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§1. Introduction

In population genetics theory we often encounter diffusion processes on the
compact domain K={(x,..., X)) € R%; x,>0,..., x,>0, 1 —x; — -+ —x,>0}. In
order to construct such diffusion processes, we will consider a martingale problem
on K.

Let A be a second order differential operator on K

d al d a

(1.1) A=i3_“=,1 a;;(x) Txidx, +i§1 bi(")a—xi
with domain D(A4)=C*(K)," where {a,(X)} i j<s is @ real symmetric and non-
negative definite matrix defined on K and {b{(x)},<i<q4 is an R4-valued measurable
function defined on K.

We assume that {a;;(x)} and {b(x)} are continuous on K. Let Q=C([0, o©):
K) be the space of all K-valued continuous functions defined on [0, o0). For each
we Q and each t>0, we denote x(t: w)=w(f). Let #, and & be the o-fields gener-
ated by {x(s); 0<s<t} and {x(s); s >0} respectively.

Let xe K. A probability measure P on (Q, &) is called a solution of the
(K, A, x)-martingale problem if it satisfies the following conditions,

(1.2) Plw; x(0: w)=x]=1, and

(1.3) denoting M (t)=f(x(2))— g;Af (x(s))ds, (M (1), #,) is a P-martingale for each
fe C¥K).

It is known that if a solution of the (K, A, x)-martingale problem exists, the
following conditions must be satisfied, (cf. Okada [9]).

d
(1.4) 4()=0 if x=0, and ¥ ¥ a,(x)=0 if 3 x=1,
=1 /=1 =

and

1) Each element of C%K) is a C%- function defined on an open set containing K.
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(1.5) b(x)>0 if x=0, and ¥ b(x)<O0 if 3 x,=I.
i=1 i=1

-Conversely, if {a;(x)} and {b(x)} are continuous on K satisfying (1.4) and (1.5), then
a solution of the (K, A4, x)-martingale problem always exists.

However, the uniqueness of solutions of the (K, 4, x)-martingale problem has
not been generally established. The difficulty is due to the fact that {a;(x)} can
not always be extended to be smooth and non-negative definite on the whole space
R4, even if {a;;(x)} is sufficiently smooth on K.

For this problem, Ethier [2] proved that if {a;;(x)} ={x/(8;;—x;)}? and {b(x)}
are C*-functions satisfying (1.5), then the uniqueness of the (K, A4, x)-martingale
problem holds. Also, Okada [10] recently showed that the uniqueness holds for
a rather general class in two dimension.

In the present paper we will first discuss the uniqueness problem of the (K, 4, x)-
martingale problem. Although we impose a rather restrictive condition, our result
covers the Ethier’s case when {b,(x)} are assumed to be polynomials. Our method
consists in using the notion of dual processes which has proved useful in the theory
of infinite interacting systems. Secondly, we will study some ergodic behaviors of
the diffusion processes on K under a genetical assumption. In the final section we
will discuss a problem whether or not the diffusion process hits on subsets of the
boundary K with positive probability.

§2. Uniqueness of solutions of the (K, 4, x)-martingale problem

Let J=Z% be the d products of the set of non-negative integers. For o and
BeJ,a+ B is defined componentwise. If a;=1 and a;=0 for j#i, a is denoted by ¢;.

d
For each a e J and x € K, we denote f(x)= [T x*t, and fo(x)=1. Set |a|=0;+---+
i=1
o, for each a e J.

In this section we shall consider the uniqueness problem of the (K, 4, x)-
martingale problem under the following condition.

Condition 1. :
[I-1]1 a;(x) are polynomials on K and satisfy (1.4). Furthermore, denoting
a;;(x)= 3 4;{(B)fy(x), there exists a constant 0<c<1 such that
peJ

2.1 > 1a(B)lcr 1B 44, (e, +65) <0 forall 1<i,j<d,
ﬁ+ei+8_y

and

(22 iIMZZIﬁu(ﬁ)IC“""(lﬂl—2)<ﬁu(8.-) Sorall 1<i,j<d.
j=1 >

[1-2] by(x) are polynomials on K and satisfy (1.5).

Then, we have

2) 4,y is the Kronecker’s symbol, i.e. d,;=0 (i #j) and d,,=1
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Theorem 2.1. Suppose that the condition 1 is fulfilled. Then, for any xe€ K
the uniqueness of solutions of the (K, A, x)-martingale problem holds.

Suppose that the condition [1-2] holds. Then as consequences of this theorem
we have the following.

Corollary 2.1. {a;}(x)=0%x(d;;—x;)} satisfies the condition [I-1]. Thus, our
result gives another proof of Ethier’s theorem [2] in the case that b(x) are poly-
nomials.

Corollary 2.2. Let a;(x)=x;x,( Z Bixy—Bi—B;)+96:;B:x;, where xo=1—x,

——x, and .20, k=0, 1,...d. (cf. Sato [13]). If max B,<(1+ ﬁz)
mindﬂ,-, then [I-1] is satisfied. Hence the uniqueness of the martmgale problem
0<i<

holds.

Proof. Without loss of generality, we may assume f,=min f;. Then, [I-1]
d<i<d

is satisfied with ¢= % :
Corollary 2.3. Let a;(x) be any polynomials satisfying (1.1) and (1.4). Then,

there exists a positive constant g, such that for any x € K and any & with 0<e<g,,
the (K, A8, x)-martingale problem has a unique solution,

2 d
where Ar= Z (xi(él_l f)+8aif(x)) ax?ax. + Zlbi(x) aaxi ’
J =

l]—

Remark 2.1. Suppose that the uniqueness of the (K, 4, x)-martingale problem
holds for any xe K. Then the A-diffusion process is uniquely determined and its
transition probability induces a Feller semi-group on C(K).®

Remark 2.2. If a;;(x)= ﬂZJ a;;(B) f4(x) satisfies (1.4), then it follows automati-
cally that

4;{(B)=0 for all B with |B|<2 except f=¢;+¢; if i#],
a,(B)=0 for all B with |B|<1 except f=g;, and
a,(e+e,)=0 if k#i and m#i.

For each aeJ, we associate the symbol & and set |@|=|x|. Let J={&; aecJ}
and J*=JUJ. For each aeJ we denote ¢ (x)=cl?l f(x) and ¢;(x)= — d(x).
Let by(x)= pzj byp) fs(x). Then, by a simple calculation we have

Lemma 2.1.

(2'3) A¢a(x) = ﬂg.Qa,ﬁ((bﬂ(x) - ¢a(x)) + ha¢a(x)’ ae J,

where

3) C(K) denotes the set of all continuous functions on K.
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d
= & e DG DI+ 8,(2e)
. <!

d

d

+ 0O ; a.(B)|c2 18l 4 4. (e; +¢,;

gl ng i J(ﬂ+612+8j| ij(ﬁ)l + u( l+ j))
i+j) peJ

+3 a5 BB+ b))
o {(Blc (&),
i=1 ﬂﬂ%, i

and {Q,,,,},E,',,;,. are defined by

PR AESEICEING 3,8 PGy =)

i=1 j=
(i#J)

+83D) G0N+ £, 5 2ty T PAE) Gamrrmeyes— 0
peJ, J

+85(B) amrmzm— ) + T 4T LB Bumsirg— b2
ﬁeJ'
+67(8) Ga=zrs— 90

Let us define an infinitesimal matrix Q={Q,z} on J*xJ* by for each aeJ,

Qo= — ,;ZJ Q. and Q; 5=0Q, 4, where (B)=p for each e J.

Ba
Then we have the following.

Lemma 2.2,
(i) h, is bounded above on J*.

(ii) Let f()=|a|. Then, Qf(a)=ﬂ§;‘Q,,p(f(ﬂ)—f(a)) is bounded above on J*.

(ili) The minimal Markov chain (o, P,).,., generated by Q={Q,}, is con-
servative.

Proof. (i) and (ii) follows from (2.1) and (2.2) respectively. As for (iii), let
(o, P,) be the minimal Markov chain generated by Q, (cf. Chung [1], IT § 18).
For each N >0, define ty=inf {t>0; |o,|>N}. By the Dynkin formula, we see

2.5) E,[f(a,A1y)] =f(oc)+Ea[S{MN Qf(as)ds], for any finitely supported func-
tion f on J*. °

Noting that {a;;(x)} and {b,(x)} are polynomials, we can choose a finitely supported

function fy on J* such that fy(«)=|a| if Ja| <N, and Qfy(e)= Z' Qo p(IBl—laf) if

le| <N. Then it follows from (ii) that there exists a constant Kﬁ;JO satisfying

la
ae

(2.6) max Qfy()<K for any N>O0.
<N
J‘

4) at=max {a, 0}, and a~= —min {a, 0}.
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Thus, by (2.5) and (2.6) we have
2.7 E,[|opepl1<la| + Kt for any N>0.
So, letting N— o0,

P limty>t]=1 for any finite (>0,
N—©

namely,
(2.8) Pl limty=+o0]=1.
N- o
Hence, (a,, P,) is conservative, because it does not explode in finite time.

Lemma 2.3 (Kac’s formula). Let h(x) be any function bounded above on
J¥. For any bounded function f(a) on J* and A>|h*|, let us consider the fol-
lowing equation for u.

(2.9) A=0—hu=f
with the subsidiary condition
(2.10) R*(|hu|) is bounded on J*.5

Then, there exists one and only one bounded solution of (2.9) with (2.10), and it is
given by

@.11) u(a) =EB: exp (—xt+ go h(oc,,)du) (@) dt ] xeJ*.

Proof. Without loss of generality, we may assume that h<0.
1°. Let f be a function on J* such that R*(|f|) is bounded on J*. Then we
shall show that

w(a)=E, [S: exp( —at+ g; h(oc,,)du) f(oc,)dt} satisfies (2.9) and (2.10).
We may assume f >0. Then it is easy to see that
(2.12) R f(a) — u(a) = R*(— h)u) (o), (cf. Ito [6]).
Hence R*(|h|u)(e) is bounded. Since (o, P,) is generated by Q, it holds that
(2.13) AR} 5 — yez;’*Q“”'Ré’” =0, forall o and feJ*.
So, by (2.12) and (2.13) we have

(2,14) f(@)— (A —Q)u(a)= — h(a)u(a), oweJ*,
Thus u(a) is a bounded solution of (2.9) and (2.10).

5) R‘f(a)=E“[S: e'“f(a,)dt:l.
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2°.  Suppose that h(a) and R*(|f])(«) are bounded. Then, (2.9) has a unique
bounded solution. For, let u, and u, be two bounded solutions of (2.9). Setting
uy—u,=w, it holds that

(2.15) (2—Q)w=hw.

Since the minimal Markov chain (o, P,) is conservative, (1—Q)u=f has a unique
bounded solution u for any bounded function f, which is given by u=R*f. Thus,
we have

(2.16) w=R*hw).
If u>24 and pu> ||, it follows from the resolvent equation that

w=R* hw)=Rt(hw)+ (n — 2)R'R* hw)=Rr((h + u— })w).

So, Il 4 [(h+u—Bwl S £ ], and this proves ] 0.

3°. Let h be any non-positive function on J*, f be any bounded function and
u be a bounded solution of (2.9) and (2.10). Set h,=hv(—n).® Then, (A—Q—h,)u
=f+(h—h,)u holds. Since R*(|f+(h—h,)u|) is bounded, we get by the step 1°
and 2°

(2.17) () =EB: exp < i+ S; h,,(oc,,)du) (f+(h—h,)u) (a,)dt].

Noting that R*(|hu()(«) is bounded on J* and letting n— o0, we obtain (2.11).

Now, we shall prove Theorem 2.1. Let P, be a solution of the (K, 4, x)-
martingale problem. Denote u(t, «, x)=E,[¢,(x,)] for aeJ*. Then, by Lemma
2.1 we have

(2.18) u(t, @, x)— by(x)= So E.[Ad,(x)]ds
= S; ( ﬁZJ‘QG_,,(u(s, B, x)—u(s, o, x))+ hu(s, a, x))ds.

Setting v,(a, x)=S(zo e~ *u(t, a, x)dt for each A> | h*|, it holds
0

(2.19) (A=Q —h)vy(, x)=Py(x).
Noting that v,(«, x) satisfies (2.10), we have by Lemma 2.3

(2.20) v,(at, x) =E¢[S: exp( — At + S; h,d u)q&at(x)dt} .

Accordingly, we see that P, is uniquely determined by using a standard argument.

6) aVb=max {a, b}.
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§3. Limiting behaviors

In this section we shall discuss limiting behaviors of the following special type
of diffusion processes on K:

31 _ d d aZ b
(3.1) _;z=:1,Z=:1 _x)a 5’6 +;Zl (x)
d d
(3.2) b(x)= kz=:0 Aixi + X (yi(x) — k‘s=-:0 Pi(X)X)s i=0,1,..,d
where xo=1=x,— =Xy, {Aifosrics 15 a4 constant matrix satisfying 4,;>0 (k#1)

d
and Y A4,;=0, and {y,(x)}o<k<q are C*-functions on K.
i=0

Without loss of generality, we may assume that y,(x)>0 for any xe K and
0<k<d by adding some constant.

Genetically {4,;} involves the intensity of mutation and {y(x)} is the intensity
of selection.

By Ethier’s results [2], the A-diffusion on K (@, &, P,, {#,}, x(t)) is uniquely
determined. Hereafter we shall often regard it as a diffusion process on K*=
{(x0s X1seeer Xg)3 X020, x;>0,..., x,=0, Z x;=1} by setting xo()=1-— Z x(1).

Let us denote by {P(x, E)};»0,xek+ gca(k+ the transition probablhty of the A4-
diffusion process on K*.

Let I={0, 1,..., d}. Let us define a relation on I by {4;;}. If 4;;>0, we denote
izj. For i and j, we denote i—j if there exists a chain [i, =i, i,,..., i,=j] such
that i,3i,,, for any I<n<p—1. If either i=j, or i—j and j—i holds, we denote
i—j. Then, the relation ““«’’ defines an equivalent relation on I.

An equivalent class C<1 is called recurrent if i—j does not hold for any ie C
and j¢&C. For each recurrent class R, let us define

K(R)={x e K*; Z}ax,: 1} and &g =inf {t>0; x(f) € K(R)}, or + o0 if { }=¢.

1€

Then, we have

Theorem 3.1. Let R, R,,..., R, be all recurrent classes. Then,
(i) For each R,, there exists a unique stationary probability measure v; such
that

lim [|P(x, -)=Villae=0  for any xeK(R)),
t— 0

(ii) Py[¢gr,<+ 0 forsome 1<i<r]=1 forany xeK*,

and

(iii) lim |P(x, +)— il ¢(X)V;llyar =07 for any xeK*, where
t=© i=

7) | llver stands for the total variation norm.
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ci(x)=P,[£r, < +00].

First, we shall prove it in case that {4;;} is an irreducible matrix. Generally
we shall introduce the following condition. Let 0K¥={x=(xq, X;,..., X;) € K*;

d
x;=0} (0<i<d), 0K*= \U 0K¥, and K*=K*\0K*.
i=0

Condition II. For any x € 0K*, E Ioy(x)bi(x)>0 holds.

This condition means that the drlft coefﬁcnent {b{x)} never degenerates on the
boundary 0K*. 1In particular, if {4;;} is irreducible, {b(x)} of (3.2) satisfies the
condition 11.

Then, we can show the following.

Theorem 3.2. Assume the condition I1. Then,

(i) For each (t, x)e(0, 0)x K*, P(x, +) is mutually absolutely continuous to
the Lebesgue measure A on K*.

(i) Denoting by {p(x, y)} the density functions of {p(x, -)} w.r.t. 2, there exists
a positive probability density function u(x) on K* such that u(x) is smooth in
K*, and

tim{ 1p(r D=u(IKdY) =0 for any xek®.
Remark 3.1. Generally, Theorem 3.2 is valid if {a;;(x)} is smooth on K and

positive definite in the interior K of K, and if the (K. A, x)-martingale problem is
uniquely solvable.

For the proof of Theorem 3.2, we apply the following general fact which is
essentially due to Harris [4] and Orey [11].

Lemma 3.1. Let (X, #) be a measurable space and {P(x, E)};>0 xex.cca be a
conservative transition probability on (X, #). Suppose that there exists a station-
ary probability measure v of {P/(x, E)}, which satisfies the following condition,

(3.3) for some t,>0, it holds that P,(x, -) is mutually absolutely continuous with
respect to v for each xe X.

Then,
3.4) lim |P(x, -)—V],0=0  foreach xelX.
t—=©

Proof. We may assume to,=1. First we shall show that any P, -invariant
function is a constant function.

Let h(x) be any P;-invariant function and set E={xe X: h(x)>0}. Then,
v, Wy =<y, Ighd ={v, IgP hY <v, IgP h*><v, Ph*). Since v, h*) =y,
P, h*), because of the stationarity of v, we see

I;P ht=Ph* v-a.e..

Thus, it follows that I.PI;=0 v-a.e., and this implies
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3.5 P I <I; v-ae..

Noting v, P Ig>={v, I, it holds v(E)=0 or 1. In the same way we see that
v({xe X; h(x)>a})=0 or | holds for any aeR!. Accordingly, there exists a
constant a such that h(x)=a v-a.e.. Moreover, the P -invariance of h and (3.3)
imply h(x)=a for all x e X.

Next, we shall show that the Markov chain (2, #, P,, {#,}, x(n)), associated
with {P,(x, E)},ez+ xex, peq Satisfies the Harris recurrent condition.

(H) ForanyE e Z with (E)>0, P,[ Z I(x(n))=+00]=1 holds for every x e X.
Set I'= [Z I(x(n))= + o0]. Then since P,[I'] is P,-invariant, it is a con-

stant function. Let P.[T1=a. Applying the individual ergodic theorem for the
stationary process {x(n), P,}, we see

(36) P [hm = Z Ie(x(m))=f* CXIStS:l—] where f* is a random variable and
satisfies E [ f *] =vw(E)>0.

This implies P,[I']=a>0.
On the other hand, it follows that

I (w)=lim P,[T | # J(w)=lim P, [']=a, P,a.s..

Hence we have a=1.
Finally, it is clear that {P,(x, E)} is aperiodic. So, by using Theorem 3 in [11],
p. 816, we have

3.7 lim ||Py(x, +)—V|yar=0 for all xeX.

Moreover, noting that ||P(x, -)—v|,., is non-increasing in t>0, we complete the
proof of this lemma.

Lemma 3.2. P{S: IaK(x(t))dt=0:|= 1 for any xeK.

Proof. Let define a sequence of C2-functions {y,} on [0, o) by
i) = —(u— —) A0, Wl (u) = S W (v)dv+1, and
Vo = (o) do.

Then it holds that lim |[y,[|=0, limy,(u)=1,0,(u) boundedly, lim |uy;(u)|=0

boundedly, and supp [wg]c[o, _nz_} Let 0<i<d. Since{ f(x(t))—St Af (x(s))ds,
]
F ,} is a P,-martingale for f(x)=y,(x;), we have

ELU A =) =By || A (e
=EJ [\ x((—xiwicatsnds |+ B  wiumbixtonds .
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Letting n— o0, we get

(3.8) EB; I{O,(xi(s))b,-(x(s))ds:l=0 0<i<d).
Consequently,
(3.9) [} ELE 1o(xisDb(s()1ds =0,

Thus, noting the integrand of (3.9) is non-negative by (1.5), it follows from the
condition 11 that

P,C[S00 Iax(x(t))dt=0:' =1 holds for each x e X.
0

Now, we shall prove Theorem 3.2. First, we note that there exists a stationary
probability measure v of the diffusion process (2, &#, P,, {&#,}, x(t)) since it induces
a Feller semigroup on C(K) and K is compact. Also, if P(x, -)=~A (the Lebesgue
measure on K)® for any t>0 and xe K, then A~v holds and Lemma 3.1 is ap-
plicable. So, we shall show P,(x, -)~A for any >0 and x € K.

Let {P2(X, E)}i»0,xek ecq(k) D€ transition probability of the minimal process,
which are obtained by killing the A-diffusion process on K at the boundary dK.
Since the diffusion coefficients of A4 is not degenerated in K, it follows that P9(x, -)
~1 for any xe K, (cf. [3]). Thus, P(x, -)»P%x, -)~A for any t>0 and xeK.
Also, for any x € 0K it is clear that P(x, -)> A by Lemma 3.2.

Conversely, let A(E)=0 for some Ee #(K). For any fixed xe K, we choose

d
0>0 such that xe Ky;={xe K; x,>0,-+, x,>0, | — > x;>0}. Let ¢ and 7 be the
i=1

first hitting times for 0K and K, respectively. {o,} and {z,} are defined inductively
by

oy=0, 1,=0,+10,,),, 0,=7,-,+0(0,,_,),” and 1,=0,+1(0,,).

Thn-

Noting P%(x, E;)=P,[xtt)€ E;, t<a]=0 for Es=E n K;, we see

P(x, Es)=P,[x(t) € Es, 1,<t<0, for some n]
=PYx, Ep+ 3 ELPY, (v, Ey); 7,<1]=0.
Thus, for any x e K
P(x, Ey=P,(x, En K)=}£n(} P,(x, E;)=0 holds by Lemma 3.2.

Furthermore, since it is evident that P(x, E)=0 holds for any x € 0K, we see P,(x, -)
«A for any t>0 and xe K. Therefore, using Lemma 3.1 we complete Theorem
3.2

8) If pis absolutely continuous with respect to v we denote <y, and if p<v and v« we denote
p=v,

9) {6.} stands for the shift of (2, &, P, { £}, x(¢)).
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In order to prove Theorem 3.1, we shall prepare some lemmas.
Lemma 3.3. Let (O, %, P, {Z}, z(t)) be the diffusion process on [0, 1],
which is defined by the following generator,

(3.10) B=x(l—x)—12—+yx(l—x)—d— yeR!
) dx? dx’ ’

Then, B,[6,< +0]=h(y: z), and P,[6,<+00]=1—h(y: z), where &, and &, are
the first hitting times for {0} and {1}, respectively, and

(exp(—yz)—exp(—y)/(A—exp(-7)) if y#0
-z if y=0.

Proof. See Ito-McKean [7].
The following lemma is due to lkeda-Watanabe [5], which is a modification
of the comparison theorem by Yamada [15].

h(y: 2)=[

Lemma 3.4. Suppose that we are given the following,
(i) a real measurable function a(t, x) defined on [0, c0)x R such that

(3.11) la(t, x)—a(t, p)I<p(x—y),  x, yeR, t>0,

where p(u) is an increasing function on [0, o) such that p(0)=0 and
(3.12) S p()-2du = + o,
0+

(ii) real measurable functions b,(t, x) and b,(t, x) defined on [0, c0) x R such that
fori=1,ori=2,

(3‘13) Ibi(t’ x)_bi(t’ y)lSK(lx_yl), X, yERy tZOa

where K(u) is an increasing concave function on [0, o) such that k(0)=0 and
(3.13) S ()~ tdu = + 0.
o+

Let (Q, #, P; {#,}) be a complete probability space with right continuous in-
creasing family {&F }.», of sub-fields of &, each containing P-null sets and suppose
that we are given the following stochastic processes defined on it,
(ili) two real {& }-adapted continuous processes x,(t, w) and x,(t, ),
(iv) a one-dimensional {&}-Brownian motion B(t, w) with B(0)=0,
(v) two real {#,}-adapted well-measurable processes c,(t, w) and c,(t, w).

We assume that they satisfy the following conditions with probability one.

(G14) 50 -x(0) = ats, x(NaBE+ (| b6 xN+etonds,  i=1,2,
(3.15) x,(0)<x,(0),

(3.16) b,(t, x)<b,(1, x), x€R, 120,
(B.17)  ci(t, w)<Lcy(t, w), t1>0.
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Then, with probability one, we have
(3.18) x(t, w)<x,(t, w)  forall t>0.

Here, we will present a simple proof. Let us assume (3.13) holds for b (¢, x).
Let y,(u) be a non-negative continuous function such that its support is contained

in (a, a,-1), Sa"_l Y, w)du=1, é,nd V()< %p(u)‘z, where the sequence ay=1>a,

>...>qa,>—0 is defined by Sa"_lp(u)‘zdu=n. Let ¢,,(u)=gu dy Sy Vv (2)dz if
0 0

u>0, and ¢,(u)=0 otherwise. ﬁwn, ¢, € C¥(R), ¢,(u),/ut as n—oo, and 0< ¢, (u)
<Ig,(u). Using Ito’s formula, we have

(3.19)  @u(x:1(D)—x2(D)

=a martingale + —é— S; "(x1(8) = x,(8)) (a(s, x,(s))—a(s, x,(s))*ds

+{! 1019 =3 (b1(s. x2(9)= bals. x2(5)+ €1(5) = ex(s)ds.
Notice that ¢%(x, —x,)(a(s, x;)—a(s, x3)*< —3‘7 and

Bn(xy —%3)(by(s, x;) = ba(s, x2)) <((x; —x3)%).

Taking the expectation and letting n— oo in (3.19), we have

(3200 ELGei(0=xa(0)*1< || BL(0x,(9) = xa(0) s < || w(ELGx(9)=x:(9) D
Hence, it follows easily that E[(x,(f)— x,(£))*]=0 for all =0 and this implies (3.18).

Lemma 3.5. Let C<1 be a non-recurrent equivalent class. Then,
P.[l{c<+o and Z_Cxi(t)=0 for any t>(-]=1,
where {c=inf {t>0; l.;Cx,-(t)=0} or +o0 if{ }=¢.
Proof. It is sufficient to show this for any non-recurrent class C such that k—i

does not hold for any ieC and any k¢C. Let yt)= Zcx,-(t). Applying the
ie
martingale relation to (3. x;) with fe C3(R), we have
ieC

S = 201 =y60 s s0ds = §| 5 bix(sNS (s

is a P,-martingale. This implies that there exists a one-dimensional {#}-Brownian
motion {B(t¢; w)} such that

(3.21) Y1) — p(0) = S; J2YG) (1= W(s)dB(s) + S; ¥ bix(s))ds

Here we note that
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(322) T b= 5 (S Admt T xm()— 3 5%
ieC keC ieC ieC k=0
<jy(1—y) where y= 126 x; and J=max max y(x).

ieC xeK

Let us consider the diffusion process on [0, 1] defined by the following stochastic
differential equation

(3.23) z(t)— y(0)= g; \/22(s)(1 —2z(s)) dB(s) + S; $z(s) (1 — z(s))ds.

Then, applying Lemma 3.4 to (3.21) and (3.23), we get
P y(®)<z(t) forall t>0]=1 with p0)=3 x;.
ieC

Hence, it follows from Lemma 3.3

(3.24) P.[{c<+0]=h(7, Zcx,-)>0 if }%x,-<1.
ie ie
Next, we shall show that denoting 7=inf {t>0; > x(f)<1},
ieC
(3.25) P [t=0]=1 forany x with Y x,=1.
ieC

It follows from (3.21)

(3.26) E,,B'”z b,(x(s))ds:|=0 it Y x=1,

0 ieC ieC
Noting (3.22), we see
(3.27) E[ " Z.(5 hom(s)ds | =o.

0 keC ieC
Since C is non-recurrent, there exists a ko€ C such that 3 4,;<0. So, (3.27)
ieC
implies
(3.28) X, (s)=0 forany s<t P,-as.on [t>0].
Also, noting
(3.29) ELxno(t A D] = xig=Ex | | bio(x()ds ]
0

(3.30) E, B ) Akkoxk(s)ds:'=0 holds.

0 ke

Thus, if k; 3k, x;,(s)=0 for all s<t P,-a.s. on [t>0]. Since C is an equivalent
class, it holds that for any ie C

(3.31) x{(s)=0 forall s<t P.,a.s. on [1>0].

Therefore we obtain (3.25).
It follows from (3.24) and (3.25) that
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(3.32) P, [{c<+00]>0 for any xe K*.
Moreover, we can show
(3.33) inf P,[{c< + 00]>0.
xeK*

For, let f(x) be a non-negative continuous function such that f(x)>0 for any x € K*
with ¥ x;< 1.

ieC
Then (3.25) implies

(3.34) T.f(x)=E.[f(x(t))]>0 forany xeK* and ¢>0.

Noting that K* is compact and {T;} is a Feller semigroup, it follows that Dini’s
theorem that there exist ¢ (0<e<1) and a continuous function f(x) defined on K*
such that 1> f(x)>0 if Z x;<1—e¢, and f(x)=0 otherwise, and T,f,(x)>0 for any

xe K* and t>0, (¢>0). So we have
infP.[r,< +00]> inf P,[ 3 x(1)<1—e]> min T,£(x)>0
where 7,=inf {t>0; Z x()<1—eg}. (3.33) follows from this and (3.24). Also,
it is clear from (3. 33) that
(3.35) P.[{c<+o0]=1 holds for any xe K*.
Furthermore, it is easy to see from (3.21) that

P[> x(t)=0 forall 1>{]=1 forany xeK*.
ieC

Thus, we complete the proof of Lemma 3.5.

Now, we shall prove Theorem 3.1. Let R be a recurrent class. First, we note
that P.[x(t) e K(R) for all t>0]=1 if xe K(R). Let y(t)= 3 x/t). Noting 3 i,
ieR ieR
=0 for any ke R, we see

EL01-11= | [ ELE xG)0GO)- £ nxoms)ds

<7, IELy6) = 11lds where 7=max max (0.
0

0<k<d xeK*

Hence, P, [y(t)=1 for all t>0]=1 for any x € K(R).
Also, if we restrict our consideration on K(R), (i) follows from Theorem 3.2,
since {by(X)}icr xek(r) Satisfies the condition II by the recurrence of R.

Let K,={x e K*; Z’ > x;=1} and denote by o, the first hitting time for K,.
i=1 jeR;
Then, by Lemma 3.5, !

P.Jo,<+0 and x(t)eK, forall t>6,]=1 forany xeK*.

Let xe K, and set y(t)= ¥ x;(t). Then, noting ¥ Z Aj=0, y(t) is repre-
JeRy

keR; jeR;
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sented in the same way as (3.21) by a one-dimensional & -Brownian motion {B(t, w)},
(3.36)  yi()—y(0)

= (! VO a8+, = 300~ 5 ne)(o)ds.

Notice that Z‘, xi(y(x)— Z P2(X)x)=9y;(1—y;) for some $eR'. Applying
Lemma 3.3 and Lemma 3. 4 we obtain
(3.37) P [&r, <+ 0]=1—h(; y), yi=j§h X;.
So, we have
P [ég, <+ oo for some 1<i<r]>(1—=h(§, y)) Vv - v(L—h(3, ¥.)),
and this implies

(3.38) inf P,[£g, <+ forsome 1<i<r]>0.
xeK*

Accordingly, (ii) follows from (3.38). Also, (iii) is evident by (i) and (ii).

§4. Hitting on subsets of the boundary dK*
For each subset H of I={0, 1,...,d}, let us denote Vy={xeK*; Zx =1}.

In this section we shall obtain a necessary and sufficient condition for the A d1ﬂ’us1on
process on K* (Q, #, P,, {&,}, x(t)) to hit on any relatively open subset of V' with
positive probability. Let

d d
@.1) A=3 3 00, —x)) 5 a +Zb(x)a

From now on, we suppose that {b/(x)},;<icqs satisfy (1.5) and Lipschitz con-
tinuous on K and that the (K, A, x)-martingale problem is uniquely solvable for
any x € K.

d
Let bo(x)=— Y b{x). For each measurable subset Ec< K*, 6(E) denotes the
=1
first hitting time on E. Then, we have the following.

Theorem 4.1. Let ¢ #HSI and let U be any open subset of K* with Un Vy

#9¢.
(i) If sup{.z’;b,-(x);ernV,,}>—l, then P Jo(UNVy)<+0]>0 for any

x e K.
(i) Conversely, if sup {X b{(x); xeUnVy}<—1, then P,Jo(UNVy)=+ow]=1
ieH

for any x e K*.
For the proof we shall use the following fact.

Lemma 4.1. Let (3, F, P,, {F,}, z(t)) be the diffusion process on R! defined
by the following generator,
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(4.2) B=|z(1— z)|

+(d+/3(1—2)) , o, feERL,

Then, if a>—1, P,[o;,< +00]>0 for any 0<z<1, and hm P,lo,,<+o]=1.

Conversely, if a< —1, P [[01y=+o]=1 for any 0<z<I, where 61y stands for
the first hitting time on {1}.

Proof. 1t is immediate from the theory of one-dimensional diffusion processes.

(cf. [6]).

Proof of Theorem 4.1,
First, we assume sup {.ZH bi(x); xeUnVy}>—1. Then, there exist > —1,

>0, and X € U n Vy, such that {x e K*; |[x—X|<y} <= U and
4.3) > b(x)>p forany xeK* with |x—X|<7.
ieH

Let f>n and 0>n> —1, and set

Y= _z2
exp(S%————v(l_v) dv>du+|x x|2.

It is easy to see that w(x) e C3(K*\Vg) and for some 0<d<7y,

1
(4.4) w(x) = S

‘H i

(4.5) Aw(x)<0 forany xeK*\Vy with |x—X|<d, and w(x)=0.

Let us denote by t; the first leaving time from {xe K*; |x—X|<d}, and set 1=
;A 0(Vy). Then, it follows from (4.4) and (4.5)

(4.6) E.[Ix(t A1)—X|2]< E [w(x(t A T)]<w(x).

So, using Chebyshev’s inequality and (4.6), there exists a constant §; such that
0<d,<6 and

4.7 Px[[x(t/\r)—fc|>%]£—é— for any x € K*\Vy with |x —x|<d; and any t>0.
Also,

—é— |:|x(t/\t) X< g}

SP,[Ix(t)—)?]s % t<r}+ Px[lx(r)—ﬂg % rst:l

SP[t<t,]+Pfo(Vy)<t,].

Letting t— 00, we see
(4.8) P,l1,= +00]+P,[0(Vy)<t,]> + for any xe K*\Vy with |x—%|<3,.

Let y(t)= Z x;(t). Then, there exists a one-dimensional {#,}-Brownian motion
{B(t; )} such that
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@9 y0-y©={ yHEOT=yENdB6)+ | T bix(s)ds
= (. @ T=30aB@+ | B+e(s)ds,
where ¢(s)= 3 bi(x(s)) = f>0 Pras. on [1<1].

On the other hand, let us consider the diffusion process on R! defined by the
following stochastic differential equation,

(4.10) 2(t) = y(0) = S; S22 A =2()) dB(s) + .
By Lemma 3.4,
4.11) P.[y(s)>z(s) forall se[0, t5)]=1.

- Also,

(4.12) P, [o(Vy)<t;]=P.[y(s)=1 for some se[0, 15)]
>P,[z(s)=1 for some se[0, ;)]
>P.[z(s)=1 for some se[0, o0)]—P,[15<+0].

Combining (4.8) and (4.12), we have

(4.13) 2P [o(Vy) <7;]> P.[z(s)=1 for some se [0, 00)]— —21— :

By Lemma 4.1 we can find 8, such that 0<d, <9, and for any xe K* with y(0)=
> x;>1-96,

ieH
(4.14) P.[z(s)=1 forsome 0<s<+o0]> % ,

Then, we have

(4.15) P [o(Vy)<7;]1>0 for any x e K* satisfying |[x—Xx|<d, and Y x;>1-—0,.
ieH

Noting that the A-diffusion process on K* starting at any interior point of K* hits
on non-empty open subset of K* with positive probability, (4.15) implies that

(4.16) P.[|x(f)—x|<d and x(t)€ Vy for some t>0]>0 for any x e K*.

Thus, we complete the proof of (i).
Next, in order to prove (11) we suppose sup { Z b(x);xeUnVy}<—1. We
i

may assume that U={x e K*; Z |x;—X;| <8} for some 0>0and x=(xg, X{,..., X4)

€ Vg, since for any open subset U with U N V4 # ¢, there exists a countably family
of such subsets {U,}, satisfying U n V= \gj U,nVy.
n21

First, we note that there exists a constant f € R! such that
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4.17) Z}:Ibi(x)s—1+ﬂ(1— > xp) for any xeU.
ie ieH
For any x e U define x" € V; by
(4.18) x;=x;/ X x; (jeH) and x7;=0 (j¢H).
ieH

Then, it is easy to see x' € U, and by the Lipschitz continuity of {b/(x)} there are
some constant e R! such that

S 5()< T b+ B S m-xi<-1480- T 5.
ieH ieH i=1 ieH

Recall that y(f)=3 x;(f) can be represented by using a {&,}-Brownian motion
ieH
{B(t; w)} as follows,

@19 -y = IO dB6) + | > blx(o)ds.
Also, let us consider the solution {z(#)} of the following equation,
(4.20) z()— y(0)= S; J22(s)(1 —z(s)) dB(s) + S; (=14 B(1 —z(s))ds.

Then, by (4.17), (4.19), (4.20) and Lemma 3.4, we have
(4.21) P [y(s)<z(s) forall se[0,1y)]=1 forany xeU,

where 1, stands for the first leaving time from U. Since Lemma 4.1 implies that

(4.22) P z(s)<1 forall s>0]=1 for any xe K¥\Vy,
it follows

P [y(s)<1 forall se[0, p)]=1 for any xe U\Vy,
namely,

(4.23) P [x(s)¢Vy forall se[0, 7y)]=1 for any xe U\Vy.

On the other hand applying Ito’s formula for 1— y(¢) and {,} in the proof of
Lemma 3.2, we can easily see

(4.24) PXBOO Iy, mo(x(s))ds = 0] —1  forany xeK*.
0

Let W be any open set such that W< U.  Since (4.23) and (4.24) imply that x(z) goes
out of U before it attains Wn Vy, it follows that

(4.25) P.[o(Wn Vy)=+o]=1 holds for any xe K*,

and after all this implies that P,[a(U n V)= +o0]=1 holds for any x e K*.
Corollary 4.1. Suppose that {b(x)} satisfies (3.2). Then, P,[6(Vyg) <+ 0]1>0



Diffusion processes 151

for any x € K*, if and only if max Y 4> —1. In particular, denoting by e; the
keH ieH X

i-th vertex of K*, i.e. (¢);=0;;, P,[o({e;})< +0]>0 holds for any xe K*, if and

only if 4;> —1.

d
Remark 4.1. Suppose b(x)=p,—( > B)x; (0<i<d) with §;>0. In thiscase
j=o0

Shimakura constructed the Poisson kernel associated with 4. (cf. [14], §8). His
results imply that if EcdK* is a null set with respect to the volume element of dK*,
(4.26) P.[x(6)eE, 6<+o0]=0 holds for any xe K*, where o=0(0K*).
Accordingly, by Theorem 4.1 we can see that if |[H|<d—1,

(4.27) P,[x(t) e K* infinitely often as t 1 6(Vy) | o(Vy) < +0o]=1 holds for any
xe K*.
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