
J. Math. Kyoto Univ. (JMKYAZ)
21-1 (1981) 171-187

Periodic families in homotopy groups

By

Mamoru MIMURA and Nobuyuki ODA* )

(Received Nov. 5,1979)

§ 1. Introduction

Let p be a prime number. We consider a homomorphism

0 : n* (X : 1,r4;

of degree —1 from the p-primary components of the homotopy groups of a space X
to  the p-primary components of the stable homotopy groups of spheres such that
one or both of the following conditions are satisfied for compositions or secondary
compositions:

00,c0Ek /3) _= 0(cx).E"f3,

4){c, Ek fl, Ek Y}k {0(x),

where the notation is due to  H . Toda [14]. (W e notice that the homomorphisms
used in [12, 13] have these common properties.)

In  this paper we define families of elements by compositions and secondary
compositions and see how to detect them by d- and e-invariants of Adams-Toda
[1, 15] after applying the homomorphism 0 with the above properties. This is a
generalization of the method used in [12, 13].

This paper is organized as fo llow s. In  § 2  we define a  family of elements in
tc* (X ) .  The construction is a generalization of the ones in [1, 9, 12, 13]. Then in
§3 we see how the family of elements is detected by making use of the homomor-
phism 0 and the invariants of Adams-Toda [1, 15]. In §4 we obtain more results
in the case p = 2 in connection with the results in  §12  o f [1 ]. Some examples of the
candidate for 0 will be given in  § 5 .  We study in the last section, §6, the unstable
homotopy groups of S tiefel m anifolds of 2-fram es Vu , 2 = SO(n)1,50(n —2), W. , 2
= SU(n)ISU(n — 2) and X„ , 2 = Sp(n)ISp(n — 2). T h e  results in  §6  a re  summarized
in the following theorems.

Theorem 1. Let n Then

*) This paper was written while the second-named author was engaged in research supported by
Grant-in-Aid for Encouragement of Young Scientist of The Ministry of Education, Science and
Culture, 1978.
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7rn- 2+r(Vn,2: 2 )0 0  f or a l l  r 9  w ith  r# 0 ,  1, 2, 3, 4 mod 8.

Theorem 2 .  Let 5. Then

1r2n-3+r(Wn,2: 2) O f o r  all w ith  r 1, 3, 5 ,7  m o d  8.

Theorem 3 .  Let n  3. Then

n 4n - 5 + r(X  n ,2 : 2 )0 0 f or all

§ 2 .  A family of elements

We use the notation of the generators o f H. Io d a  [14], for example, 7,(S")
= {e„} Z ( n  I) and 7r„., i (S")= {10 ( n  3).

Let in be an in tege r. Assume that an element y of n1 ,,,(S i)(h 1) satisfies the
following condition

(2.1) my =0 in  c ase  m # 2 mod 4

my =  0  a n d  Eyoll i + h ,  = - 0  in case m 2 mod 4.

Under this condition we have

(2.2) fine i + t, EtY, n u i +h +,1, I(Sj+t) +7ri+h+t+ I(S j + 9°Inei+h+t+ 1

f or and t r_ 0 .

Pro o f . By (1.15) of [14] we obtain

DY ,me.i+h+ilrc { tni i + t , Ety, ini i + , + ,} D{me ; + „ Ety , mei+1. +f}t-

The last Io d a  bracket contains the zero element by Corollary 3.7 of [14] and our
assumption (2.1). It follows then that the middle Ioda bracket is equal to

j+ t ° 7 rj+h+t+ 1(S 1 + 9 +  n j+h+ t+  t(S -
1+1 )°mei+h+t+i•

This completes the proof. Q. E. D.

We define periodic families by the construction given by the Ioda  brackets of
the following type.

Proposition 2.3. Let m  and k  be positive integers and y  an element of ni + h (S i)
(h._.1 and P :2 )  satisfy ing the condition (2.1). A ssume that a  is  an  elem ent of
ni(X ) j + k +  1 )  such that i n a = 0 .  Then there ex ists a f am ily  of  elements a(")

of ref+ n(h + I ) (X ) for all n O such that

ce(o) = oc,

Eicx( " )
{ Ct( n - 1 ) ,  nie I+ (n- 1)(h+ 1)5 i+(13-1)(h+1)11} k ni+n(h+ 1

) ( X )  f o r

M oreover, moo =0 f or all n f i) .

P ro o f . Suppose, for the inductive hypothesis, that m oc(") =0. Then we see
that the Toda bracket
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{ (n ) ,
+ n(h+ 1) , Ei-j+n(h+i)ylk C lti+0+ 1 )0+1 )(X )

is well defined. We choose an element a(n+' ) from  this Toda bracket. It follows
then that

m o c (n+1) = a 0H-n o m e i + ( n +  1 0 +  i )

foc("), 1e i + o h + 1 ) , )YleMei-1-(n+ 1)0+ 1)

= 0 ( 0 ) 0 E k t tn e i+n ( h +1 ) — lo
j+n(h+1) ,,- - k ,

t " " i+( n +1 ) ( h +1 ) — k - 1 }

C a ( n ) .E k + n(h + 1)—  elri+(n+ 1)(h+
Si+ n (h + 1 )-9

*-F ( h + 1 )- 1 0 o n it i + 0 +0 0 +1 )— k }Tri+ 1)(11+ 1)—  k(S  nt

= a ( ") °mei+n(h+1.)0 E k ni+(n+1)(h+1)-k(S i + n ( h + 1 ) - 9

(h+
=  M a (

 n ) °  E k  + (n+ 1)(h + 1) — Ic(S i +  n
1 ) - 1 0 =

by Proposition 1.4 of [14] and ( 2 .2 ) .  Thus we have a family of elements a(") of
ni .,„( h +  0 (X ) such that moo = 0  for all n  O. Q .E.D .

§ 3 .  The homomorphism g5 and the Adams-Toda invariant

Let us now consider a homomorphism

0 :  n* (X: p4

of degree —1, namely, a collection of homomorphisms to i l such that

0 i : ni (X : it ( r =  — 1 )

for all j N, where N is a fixed integer. We write simply 0  instead of the above 4,
since there would arise no confusion. Then the homomorphism we consider is the
following:

(3.1) n i(X : p ) --) (r=

Let a e ni (X: p), fl E rc„(Si- k) and y E  7Cb (S a ). We consider further the following
conditions for compositions and secondary compositions:

(3.2) 0(a.Ekfl)= 0000E' 13 f o r  some k,

(3.3) E"/i, Ek Y}k {OW, Efl, E °°Y} f o r  some k,

where k O is a fixed integer.
We remark that the condition (3.2) implies:

If coEk fi =0, then 4)(a).E'fl= OW E% = O.

Thus if the Toda bracket {a, Ekfl, Eky}k is well defined, then the Toda bracket
{4)(a), E'13, E"y} is  a lso  well defined . But, for 13=mt i _k , (1)(a).E'fl = 0  always
holds, because 0(a)ome =IOW = 4)(m Œ) = O.

Making use of the homomorphism 0 mentioned above, we shall now state the
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main theorem that enables us to detect some periodic families in  the  homotopy
group n(X : p).

We consider the following condition:

A =C th e n  h, r 1 mod 2,

(3.4)A = R   a n d  p 2 t h e n  h, r 3 mod 4,

A = R   a n d  p = 2 t h e n  r 3 mod 4  a n d  h a- 7  mod 8.

Let CA b e  the Adams-Toda invariant ec , eR , eR o r e'jz [1 , 15 ]. Then we have
the following theorem.

Theorem 3 .5 .  L et m = p f  and  d  = pg  f o r a prim e  num ber p  an d  integers
f  Let A , h and r be as in (3.4). Let the elements y, a and a(g) be those in
Proposition 2.3. A ssume further that

eA (E 'y ):-Eglm  mod plm

Let the homomorphism 0 of (3.1) satisfy  the condition (3.3). Then

e A 0(a) d  mod p d (1 5 g o 5 p —1)

implies

eA 0(a ( ")) --- g„Id mod pld (1 5 g „5 p - 1 ) f o r all n

M oreover, if  m =d, then the element 1 0 ) is of order d for all n

P ro o f . W e prove the  theorem by induction on n. In  case n=0, we have
oco) = a  a n d  hence eA 0(a0 )) a-  go ld  mod pld (1 g o p  —  1). N ow  let us suppose
that

en0(a(g))a-- gn ld  m od pld

Then we obtain

eA 0(a ( +1))ee,0{ a ( ") , nie i +n(h+ 1) , i + " ( " + " Y }  k

+e A {0(a(g)), me, Eoey} by (3.3)

= + meA (E'y )e n c/)(a( ") ) by Theorem 11.1 of [1]

k„+ i ld  mod pld ( I
 < k , 1 )

by OUT inductive hypothesis and Proposition 7.14 of [1].
Moreover we see moc(")=0 for a ll n_Ci by Proposition 2.3. It follows then

that a(g) is an element of order d if  m= d. Q. E. D.

Remark. In case  p 0 2  a n d  A =R , we may take eA =e ,'  O T e'R with different
values under the condition (3.4). But the choice does not affect the situation, since
we have

e'R(Eoey)- glm mod p I m (1 5 p — 1)
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if and only if

q' 1m mod plm q' p —  1)

by virtue of Proposition 7.14 of [ 1 ] .  In case p = 2, we assume the condition that
h=-7 mod 8 of (3.4) for the same reason.

Remark. In the proof of Theorem 3.5, the term  meA (E'y )e A 4)(1( ") )  should be
understood to be evaluated on  the  suitable spheres (as in  Theorem 11.1 o f  [1])
choosing the representatives of the homotopy classes.

§ 4. More about the case p -= 2

In  th is section we consider th e  2-primary components 2). Then the
homomorphism we consider is

(4.1) 0: n i(X  : 2) —■ 2 7;q ( r= i - 1  and i N).

We put m =21  and d =2g for integers f 1. We take an element y e ni , h (Si)
(j_ .2  and h 7 mod 8) satisfying (2.1). Moreover we assume that

(4.2) e'R(Eoey)._=_1/m mod 2/m.

Notation. F o r  a n  element a e rci(X : 2) (i j +  k +  1) satisfying m a=0, a ( ") is
the family of elements given by Proposition 2.3 with y satisfying (4.2).

Using the notation mentioned above, we have the following

Proposition 4 .3 .  Let 0 satisfy (3.3). Let r=  i — 1 1 or 2  mod 8 and let m a=0.
Then

dR 0(a)00 implies 4 0 ( a ( g) ) 0 0 f or all n_0 .

Proposition 4 .4 .  L e t  r=i — l1  mod 8. L e t  6  be a n  element of
1 mod 8 and — k) such that dR (Eœ6)00.
(1) L et 0 satisfy (3.2). Then

dR 0 (a)0 0  implies dR 0(a.Ei - a6)00.

(2) Let 4) satisfy (3.2) and (3 .3 ) . A ssume that m a = 0 .  Then

Ira + b(S a )

4 0 0 0 0 0  implies dR 0( a 0) 0 Ei+n(h+1)-a(5)00 f or all n_0 .

Proposition 4 .5 .  L e t  r=i — l2  mod 8. L e t  6  be a n  element o f  na+b(S a )

(b 1 mod 8 and aS i—  k) such that dR (E '6) 0.
(1) L et 0 satisfy (3.2). Then

4 0 ( 0 ) 0 0  implies 40(Œ.E i - a6)_=_1/2 mod 1.

(2) Let 4) satisfy (3.2) and (3.3). A ssume that m Œ =0 . Then

dR 4)(a)00 implies e4(Œ(
 0 0Ei+n ( h+1.) - aoc) -_--_-  1/2 mod 1 f o r all
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Let v (n ) be the exponent to which the prime p occurs in the decomposition of
n into powers, so that n = 2 v 2 ( 2 ) 3 v 3 ( n ) 5 v 5 ( n ) . . . .

For p odd

vp (m (t))=
oi f

1 + vp (t) if

Define a function m(t) as follows:

tO0 mod (p — 1)

t O mod (p -1 ).

For p=2

if t#0  mod 2
v2(m(t))=

I{ 2 + v2 (t) if t O mod 2.

Proposition 4.6. Let r=i — l1  or 2 mod 8. Let 0 be an element of lta+b(Sa )
(b=8t —1 and a_i—k) such that m(41)eR (Eœ0) is odd.
(1) Let 4) satisfy (3.2). Then

dR 0(1)00 im plies ex 0(c..E l 0 0)00.

(2) Let 4) satisfy (3.2) and (3.3). Let ma = O .  Then

dR 0(a)00 im plies eR 4)(1(n) 0 E i + n ( h + 1 ) - a 0 ) 00 for all  n>0.

These propositions correspond to  the results in  §12 of J. F. Adams [1 ] .  The
proofs are quite similar to those in [12] and [13] and are omitted.

§ 5 .  Hopf invariant, suspension map and Toda bracket

Consider the homomorphism

p.: ni(St)

induced by a map p : X — St. Then we have by (iv) of Proposition 1.2 in [14]

(5.1) p.(ocoEkfi)=p,(a).Ekfi (k.>_0),

Ek S, Ek Yli t13 *(x), Ekyl,

for elements a e ;(X ), fi  e ir„(Si - k) and y e
Consider the homotopy exact sequence associated with the fibering F E
B:

• 7r(F) 7r,(E) ni(B) ""-, Tr;  i (F) --+ • • • .

Then we have

(5.2) tr(a.Ek/3)= if (a)cEk - ifi I),

tf{a, E"/i, Eky} k c {.(r(a), Ek - Y, (k_>_1)

f o r a e ni (B), fi e n0 (S 1 ) and y E
The formula (5.2) for k= 1. is Theorem 5.2 of [8] and (5.2) for 1 is proved
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similarly.
In the EHd-sequence (2.11) of [14]:

n i (sm) ni+ o m + i) i(s2m+t) (sn)

the behavior of compositions and secondary compositions is described by the follow-
ing formulas.

For the suspension map E, we have by (1.6) o f  [14] and Proposition 1.3 of
[14]

(5.3) E(Œc, Ek 13) = Ea °  Ek+ fi

E{Œ, Ek13, Eky}k c  —{EŒ, E 1#, Ek + 1 7}k+1

f o r  elements a e ni(Sm), # en a (Si - k) and y E nb (Sa).
For the Hopf invariant H, we have by Propositions 2.2 and 2.3 of [14]

(5.4) H(a.Ek13)=H(a).Ek13 (k

H{Œ, Ekfl, Eky} k c {H(a), E" fi, Eky} k( k . 1 )

f o r  elements a e i (Sm+ 1), 13e rta (Si - k+i) and y E ni,(Sa).
When we consider the  elements in  the  2-primary components, we have the

following results.

(5.5) d(a.Ek13)=4(a).Ek-213 ( k  2)

j t a , Ekfl , Eky l k c  _ {Aw, E'213, Ek-2y } k _ 2( k > 2 )

f o r  a e ni (S 2 m+ 1 :  2), fl e no (S' - k : 2) and y e irb (Sa : 2).

Pro o f . The first formula is  due to  Proposition 2.5 o f  [1 4 ]. W e prove the
second one. Let us use the notations in §§1 and 2 of [1 4 ]. We see d = 0.17,7,1,052,
by (2.9) of [14] and S21 = 4 1420  by (2.3) of [1 4 ]. Then we have

4{a, EkI3, Eky}k

=5.41V1,04 1000 {a, Ek13, Eky}k

=  — aoh .41 {0 0 ( co, Ek-i 13, Ek-t y }k .. . . i .

= — a°11;01N{4 1 °Qo(a), E k - 1

= P-V3,
_{a o hp-30 4 1000 ( co, Ek-2p, Ek-2,„1

i l k - 2

= E213, Ek-2 y }k 2 .

Now let us consider the iterated suspension

Eœ:

by Proposition 1.3 of [14]

by Lemma 2.1 of [14]

by Theorem 2.4 of [14]

by (5.2)

Q. E. D.
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from the (t+ r)-th homotopy group of St to  the r-stem of the stable homotopy
group of spheres. Then we have

(5.6) Eoe(atoEk#)=E'acEœ#,

E{Œ, E"#, Eky} k c Eoe#,

by (1.6) of [14] and Proposition 1.3 of [14]. Thus we may define homomorphism

0 : n(X ) — *  4

b y  p u t t in g  0 =E œ , E .1 1 , Eoeollop,,„ Ec°oHozi, Eoe.H.A .p * ,
Ewozrop *  e tc . according to  the choice of the space X  under consideration. So
the homomorphism defined above has the following properties:

(5.7) (/)(coEkil)= 0000E° 13

Cat, E"#, Ekyl k c  {OW, E13, Eoey} (k >N ).

J. F. Adams [1] obtained the periodic families in the stable homotopy groups
of spheres. M. G . Barratt [2] determined the spheres of origin of these periodic
fam ilies. In connection with these families, there are some periodic families in other
spaces as well as the unstable periodic families in the homotopy groups of spheres.
In many cases, they can be constructed by compositions and secondary compositions
and detected by d- and e-invariants of Adams-Toda [1], [15] after applying some
homomorphisms 0 as in  [12, 13]. Before we mention some examples we list some
of the results of J. F. Adams [1] and M. G . Barratt [2].

Proposition 5.8. =  7r,(S ": 2) has the following direct summands:

(1) 8s stem : 7r; +8s =  {P s— 1,n'an+ 8s- 71 = Z2

(2) 8s +1 s te m :  itnn +8s+ 1 = {netis—  1,n + 1° an + 8s— 6} := Z2 s .2 )

+ 8s+ 1 = {K }  Z2

(3) 8s + 2 s te m :  7r;:+ 8s+ 2 = Illnqts,n+  '"="' Z2 (n

(4) 8s + 3 stem: + 8s+ 3 = gs,n} Z 8

(5 ) 8 s+ 7  s te m : nis+12 D W s} Z2,
772s+ 13 = {4 } '='z4,

1 s + 14

ngs+ 16 = {—/ Z16 (s >0),

where n'„' + 1 = frin l z-' Z 2  ( n  3) and n',', +7 = {cin} Z 1 6  ( n  9 ).

The other elements are defined in the following w a y . There exist elements
E 7T?2, V5 e it  an d  C5 e 74 6 o f  orders m=2, 8 and 8 respectively. Then applying

Proposition 2.3 with y =(16/m)o-
i  an d  k = 1, w e have elements pls ) e 1 2  and
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C(55)  e nis+ 1 6  fo r a ll  s O. W e  w r ite  /10 ,3 =n 3 , p s ,3 = t 4 s  1
) ,  CO3 5 = V5 e  n i a n d  Cs,s

=C(
5s- 1 )  fo r s 1 .  Moreover, we write ,u =En - 3 t1/43 fo r 4, C = E n - 5 C 5  for
6, tis =Eœps ,3 a n d  Cs =E"Cs ,5 by definition. Applying the same construction to

ces,the cases a o-= '" ,  a; =a", = a ' and c '= 9 , ces, ,o-
9 , we have the elements and

oe .

We note that

(5.9) 1/16 mod 1/8, ec(its)=-- 1/2 mod 1,

e'R (Cs) 1 / 8  mod 1/4,

ec (Ema's ) -  1/2 mod 1, ec(En4)-=. 1/4 mod 1/2,

ec (EœaT)=-_ 1/8 mod 1/4, ec (E'oesw )  1/16 mod 1/8.

The following examples are obtained by making use of Theorem 3.5 and Prop-
ositions 4 .3 - 4 .6 .  (See [12, 13] for the notations of the generators and the detail
of the proofs.)

Example 5.10. 0 =E'0H;

(1 ) e R' ck(a( n))- - 1/8 mod 1/4 (n O) f or a= Fs n1W-14 G s e irTg+s. 2.2

and Al s e n1r4, 8 ( s  0).

ec ck(cx(n)) a - 1/2 m od! (n_0 ) for a=A s 8 1) and B, e  n7W-16 ( S -  1 ) .

C/84)(0l ( n ) ) 0 0  (n  0 ) f or I= C s e nItV. 7 (s 1 )  and Ds e nles .71 5  (S 1).

ijk(a)0 0 f or a  A (.. Li= --., n )d ° , s',I6s-F8n+8 and B s(
 n ) L l° ,--s',16s+ fini- 16 (na'0, s 1 and

s' _:0).

eR 0(a)0 0 for a  A ç  n=-- - - ." ) , ,i6 s+8n+8°Ps',16s+8n+9 , B ln ) .q t6s+8 .+16°P.s.,16s+8 .+179

Os" ) °14s.,i6s+8.+7 and DI" )  LI° ,--s',16s+8n+15 (n s 1 and s'

eR 4)(a)00 f o r a  A (.. a= --.")°- 16s+8n+8 , B (sn ) ° C/16s+8n+16 , C .(v" ) ° a16s+8n+7 ,

D (sn ) ° a16s+8n+15 , A (sn ), I  6 s  +8 n  + 8 ° 6 16s+ 8(n + s')+ 9 an d  B s
( " ) °

' l6 + 8n+16 0

0 16.5-1-8(n+s')+17 •

Example 5.11. = E"op,„ ;

ec K a '" ] ( " ) ) 1/2 mod 1 (n O ) for

e'R O([v 7 ] (" ) ) .- -- ._ 1/8 mod 1 /4  (n f or

e'R O([2o-1( 0 )---- 1/4 mod 1/2 (n .-()) f or

dR0(016°11 7>( " ) )0 0 (n  >0 ) for

eR0(016°117>( n ) °6 8.+ 1 6 )0 ( n  O).

[e ] e  n i 2 (SU(3): 2).

Ev7i nio(Sp(2): 2).

P a le  It14 (S p(2 ): 2).

016°/-(7> n i 6 (G 2 : 2),

(2)

(3)

(4)
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Example 5.12. 0 =E'°P2*;

(1) ec 0([715 0s6 @cr1 ( 0 )._—_ 1/8 mod 1/4 ( n . . 0 )  f o r  [ri5 os6 Q ui] e n i ,(S U(4): 2),

ec4)([(5EDIA7] ( ") )=•- 1 /2  mod 1 ( n ._ 0 )  f o r  [ C 5 S P 7 ]  n i 6 (SU(4): 2).

( 2 )  e e 4 > ( [ C 5 ( 1 ) 1 4 7 ] ( ° a 8 „  + 1 6 ) 0 0 (n  0 )  ,

etek([C5CDP7] ( ") 0 18n+107 8n+ 17)00 (n >0).

Example 5.13. = Ec°01-lop* ;

e'R(/)(‹C' + 6°a15) ( n ) )=--= 1/8 mod 1/4 ( n . 0 )  f o r  <(' +12 0 7 15> 6  R22(G2: 2) .

§6. Periodic families in the homotopy groups of Stiefel manifolds

In  this section, we show that some sequences of elements are non-zero in the
homotopy groups of Stiefel manifolds V„,2 , 147„,2 a n d  X„ , 2. We deal with the un-
stable range of these hom otopy groups. These periodic families come from the
periodic families of J. F. Adams [1] and M. G . Barratt [2].

( A )  R eal S tiefel m anifold Vn , 2 = SO(n)1S0(n —2)
We consider the exact sequence

(6.1) • •• n g + I(S n -i)L !) n q (Sn - 2 )

rc
q
(V

n , 2
) n q (S n -1 )

 4 4
 g q _ 1 (S n - 2 )

associated with the fibering

(6.2)

A s is well known, we have a cross section s: Sn - 1 -0/„, 2  o f  (6.2) when n  is
even. Hence we see

( 6 .3 )  For n even,

7r„ — 2 + Vn,2) = i*nn— 2 +r(S " - 2 ) @ s* Ir.-2+,(S "')

where i*  and s*  are  monomorphisms.
When n is odd, we have to use the following result [4, 5, 6, 10]:

Lemma 6.4. For n odd,

(1) *tit- 0 =  2 en-2,

(2) E24(a)= 2EŒf o r  a e irq (S" - 1 ).

We first study the homomorphism i* : irq (S" - 2 )-7c q (V„, 2 ) of (6.1).

Proposition 6.5. The following elements are non-triv ial in I t
n— 2  +r(V n ,2 ):

r= 8s: i*Ps-1,n-2°68s+n-9 (s 2,
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r=8s+1:

r=8s+2:

r=8s+3:

i*Ps,n—  2

14din — 2° Ps — 1,n— 1° C r 8s+ n — 8

i *On— 2° Ps,n— 1

i*Cs,n— 2

P ro o f . When n is even, the results are the immediate consequence of the direct
decomposition (6.3). W hen n  is  odd , the results a re  obtained by the  following
Lemma 6.6. Q. E. D.

Lemma 6.6. L et n b e  o d d . Let a e7r„_ 2 + ,.(S" - 2 ). I f  E x  is  n o t  divisible by
2 in 71, then 40100 in Trn— 2 +r(V n,2)•

P ro o f . Consider the exact sequence

irn - +r(S" - 1 ) Irn- 2+ r(Sn - 2 ) nn-2+r(Vn,2)•

W e show tha t the  element a  o f  — 2 + r( S n - 2 )  w ith the  required property is not
contained in  th e  im a g e  o f  z1: Ir.- 1+ r(S" - 1 ) —'nn-2+r(S n - 2 )  a n d  hence iŒ O  in
7rn— 2 + r(V n ,2 )  by the exactness of the above sequence. Let us suppose that a=4(3)
for some element /3 e nn _ i + ,(S" - '). W e see E2 21(/3)=2Efl by  (2) o f  Lemma 6.4.
So È  ' =  EcA(fl)=E'(E 2 z1(J))= E(2Efl)=2Eoe ,6 in  71. This contradicts the  as-
sumption that E'oe is  no t divisible by 2 in  71 . Hence a is not contained in the
im a g e  o f  :  lin _  + ,(S n -1 ) — 7 rn— 2 +r(Sn-2). Q. E. D.

We denote by [a] 6  Trn- 2 +r( V n,2) such an element that 1 ) * [ a ]
 = Œ  e n„-2+r(S" - i ).

Lemma 6.7. For s._...0 and n . 4, there exists an element [Its,.- 7] of n8s+.(V.,2)
such that n  r u 1 u._*._,_ s,n—  1, =  r  s,n— l•

Moreover, 2[,1s o _  , ]= 0  if  n is even;

2 [Ps,n —  1] i* Ps ,n  —  2 `4 18s +n—  1 mod 247i8 s ± „(Sn- 2 ) if  n is odd.

Pro o f . If n is even, the result is immediate from (6.3). For n odd, we consider
the following exact sequence

n8s+.(S" - 2 ) n8s + n(V n,2) n85+n(S"- 1) n8s+n- 1(S n - 2 )

The element //s o - ,  is in ir8 + „(Sn- 1 ). We see

*en- 1) 0 t1s,n— 2 = 2e_—  2  =  2 Its,.- 2 = 0

by (1) of Lemma 6.4. We apply Theorem 2.1 of [7] to the case a= en -i, = 11s,n— 2
and y = 2 e

8 s + n — l •  
Then for an element 6 of {Alt Un-1,9 r-s,n—  21 2e8s+n— there exists

an element r u 1 ]  of 7r8 s + n (V„, 2 )  such that n  r us,n —  1] = Ps,n —  1 and  4 6 = [ t 5, 1 ] .
26 8s+ n =  2[Ps,n— Now we see

{A(en— Ps,n—  21 I lls+  n - 1 }  = Ps,n— 26  8s+ n— 1 } 9  Ps,n—  2 °118s- n— 1

by Corollary 3.7 of [14] (for n=5, consider the suspension map, which is monic).
Then we have
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( mod In_ 2.7r8s a S n - 2 ‘- 1-1s , n - 2 ° 1  fis+  n -1 )+  n 8 s+ n (S 4 -2 )° 2 C 8 s+ n • Q. E. D.

Making use of (6.3) and Lemma 6.7, we have the following

Proposition 6 .8 .  There exist the following non-trivial elements in n„._ 2 + r ( V i t , 2 ):

r= 8s+ 1:

r= 8s+ 2:

r=8 s+3 :

ru s—  1 ,n -1 ] ° 5 8 s+  n -8

1 ,[ i i ,,, ]

[Ps— I ,n —  1] o118 s+  n -8 ° 6 8s+ n —7

[ i i , , ,_  !] ° '18,,+n

(s 2,

n 4),

n

r=8 s+4 : [ f i s , n - 1 ] ô i s+ n (s 0, n 4).

Remark. Computing directly (cf. [11]), we see

1
t2n +3( 112n + 3,2) = {[11 2 n  2 ] }  Z4

for all Then for n  4, applying Proposition 2.3, we may construct elements

[ 112n+ 2 ] ( s )  6  TC8s+ 2n +3(V2n +3,2) for

We may use this element instead of [ , s,2n-1-2]•

(B )  Complex Stiefel manifold W „, 2 =SU(n)ISU(n — 2)
Consider the homotopy exact sequence

(6.9) no_1(s2.-1) Irq(S2'3) ng(W„,2)

1 tq
(s 2 n -1 ) n q _  (S 2 n -3 ) „

associated with the fibering

(6.10) S2n-3 J 4  Wn ,2 . .L 4  S 2 '.

There exists a cross section s: S 2 "- 1 —■14(„2 of (6.10) when n is even ( [ 5 ] ) .  Then
we have a direct sum decomposition:
(6 .1 1 ) For n even,

n2n —3 + r( W n,2 ) =  i3O 2 ,3 + ,(S 2 " - - 3 ) 0 4 7E2,3+,(S 2 " - 1 ) ,

where i *  and s *  are monomorphisms.
When n is odd, we use the following result of I. M. James and J. H. C. White-

head [4, 5, 6].

Lemma 6 .1 2 . L et n be odd. T hen

(1) 4 (e2n—  1) = 1 12n-3,

(2) E3  AGO= t12.°E2 ct f o r  a e ne(S 2 "- ') .

Making use of Lemma 6.12, we first show

Proposition 6 .1 3 .  The following elements are non-triv ial in rz2n —3 + r( W n ,2 ):
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(1) r= 8 s + 1 : i*Ps,2n —3

r= 8s + 3: i*Cs,2n-3

r = 8 s + 7 : i * E 2 " - 8 4

(2) r=8s: *tis- 1,2n —3 ° Œ2n + 8s-10

r=8 s +1 : i  n*  ,2n —3° Ps— 1,2n— 2 ° 6 2n + 8s— 9

r = 8s + 2: i02„_301.ts, 2n—  2

n 3),

(s n

(s 2, n=4; even n

(s - 2 , n =4 ; s .1 , even

(s ev en  n  4) .

P ro o f . When n is even, the result is immediate from (6.11). Let n be odd.
We consider the following exact sequence:

n2/1-3 + r(S 2 " - 3 ) n2n — 3+ r( Wn,2) •n 2n — 2 +r(S 2 n - 1 )

Let r 8s + 1  (s i). T h e n  the element tts ,2 „  3  is in n2 „4. 8s _ 2(S 2 n - 3 ). Suppose

P s ,2 n —  3  =  
A O  for some element fi e t r 2 n + 8 , - - 1 ( S 2 " - 1 ) .

 T h e n  Ps = Em Ps,2,,- 3 = Ec°

=Ew(E3A(13))=Ex(112.°E2fi)=11°Eoe fi by (2) of Lemma 6 .1 2 . We see that ec (rpEoefl)
=e c (ti)dc (E 'l3 )=0  by Propositions 3.2 and 7.1 o f  [ 1 ] .  O n the  other hand, we
have ec (ps.)=- 1/2 mod 1 by (5.9). This is  a  contradiction. Hence Ps,2n— 3  is not
contained in  th e  im ag e  o f  A : It— 2n + 8s — 1(S2 n — I ) - 4 7 T2n + 8s — 2(S2n-3)• Thus w e have
i* P s ,2 n - 3 0 ° .

L e t  r = 8s + 3 (s 0). T h e  elem ent Cs,2n— 3 is

C s ,2 n - 3 =  (fi) f o r  so m e  e le m e n t Be Tr,  -  2n+8s+1(
E '(E 3z1(6))=.E '02.°E 2fl) = 11°E ° 11 by (2) of Lemma 6 .1 2 . We see 2ri =0 and hence
2(7.Ewfi)=0. This contradicts th e  fact that is  an  element o f  order 8. Thus

_ 3 is not contained in the image of A : 7r2n + 8s + 1(S 2 " - 1 ) —÷ 7r2n + 8s(S2n-3). Then
we have i  r* ,s ,2 n -3  0 11

L et r = 8 s  + 7  (s  0 ) . T he element E2 "- 8 a,'  i s  i n  n-2n + 8s+ 4(S 2 n - 3 )• Suppose
E 2  1 1 -  8  s =  A(f3) for some element fi n2n + 8s+ 5(5211-1). Then E'ot's = A O= rioEoe f i
by (2) o f Lemma 6 .1 2 . W e see that ec (Ecc'ots)  1/2 mod 1  and  ec (o.E' )6 )=0  by
Propositions 3.2 and  7 .1  o f  [ 1 ] .  This is  a  contrad ic tion . It follows then that
E2n-8ces is not contained in the image of A : 7T— 2n+ 8s +5(S 2 n - 1 ) - 7 T2n + 8s + 4(S2n-3) and
hence i* E2n- 8 a's O . Q. E. D.

Lemma 6.14. Let n be odd. T hen

n2.- 1(W.,2)= {[2c 2 , , .  d I  Z (n >3),

1r2n-F2(Wn,2)= [w 2n -1 ] }  Z 2 4 (n 5),

7r2n+2(W„,2: 2 ) = {[v2n- 1.]}'="Zs (n >5).

The proof is easy and left to the reader (Cf. [3]).
Making use of the result in Lemma 6.14, we may construct a family of elements.

We apply Proposition 2.3 to the case a= [v2„-1], m =8, y =2179  and k = 1 .  Then we
obtain a family of elements

Ev2„- i r ) e nu+ 86+ 2( Wn,2 2 ) f o r  s O.

S 2  1 )

i n  n 2 . + 8 ( S 2 " - 3 ) .  S u p p o se
T h e n  ( s = E t.s,2n— 3 =
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By Theorem 3.5 and (6.11), we have the following

Proposition 6 . 1 5 .  The following elements are non-triv ial in IT 2n - 3+ r( Wn ,2)
(1) L et n be odd. T hen

r =8s + 1 :  E
2 ,

2 . - 1 ]
c,E2 n - 1 0 4 111

r= 8 s + 5 : [v 2 „_ 1] ( s)

(2) L et n be ev en. T hen

r=8 s +1 : s * E2 q- 1 0 ce
1

r =8s+ 2: s 1 . 1 , 2 _  1  °O
.

 2 n  +  8 3 _ 8

r = 85 + 3 :  S* 112n- 1,2n°6 2n+ 83- 7

S * Ps,2 n -  I

r-=8s+4: s n,2n- 1 ° Ps,2n

r=8s+5: 2 n -  1

(s=1, n . 4;

(s=1,

(s 0,

(C )  Quaternionic Stiefel manifold X ,,2  =  S p(n)I S An —2)
Consider the exact sequence

(6.16) • • • n +1 (S 4 n - 1 )  A i r  (sqq-5) irq(x.,2)

1.2 i 4  1 1 (  s 4 n - 1 ) q-1 ( '"
c 4 n - 5 )

associated with the fibering

(6.17) S4 " - 5X „ , 2

By the result of I. M. James and J. H. C. Whitehead [4, 5, 6], we have

Proposition 6.18.

(1) 4(e7)= (n=2),

ZI(C4n- 1) = naktn- 5 (n>3),

(2) E5 t1(a)-= tuo4n 0E4 o1 f o r  a (S4 1 1 -1 ) ( n  2) ,

where n 6 (S 3 )= {w'} '..Z12 a n d  + 3(S n )  = { W O  Z 2 4  f o r  n 5.

Proposition 6 . 1 9 .  The following elements are non-triv ial in TC4n _ 5 +,(X„ , 2):

r=8s: i u s- 1 ,4n- 5 ° 6  4n + Bs -  12 (s=1, n 3;

r= 8 s + 1 : i  n* ,4n- 5 °, s -  1,4n - 4°C4n + 8s- I I (5. = 1, n_.3;

i*Ps,4n- 5 (s>0,

r=8 s +2 : i  n u*  ,4 n - s,4n- 4

r=8s+3: i ,, 4 ,,_ 55 (s 1, n 3),
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r = 8s+7: i,E 4 4 - 1 2 4" (s 0,

P ro o f . Consider the following exact sequence

_ 4 + , (S4n-1)7C4n •v4n — 5 + r(S4 n - 5 ) 748 — 5 + r (X n ,2 ) •

For r=8s and a  u=, 3-1,4n—  5 °6 4n+ 8s-125 we see eR (E "(a))00  by Example 12.15 of
[1 ] .  Suppose a=d ( f l)  f o r  so m e  e le m e n t e /r4n-4+r(S4 n - 1 ). T h e n  b y  (1 ) of
Proposition 6.18, w e have L 'a= E".403)=nco.E '13. T h e n  eR (Eœa)=e R (nco.E'13)
=e R (nco)d,(E"13)=0 by Propositions 3.2 and 7.1 o f [1 ] .  This is  a contradiction.
Thus we conclude that a  is not contained in  the  im age  o f 4: 7c,„_ 4 + ,.(S4 n- 1 )--).

Ir4n-5+ r(S4 ' 5 ). H ence w e have i,„a=i LLs— 1,4n— 5 °Cr 4n+ 8 s - 1 2 0 0 .  The others are
obtained similarly. Q. E. D.

Lemma 6 .2 0 . The following results hold in the 2-components of  the homotopy
groups of spheres:
( 1 )  Let n be ev en. T hen

{nv,, V k  3 , 84+6 }=  {8 (7k }

(2) Let n be an  integer. T hen

{nvk , 2vk + 3 , 8 4 + 6 } =  {8 0 .0

(3) Let n be an integer. T hen

Inv k , 8 k + 3. 2Ck+1131 a riCk mod 24

for

for

f o r  k ..10.

Pro o f . (1) Since E ": n78 --+2 .4  is  monic, we may prove the statement in the
stable range. L e t  n = 2 m . T hen  <2mv, v, 8e> a n d  <Y, 8e, m y> have a  common
element by (3.10) of [14], where <v, 8e, m y > <Y, 8e, v>ome and <v, 8e, v> contains
Eœ o-"' = 8a by Lemmas 5.13 and 5.14 of [14], so we have the result.

(2) Similarly we prove the statement in the stable range. We see <nv, 2v, 8e>
D <2nv, v, 8e> D 8a, from which follows the result.

(3) The result is immediate from the definition of C„ in p. 59 of [14], namely,
C5 e {v 5 , 8e8 , E a l • Q. E. D.

Lemma 6 .2 1 . (1) T here ex ists a n  element
P*[14„-1]= 0 4 n —  and 21- n 4n — 1] =0 f or all n>3.

(2) For even n r>2 , there ex ists an  elem ent [v4 „_ 1 ]
N[V4n- 1]

=  v  4 n —  and I6[v 4 _ ,]=0 .
(3) T here ex ists an  elem ent [2v4 „_ 1 ]  o f  nan+ 2(X  n,

=2v 4 „_ 1 and  8[2v4 1 ] =0 f or all n
(4) There exists an element [E4 "- 6 o- m] of

= E4n-6 a m and 16[E4 ^- 6 am] = 0 f or all n  3.

o f  7r4 „(X 2 )  such that

of  7r4 „, 2 (X 2 )  such that

2 )  such  that p,,,[2v4„_,]

Iran+ 6(X ,2) such that p * [E4 n- 6 a"']

Pro o f . (1) Let us consider the exact sequence

n4n(S4 "- 5 ) nan(X..2)--P=-4' 7 r 4 ( S 4 1 ) Ir4n- 1
(s4.-5) .
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W e  s e e  th a t  ir4 „(S411-5 )=0, i (s4 . - 5 )g4n- = 0  a n d  n4 (S4 "-  =  , n11 f 1--- 7.

n __ 3. Then we have the result.
, ,4n—  I ,  —  — 2  for

(2) Consider the exact sequence

n4n+2(S4 ' 5 ) 7c4n+2(Xn,2) n4n+2(S4n-1) n4„+ (S 4 "- 5 ),

where it4 2 (5 4 n i  : 2)={v 4 „_ 1 }ẑ a 8 f o r a n d  7r4n+1(S 4 n - 5 : 2 )={vin-5}== Z2n+ —
for n  3 .  When n=2, we remark that 7c9 (S3 : 2)=0 and n1 0 (S3 : 2 )=0 . Then we
have an element [v7 ] such that p [y 7 ]= y 7 and 8[v7 ] =0.

L e t n0 2 , then 4 (v4 „_,)=  A( 4n -  1)" 4n -  = na )  4,1 -  5° v4n— 2 = 0 , since 24,_ 5 =0
for n 6 by Proposition 5.11 of [1 4 ], Moreover, by Theorem 2.1 of [7] and Lemma
6.20, w e have 8[v4 „_ 1 ]  e  fAlt- * 4n-1), v4n —2 ,  8 t4n+1} = i,1,{864n-5}• T hen  w e have
16[v4 _ 1] = 0.

(3) is proved similarly.
(4 )  W e see 4(E4n-6a") A= ( e 4 n _0 0 E4,7 0 .ffi =n(04._50E4n-7(7,1 

=  nw4n - 5o
 E 4 n - 1 1

P a m  = nC°4n- 5
= R _5 ° 6 4 -20E 4 n 0.9— 118
— „ = O . So by Theorem 2.1 of [7] we haven 

A (,2[E4n-6 0 .rni E4n —7 a mJ " * — 1), 2'4n +5} = 4{n(04„_5, 8 6 4n-2, 2 e4n+5} 3  i*K4.-5
mod 24(4 „ _ , .  It follows that 16[E4 ^- 6 e ] =0 . Q. E. D.

Now, applying the construction given by Proposition 2.3 to  the  elements in
Lemma 6.21 with y=(16/m)o-

i , we have the following elements:

[r/4.- l T s )  7 r4n+8s(Xn,2)

[ v 4 n - 1 ] ( s ) ,  [ 2 v 4 _  J ( s )  e n4n +8s + 2(X  n ,2 )

[E 4 n - 6 0 n, l ( s )
J •-• 4n + 8s-1- 6(Xn,2)

f o r  s . 0,

f o r  s 0 ,

f o r  s

Proposition 6 .2 2 . The following elements are non-triv ial in 77
4 n - 5 + r( X n ,2 ) :

r= 8 s + 4 : [ 114n—  1] s - 1 ) ° ( 1 4n + 85-8

r = 8 s + 5 :  En4.—J( s) (s

[ 11 4 n —  a s - 1 7 14n +8s—  8 ° Cr  4n + 8s— 7

r= 8s + 6: [ 114n — 1] ( s ) ° 1 14n+8s n

r = 8s + 7: [v4 „_ 1] (8 )n :  even

[2v4 „_ a s ) n: odd 3),

r=8s+11: [E 4 1 1 - 6 cr'"] ( s)

P ro o f . Let (/)= E 'o p , .  We remark that

dRO[nan- = dR (n) 0 0,

e'R O[y,„_ i ] = e'R (y).—_ 1/8 mod 1/4,

e'R O[2v4 ._ t ] =e'R (2v) -m 1/4 mod 1/2,

ec O[E 4 " - 6 am] = ec (80-)E 1/2 mod 1.
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Then we obtain the required results by Propositions 4 .3-4 .6 . Q. E. D.
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