixed g-row vector and a=(ay, -,
ag), b=(By, =+, Bg) any two g-row wvectors. Then there are 2g real numbers
X1, v, Xg 3 Y1, v, Vg Such that
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SAﬁD:aj‘l'ijj, SB o=B;+y&;, =12, , g
J J

hold for some Ablian differential ¢ of the first kind. (Of course, ¢ may be
identically zero.)

We can also prove

Proposition 4. Let 3, a, b be as in Proposition 2. Then
(1) @i(As, ar), ¢u(By, Br), k=1,2, -, g are linearly independent over reals, and
(ii) every Abelian differential of the first kind (on Ry) can be written as a linear
combination of ¢;(A., ar) and ¢;(By, Br) with real coefficients.

Proof. To show the linear independence, let ¢, -+, ¢, ; cf, --+, ¢z be real
numbers such that

4 g
El Ci¢A(Ai: a)+ 12=1 C§¢A(Bi, ,Bt)=0-
Then, computing the Aj-period of the differential on the left hand side, we have
8 4 ,
§1 CiatjCj+ 1=21 Ci(,BijCj+,Bi5ij):O
for certain real numbers a;; and §;; (see equation (2')), or
g
G §1 (csasz+cifi)+Bic;=0.

Because f;/{; is a non-real number, it follows that ¢;=0. By a similar argument
we know that ¢;=0. Thus we have proved (i).

In order to prove (ii), let ¢ be any Abelian differential of the first kind.
Since «;/¢; and fB;/{; are non-real numbers, there are 4g real numbers
x5, 5, x5 v; (j=1, 2, ---, g) such that

[ o=xitrrxps, | o=vititysmy.
J J
It is easy to verify that the A;- and Bj-periods of the Abelian differential

ot £ DA, a)—x:piBs B

are both real multiples of {;, j=1, 2, ---, g. Hence by Corollary to Proposition 1,
we conclude that
I
o= El Lxi@a(By, Bi)—y:@s(As, ai)]. g.e.d
It is clear that for fixed 3=({;, -+, {g) we can take a=(ay, -, ag), b=(8,,
-+, Bg) as a;=f;=2ri/E, j=1,2, -, g. In this case we shall write simply

¢:(Ar), ¢,(B,) instead of @,(A, ar), ¢(By, Br) and call them the 3-basis for the
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class of Abelian differentials of the first kind. When 3 is chosen so that {;=1,
j=1,2, .-+, g, we shall omit the index 3, too. Thus ¢(4,) stands for ¢,(A,, 2xi)
with 3=(1, 1, ---, 1). We note that zﬁ(A,,):—z—:t—i—gS(A,,), &(Bk)z—-zjlr—igb(Bk) are
holomorphic differentials on R, such that

Re | dtn=r'xr,

where 7, 7’ represent any two of the cycles A,, ---, A;; B, -+, B,. Namely,

B(AY), -+, (Ag); §(By), -+, §(B,) are the elementary differentials of the first
kind in the classical sense (cf. [9]).
Let @,(A:), @.(B;) be the integrals of ¢,(A4;), ¢:(By), k=1,2, -+, g:

o.40)="p.(40, @,<B,,><p>=§"¢,<3k> ,

So as to make these integrals single-valued, we consider them on the planar
g
surface R;=R,— ;-Ul (A;YB;) only.

Now . recall that the local parameter z, about the point p, on R, is fixed
for each k=1, 2, ---, N. We set

1

[ ajv(ax pk):——[—————-——du¢b(A])

dzy ]zk=o j=1,2, -, g; k=12, - N;

1 dv¢a B )J=0, 1, 2, .
l b pk>=—[——(—’)]”=0

y!

3)
v! dz;

Then the integrals @,(A,) and @,(B;) are expanded in Taylor series :

[ D(A)z)= j;’ a3, Pz
4) j=12 -, g k=12 -, N.

1 D.(B)zp)= éo b3, Dr)zi

Notice that the numbers aj, bj, are not determined uniquely.
In accordance with the aforementioned convention, we write a;(p.), b;,(p.)
for aju(ay pk)y ij(a! pk) When a:(lr ]-r Tty 1)'

II. Existence theorems

3. Let T be a closed Riemann surface of genus one (torus). We fix a
canonical homology basis {C,, C,} of T. Let dE, be the normal differential of
the first kind with respect to the homology basis {C,, C,} :

SCOdED:l, ScldEo———r,
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where ¢ is a complex number with positive imaginary part. Without loss of
generality, we may assume that w=ZE\q), g€ T’'=T—C,\JC, maps the cut sur-
face T’ onto a rectilinear parallerogram on the w-plane. We may also assume
that the image of T’ under the mapping w=ZFE,(q) is exactly the parallerogram
with vertices at 0, 1, 147, ¢ in this order (see Siegel [15], Vol. I, pp. 48-55).
Denote by

II={zeC|z=m+nt, m, neZ}

the period module. As is well known, T is identified with C/II. The inverse
mapping of w=FE,q) defines the natural projection mapping which we shall
denote by p. In order to make clear the dependence of T upon 7, we sometimes
write T=T(l, 7). It should be noted that when we write T=T(l, ) we have
fixed a canonical homology basis on 7.

We also note that the projection mapping p depends on the choice of a
canonical homology basis {C,, C;} of T. As is well known, for a single torus T
there are infinitely many distinct p’s which are the projection mapping C—T.
In many cases, however, we may fix a canonical homology basis {C,, C,} of T
once and for all. Thus p in the sequel means, if not mentioned further, the
projection mapping which is associated with this fixed canonical homology basis.

Let T=T(, r) be a torus with the canonical homology basis {C,, C;} and
dE, the normal holomorphic differential. Any group homomorphism 7% : H,(Ry)
—H(T), N=0, can be explicitly written as

(LA D=m;o[Co]+mulCi]
(5) ([B;1)=n;[Col+n;[Ci]
(D=1l Co]+1u[Ci] k=12, -, N—1,
for some integers mji, nji, lps, j=1,2, -+, g; k=1,2, ---, N—1; i=0, 1. Here

[X] denotes the homology class determined by the cycle X (on Ry or T).
With every »: Hi(Ry)—H\(T) we can associate a unique linear mapping

L,: H(Ry)—>1II

defined by L,,[X]:S X])dEo, [X]eH,(Ry).® If 5 is given by (5), we have

70
L,LAd=mj+mjz

(6) L,[B;l=nj+nut
L,[DyI=lyet1pt

We shall call L, the linear mapping associated with 7).
If fis a continuous mapping of Ry into 7T, then it is well known that f
induces a homomorphism of H,(Ry) into H,(T). The induced homomorphism

j:]_, 2, e, g
k=12, -, N—1.

3) More precisely, let ¥ be a cycle on T such that [Y]=%([X]). Then we define

L”[X]=fydEo, which is determined uniquely regardless of the choice of a cycle Y.
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will be denoted by fi. Conversely, every homomorphism 7 : H;(R.)—H\(T) is
always induced by a continuous mapping of R, into T (Hopf [7]). In particular,
for each homomorphism %: H,(Ry, 0Ry)—H\(T) there is a continuous mapping
f:Ry—T such that fy=7. On the other hand, we know that not every homo-
morphism between H,(R,) and H,(T) is induced by an analytic mapping of R,
into T (Gerstenhaber [4]; see also Proposition 5 below).

We shall investigate conditions for the existence of an analytic mapping
f:Ry—T, N=0, which induces a given homomorphism between the homology
groups and has a prescribed behavior near 0Ry. In order to describe the
boundary behavior, it is sufficient to consider the following type of analytic
singularities (cf. Ahlfors-Sario [1], p. 299, for example). By an analytic singularity

S which is given at dRy we mean a collection of N functions S;, -+, Sy such

that

(i) each S, is a multi-valued analytic function on a punctured neighborhood
Of pkv

(ii) dS./dz,= -,i::o s(pr)/zst, uniformly convergent on 7,=|z,|=2r, for every
small »,>0, and
(i) é} so(pr)=0.
‘We shall write as
S={S:}

and denote by &(Ry) the totality of all analytic singularities at dRy. We simply
say that an analytic mapping f: Ry—T has the singularity S={S,} i, =&(Rxy)
if

d(p™'=f)—dS,

can be extended holomorphically to the point p, for every k=l,2, .-, N¥. If
this is the case, we shall write as o(f)=S.
For every g-row vector 3=((,, -+, {;)EC,, we know that
N ©
-1 PYS)=—Re :‘:’1 VE=)0 a3, Pr)spr)
is convergent for each S€e&(Ry) and j=1, 2, -+, g, since
N N
S 2 au pspR)= S ,<Aj><z,,> t 4z,
k=1 v=0 k=1 1Z2pl=Tp
with small »,>0.
Similarly
N 0
(7-2) Q4(S)=—Re k2=l g b3 Dr)su(Pr)
is convergent for every Se&(Ry) and j=1, 2, -+, g.
We also set
® R (S)=—2ris(pr), k=1,2,-, N.

4) d(p~tef)=f*(dEy), the pull-back of dE, by the mapping f.
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Then @}, Q% and R, give linear mappings of &(Ry) into R and C respectively.
If 3=(1, 1, ---, 1) we shall write, as was noticed earlier, 2,(S) and Q4S) instead
of @¥S) and QXS).

4. In this section we shall prove the following

Theorem 1. Let Ry=R,— {p:} -, be a Riemann surface of finite type, N=0,%
and T=T(, ) be a torus. Then for any group homomorphism n: H(Ry)—H\(T)
and any analytic singularity SES(Ry), the two assertions below are equivalent to
each other.

(1) There exists an analytic mapping f: Ry—T such that

(i) f«=n, and
(i) a(f)=S.
(I (i) RK(S)=L,[D:.], k=1,2, -, N, and
(ii) there exists a holomorphic differential ¢ on R, such that

[, p=Lolad+e(s)
j—:l’ 2, -, g.
[ =LaLBA+0AS)

Proof. (I)>(1I): Suppose that there is an analytic mapping f: Ry—7T which
induces . Then

dp=d(p 'f)
is an Abelian differential on Ry (not on R, in general, for it may have essential
singularities at some of p,, ---, p»!). If n is given by equation (5), we have

= “l= = ST= X
SAij_Sf(Aj)dP Sn([Aﬂ)dEo Mjo+msuT L’][AJ]

— -1 —n. S T= :
S3j¢—gf(31)dp _Sn<c8jl>dE°_n’°+n”T L,LB;]
and
Snkgbzgfwk)dp_1ZS77(tDkJ)dEo:lk°+lk’T:L”ED”] » k=L, N

Because f has the singularity S, we have first

u9)=[ ¢=L,0,1, k=12 N,

Dp

Next, due to Proposition 3, we can find an Abelian differential ¢ of the first
kind which satisfies

SAj€0=51+mj1‘F , SBj‘,ﬂ= ni+nnt

5) If N=0, conditions (I), (ii) and (II), (i) become vacuous (and (II), (ii) is simplified).
Cf. Theorem 2.



Riemann surface 601

for some real &;, p;, j=1,2, -, g.
Applying Proposition 1, we have

271 3 Res O(A,)g— o)
k=1 I}

1l

5 ([, 00, w=o—(, a0, =0

v=1

Il

3 Cap(tto—9.)— (@) —27id,) (im0 —E.)]

=1

©

Il
M=

Ha(no—n)—aj(m,—E&.)]1+2xi(m;—E;) ,

v=1

or

Re ;é; I%e;zs @(Aj)(gb—go):mjo—ﬁj:SA ($—o)

=LA, o

On the other hand, we have for a small positive number 7,

N _ N 1 dS,,
§ R oye—o- § o4 o

[ oy
1Zpl=Tp

=2 £ aup0son),
since the mapping f has the singularity S. It follows that
[ o=LilAl+2(S), j=12 -, 5.
Similar reasoning yields
[, =Ll B+O(S), j=L2 - g.

Thus we have proved (I)=>(II).

We shall now prove the converse. Assume that an analytic singularity
S={S,}L,.e6S(Ry) satisfies (II). In the first place we construct a holomorphic
differential ¢’ on Ry such that ¢’—dS has a holomorphic extension to each
point of p, ps, ==+, py. This is achieved by using the classical Dirichlet principle.
(For the detail, see, e.g., [1], [10], [15] etc..) If we normalize the periods of

¢’ so that SA ¢’ and SB ¢’ are all real, then ¢’ is uniquely determined (cf. Pro-
i 4

position 4 and Corollary to Proposition 1). An application of Proposition 1 implies

N N
27 Re 3 Res @(A,)dS=2x Re 33 Res O(4,)¢

i (], g, 41, 9 )
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:zn'SAij ’
and hance
2+, =0, j=12 -, g.
J
Similarly we have

0], ¢=0, j=L2, - g.

By our assumption, there exists an Abelian differential ¢ of the first kind
whose periods satisfy

SAJ¢=L71EA;]+9°J-(S), SngD=L,7[Bj]+Qj(S), j=1,2 -, g.

If we set
Y=9¢'+o,

we have
SAij:L,][Aj:I, Sngb:L,,[B,-], j=1,2, -, g.

Next, for each k2 we have

[,.0=I

vDp

'=(, dsi=249),
and hence

[, 9=LD3, k=12, -, N

Now we set f=po(Spgb>. Then it is almost clear that f defines a single-

valued analytic mapping of Ry into 7 such that fy=7 and o(f)=S. This
completes the proof of Theorem 1.

Remark. Since 7 is a homomorphism of H;(Ry) into Hy(T), the sum
LD+ - + ([ Dx])
is zero in H,(T), and hence
k}i L,Dy1=0.
On the other hand, we have

N
2 R(S)=0,
i=1

for S is an analytic singularity given at 0Ry. Thus the condition R(S)=L,[D,]
for k=1, 2, ---, N—1 implies ®x(S)=L,[Dx]. Therefore condition (II) (i) in the
above theorem can be replaced by an apparently weaker condition



Riemann surface 603
(i R(S)=L,[D:], k=1,2, -, N-1.

5. The foregoing theorem has an important corollary which is derived from
Weierstrass (see Krazer’s monograph [8], in particular, pp. 469-471). Namely,
setting N=0 in Theorem 1, we have

Theorem 2. For a closed Riemann surface R, of positive genus g, a torus
T and a homomorphism =n: H,(R)—H(T), the following two statements are
equivalent :

(1) There exists an analytic mapping f: Re—T such that fyx=1.

(I) There is an Abelian differential ¢ of the first kind on R, such that

SA o=L,L4;]
]
j=l! 2, e, 8.
[, o=L.0B]
J
If this is the case, d(p~'=f)=0¢.

If condition (I) in Theorem 2 is satisfied (with an 7+0), then R, and hence
Ry, N=1, is realized as a finitely many sheeted covering surface over 7. The
mapping f in such a case is given by a so-called rational transformation if we
represent R, and T as irreducible algebraic curves. For this reason we shall
say that Ry is rationally realizable over T if there exists a non-constant analytic
mapping f: Ry—T which is a restriction of an analytic mapping f,: R,—T onto
Ry.

In terms of rational realizability we can give a version of a classical result
which was first proved by Poincaré (cf. [8]) and later improved by Haupt and
Wirtinger (Haupt [5]).

Proposition 5. A Riemann surface Ry of type (g, N), g>1, N=0, is ration-
ally realizable over a torus if and only if the period matrix of the Abelian
differentials of the first kind with respect to some (appropriately chosen) canonical
homology basis of R, is

1 Qceceennns 0 7 . =+1/v0---0
(R () +1/v

1. 0
: 10 *
Qrvvveeens 01 0

where Imt’>0 and v is a positive integer (#1).

For the proof of this proposition, see Krazer [8], esp. p. 474, and Haupt [5];
cf. also Gerstenhaber [4].

Remark. If the torus over which R, is realized is T(l, 7), =’ is of the form
(m+n7)/p, where m, n and p are integers such that g is a multiple of .
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6. In this section we shall mention some other immediate consequences of

Theorem 1.

Theorem 3. Let Ry be a Riemann surface of type (g, N) and T=T(1,7) a
torus, g=1, N=0. Let there be given a group homomorphism 7 : Hi(Ry)—H(T).
Let the linear mapping L, associated with 7 is described in

L,LA l=mjs+mj7
(6) L,7|:B_,-:|=nj0+nj17:
Ln[Dk]:lko+lklf

j=1y 2y R g;
k=1, 2, ---, N—1.

If Se&(Ry) satisfies
g
le (mjon j1—mjn j0) < éx Q(Symuy—2PLS)n;),

then there is no analytic mapping f: Ry—T such that fy=n and o(f)=S.

Proof. 1f, contrary to the assertion, there exists such an analytic mapping
f as in the theorem, then the numbers
L,LAJ+2AS)=(ms+PAS)+myt
L,[B;1+0(S)=(n;+0,(S)+nst

are, by Theorem 1, the moduli of periodicity of some holomorphic differential
on R, along A;, B; respectively. By what is known as the Riemann’s inequality
(Proposition 1), we have

Im 2 (1504 PAS)+ 1m0 M F O F D=0 .

Hence
8
Imz- ]Zjl LOmjon—mjn o) +(LASInj;—Q(S)m;)]=0,
which leads to a contradiction, since Im z>0. q.e.d.

Corollary. Let a homomorhism 5: H(Ry)—H\(T) and an S€S(Ry) satisfy
any one of the following conditions:

(1) Cix (LA D) =Cixn([B;])=0
{CoX p([B;1)} - PAS) <0< A{C, X p(LA; D} -QAS)
(D) Coxn(LA;D and CoXn([B;]) are all positive, and
Q,(S)<C1 X 7]([‘4]])
j=1,2 -, g.
QAS)>C, X n([B;])

Then there is no analytic mapping of Ry into T which induces n and has the
singularity S.
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Remark. In Theorem 3 and its Corollary, we have apparently used only the
property of the induced homomorphism of H,(Ry, 0Ry) into H,(T). But this is
not the case; indeed, the condition concerning dividing cycles are included in
PLS) and Q4(S).

7. Let f,, fo be two analytic mappings of Ry(N=0) into 7T such that
(f)x=(fo)x=7% and both of f,, f; have the same singularity SE&(Ry)®. Then

dr=d(p " f1), ¢=d(p ' f3)

are two Abelian differentials on Ry and they have the same singularity at oRy.
Therefore

(/10:(/’1 “(/’2

is an Abelian differential of the first kind. By our hypothesis that (f)«=(f2)x
=y, we have

S ¢'0=S (=) =L, [ AL, A;1=0
Aj 4j

[, 0=, @—g2=L,BI-L,BI=0.
i Bj
and hence
$o=0
This means that d(p~'sf;)=d(p '<f,) on Ry.
Accordingly, we may conclude that

fi=f: on Ry,

provided fi(po)=fo(po) for some point p,=Ry. We have obtained

Theorem 4. An analytic mapping f of a Riemann surface Ry of finite type
(g, N), g=1, N=0, into a torus T 1is, if it exists, uniquely determined by the
following three kinds of data:

(1) the induced group homomorphism fx,

(ii) the singularity o(f) of f, and

(iii) the image point f(p,) under f of a fixed reference point p, on R,.

For any homomorphism »: H,(Ry)—H\(T) we denote by 7* the restriction
of 7 onto the subgroup of H,(Ry) generated by [A,], -, [A,]. We set

Faln, S)={f: Ry—TIf is analytic, (fx)*=%4, and o(f)=S}
and

F(n, S={feFy, Ol fe=n}.
Clearly

By, SISTaly, S).

6) When N=0, this condition becomes vacuous.
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The proof of Theorem 4 actually shows a stronger result. Namely we have

Proposition 6. Let 7: H(Ry)—H(T), SE&(Ry), and (ps, ¢)ERNXT be
given. Then there is at most a single element f in Fa(yn, S) such that f(po)=q,.

We note that §(y, S)=0 for a large number of pairs (», S). This is exactly
the content of Theorem 1. However, as we shall see later (Theorems 8 and 9;
cf. also Theorem 1 in [14]), for any % we can find an SE&(Ry) for which
F(n, S)=0. It is also easy to construct an example which shows that F(xn, S)
is, in general, a proper subclass of Fi(»n, S).

For the completeness we shall also include the following

Proposition 7. Let there be given a group homomorphism 75 : Hy(Ry)—H(T)
and an analytic singularity S at 0Ry, N=0. Then, either Fa(y, S) is empty or
it contains uncountably many distinct elements. If Falyp, S) is not empty, every
fin Faly, S) is decomposed into a form

f:X"fo ,

where y denotes a fixed-point free conformal automorphism of T and f, is a fixed
element of Fa(n, S).

8. The surface Ry as an open Riemann surface has a very small ideal
boundary. Therefore the complex normalization of Abelian differentials is also
available for the present problem. (In this connection, see Kusunoki [9], [10];
cf. also [14].)

Recall that ¢%, :--, ¢} are the normalized differentials of the first kind with
respect to the homology basis {4, B}, :

[ ot=ty. ij=12 g
4j
The matrix T=(z4;)s, j=1,...¢ With rij——-gﬂ o¥ is uniquely determined. Let @F be
i
integrals of ¢ on Ry=Ry— U (4B and suppose that
) Oi(zi)= 3 ai(p)zi about ps, k=12, -, N.
Then, as in the real case (cf. equations (7-1) and (7-2)),
N oo
(10) PHS)=—2m1 ?‘:l Z‘B af(pi)s.(pi)
is well defined for every S={S,} ., €&(Ry), dS,/dz,= i s, (pr)/zit.
We are now ready to prove

Theorem 5. Let Ry be a Riemann surface of iype (g, N), g=1, N=0, and
T=T(, t) a torus. Let SE&(Ry) and 7 be a homomorphism of H\(Ry) into
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H(T). Then the statements below are equivalent to one another.
(I*) There exists an analytic mapping f: Ry—T such that

(i) fe=n, and
(i) a(f)=S.
I (i) R«(S)=L,[D,], k=1,2, -, N, and

an @ eNS= 3 L[Adey—L,[B], j=12 -, g.

First we note that condition (II*) is equivalent to

(II**)  There exists an Abelian differential ¢ of the first kind such that
(12) SA ¢=L0[Aj:| , SB go:L,)[Bj]-{-Q’;"(S) , j=1, -, g.
J i

Since the equivalence of (I*) and (II**) can be shown by word-for-word modi-
fication of the proof of Theorem 1, we accomplish the proof of Theorem 5.
Another way to prove Theorem 5 is to show the following

Proposition 8. Among the functionals @;, Q; and P¥ the following identities
hold :

(13) Q’;‘:Qj— é Tijg,; , ]=1, 2, e, g

Proof. We recall equations (1) and (1’). Since, in the present context,
&= =(;=1 and a,= +» =a,=pf,= - =B,=2xi, we have

é Apy Im Tij=—27'l'5kj
(14) jy k:]-y 2) ) g‘

iﬁ Brilm ez ;=—2n Re 7,
=1

We also have

g
[ ¢(Aj)= I_ZII a'jiGD:‘k
(15) i=1,2 -, g.
g .
1 #(B;)= 12_1 (Bji+2mid;0)pF
For the sake of simplicity we use the matrix notation.
Set

N=(as;), B=(B:), 1,j=12,-, g.
Divide ¥ into its real and imaginary parts:

T='+T,
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where T'=(Re 7;;) and £"=(mz;;), i, j=1, 2, --- g. Then equations (14) take the
form

(16) WAL =—-2r3,, BIT"'=-27%",
J; being the gXg identity matrix. In particular, % is non-singular.
We also set
P, 0,
P, ) )
and ‘ ¢
P¥ . Re @* Im &%
Pr=| or |=PF B g;*/:[ : ] *”:[ : ]
P% Re &% Im @} )°

Then, by noting (15), we can easily
an P AP, D= B P,
2n 2z
Combination of the first equations of (16) and (17) yields
P =27 A 1 P=—T"P.
Substituting this into the second equation of (17), we obtain

D= B TP+ P =T B+

It follows that
S/B*=9l3*’-I—lﬂ.‘s*”=(D—I’ﬂ3)—li”ﬂ3=D—i‘.B . d
q.e.d.

If the Aj-periods of an Abelian differential ¢ of the first kind are known to
be L,[A;]+2,S), then we have

o= 3 (L,LAJ+2(S) ¢t .
¢ satisfies (II), (ii) in Theorem 1 if and anly if
L,IBA+04S)= & L,LAT+2(S) 7,
or
as) 0(8)= 3, @Srry= 3} L[ Adey—L,[B,].
Equation (18), together with (13), now proves Theorem 5.

9. We shall say that a continuous mapping f: Ry—T is of null type (relative
to ({4,, Bj}]g=l! {Co, C1})), if
(19) UQIE(I’(A;)XCy)2+(f(B,»)><C»)2]=0, =12 -, g.

This condition means that for each j=1, 2, ---, g we need only one of C, or C,
to express the image classes [ f(A;)] and [ f(B;] (cf. [14]).
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The following proposition is an easy consequence of Theorem 2.

Proposition 9. A Riemann surface of finite type cannot be rationally real-
1zable over a torus by means of any analytic mapping of null type.

Now we shall prove

Theorem 6. Let Ry be a Riemann surface of type (g, N) and T=T(, 7) be
a torus, N=1, g=1. Let a non-degenerate analytic singularity S at ORy be given
(i.e., SE&(Ry), dS#0). Then the following two conditions are equivalent:
(I) There exists an analytic mapping f: Ry—T such that
(i) f is of null type, and
(i) a(H)=S.
(Al) There is a g-row vector 3=(&,, -+, L)ECy, {;=1 or 7, such that

(20) FYS)=0%S)=0 modZ, j=1,2, -, g,
and
1) R(S)=0 modIT, k=1,2, -, N—1.

Proof. We shall only give a proof of (I)=>(II), for the converse is similarly
proved. Let f:Ry—T be an analytic mapping of null type which has the
singularity S. Then there exists a g-row vector 3=((, -, {;), {;=1 or 7, such
that

LA d=m{;, L;[Bjl=ng;
for some integers m;, n;; j=1, 2, -+, g.

If we take 3-basis {¢3(4)), ¢35(By} %, for the class of Abelian differentials of

the first kind and form the corresponding linear mappings @%, Q3 (cf. equations

(7-1) and (7-2)), then the same argument as in the proof of Theorem 1 implies
(1D). g.e.d.

Remarks. (1) A more general theorem which replaces Ry by an arbitrary
open Riemann surface can be found in [14].

(2) It is not difficult to give a similar theorem for an analytic mapping
f which satisfies, in addition to (19),

1 (ADYXCI=0, k=1, -, N.

We may as well consider another speciality of topological properties (of
analytic mappings). A continuous mapping f: Ry—T will be called, for lack of
an appropriate name, A-null type, if

LAAN]=0

for each j=1, 2, ---, g. As a counterpart of Theorem 6, we have by Theorem 5

Theorem 7. Let Ry, T and S be as above. Then there is an analytic mapping
f:Ry—T of A-null type which has the singularity S, if and only if
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(20*) Q).T(S)EO mOdH’ J:]-r 2’ v, 8,
@n RH=0 modIl, k=12, -+, N—1.

It should be noted that Theorems 6 and 7 have very close form to the
classical theorem of Abel (cf. [9], [14] etc.).

ITII. Analytic mappings which induce the prescribed homomorphism
10. Contrary to the compact case (N=0)—see Theorem 2 and Proposition 5—

we can prove the following

Theorem 8. Assume N=1. Let Ry be a Riemann surface of type (g, N)
and T a torus. Then for any given homomorphism n:H(Ry)—H,(T) there
always exists an analytic mapping f of Ry into T such that fe=n.

Proof. Let T be represented as T=T(1, v) and » be described in equations
(5). It suffices to show the existence of N sequences {s,(pp)}ieo, k=1, 2, =+, N,
of complex numbers such that

lim sup ~/[5,(p) =0

ZﬂiSo(Pk)z—LqEDk]
LY g .
22) 27 3 3 al(p)sp=L,[BI— X L[Adey;, j=12 -, g.
Once such sequences can be found, it is then clear by Theorem 5 that there is

an analytic mapping f: Ry—T which induces % and has the singularity S defined by
S={Se}-,

where dSi/dzi= 3 s.(pu)/z™ k=12, =, N.

We are now to show that system of equations (22) always has a solution.
First of all, we note that the first term of each sequence {s.(p:)};>, is uniquely
determined :

sope)=—L,[D1/2n1, k=1,2, -, N.

We set
sv(pk):‘oy y:l’ 2! s k=2y 3, ) Af.
and furthermore, for simplicity, we set
em g LBA— B LAJe+ 3, a0l ID,1}
T on Kot = T i =1 a3 Pyl i=1,2, -, g,
al,=a¥(p)
! e v=1, 2, ---.

3»':5»(?1)

7) Similar statement for a more general open Riemann surface is valid as well. In fact,
the pure-existence part of these theorems is a simple consequence of Behnke-Stein
theorem (cf. [14]).
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Now we have to solve the following system of linear equations with an
infinite number of unknowns s,.

(22,) il a_)j"vsvzcj: ]=1, 2; s, 8

with additional condition

22" lim sup +/T5,[=0.

Since a};, is the y-th Taylor coefficient of the holomorphic function @%(z;) on the
unit disk U,;={|z| <1}, we know

> laf|?<oo.
v=1

In fact, we may assume that @F(z,) belongs to the class H*U,), the Hardy class
[of index two]. Hence, for each j=1, 2, ---, g, the sequence (a}, ak, =) is
considered as an element of the complex Hilbert space (2={(t,);-.|t.€C,

o, ]t,|?<oo}. What is more, it is obvious that these g vectors are linearly
independent in (2. Therefore by using the method due to E. Schmidt, we know
the existence of an [%-solution (s, s;, --). Namely, there always exists a sequence
{s.}s-; which satisfies

(23) 3 ahs=c;, j=L2 . g
and
23" i}l |s,|2<00.

The [*-condition (23’) is, however, much weaker than our demand. We have
to show the existence of such a sequence as satisfies even (22”). To this end,
we note that the number of equations in (22’) is only finite. It follows that we
can actually find a solution (s;, S5, -+-) of (22’) such that s,=0 for all v=y,, v,
being a sufficiently large positive integer. This completes the proof of Theorem 8.

Incidentally, we have shown that there are infinitely many distinct mappings
f's which induce the given n: H,(Ry)—H,(T), for there are infinitely many
distinct ways of choosing s, for large v’s.

11. We could follow the Schmidt’s procedure to obtain an estimate for the
number v,. But we prefer to make use of a function-theoretic property of the
coefficients a}, in system (22). To do this we shall first prove the following

Proposition 10. Let a}, be the v-th Taylor coefficient of @F at the point p,
(with respect to the local parameter z,), v=0,1, 2, --- ; j=1,2, -, g. Then, for
every n=2g—1 rank (af)s=1.5.... s =&

Proof. Suppose that, contrary to the conclusion, there is an integer n=2g—1
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for which rank(a}ﬁ,)zzi:%tz: ‘ is strictly less than g. Then we can find g complex
numbers #,, ts -+, f, such that

(i) [ty ]+t 4+ +12,1>0, and

() tat+tah+ - +tah=0, v=1,2, -, n.

If we set
dP*=t,d0¥+1,d D%+ -+ +1,dD%,

d®* is an Abelian differential of the first kind. Since X&,|#;| >0, we know
d®*#0. Therefore, the degree of the divisor (d®*) is exactly 2g—2. On the
other hand, the first n derivatives of the integral @* (with respect to z,) vanish
at the point p,, for by property (ii) we have

[ a0 ] —pl-(tiak+ - +1gak)=0, v=1,2

dzll, 21=0— . 11y g¥gy/)—VY, Y= » y ’ n.

Hence deg (dp*)=n=2g—1. This contradiction proves the proposition.
Now we are ready to prove

Theorem 9. Let Ry=R,—{p:, ps, =*, pn} be a Riemann surface of type
(g, N) and T a torus, N=1, gz1. Then, for any homomorphism 7:H,(Ry)
—H(T), there is an analytic mapping f: Ry—T such that

(1) fe=7$,

(ii) at an arbitrarily chosen one of N points pi, ps, =, pw, d(p~'of) has a

pole of order not exceeding 2g, and

(ii") at each of the other N—1 points, d(p~'ef) has at worst a simple pole.

In particular, if the point chosen in (ii) is a non-Weirestrass point, the
number 2g in (ii) can be replaced by g+1.

Proof. Because rank (a}'f,,)j:,i,%,...,,z =2 by the preceding proposition, there is
v=1,2,, 28~

at least one minor of order g which is different from zero. Let det (a},,)#0,
where 1, j=1, 2, -+, g and 1=y, <p, < -+ <y, =2g—1.

Choose s,=0 if v+#0, v, (in particular, s,=0 for all v=2g). Then s, s,,, -,
5., are uniquely determined.

We have gotten a solution of (22’) such that at most the first 2g—1 terms
are different from zero. This means that f can be taken so as to satisfy (i),
(ii) and (ii") in the theorem.

For the last part of the theorem, it is sufficient to note that if p, is not a
Weierstrass point, then

det (a}",)g i:%:::::gio (see,e.g., [1], p. 330; [10], p. 148).

q.e.d.

Remark. The mapping f in Theorem 9 assumes, in each neighborhood of
the point p;, every value on T infinitely often, since p~'-f has a pole at p,. In
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this connection see Theorem 1 in Ohtsuka [13].
Since the total number of Weierstrass points on a closed Riemann surface
of genus g=1 is at most (g—1)g(g+1), we have the following

Corollary. If N>(g—1)g(g+1), then there always exists an analytic mapping
f:Ry—T such that (1) f induces the prescribed homomorphism between their
homology groups and (ii) the singularity of d(p~'<f) at p; is at most a simple
pole except for a single p, where d(p~'<f) has a pole of order not exceeding
g+l

We have shown the following: Setting s,(p,)=s.(ps)= - =s,(p»)=0, v=1,
we can associate precisely g+N complex numbers with every homomorphism
7: H(Ry)—H\(T), whatever the point p, may be (i.e., regardless whether p, isa
Weierstrass point or not). These g+N complex numbers are canonically deter-
mined by 7. Namely, if the Weierstrass gap sequence at p, is given by

(].:) V1<Vz< o <Vg (§2g—1),

we can set s,=s,(p,)=0 for v+#0, v;. Since y,, v,, -+, v, are gap values at p,,
there are g holomorphic differentials ¢, ¢, -+, ¢, on R, such that ¢; has a zero
at p, whose order is exactly v;—1. Such differentials ¢,, ¢., -+, ¢, span the
class of Abelian differentials of the first kind. It follows that det (a},): j=1.2.-.5
#0. Thus s, s,,, ', 5, are uniquely determined. (The remaining N numbers
so(pr), k=1, 2, -+, N, are always unique.) These g+ N complex numbers serve
as the coefficients of the singularity of an analytic mapping f: Ry—T with
f *=17.

12. Let N=1and Ry=R,—{ps, D=, -, Pn}. Weset R°=R,— {ps, ps, --*, Dn}-
Denote by U the upper half plane {z=C|Ilm z>0} and by L the lower half
plane. The surface R° can be represented as U/G by a Fuchsian group G
without elliptic elements. After Bers (cf. [2], [3]), we define the Teichmiiller
space of R° as follows.

First we set

By(L, G)={

¢(z) is holomorphic in L, SBpEL|y2¢(z)| < oo, and }
2=x+iy
d(r())r'*(z)=¢(z) for every reG.

For each ¢= By(L, G), consider the ordinary differential equation of the second
order

29"(2)+¢()(z)=0, zeL.

Let .(2), n(z) be two linearly independent solutions normalized by the condition
n(—)=n—D=1, 9i(—1)=2y(—1)=0, and set

Wa(2)=11(2)/7:(2) .
The Teichmiiller space T(G) of G is defined as
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T(G)={¢pe By(L, G)| Wy is univalent on L and Wy(L) is a Jordan domain}.

We finally set

D(¢)=C—W4L), ¢=TG).

The space F(G)={(, 2)|¢€ T(G), z€ D(¢)} is called the Bers fiber space over
the Teichmiiller space T(G); it is known to be a bounded domain (and even a
domain of holomorphy) in the complex 3g—3+4+N space B.(L, G)PC ([3]). As
usual, we shall write T(R®) for T(G) and F(R°) for F(G). We denote by R? the
Riemann surface corresponding to ¢ T(R®). Namely, R is a Riemann surface
of type (g, N—1) which has the same marking as R°. Note that the point ¢=0
represents the surface R°=R,— {p,, ---, dn}.

As before, let ¢¥, %, -, ¢¥ be the normalized Abelian differentials of the
first kind. On any R? there are differentials of the same nature which we
denote by ¢¥(¢), ¢5(#), -+, ¢¥(p). The corresponding Bj-periods are denoted by

Tij(¢) .

Due to Ahlfors, Bers, and Rauch, we know that z;;(¢) are holomorphic functions
on T(R®). What is more, Bers showed (see [3]) that D(¢) is the (holomorphic)
universal covering surface of the surface R?; D(¢)/G? is conformally equivalent
to R?, where G?={;ePSL(2, C)|there is a y€G such that Wyey=;-W,}. We
denote by = the projection D(¢)—R?%, ¢=T(R®). For every z€D($), we denote
by R#* the surface R¢— {n(2)}. Then R#? is a surface of type (g, N).

Now, using the variable z€ D(¢) as the uniformizing parameter of RY, we
set oXP)=f{¢, 2)dz, j=1, 2, ---, g. The functions fi¢, z) are holomorphic on
F(R®) (Bers [2]). In particular, the Wronskian

f1(, 2), fi(, 2), - , f1870(, 2)
W(¢, z): f2(¢’ z)y f2(¢, 2’)’ ...... , fgg_ )(¢, Z)

is a holomorphic function on F(R®). Here f (¢, z)=7%y—fj(¢, z), v=0,1, -, g—1;
@, 2=f5"(¢, 2).

Let R’ (resp. T’) denote a generic Riemann surface of type (g, N—1) (resp.
(1, 0)) with the same marking as R° (resp. T).® Then any group homomorphism
7 : Hi(Ry)—H,(T) obviously defines a homomorphism of H,(R’) into H,(T”), which
we still denote by 7.

Now we shall consider the case N=1 and then we have®

Theorem 10. Let R® be a fixed closed Riemann surface of positive genus g
and T be a fixed torus. Let R,=R°—{p} (with p, kept fixed) and 7 : H,(R,)
—H\(T) be a given homomorphism.

8) Here it is assumed tacitly that {Aj, B;}j=,,g,..,¢ has been modified so as to determine
a marking of R,.
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Then we can find g functions

S], 82’ ety Sg

defined on F(R°)X U which satisfy the following conditions:
(1) si, S +++, s; ave meromorphic functions of ¢€T(R"), z€ D($) and t€ U ;
Sfurthermore, they are holomorphic except for those (¢, z, T) such that n(z)
is a Weierstrass point on the surface R?, t being any point in U.
(I) If si(@, 2, ©), so(@, 2, T), =+, S4(@, z, T) assume finite values™, then for
sufficiently small r>0

. _ & sS4, 2 1)
Sl(c’ ¢y z, T)——— ugl V(C—‘Z)u ’

defines an element SC; ¢, z, ©)={S:i(; @, z, T)} of S(R% 7).
() For any ¢€T(R), z€ D(¢) and t€U such that s{¢, z, 7), j=1, 2, ---, g,
are finite there exists an analytic mapping

f(p, 2z, 7): R**—> T(1, 7)
such that (f(, z, ©))«=n and o(f(@, z, )=SC; @, 2, 7).

[{—z|<r

In other words, the singularity of analytic mapping of R, into 7 which
induces the prescribed homomorphism between their homology groups can be
chosen so as to depend meromorphically on the moduli of R, and 7. (Note that
F(R® is biholomorphically isomorphic to T(R,).)

We omit the proof. We only note that the functionals @¥(S), SE&(R?*) can
be computed by means of the global uniformizer z(€ D(¢)) of R° (cf. equation
(10)). The functions s, s;, *:+, S can be explicitly given by

sj(¢, Z, T):LVj(gb: z, T)/W(¢y Z)) J:1y 2) e, 8,
where
Wj(¢) Z, T):det (Cfdﬂ(gﬁ, z, T))y.v=1,2.--o,g ’

Fuv(e, 2), v#J

cilg, z, )=y ! g _
j !cflz—z—;ri—(Lﬂ[B#]— 1_2:1 L,][Ai]z'i#> , v=j.

IV. Some additional remarks

13. We shall now point out some relations of our results to the classical
theory. In this connection, see also Theorem 2 and Proposition 5.

First we recall that in the definitions of the linear mappings 2, Q; and @¥
(j=1, 2, -+, g) a canonical homology basis of R, is fixed. The notation o(f)=S
is, on the other hand, makes sense only when we have fixed a canonical homo-
logy basis of T (hence a projection mapping p:C—T). We shall henceforth
use the notation o¢, ¢, (f)=S if the reference to the basis {C,, C,} is necessary.

9) This is the case if the point 7(z) is not a Weierstrass point of the surface R¢ (cf.
) ; see also Bers [2]).
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In order to see the effect produced by the exchange of canonical homology
basis of R,, we rewrite equations (7-1), (7-2) and (10) as follows:

, _ 1 — pRa ¥
(7-1) @(S)=Re - —{ 0(4)dS=—Re 3, Res 0(4,)dS,
7.2/ S)=Re ———{ O(B,JdS=—Re 3 Res &(B
7-2) 0(S)=Re 5| B(B)dS=—Re 3 Res 0(B)ds,
N
(107 @H(S)=| 05dS=—2ri 3 Res O1dS,
2 k=1 Iy

where d=D,+D,+ --- +Dy. (Of course, I}es D(AHdS, l%es D(B;dS etc. should
k k

be understood in the sense of footnote 2), p. 594.)
We shall now prove the following

Proposition 11. Let two canonical homology bases {A;, B;}%-, and {/~1j, Ej}f=1
of R, be related by

LY

(24-1) A= B (At piB)
j:l, 2’ e, g
(24-2) B= ‘; (isAitvi,By)

Let R, Q;, P¥ (resp. @y, Q;, &%) be the linear mappings which are associated with
the basis {Aj, Bj}%, (resp. {A; Bj}4,). Then we have the following identities:

~ g

(25-1) P= ;l (pi;Ps+ pi5Q5)

(25-2) éj: i‘é (i PitviiQ:)  j=1,2, -, g.
(25%) Fr= 3 @t

[
—-

13

Here (k:;)i, j=1,2.... g4 denotes a gXg complex matrix which is uniquely determined
by (24-1) and (24-2).

Proof. Let 3=(1,1,--,1) and let @(A)=dP(A;), ¢B;)=dP(B,) (resp.

g

@(A)=dD(A,), ¢(B;)=dP(B;)) be the 3,-basis for the class of Abelian differentials
of the first kind corresponding to the basis {A;, B;} ., (resp. {71;, ﬁj} £,). (See
section 2.) Then it is easy to verify that

~ g
(26‘1) ¢(Aj)= %11 [#ij¢(Ai)+ﬂi$‘¢(Bi)]

j:]-r 2’ tt, 8.

~ g

(26‘2) ¢(Bj)= El [Vij¢(Ai)+Vi§¢(Bi)]
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Indeed, we have first

g
2 (ﬂi ‘”illz_/li}vik)zajk
=1 ’ j: k:‘l’ 27 sy &

g g
1_21 (#ij,ui;c_,ui_lf{lik)z igl (vijvi;e—”iQVik)=0
since {A; B;} %, and {ﬁj, gj} £, are both canonical. Now we see that

[, (& ot pipBin)=; (5 DudAd+vi6(B01)=0

and that
g , g , .

[, (5 trupan+uipBal)=—{, (£ Doug(Atvig(Ba1)=—2rids
modulo real numbers (j, k=1, 2, -+, g). Hence by Proposition 2 we have (26-1)
and (26-2).

Take an Se&(Ry). Then for every j=1, 2, ---, g we have

- 1 ~
&((S)=Re (- Sd(D(Ai)dS>

[ oa0as)+ugRe ( 2}”. [, 0Baas)]

: 1
= & [moRe (4

1

I

2 @i S+ R4S
Similarly we have
G (S)= 2 @SS, SE&(Ry), j=1,2 -, g.

Let @%, @%, ---, @% be the normal integrals of the first kind on R, with
respect to the basis {4;, B;}{, and T=(r4))s, j=1.2,.. g n,:SB d®¥, as before. If
’ j

&%, &%, .-, &% denote the normal integrals of the first kind with respect to the
basis {A;, B;}{-,, then there are uniquely determined g® complex numbers ;;
@i, j=1, 2, -+, g) for which

Pr= il k0%, j=1,2, -, g.
It follows immediately that for every SE&(Ry)
~ g .
PHS)= 2 ks @HS), j=1,2 -, g.
g.ed.

Remark. Computing the A;- and B;-periods of d®%, we see that the matrix
R=(¥:;)i, j=1,2,.., g Satisfies

RS, TM=(I,, T),
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where
f\'}g:(aij)i, J=1,2,--, 8

Hij Yij

piy vij

’

4 j=1.2,, 8

.

T={Fii j=1. 2 2 » ‘Z"ij=g,\,d¢2‘ ,

By

and ‘R stands for the transpose of ®. It is also well-known that the matrices
K and M are both non-singular (cf. [15], Vol. II).

Proposition 12. (1) Let S€@(Ry) and P;, Q;, P¥ be the linear mappings
which correspond to the same canonical homology basis of R,. Then

@27 PAS)=04(5)=0, j=1,2, -, g
if and only if
27%) PHS)=0, j=1,2,-,g.

(2> The property that an SES(Ry) satisfies condition (27) does not depend
on the choice of a canonical homology basis of R,.
2%y The same is true of condition (27*).

Proof. Assertions <{2), <2*) are simple consequences of the preceding
proposition. For the proof of <1) we only need to recall Propositien 8, equation
(13). Using the matrix notation, we see that (13) is equivalent to

L1(S) Q:(S)

PX(S) [s —zJ 04(S)
(13" ___|= _

S| (3, )| 25

FXS) @,(S) )

(Here, of course, € denotes the period matrix with respect to the basis which is
now considered and the bar stands for the complex conjugation.)
Since the 2gX2g matrix
[ Sg —i ]
Sg _i

is obviously non-singular, we know (1) is valid. q.e.d.
Now we have

Definition. An analytic singularity S is called trivial if it is of the first or
second kind (i.e., R,(S)=0, k=1, 2, ---, N) and (27) is satisfied for some (hence
for every) canonical homology basis of R,. We shall denote by &,(Ry) the class
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of trivial analytic singularities at dRy.

Due to Proposition 12, we may as well define S,(Ry) to be the class

P¥S)=0, j=1,2, -, g
{5e@(RN)} ’ }

R(S)=0, k=12, -, N—-1

with an arbitrarily fixed canonical homology basis of R,.

14. In this section we assume N=1. We have already known (Theorem 6)
that if Se&,(Ry) then there always exists an analytic mapping of Ry into T
such that (i) o(f)=S and (ii) f is of null type. The following theroem gives a
counterpart to this fact.

Theorem 11. Let R, be a closed Riemann surface of positive genus gand T
a torus. Let {A;, Bj}%-, (resp. {Co, Ci}) be an arbitrarily fixed canonical homology
basis of R, (resp. T). Let Ry be a Riemann surface obtained by deleting N
distinct points from R, N=1. Then for every S€&y(Ry) the following two
statements are equivalent :
(I) R, admits an analytic mapping onto T.
(II) There exists an analytic mapping f: Ry—T such that
(i) cho,cln(f)=5, and
(i) f is “not” of null type relative to ({A;, Bj}4-1, {Co, Ci}).
Proof. Assume (I). Let z be the C;-period of the holomorphic differential
dE, such that ScodE":l' Then by Theorem 2 there exists an Abelian differential

¢#0 of the first kind (on R,) such that

S g0=mjo+m,-1‘t'
4;
j:ly 2» v, g
SB],S":”JO"‘nnT

for appropriate integers mj, nj; (j=1, 2, -+, g; k=0, 1). Since S is a trivial
analytic singularity, 2,(S)=0;5)=0, j=1, 2, ---, g,and R,(S)=0, k=1, 2, ---, N—1,
where @;, O; are the linear mappings corresponding to the basis {A; B} ..
Thus we have

SA gD’—‘nljo“l‘ﬂlle'l'ij(S)

j
jzly 21 Tty g'

[, p=natnac+osS)

Using Theorem 1, we may conclude that there is an analytic mapping f: Ry—T

such that ¢(f)=S. Moreover, the induced homomorphism fy: H,(Ry)—H(T) is
given by
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F«(LA;D=m;[Cod+mulCi]

S+([B;D)=n;[Col+nulCi]
and hence f is not of null type relative to ({4, Bj}%£,, {Co, Ci}). Indeed,
g(m§o+n§0)(m§1+n§,)>0, since ¢#0. Thus we have proved the implication

{H=>AD.

Suppose, conversely, that there is an analytic mapping f: Ry—T which has
the following properties :

(i) a(f)=S,

(ii) f is not of null type relative to ({4;, B} %, {Co, Ci}).
Then by Theorem 1 we can find an Abelian differential ¢ of the first kind (on
Ry) such that

[ =L LAT 2(S)=L,L4])

(28) =12, g,

1 [, e=L [BI+0(S)=L,[B]]

where L;, is the linear mapping [of H,(Ry) into the module II={z=m+nr|
m, n€Z}] associated with the induced homomorphism fy: H(Ry)—H(T).
Because f is not of null type, we can find 4g integers mj,, n; (j=1,2, -+, g;
k=0, 1) such that

Lf.[Ajjzmjo+mjlf .
(28-1) =L2 -, g,
Lf.[Bj]':njo+nj1T

(28-2) i (o n2o)m 1) >0,

Condition (28-2) implies that ¢=0. Taking account of this fact, we conclude
from equations (28), (28-1) that there is an analytic mapping of R, onto T (cf.
Theorem 2). q.e.d.

Remarks. (1) If S degenerates (i.e., if dS=0), then Theorem 11 still remains
true (cf. Proposition 9 and footnote 10)).
(2) The implication (II)=>> (I) can be proved under weaker conditions

(29-1) P{(8)=045)=0 modZ, j=1,2, -, g,
(29-2) R(S)=0, k=12, -, N—1.

It follows from Proposition 11 that (29-1) does not depend on the special choice
of a canonical homology basis of R,.

(3) The preceding theorem shows that there is a Riemann surface Ry which
admits two analytic mappings f,, f» with the following properties: (i) f;, f. are
mappings of Ry into the same torus; (ii) they have the same singularity; and
(iii) f; is of null type, while f, is not.
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Now let a non-degenerate'® S€&(Ry) be given. Let {A4; Bj}4, (resp.
{Cy, C;}) be a canonical homology basis of R, (resp. T). Then we shall say, in
relation to “rational realizability”, that the Riemann surface Ry is S-transcendent-
ally realizable over T relative to ({4, B;}&,, {Cy, C,}), if we can find an analytic
mapping f: Ry—T such that

(i) 0«co,cll(f)=S, and

(i) f is not of null type relative to ({4, B}, {Co, Ci}).

If this is the case, f is an analytic mapping of Ry into 7 which can never be
extended (holomorphically) to the whole of R,. We say, for short, that
(Rw, {A;, Bj}£,) is S-transcendentally realizable over (T, {C,, Ci}).

Suppose now that S is trivial. Then Theorem 11 asserts that (Ry, {4;, B;} 1)
is S-transcendentally realizable over (T, {C,, C,}) if and only if Ry is rationally
realizable over 7. We have hence

Proposition 13. Let Ry, T be as before and S a non-degenerate trivial
analytic singularity at ORy : SES\(Ry), dS#0. Let {C,, Ci} be a (fixed) canonical
homology basis of T. Then for any two canonical homology bases {Aj; Bj}{,,
{71,-, ﬁj}}’:l of R, statements (1), (1I) below are equivalent :

(I) (Ry, {Aj, Bj}4.,) is S-transcendentally realizable over (T, {Cy, Ci}).

an (Ry, {ﬁj, Ej};Ll) is S-transcendentally realizable over (T, {C,, C,}).

This proposition yields the following conclusion: So long as we restrict
ourselves to the trivial singularities, it is of less importance to refer to the
canonical homology basis of R,. On the other hand, we cannot dispense with
the canonical homology basis of T, for we do need a normal integral on T to
describe the (analytic) behavior of the mappings near 0Ry. It is therefore con-
venient to use, as in the Teichmiiller theory, the notion of marked tori. Then
Theorem 11 becomes

Theorem 11’. Let Ry be a Riemann surface of finite type, T a marked torus,
and SES\(Ry), dS#£0. Then Ry is S-transcendententally realizable over T if
and only if it is rationally realizable over T.

Let Ry be rationally realizable over a (marked) torus 7. Then by Theorem
8 (see also the end of section 10) there exist infinitely many distinct non-
degenerate SE&,(Ry) such that Ry is S-transcendentally realizable over 7. The
same is true, even if we restrict the realization mappings to those which induce
the same homomorphism as the rational realization mapping does.

15. We shall now mention some consequences of the preceding theorems.
Combining Theorem 11’ with a result of Martens [12], we have

10) Many of the results of this section will be true of the degenerate singularity S,
(which obviously belongs to the class &,(Ry)). See, for instance, the preceding
Remark (1). By Theorem 11’ which we shall prove later it will be very reasonable
to agree to the following convention: To say that Ry is S,-transcendentally realiz-
able over a (marked) torus T is nothing other than saying that Ry is rationally
realizable over T. (The same is true of the case N=0, for &¢(R,) = {So}.)
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Proposition 14. If there is a non-degenerate S€S(Ry) such that Ry is S-
transcendentally realizable over a marked torus, them any normalized period
matrix of R, is singular (in the sense of Scorza).

Actually, using theorems of Poincaré and Haupt-Wirtinger (see Proposition
5; cf. also [8]), we can determine the precise form of the period matrix.

Proposition 15. Let SES&(Ry), N=1. Then Ry is S-transcendentally reali-
zable over a marked torus if and only if the period matrix of R, with respect
to “some” canonical homology basis is

100--0 ¢ 1/m0---0
010- -0 1/m

001--0 0

...... .
0---10

l0---01 0

where meZ—{0, £1} and v'=C, Im¢'>0.

16. Let Ry, T be as before, N=1. Let %:H,(Ry, 0Ry)—H(T) be a homo-
morphism. Clearly there is a natural injection

it Hi(Ry, 0Ry) —> H\(Ry).

Also we can find a homomorphism %’: H(Ry)—H,(T) such that 7z’-i=yp,
7’ ([D:1)=0, k=1, 2, ---, N—1. Hence the results so far obtained can be trans-
lated to the case of H,(Ry, 0Ry) in an obvious manner. For instance, Theorem
9 becomes

Theorem 9. Let Ry, T be as in Theorem 9. Then for any homomorphism
n: Hi(Ry, 0Ry)—H(T) we can find an analytic mapping f: Ry—T such that
(i) f«=n, and
(ii) f can be extended holomorphically to the whole R, except for a single
point p, where d(p '<f) has a pole of order not exceeding 2g.
If pi is a non-Weierstrass point, 2g can be replaced by g+1. The point p,
may be arbitrarily chosen.

We omit the details. Note that Corollary to Theorem 9 as well as other
theorems can be similarly rephrased.

17. Consider now a particular case where R, is also of genus one:
R,=T"=T(1, '), Imz’>0.
Let @* be the set of non-zero rational numbers and set

GL*(2, Q)={8=GL(2, Q)|det >0},
G=GL*2, @)/{13:.12€Q*},
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3, being the 2X2 identity matrix. An element & of & operates on the upper
half plane U as

T'=

(1l
£2]
£3]
[4]

(5]
(6]
£71]
£8]
£e]
(10]
[11]

(12}

[13]
[14]
[15]

Gr=2t8 G

a B
rc+d

]‘L’EU.
v o)

Then Theorem 2 reduces to

Theorem 2’ (Helfenstein [6]). There is an analytic mapping of a torus
TA, 7’) into another torus T=T(, 7) if and only if '=8z for some G=g.
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