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§1. Introduction

Let p be a prime number. We consider a homomorphism
¢: 71:*(Xv: p) I pni

of degree —I from the p-primary components of the homotopy groups of a space X
to the p-primary components of the stable homotopy groups of spheres such that
one or both of the following conditions are satisfied for compositions or secondary
compositions:

P(aoE* B) = p(o)E* B,
¢{d, Ekﬁ, Eky}kc i‘{{b(d), Eooﬁ’ EOO)’} H

where the notation is due to H. Toda [14]. (We notice that the homomorphisms
used in [12, 13] have these common properties.)

In this paper we define families of elements by compositions and secondary
compositions and see how to detect them by d- and e-invariants of Adams-Toda
[1, 15] after applying the homomorphism ¢ with the above properties. This is a
generalization of the method used in [12, 13].

This paper is organized as follows. In §2 we define a family of elements in
n«(X). The construction is a generalization of the ones in [1, 9, 12, 13]. Then in
§ 3 we see how the family of elements is detected by making use of the homomor-
phism ¢ and the invariants of Adams-Toda [1, 15]. In §4 we obtain more results
in the case p=2 in connection with the results in § 12 of [1]. Some examples of the
candidate for ¢ will be given in §5. We study in the last section, § 6, the unstable
homotopy groups of Stiefel manifolds of 2-frames V, ,=S0(n)/SO(n-2), W, ,
=SU(n)/SU(n—2) and X, ,=Sp(n)/Sp(n—2). The results in §6 are summarized
in the following theorems.

Theorem 1. Let n=5. Then

x) This paper was written while the second-named author was engaged in research supported by
Grant-in-Aid for Encouragement of Young Scientist of The Ministry of Education, Science and
Culture, 1978.
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Ty24/ (V20 2)#0 forall rz9 with r=0,1,2,3,4 modS.
Theorem 2. Let n>5. Then
Ton—3 4+l Wo2:2)#0 forall rz9 with r=1,3,517 modS8.
Theorem 3. Let n=3. Then

Tyn—s5+/(Xp2:2)#0  forall r=S.

§2. A family of elements

We use the notation of the generators of H. Toda [14], for example, =,(S")
={y=Z (n21)and m,, (S ={n,}=Z, (n23).

Let m be an integer. Assume that an element y of x;,,(S¥) (h=1) satisfies the
following condition

2.1 my=0 in case m#2 mod4
my=0 and Eyen;,,,;=0 incase m=2 mod4.
Under this condition we have
(2.2)  {mejpp By Moy S o (ST 4750 1 (S74)ome 4 pg i
fort=1and t=r=0.
Proof. By (1.15) of [14] we obtain
{mejo E'y, mejypadrc{mey By, mejype 32 {mejee, E', mejiyydy.

The last Toda bracket contains the zero element by Corollary 3.7 of [14] and our
assumption (2.1). It follows then that the middle Toda bracket is equal to

Mej 4T pnar 1 (ST +F T pger (ST )omespysy.
This completes the proof. Q. E.D.

We define periodic families by the construction given by the Toda brackets of
the following type.

Proposition 2.3. Let m and k be positive integers and y an element of m;, ,(S7)
(h=1 and jZ=?2) satisfying the condition (2.1). Assume that o is an element of
n(X) (i= j+k+1) such that ma=0. Then there exists a family of elements o™
of Myt nn+ 1)(X) for all n20 such that

o =q,
a™ e {a" D, mepy o 1yns 1y ETIHOTDEY DY am e (X)) for n2 1.
Moreover, mat™ =0 for all n=0.

Proof. Suppose, for the inductive hypothesis, that ma™=0. Then we see
that the Toda bracket
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{0, Megy 1) ETITEDP iy r ot 15(X)

is well defined. We choose an element a(**! from this Toda bracket. It follows
then that

ma D = Dome, 4 ok iyt 1)
€ {0, Megynn+ 1y ETI"IFDphome e 1yt 1)
=+ aMeE {Me; s 1y—to ETITIEDTEY, Mepy ik a1y -k-1)
S ME Mt 4 niht 1) = kT4 nt 1yih+ 1y —k(STFPFDTE)
+ st Dyt -l STV TOMe 1y 1) -1)
=oMome; 4 i+ 1)°Ekni+(n+1)(h+ 1)-k(si+"(h+1)_k)
=maMoEXT 4 (g 1yht 1y (ST EFDTH)=0

by Proposition 1.4 of [14] and (2.2). Thus we have a family of elements a(" of
T+ 1)(X) such that ma(™ =0 for all n20. Q.E.D.

§3. The homomorphism ¢ and the Adams-Toda invariant
Let us now consider a homomorphism
¢: (X p) — 75
of degree —I, namely, a collection of homomorphisms ¢={¢;} such that
¢ (X p)— 7 (r=i-])

for all i= N, where N is a fixed integer. We write simply ¢ instead of the above ¢;,
since there would arise no confusion. Then the homomorphism we consider is the
following:

(3.1 ¢:m(X: p)— nf (r=i—1,iZN).

Let a e n(X: p), Ben,(Si*) and yen,(S?). We consider further the following
conditions for compositions and secondary compositions:

(3.2 P(aoE*B)= () E°f for some k,
(3.3) ¢{a, E*B, E*y} = +{¢(x), E*B, E*y}  for some k,

where k>0 is a fixed integer.
We remark that the condition (3.2) implies:

If ac E¥ =0, then ¢(a)oE® = (oo E¥)=0.

Thus if the Toda bracket {a, E¥B, E*y}, is well defined, then the Toda bracket
{p(a), E*B, E*y} is also well defined. But, for B=me;_,, P()-E*S=0 always
holds, because ¢(a)om:=me(a)=p(ma)=0.

Making use of the homomorphism ¢ mentioned above, we shall now state the
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main theorem that enables us to detect some periodic families in the homotopy
group m(X: p).
We consider the following condition:

A=C then h, r=1 mod 2,
(3.4) A=R and p#2 then h,r=3 mod4,
A=R and p=2 then r=3 mod4 and h=7 modS8.

Let e, be the Adams-Toda invariant e, ey, eg or ek [, 15]. Then we have
the following theorem.

Theorem 3.5. Let m=p/ and d=p? for a prime number p and integers
f=Zg=1. Let A, hand r be as in (3.4). Let the elements y, « and a" be those in
Proposition 2.3.  Assume further that

el E®y)=g/m mod pjm  (1=q<p-1).
Let the homomorphism ¢ of (3.1) satisfy the condition (3.3). Then
e49(0)=qo/d mod p/d (I1=go=p-1)
implies
e Pp(at"y=gq,/d mod p/d (1=q9,=sp-—1) foralln=0.
Moreover, if m=d, then the element a™ is of order d for all n=0.

Proof. We prove the theorem by induction on n. In case n=0, we have
a® =g and hence e, Pp(a®)=qq/d mod p/d (1=<qgo<p—1). Now let us suppose
that

e p(x™)=¢q,/d modp/d  (I1=q,=p—1).
Then we obtain
eap(a"* V)€ e o™, megy ), EFTTENOT Dy
< e {p@™), me, E*y} by (3.3)
= +me (E*y)e p(a™) by Theorem 11.1 of [1]
=kysyfd modpld  (ISkyy Sp—1)

by our inductive hypothesis and Proposition 7.14 of [1].
Moreover we see ma(™ =0 for all n=0 by Proposition 2.3. It follows then
that a(™ is an element of order d if m=d. Q.E.D.

Remark. In case p#2 and A=R, we may take e,=ey or e} with different
values under the condition (3.4). But the choice does not affect the situation, since
we have

ex(E*y)=q/m mod p/m  (1=q=p—-1)
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if and only if
ex(E®y)=q'/m mod p/m  (124q'Sp—1)

by virtue of Proposition 7.14 of [1]. In case p=2, we assume the condition that
h=7 mod 8 of (3.4) for the same reason.

Remark. In the proof of Theorem 3.5, the term me (E®y)e,¢(a(™) should be
understood to be evaluated on the suitable spheres (as in Theorem 11.1 of [1])
choosing the representatives of the homotopy classes.

§4. More about the case p=2

In this section we consider the 2pnmary components 7, (X:2). Then the
homomorphism we consider is

4.1) ¢: n(X:2)—>s ,ns (r=i—1 and i=N).

We put m=2/ and d=2¢ for integers f =g>1. We take an element y € ;,,(5/)
(j=2 and h=7 mod 8) satisfying (2.1). Moreover we assume that

“4.2) er(E®y)=1/m mod 2/m.

Notation. For an element axen(X:2) (i=j+k+1) satisfying moa=0, a(" is
the family of elements given by Proposition 2.3 with y satisfying (4.2).

Using the notation mentioned above, we have the following

Proposition 4.3. Let ¢ satisfy (3.3). Letr=i—I=1o0r2 mod 8 and let ma=0.
Then

drd(0)#0 implies dgp(a™)#0  for all n=0.

Proposition 4.4. Let r=i—I=1 mod8. Let 6 be an element of m,.,(S%
(b=1 mod 8 and a<i—k) such that dz(E*d)+#0.
(1) Let ¢ satisfy (3.2). Then

drp(0) #0 implies drp(acEI~29)#0.
(2) Let ¢ satisfy (3.2) and (3.3). Assume that ma=0. Then
drd()#0 implies dgp(at™oEitrtht=ag £  for all n=20.

Proposition 4.5. Let r=i—I1=2 mod8. Let & be an element of m,,,(S%)
(b=1 mod 8 and a<i—k) such that dg(E*6)+#0.
(1) Let ¢ satisfy (3.2). Then

drp(a)#0 implies exrp(acEi=20)=1/2 mod 1.
(2) Let ¢ satisfy (3.2) and (3.3). Assume that ma=0. Then
dpp()#0 implies exp(atmMoEi*tr(h+1)=a5)=1/2 mod 1 for all n=0.
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Let v,(n) be the exponent to which the prime p occurs in the decomposition of
n into powers, so that n=2v2®3vs(m5vs(m...  Define a function m(t) as follows:

For p odd
0 if t#£0 mod(p—1)
vp(m(1))=
L+v,(1) if t=0 mod(p—1).
For p=2
1 if t#0 mod?2
va(m(1))= .
24v,(1) if t=0 mod 2.

Proposition 4.6. Let r=i—I/=10r 2 mod 8. Let 0 be an element of 7, ,(S%)
(b=8t—1 and a<i—k) such that m(4t)eg(E®0) is odd.
(1) Let ¢ satisfy (3.2). Then

drd(a)#0 implies egdp(acEI=260)#0.
(2) Let ¢ satisfy (3.2) and (3.3). Let ma=0. Then
drd(a)#0 implies egp(ol™oEi*nht=af)£Q for all n=0.

These propositions correspond to the results in § 12 of J. F. Adams [1]. The
proofs are quite similar to those in [12] and [13] and are omitted.

§5. Hopf invariant, suspension map and Toda bracket
Consider the homomorphism
Px: T X) — m(S")
induced by a map p: X—S'. Then we have by (iv) of Proposition 1.2 in [14]
(5.1 P(aoE*B) = py(a)E*p (kz0),
pa{e, E*B, E*y}={ps(®), E*B, EYy},  (k20),
for elements a € n(X), e (S7%) and ye n,(S9).

Consider the homotopy exact sequence associated with the fibering F — E
-2, B:
oo — (F) -2 m(E) 22 1y(B) 45 7, ((F) — -+
Then we have
(5.2) A'(aoE*B)=A'(2)-E*"'B (k21),
A'{, E*B, Ey} = {4'(a), E*7'B, E*}oy (k2 D)

for o € m(B), pen,(S'™*) and y € my(S).
The formula (5.2) for k=1 is Theorem 5.2 of [8] and (5.2) for k=1 is proved
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similarly.
In the EHA-sequence (2.11) of [14]:

« =4, m(S™) £, 1, (S™Y) £, "i+1(szm+1) —A, i (S™) £,

the behavior of compositions and secondary compositions is described by the follow-
ing formulas.
For the suspension map E, we have by (1.6) of [14] and Proposition 1.3 of

[14]
(5.3) E(aoE*B) = ExoE**18 (k20)
E{d, EkB, Ekv}kc —{Ed, Ek+lﬂ’ Ek+1‘y}k+l (kgO)

for elements o€ n(S™), e n(Si™*) and y e m(S?).
For the Hopf invariant H, we have by Propositions 2.2 and 2.3 of [14]

(54 H(aoE*B)=H(a)E*p (k21)
H{a, E*B, E*y} = {H(a), E*B, Ey}; (kz1)

for elements a € m;, (S™1), Bem,(S™k+Y) and y e my(S?).
When we consider the elements in the 2-primary components, we have the
following results.

(5.5) A(aoE*B) = A(a)°E*~2B (k22)
A{a, E*B, E¥y} = —{d(a), E*72B, E* "2y}, (k22)
Jor aem,(S2m*1: 2), Ben,(Si7*:2) and yen,(S°: 2).

Proof. The first formula is due to Proposition 2.5 of [14]. We prove the
second one. Let us use the notations in §§1 and 2 of [14]. We see 4=2700h;,10Q,
by (2.9) of [14] and Q, =i31-Q, by (2.3) of [14]. Then we have

A{a, E*B, Ey}y

=0ohyyoix'oQof{a, E*B, Ey},

= —0ohtoiz {Qy(a), E¥~'B, EF~1y},_, by Proposition 1.3 of [14]

= —0oh L{iz'oQo(a), E¥~1f, EF-1y}, _, by Lemma 2.1 of [14]

= —0{h,koiz'oQo(a), E¥F~1B, E¥~ 19}, _, by Theorem 2.4 of [14]

< —{OchpyeiyoQo(x), E*~2B, E*"2y},_, by (5.2)

= —{d(®), E*2B, E¥"%y}y_,. Q.E.D.
Now let us consider the iterated suspension

E*®: 1!,.,.,(5‘) — 1I§
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from the (¢t+r)-th homotopy group of S' to the r-stem of the stable homotopy
group of spheres. Then we have

(5.6) _ E*(acE¥p)=E®acE™f,
E={a, EB, By}, +{E®x, E=B, E*y}
by (1.6) of [14] and Proposition 1.3 of [14]. Thus we may define homomorphism
¢: (X)) — 78

by putting ¢=E®, E®-H, E®op,, E®Hop,, E®HoA, E®cHodsp,, E®-HoA’,
E%®o4’op, etc. according to the choice of the space X under consideration. So
the homomorphism ¢ defined above has the following properties:

(5.7 P(aoE*B) = p(a)-E*B (k2N),
¢{o, E*B, E*y}= £{¢(w), E*B, E*y}  (kZN).

J. F. Adams [1] obtained the periodic families in the stable homotopy groups
of spheres. M. G. Barratt [2] determined the spheres of origin of these periodic
families. In connection with these families, there are some periodic families in other
spaces as well as the unstable periodic families in the homotopy groups of spheres.
In many cases, they can be constructed by compositions and secondary compositions
and detected by d- and e-invariants of Adams-Toda [1], [15] after applying some
homomorphisms ¢ as in [12, 13]. Before we mention some examples we list some
of the results of J. F. Adams [1] and M. G. Barratt [2].

Proposition 5.8. 7L =mn,(S": 2) has the following direct summands:

M 8s stem: M +8s> {Ms—1,n°0ns85-7) =2 (n23,s522)
(D) 85I SEm: Wy D Uhe speroTasss o} 225 (122, 522)

Thyss+12 {len} =2, (n23,520)
() Sst2stemi ThypesD otens )22, (n22, 520)
C)) 8s+3stem: 7higer3>{lsn} =2 (n25,520)

5) 8s+7 stem: 7, 2 {otxZ,,

s+ 132 {0} 2 Z,,

s+ 14> {05} = Zs,

misr16= {0 =2y (s20),
where i, ={n,}=Z, (n=3) and n" ,,={0,}=Zs (n=9).

The other elements are defined in the following way. There exist elements
psend,, vseni and {senis of orders m=2, 8 and 8 respectively. Then applying
Proposition 2.3 with y=(16/m)s; and k=1, we have elements u$’ end;,, and
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(9 eng .6 for all s=0. We write po3=n3, p3=p5"", {os=vseni and { s
={$D for s=1. Moreover, we write p,,=E"3u, 5 for n=4, { ,=E"%(s for
n26, u=E®u 5 and {;=E>{ s by definition. Applying the same construction to

" "

the cases ay=0", ag=0", af =6’ and af¥ =04, we have the elements ay, af, af and
alv,
We note that

5.9 er(e)=1/16 mod 1/8, ec(pg)=1/2 mod 1,
er({;)=1/8 mod 1/4,
ec(E*a)=1/2 mod I, ec(E®a)=1/4 mod 1/2,
ec(E®oy)=1/8 mod 1/4, ec(E®al¥)=1/16 mod 1/8.

The following examples are obtained by making use of Theorem 3.5 and Prop-
ositions 4.3~4.6. (See [12, 13] for the notations of the generators and the detail
of the proofs.)

Example 5.10. ¢=E®-H;

(1) ekd(@™)=1/8 mod 1/4 (n20) for a=F,en8gi?,q (s21), G, e n85t,, (s20)
and M e nigd g (s20).

) ecp(at™)=1/2 mod 1 (n=0) for a=A,endgtts (s=1) and Byendgtd ¢ (s=1).

(3) drp(a™)#0 (n20) for a=C,eniy}, (s21) and Denigilys (s21).

(4) drgp(a)#0 for °‘=A§")°ﬂs',16s+sn+s and B;")O#s',l6s+8u+lb (n20,s21 and
s'20).

(5) erp()#0 for a=Ag")onl6s+8n+8°/"s’,16s+8n+9’ B.(s")°'116s+8n+16°#s',16s+8n+17,
CiMopy 165+ 8n+7 and D{opty 165180415 (120, 521 and s'20).

(6) erd(0)#0 for a=A"50 6,1 80450 BIo0 651 8ns 160 C"o0 654 8n7-
D00 6o gn+ 150 A" My, 165+ 8n+8°T 165+ 8+ sy +9 ANd B{oply 64 gny 160
O16s+8(n+s)+17"

Example 5.11. ¢=E%®op,;

(1) ecd([6"]1™)=1/2 mod1 (n20) for [6"]emn,(SUQB):?2).

(2) erd([v,1*)=1/8 mod 1/4 (n20) for [vs]em;o(Sp(2): 2).
erd([26']1)=1/4 mod 1/2 (n=0) for [26']em 4(Sp2): 2).

() drdp({neopns>™)#0 (n20) for <neops» €mio(G,: 2),
er({Neott7)Mo0g,+16)#0 (n20).
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Example 5.12. ¢=E%cp,,:
(1) echp([nseeeo’1™)=1/8 mod 1/4 (n20) for [nsoes@0']em, 4, (SUM): 2),
ecd([{sDus1)=1/2 mod 1 (n20) for [(s@pu,]emn;((SU4):2).
(D) erd([Es@ur1Mo0g,.16)#0 (n20),
erP([Ls@u71"MoNgy+16°08n+17)#0  (n20).
Example 5.13. ¢ =E®cHop,;
erd({ +peo015)™)=1/8 mod 1/4 (n20) for {{'+peo0ys) €My5(G,: 2).

§6. Periodic families in the homotopy groups of Stiefel manifolds

In this section, we show that some sequences of elements are non-zero in the
homotopy groups of Stiefel manifolds V, ,, W, , and X, ,. We deal with the un-
stable range of these homotopy groups. These periodic families come from the
periodic families of J. F. Adams [1] and M. G. Barratt [2].

(A) Real Stiefel manifold V, ,=S0(n)[SO(n—2)
We consider the exact sequence

(6.1) e Ty (ST A 7 (S772)

ey 1, (V,,0) o m(S"71) -4 my i (8772 — -
associated with the fibering
6.2) S22 i, Y, , s St

As is well known, we have a cross section s: S""1—V, , of (6.2) when n is
even. Hence we see

(6.3) For n even,
7rn-2+r(_Vn,2)= i*ﬂ"_2+,.(S"—2)@S*TC"_2+,,(S"_1),

where i, and s, are monomorphisms.
When n is odd, we have to use the following result [4, 5, 6, 10]:

Lemma 6.4. For n odd,

» A(ep-1)=2¢t,-2,

2 E?2A(0)=2Eo  for aemy(S"!).
We first study the homomorphism iy : 7,(S"~2)—=7y(V, ,) of (6.1).
Proposition 6.5. The following elements are non-trivial in m,_, .V, ,):

r=8s: i*“s—l,n—2°08s+n—9 (ngs n;S),
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r=8s+1: iylsu-2 (s=0, n=5),

i%Mn—2°Us—1,n~1°08s+n—8 (s=22,n249),
r=85+2: lxMy-2°Msn-1 (s20, n24),
r=8s+3: iy{n-2 (s20,n=7).

Proof. When n is even, the results are the immediate consequence of the direct
decomposition (6.3). When n is odd, the results are obtained by the following
Lemma 6.6. Q.E.D.

Lemma 6.6. Let n be odd. Let aen,_,,,(S*"2). If E®a is not divisible by
2in 7l then i,0#0 in m,_ 5.V, ).

Proof. Consider the exact sequence
7[,'_ 1 +r(Sn-l) A’ Ty - 2+'(Sn—2) 'L* ﬂ"_ 2 +r(V;l,2) .

We show that the element « of =n,_,,,(S""2) with the required property is not
contained in the image of 4:m,_;,(S" V)-n,_,,,(S"2) and hence i,a#0 in
m,—5+/V,,2) by the exactness of the above sequence. Let us suppose that a=A4(f)
for some element fen,_,,,(S""1). We see E2A(f)=2EB by (2) of Lemma 6.4.
So E®a=E*A(B)=E®(E?4(B))=E*(2EB)=2E®p in =ns. This contradicts the as-
sumption that E®« is not divisible by 2 in n8. Hence o is not contained in the
image of 4: m,_; , (S" V) > n,_,,(S"2). Q.E.D.

We denote by [a]em,_, 4V, ) such an element that p,[a]=aen,_,,,(S" D).

Lemma 6.7. For s=0 and n24, there exists an element [p,,_,] of nge1,(V,,.2)

such that py[pg,-11=tepn-1-
Moreover, 2[u,,-1=0 if n is even;

2[”s,u- 1] = i*#s,n—20n85+n— 1 mod 2i*”8s+n(sn-2) !f n is odd.

Proof. 1If n is even, the result is immediate from (6.3). For n odd, we consider
the following exact sequence

n85+n('s"_2) ‘L’ n8s+n( Vn,z) _p__’ n8s+n(S"_l) ‘—A"" T8s+n— l(Sn—Z) .
The element p,_, is in mg,,,(S""1). We see
A(‘n- 1)°us,n— 2 =2’n— 2°ﬂ.§,n— 2= 2#s.n—2 =0

by (1) of Lemma 6.4. We apply Theorem 2.1 of [7] to the case a=¢,_,, B=p,—,
and y=2¢g,,,-. Then for an element 6 of {A(c,—1), ten-2, 2¢gs+n-1}> there exists
an element [us,n—l] of 7!85-4~n(Vn,2) such that p*[us,n—l:':#s,n-l and i*a"_‘[:us.n—l]o
25540 =2[Us-1]. Now we see

{A(‘n-l)7 Hsn—2> 2‘Bs+n—1} ={2‘n—2’ Hs,n—25 2‘8s+n—1} S Usn—2°Ngs+n—1

by Corollary 3.7 of [14] (for n=35, consider the suspension map, which is monic).
Then we have
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0=l 2Ngs4n—1 MOd 26, 5omgyy ,(S"2) + Mgy o(S"2)o2tg4,. Q.E.D.
Making use of (6.3) and Lemma 6.7, we have the following
Proposition 6.8. There exist the following non-trivial elements in Ty—2+/(Va2):
r=8s+1: [U—1,1-11°0g54n-8 (522, nz4),
r=8s+2: [fyn-1] (520, n24),
(is—1,n-11oM8s4n-8°08s4n-7 (s22,n24),
F=8s+3: [Uon-11Ngs4n (520, n24),
r=8s+4: [Ugn-11NEssn (s20, n24).
Remark. Computing directly (cf. [11]), we see
Ton+3(Vans3,2) ={[N2n+21} = Z,4
for all n=1. Then for n=4, applying Proposition 2.3, we may construct elements
[N2n+21° € Mggs2m+3(Van+3,2) for s20.
We may use this element instead of [ ;,4,].

(B) Complex Stiefel manifold W, ,=SU(n)/SU(n—-2)
Consider the homotopy exact sequence

(6.9 s T (S A 1 (S2773) e (W)

Loy m (821 AL (82073 —s -
associated with the fibering
(6.10) S2n=3 _L, W, , £, §2n1,

There exists a cross section s: 2"~ W, , of (6.10) when n is even ([5]). Then
we have a direct sum decomposition:
(6.11) For n even,

7[2"_3+r( VV'l,2)= i*n2n—3+r(52"_3)®s*n2n—3+r(S2n—l) s

where iy and s, are monomorphisms.
When n is odd, we use the following result of I. M. James and J. H. C. White-
head [4, 5, 6].

Lemma 6.12. Let n be odd. Then

(n A(tzn—1)=MN2n-3

2) E3A(0)=n,,0E*e  for aemy(S2"1).
Making use of Lemma 6.12, we first show

Proposition 6.13. The following elements are non-trivial in ny,_3, (W, ,):
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(1) r=8s+1: iytyzus (s21,n23),
r=8s+3: iyl -3 (s=0, n=4),
r=8s+7: i E* 8 (s=0, n=4).

(2) r=8s: ixls—1,21-3°02n+85—10 (522, n=4; s=1, even n26),

r=8s+1: i*rlln—So.us—1.2n—2°62n+85—9 (822’ n=4; 8;19 even ng6)9
r=85+2: ixNan-3°ls2n-2 (520, even n24).

Proof. When n is even, the result is immediate from (6.11). Let n be odd.
We consider the following exact sequence:

Tane 24821 A0 1y, 3 (S273) Loy o34 (W, 0).

Let r=8s+41 (s=1). Then the element yg ,,—3 is in 75,48, 2(S2"73). Suppose
Uy 2n—3=A(P) for some element Beny, 5, ((S*"71). Then p=E p,,,_3=E*A(f)
=E®(E34(B)) = E®(n,,0E2B)=n-E*f by (2) of Lemma 6.12. We see that ec(7°E*f)
=ec(n)d(E®B)=0 by Propositions 3.2 and 7.1 of [1]. On the other hand, we
have eq(u)=1/2 mod | by (5.9). This is a contradiction. Hence y;,,-3 is not
contained in the image of A4: 7,45, 1(S2" " ) > Ny, 485-2(S?"3). Thus we have
i*”s.Zu—B?éO'

Let r=8s+3(s20). The element { ,,_3 is in 7,,.5(S*"3). Suppose
(m-3=A4(B) for some element femy, g+1(S*""1). Then (=E%(,, 3=
E®(E3A(B)) = E*(1,,°E2B)=n-E*f by (2) of Lemma 6.12. We see 2n=0 and hence
2(noE®B)=0. This contradicts the fact that {, is an element of order 8. Thus
{s2n—3 is not contained in the image of A4: 7y, 45,4 (82" 1) 75,45(S?"73). Then
we have i,{;,,-3#0.

Let r=8s+7 (s=0). The element E?" 8a; is in 7,,48.4+4(S*"73). Suppose
E?"=8q¢. = A(B) for some element B€m,,45,45(S2""1). Then E®a,=E®A(f)=n-E*f
by (2) of Lemma 6.12. We see that ec(E®a;)=1/2 mod 1 and ec(n°E*B)=0 by
Propositions 3.2 and 7.1 of [1]. This is a contradiction. It follows then that
E2"=8¢’ is not contained in the image of 4: 7,5, 554 5(S?" D)oy, 4854+4(S2"73) and
hence i, E2"8q;#0. Q.E.D.

Lemma 6.14. Let n be odd. Then
Tan-1(Wo2) ={[202,- 11} =2 (n23),
Tans 2(Wy2) ={[w2n-11}=Z;, (n25),
Tont2(Wa2: D={[van-1}2Zg  (n25).

The proof is easy and left to the reader (Cf. [3]).

Making use of the result in Lemma 6.14, we may construct a family of elements.
We apply Proposition 2.3 to the case a=[v,,_,], m=8, y=204 and k=1. Then we
obtain a family of elements

[Van-11® € Manr g5 2(Wi 22 2) for s=0.
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By Theorem 3.5 and (6.11), we have the following

Proposition 6.15. The following elements are non-trivial in my,_ 34, (W, ,):
(1) Let n beodd. Then

r=8s+1: [2¢,,_,]cE?" 1041V, (s21,n29),
r=8s+5: [vy,_,1® (s=0, n25).
(2) Let n be even. Then
r=8s+1: s,E?""10q!¥, (s=1,n26),
r=8s+2: Sulls—1,2n-1°02n+85-8 (s=1,n24;522,n22),

r=85+3: SuMan-1°Hs-1,20°02m+8s-7  (S=1,n24;522, n22),

Sl 2n-1 (520, n22),
r==8s+4: SyMan-1°Hs,2n (s20,n22),
r=8s+5: 4521 (s=0, n=4).

(C) OQuaternionic Stiefel manifold X, ,=Sp(n)/Sp(n—2)
Consider the exact sequence

(6.16) s g (SHTY) A m (S43) L m(X,,2)
Loy m (S A (S84 — -
associated with the fibering
6.17) S4n=5 _i, X, , £, 841,
By the result of I. M. James and J. H. C. Whitehead [4, 5, 6], we have

Proposition 6.18.

1) A(@)=o' (n=2),
A(tgn-1)=NW4y—s (n23),
) ESA(0)=nwy,cE* for aem(S*"Y) (n22),

where ng(S¥)={w'}=Z,, and 1, s(S")={w,} =Z,,4 for n25.

Proposition 6.19. The following elements are non-trivial in my,_s+,(X, 2):
r=8s: ixMs—1,4n-5°C4n+8s-12 (s=1,n23;s22,n22),
r==8s+1: ixNan-sMs-1,an-4°Can+8s-11 (s=1,n23;5s22,n22),

ixMs,an-5 (s20,n22),
r=8s+2: ixNan-5°Usan-a (s20,n22),
r=8s+3: iyl an-5 (s=1,n23),
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r=8s+7: i E4" 124 (s=0, n=3).
Proof. Consider the following exact sequence
Tan—a+e(S*"™1) A0 g 54 (S*75) 20 454 4(Xi2) -

For r=8s and a=p,_ 4,-5°04n+8s-12> W€ see ex(E®(a))#0 by Example 12.15 of
[1]. Suppose a=A4(B) for some element femn,,_4+,(S*""!). Then by (1) of
Proposition 6.18, we have E®a=E®A(f)=nw-E®B. Then eg(E®a)=eg(nw-E*f)
=eg(nw)dg(E®B)=0 by Propositions 3.2 and 7.1 of [1]. This is a contradiction.
Thus we conclude that o is not contained in the image of A: m,,_44,(S*" " )—
Tan_s5+(S*"5). Hence we have i,0=ixfl;_| 4n—5°C4n+8s—12#%0. The others are
obtained similarly. Q.E.D.

Lemma 6.20. The following results hold in the 2-components of the homotopy
groups of spheres:
(1) Let n be even. Then

{nv, visa, 8exiet=1{80:} for k=9.
(2) Let n be an integer. Then

{nvy, 2vi43, 8eh v 6t ={80)} for k=9.
(3) Let n be an integer. Then

{nvk. 80k+3’ 2‘k+ 10} 3 an mod 2Ck for k; 10.

Proof. (1) Since E®: nj¢s—,n§ is monic, we may prove the statement in the
stable range. Let n=2m. Then (2mv, v, 8&) and (v, 8, mv) have a common
element by (3.10) of [14], where (v, 8, mv)>> (v, 8, v)om: and (v, 8, v) contains
E*¢"” =80 by Lemmas 5.13 and 5.14 of [14], so we have the result.

(2) Similarly we prove the statement in the stable range. We see (nv, 2v, 8>
> {2nv, v, 8> 2 8a, from which follows the result.

(3) The result is immediate from the definition of {, in p. 59 of [14], namely,
{s€{vs, 8¢5, Ea'},. Q.E.D.

Lemma 6.21. (1) There exists an element [n4,_,] of m,(X,,) such that
Ps[Nan-11=M4an-1 and 2[n4,1=0 for all n23. '

(2) For even n22, there exists an element [vy,_] of m4n42(X, ) such that
P«[Van-11=Van-y and 16[vs,-,1=0.

(3) There exists an element [2v4,_,] of Tap42(X,2) such that p,[2v4,—,]
=2v4,_, and 8[2v4,_,]1=0 for all n=2.

(4) There exists an element [E*"~66"] of m4,4+6(X,.2) such that p,[E*"~6¢"]
=E*"~6¢" and 16[E*"~%¢"]=0 for all n=3.

Proof. (1) Let us consider the exact sequence

n4"(S4n—'5) 4’ n4n(Xn,2) &—’ 7[4,,(S4"- 1) _A—" 7t-i»n-- 1(S4n—5) .
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We see that m,,(S*""5)=0, n,,- (S*""5)=0 and 7,,(S*" VY={n,,-}=Z, for
n=3. Then we have the result.
(2) Consider the exact sequence

Tane2(S473) oy 74,1 5( Xy, 0) 255 i n(S47Y) 4 4,41 (S4779),

where 74,4 5(S*"" 1 2)={vy,—,}=Zg for n22, and m,,,(S*"5:2)={v3,_s}=Z,
for n=3. When n=2, we remark that nyo(S3: 2)=0 and 7,,(53: 2)=0. Then we
have an element [v,] such that p,[v,]=v; and 8[v,]=0.

Let n#2, then A(v4,—1)=A4(t4n—1)°Van—2=NW4n_5V4,-,=0, since 2v3,_s=0
for n=6 by Proposition 5.11 of [14]. Moreover, by Theorem 2.1 of [7] and Lemma
6.20, we have 8[v4,_1]1€ix{d(tan-1), Van—2> 8tan+ 1} =1x{804,-5}. Then we have
16[v4,-1]1=0.

(3) is proved similarly.

4) We see A(E*""%6")=A(c4n_1)°E*" 76" =nwy,_soE*"" 76" =nw,, _ soE4"~11
E*c” =nw,,_soE*" 11804 =8nw,,_s904,-,=0. So by Theorem 2.1 of [7] we have
2[E*"=%6"] € ig{d(ean-1)s E*"770", 2t4nss}=ix{nWsn—s, 804n-2, 2e4nss} 3 ixnlsn—s
mod 2i,{4,-5s. It follows that 16[E4*~6¢"]=0. Q.E.D.

Now, applying the construction given by Proposition 2.3 to the elements in
Lemma 6.21 with y=(16/m)g;, we have the following elements:

[(Man-11® € 4188 Xn2) for 520,

[Van— 119, [2v45- 119 € Tap s 84 2( X, 2) for 520,
[E*"=66"]) € M4y 4854 6(Xn,2) for s=0.
Proposition 6.22. The following elements are non-trivial in m4,_s,/(X,,):
r=8s+4: [N4y-11"V04n+85-8 (s21,n23),
r=8s+5: [N4p-11® (520, n23),

[Man-11C"DN4p 1 85-8°Can+85-7 (s=1,n23),

r=8s+6: [Nan-119N4nsss (s20,n23),

r=8s+7: [v4_.]® (s=0, n: even=2),
[2v4,-11® (s=0, n: 0dd=3),

r=8s+11: [E4"6g"]® (s20,n=3).

Proof. Let ¢=E®op,. We remark that
dg®[an-11=daln) %0,
egPlvan—11=ex(v)=1/8 mod 1/4,
erO[2v4,- 1 ]=¢€x(2v)=1/4 mod 1/2,
ecP[E*" 56" ]=ec(80)=1/2 mod 1.
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Then we obtain the required results by Propositions 4.3~ 4.6. Q.E.D.
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