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§ 1. Introduction

In population genetics theory we often encounter diffusion processes on the
compact domain K = {(x 1 ,..., x d) e Rd ; x O , . . . ,  xd >_ 0, 1 — x 1 — • • • — xd  O } .  In
order to construct such diffusion processes, we will consider a martingale problem
on K.

Let A be a second order differential operator on K
d d

(1.1) A =  E  a • i (x )   E b. (x) 
i,J=1 cixiux; t=i x

with domain D(A)= C 2 (K), 1 )  where la i i (x)} is  a  real symmetric and non-
negative definite matrix defined on K  and {b i(x)}, K d  is  an Rd-valued measurable
function defined on K.

We assume that {a (x )}  and {bi(x)} are continuous on K .  Let S2= C([0, co):
K) be the space of all K-valued continuous functions defined on [0 , o c ). For each

E Q  and each t> 0, we denote x(t: co)=co(t). Let .F, and „F be the o- -fields gener-
ated by {x(s); 0 t} and {x(s); 0} respectively.

Let x e K .  A probability measure P  on (Q, .F )  is called a solution of the
(K, A, x)-martingale problem if it satisfies the following conditions,

(1 .2 ) P[co ; x(0: co)= x] = 1, and

(1 .3 ) denoting M f (t)=f (x(0)—  Af(x(s))ds, (M f (t), ..F t )  is a P-martingale for each
Je  C2 (K).

It is known that if a solution of the (K, A, x)-martingale problem exists, the
following conditions must be satisfied, (cf. Okada [9]).

d d d
(1.4) a ( x ) = O  if x = 0 ,  a n d  E  E  au ( x )= 0  i f  E x i =1,

i=1;=1
and

1) Each element of C 8 (K ) is a C 2- function defined on an open set containing K.
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d
(1.5) b i(x )  0  if x =  O ,  a n d  ±  b ( x )  0  if E x.= L

1=1 1=1

Conversely, if {a,i (x)} and {b i(x)} are continuous on K satisfying (1.4) and (1.5), then
a solution of the (K , A , x)-martingale problem always exists.

However, the uniqueness of solutions of the (K , A , x)-martingale problem has
not been generally established. The difficulty is due to  the fact that fa (x ) }  can
not always be extended to be smooth and non-negative definite on the whole space
R d, even if {ai (x)} is sufficiently smooth on K.

For this problem, Ethier [2] proved that if { a(x)}  = {x,(Su — xi )} 2 ) and {b i(x)}
are  C4 -functions satisfying (1.5), then the uniqueness o f the  (K , A , x)-martingale
problem holds. Also, Okada [10] recently showed that the uniqueness holds for
a rather general class in two dimension.

In the present paper we will first discuss the uniqueness problem of the (K, A , x)-
martingale problem. Although we impose a rather restrictive condition, our result
covers the Ethier's case when {bi(x)}  are assumed to be polynomials. Our method
consists in using the notion of dual processes which has proved useful in the theory
of infinite interacting systems. Secondly, we will study some ergodic behaviors of
the diffusion processes on K  under a genetical assumption. In the final section we
will discuss a  problem whether o r not the diffusion process hits on subsets of the
boundary OK with positive probability.

§ 2. Uniqueness of solutions of the (K , A, x)-martingale problem

Let J=Z 4,- b e  the d products of the set of non-negative integers. For a and
fi E  J, a + fi is defined componentwise. If ai =1 and a ;  = 0 for j0  i, a is denoted by

d
For each a eJ and x e K , we denote f i(x )= n  x a i,  and f o ( x ) = 1 .  Set + • • • +

i=1
ad  for each a e J.

In  th is section we shall consider the  uniqueness problem o f th e  (K, A , x)-
martingale problem under the following condition.

Condition I.
[I-1] ai (x )  are  poly nom ials o n  K  an d  satisf y  (1.4). Furtherm ore, denoting
au (x )= E a i i (6)fp (x), there exists a constant 0<c <1 such that

fle.1

(2.1) E la1MIc 2 - IPI+aje i + Ei )< 0
II#E1+EJ

and

f orai! j

(2.2) E la i i (fi)10 - 1P1(1/31-2)<a 1i(si)f o r a i ! d.
j=1 fil > 2

[I-2] b1(x) are polynomials on K  and satisfy (1.5).

Then, we have

2) So  is the Kronecker's symbol, i.e. S i '  =0 ( i # j)  and 6i i  = 1



Diffusion  processes 135

Theorem 2.1. Suppose that the condition I  is fulfilled. Then, for any  x eK
the uniqueness of solutions of the (K , A , x)-martingale problem holds.

Suppose that the condition [I-2] holds. Then as consequences of this theorem
we have the following.

Corollary 2.1. {ai i (x)= o-2xi(Si j — xJ )}  satisfies the condition [I-1]. Thus, our
result gives another proof of  Ethier's theorem [2] in the case that b (x )  are  poly-
nomials.

d
Corollary 2.2. L e t  ai i (x)=x,x i (  E — fli )+,I3 ,x ,, w here xo  =1—x,

osiSd f l i <  ( 1  ±  24r)

min (3,, then [I-1 ]  is satisf ied. Hence the uniqueness of  the m artingale problem
05i5d
holds.

P ro o f . Without loss of generality, we may assume )60 =min /3i . Then, [I-1]
d5i5d

is satisfied with c= .2

Corollary 2.3. Let au (x) be any polynomials satisfying (1.1) and (1.4). Then,
there exists a positive constant so such that for any  x eK and any  a with 0<s<s 0 ,
the (K, A 8, x)-martingale problem  has a unique solution,

d 02 d a  where J P =  E  (x,(6 —  x ; ) + ea(x )) +  E b•(x)
i,J=i ax.ax • ' ax ,

Remark 2.1. Suppose that the uniqueness of the (K, A, x)-martingale problem
holds for any x e K .  Then the A-diffusion process is uniquely determined and its
transition probability induces a Feller semi-group on C(K). 3 )

Remark 2.2. If ai i (x )= E 0.(f i)f (x ) satisfies (1.4), then it follows automati-
fleJ

cally that

a1 (/3)=0 for all /3 w ith 1131 2  except /3= si +s i  i f  i Of,

a(S )=0  for all fi w ith Ifil except f i=e ,  and

a,,(ek + s„,)= 0 if k  i  and

For each cc e J, we associate the symbol and set = lal. L e t  ={c7; ŒE J}
and J* = J U J .  For each a e J we denote 0,c(x)=c 1. 1L(x) and (/),(x)= —44x).

Let bi(x)= b,(fi)fp (x). Then, by a simple calculation we havej  

Lemma 2.1.
(2.3) Ack„(x)= Z . a x , i3( 04)0(X)— 4 4  + h 2 0.(X), CX e J,

w here

3 ) C(K) denotes the set of all continuous functions on K.

k=0
—  • • • — x , ,  a n d  13k _0, k=0, d. (cf . S ato [13]). I f  max
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d

hŒ= E  c (;—  1)(  E  la iiM Ic 2 - 1 , 1 +aii(28))i=1 ii#2„
fief

d d

+  E  E  /Ja i ( E  It ii0 )1 c 2 - 1 fil +aj8H-E))i=1 1=1 P#e + E • j
J

( OL D PEJ

d

+  E 1P I + bi(ei))
i =1

P E I

and { Q }  , co . are defined by

dE  Q« (kJ= E  Œ (c . —  1
) E  C2—  I I  (ati(fl)(4)._ 2ei +fi Oa)

f ie l* i=1 fi=k2Es
Per

d d

+aTi(fl)(4).-2s o -p-0.)))+ E E (xicc i ( E  c 2 - 1 fil(aW3)(0.---e,-Fp— Oa)
i=1 i=1 p#gi+E,

f ie !,

d

+ai;(fl)(4).-,--e i +p— +  E ai( E  c 1 - IPI(6t(fl)(0.-„F ft — O.)i=1 /14 .5,

+ 6 ;7 (P) p — 
A.

4 )

Let us define an  infinitesimal matrix Q ={ Q }  on J* x  J* by for each a E.'',
—  E  Q„,f i and Q = Q ,  where (fl)-13 for each f ie J.

fieJ*
fl#«

Then we have the following.

Lemma 2.2.
( i ) hOE is bounded above on J*.
(ii) L et f ( a)=Ial.  T hen, Q f (a)= E  Q ( f ( 1 3 ) — f ( ) )  is bounded abov e on J*.

fieJ*

(iii) T he m inim al M ark ov  chain (a„ POE)OEEJ., generated by  Q ={ Q } ,  is con-
servative.

Pro o f . (i) and (ii) follows from (2.1) and (2.2) respectively. As for (iii), let
(a t, POE) be the minimal Markov chain generated by Q, (cf. Chung [1 ], II §18).
For each N> 0, define TN= inf {t>0; > N } . By the Dynkin formula, we see

rAti„
(2 .5 )  E cc[f(ot, A TN ) ]  =f(o L'c) „[

o

Q f (as )d sl, fo r any finitely supported func-

tion f  on J .
Noting that {au (x)} and {bi(x)} are polynomials, we can choose a finitely supported
function f N  o n  J*  such that f N (a)= l a !  if  lal < N, and Q  f ,(a)= E Q8,p(1/31-1Œ1) if

fie,1*
lad < N .  Then it follows from (ii) that there exists a constant K >0 satisfying

(2.6) max Q fN (a)<K for a n y  N >O.
la l< N
cieJ•

4) a+ =max {a, 0}, and a-  = —min {a, 0).
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Thus, by (2.5) and (2.6) we have

(2.7) EOE[latnr,,,1]<lal+Kt for a n y  N >O.

So, letting N - +oo,

PA 11M  N >  t] = 1 for any fin ite  t>0,

namely,

(2.8) PA liM T N  =  +  00] =  I .
N-'œ

Hence, (at , P„) is conservative, because it does not explode in finite time.

Lemma 2.3 (Kac's form ula). L e t  h(a) be any function bounded above on
J*• F o r  any bounded function f(a) o n  J* a n d  A>I111+11, le t u s  consider the fo l-
lowing equation fo r  u.

(2.9) (A—Q—h)u=f

with the subsidiary condition

(2.10) /V(Ihul) is bounded o n  J*. 5 )

Then, there exists one and only one bounded solution of (2.9) with (2.10), and it is
given by

(2.11)
co

u(a)=
o  

exp ( —  At +  
o

h(a,,)du)f (a t) dt , a a  J .

P roo f. Without loss of generality, we may assume that h< 0.
I .  L e t  f be a function on J*  such that 111 (If I) is bounded on J * .  Then we

shall show that

u(a)= E„5
o  

exp( —At+ 1
0  

h(a„)du)f (czi)dti satisfies (2.9) and (2.10).

We may assume f > O .  Then it is easy to see that

(2.12) RÂ f (a) —  u(a)= le(( —  h)u) (a), (cf. Ito [6 ]).

Hence /V(Ihlu)(a) is bounded. Since (a, P„) is generated by Q, it holds that

(2.13) E =6 for all a and 13 E J*.

So, by (2.12) and (2.13) we have

(2,14) f(a) —  (A —  Q)u(a)= —  h(a)u(a), a E J*.

Thus u(a) is a bounded solution of (2.9) and (2.10).

5) R R er)= E „[5 : e— "f(ce t)dll.
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2°. Suppose that h(a) and R 1 (1 f  I) (a) are bounded . Then, (2.9) has a unique
bounded so lu tion . For, let u1 and  u2 be two bounded solutions of (2.9). Setting
u1 — u 2  =  W , it holds that

(2.15) —Q)w . = hw.

Since the minimal Markov chain (oc,, PO is conservative, (). —Q)u =f has a  unique
bounded solution u for any bounded function f , which is given by u =.1V f . Thus,
we have

(2.16) w=RA(hw).

If p>2). and IhI, it follows from the resolvent equation that

w=liA(11w)=RP(Ilw)+(p— 2.)RIIRA(h )= Rg((h + p— Â)w).

S o, 11w11-- 11(h- A ) w l i   and this proves =O.

3°. Let h be any non-positive function on J*, f  be any bounded function and
u be a bounded solution of (2.9) and (2.10). Set h„= h y (— n).6 )  T h e n , (2—Q —h„)u
=f+(h— h„)u holds. S ince IV (if+(h — hOul) is bounded, we get by th e  step 1°
and 2°

(2.17) u ( a) = E  
o  

ex p  —2t +S
o 

h„(ajdu)(f  +(h — hn)u)(rxt)dtl.

Noting that RA(Ihul)(a) is bounded on J* and letting n—■ co , we obtain (2.11).

Now, we shall prove Theorem 2.1. Let P ,  b e  a  solution of the (K , A, x)-
martingale problem. Denote u(t, oc, x)=E,[0„(x ,)] for a E J * .  Then, by  Lemma
2.1 we have

(2.18) u(t, a, x ) — & ( x ) = [ A C ( x s ) ] d s

= E Q„ p (u(s, fl, x)—u(s, oc, x))+ h c,u(s, oc, x))ds.
O

Setting v,t (a, x)= 0  e - Atu(t, oc, x)dt for e a c h  >11h+il, it holds

(2.19) h)u2(cc, x)=0,,(x).

Noting that v,t (oc, x) satisfies (2.10), we have by Lemma 2.3

(2.20) v2(ot, x)=E OE

[ o  

exp(—)1 li,du)0„,(x )dtl.
JO

Accordingly, we see that Px  is uniquely determined by using a standard argument.

6) a v b = max [a, b} .
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§ 3 .  Limiting behaviors

In this section we shall discuss limiting behaviors of the following special type
of diffusion processes on K:

a(3.1) A = i l i  x i (6 i i - x 1 )  ,
 a

:  + bi (x )  a x i
j=1 i=i uxiuxi 1. 1

a d
(3.2) b i(x )=  E  AkiXk +  X i(Y i (X ) —  E yk(x)xk),i =0, 1,..., d,

k=0 k=0

where x0 =1- x, - ••• - x d , 1.,1 1ki3O5k,i5d is a constant matrix satisfying Ak i( k  i )
d

and E A,=0, and {y ,(x )}" k „ are C4 -functions on K.
i=o
Without loss o f generality, we may assume tha t yk (x )>0  fo r  any X E K  and

0 < k< d by adding some constant.
Genetically {Ak i } involves the intensity of mutation and {yk (x )} is the intensity

of selection.
By Ethier's results [2], the A-diffusion on K (Q, Px , x (t)) is uniquely

determined. Hereafter we shall often regard i t  as a diffusion process o n  K *=
d

{ (x 0 , X 1 ,. . . ,  X d );  X o X 1 > 0 , . . . ,  X _ _  O, E x8=1} by setting xo (t)=  1 -  E xxo.
i=0 i=1

Let us denote by {P f(x, 
E ) } , 0 , x e l O , E c a t ( K * )

 the transition probability of the A-
diffusion process on K*.

Let I=  {0, 1,..., d}. Let us define a relation on / by {Au}. lf > 0, we denote
i3 j .  F or i and j ,  we denote if there exists a  chain [ i 1 = i, i 2 ,..., i p = f ]  such
that in 3 i„ 4. 1 fo r any 1 < n < p -  1 .  If either i = j,  or and j-4 i holds, we denote
i4-*j. Then, the relation "4 -" defines an equivalent relation on I.

An equivalent class Cc/ is called recurrent if i -> j does not hold for any in  C
and jçt C .  For each recurrent class R, let us define

K (R )=  {X E  K*; x i =1} and =  inf {t 0 ; x (t)e  K(R )}, o r + co if 1=4).
ieR

Then, we have

Theorem 3 .1 .  L et R,, R 2 ,..., R,. be all recurrent classes. T h e n ,
(i) For each R i ,  there ex ists a  unique stationary  probability  m easure yi such
that

f or a n y  xe K(R i ) ,

(ii) P.N R i<  +  0 0  f or s o m e  1 i r ] = 1  f or a n y  x E K*,

and

(iii) lim 11/) ,(x, • )- ci(x)vi lly ,  =0 f o r  a n y  x e K * ,  where
t-co 1=1

7 )  II j js t a n d s  for the total variation norm.
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ci(x )=P.V R ,< + 0 0 1-

First, we shall prove it in case that {Au } is an  irreducible matrix. Generally
we shall introduce th e  following cond ition . L et aK r ={ x =(x o , x 1 ,..., x d ) eK*;

d
x 1 =0} a.K.= OKI', and k*=K*\OK*.

i=0

d
Condition II. For any  x  E OK*, E / ( 0 ) (x i)b i(x)> 0 holds.

i=o
This condition m eans that the drift coefficient {b i(x )} never degenerates on the
boundary O K *. In  particular, if { }  is irreducible, {b,(x)}  o f (3.2) satisfies the
condition II.
Then, we can show the following.

Theorem 3 .2 .  A ssume the condition II. Then,
(i) Fo r each (t, x )E(0, oo)x  K *, P,(x , •) is m utually  absolutely  continuous to

the Lebesgue measure A  on K*.
(ii) Denoting by {p,(x, y )}  the density  functions of  { p,(x , •)}  w .r.t. 2, there exists

a positive probability  density  function p(x) on K * such that p(x) is sm ooth in
k*, and

lim 114x, Y ) —  It(Y)1,1(d y)= 0 f or any  x  e K *.
K .

Remark 3 . 1 .  Generally, Theorem 3.2 is valid if fa u (x ); is smooth on  K  and
positive definite in the interior k of K , and if the (K . A , x)-martingale problem is
uniquely solvable.

For the proof o f  Theorem 3.2, we apply the  following general fact which is
essentially due to Harris [4] and Orey [11].

Lemma 3 . 1 .  L et (X , .4) be a measurable space and {13 ,(x , 
E ) } , „ , x e X , E s f i l  

be a
conservative transition probability  on (X , a). Suppose that there exists a station-
ary  probability  m easure v  of {P,(x, E)} , which satisfies the following condition,

(3.3) f or some t o > 0, it holds that 13
10(x , •) is mutually  absolutely  continuous with

respect to v for each x E X.

Then,

(3.4) lim . )—  var = f or each  x e  X .
1— . 00

Pro o f . W e m ay assume to = 1 . First w e shall show tha t any  P r invariant
function is a constant function.

L e t h(x ) be  any  P,-invariant function and  se t E= {x e X ; h(x)>01. Then,
(v , h+>=<v , l E h>=<v, I , P i h + >  P i h ± > .  S in c e  <v, h±>=<v,
P i h+>, because of the stationarity of v, we see

I E P,h+ =P i e  v- a. e. .

Thus, it follows that 4,4' 14=0 v-a.e., and this implies
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(3.5) v-a.e..

Noting <v, P i / E> = <V, 1E>, it holds v(E)= 0  o r  1 .  I n  th e  same way we see that
v({x e X ; h(x)>Œ} )=0 o r  1  holds fo r  any a e / V .  Accordingly, there exists a
constant a  such that h(x )=a v-a.e .. M oreover, the P,-invariance of h  and (3.3)
imply h(x)= a for all x e X.

Next, we shall show that the Markov chain (Q, .F, P x , {San}, x(n)), associated
with {P„(x, E)}„Ez. x.xE.a,, satisfies the Harris recurrent condition., 
(H )  For any  Ee w ith v (E)> 0, P x [ I  E(x(n))= + co]=1 holds f or every x e X.

n=1
Set F = [  E IE(x(n))= + c o ].  Then, since Px [F] is P,-invariant, it is a  con-

n=1
stant func tion . Let P [ F ] =  a. Applying the individual ergodic theorem for the
stationary process {x(n), P,}, we see

(3 .6 )  Pv [lim t  I E(x(m ))=f* exists1= 1, where f *  is  a  random  variable andn m=1

satisfies Elf*] = v(E)> O.

This implies
 P [ F ] =

 a >0.
On the other hand, it follows that

1,(w)=1im 13 ,1F IF „]((a)=1im Px ( „,. ) [F]= a, Pp-a. s..
n- 4 00 11 — .00

Hence we have a =1.
Finally, it is clear that {P„(x, E)} is aperiodic. So, by using Theorem 3 in [11],

p. 816, we have

(3.7) lim 1113 ,.(x, • )— = 0 for all x  e  X.
n

Moreover, noting that 11P,(x, • )— vhar is non-increasing in  t > 0, we complete the
proof of this lemma.

Lemma 3.2. . P x [
o  

/ m (x(0)dt =01= 1 f o r an y  x  e K.

Pro o f . Let define a sequence of C2 -functions { on } on [0, co) by

1/4(u) =  (u_
n

 A0 , Ci(U) = tn (V )d V +  1, and

n (u)= 11/,',(v) dv.

Then it holds that lim 110„11= 0, lim tfrau) = / 0 1 (u) boundedly, lim luip,;(u)i =0n—ço
boundedly, a n d  s u p p  [ / ]  c  [ 0 ,  1 ] .  L e t  0  i d. Sincelf(x(t))— : Af (x(s))ds,
F t} is a P x -martingale for f(x)=11/„(x ;), we have

Ex[0(x1(t))] — 0„(xi)=Ex[ o
t A f(x(s))ds]

4 5 : x i(s)(1 — x i(s))11/,;(xi(s))ds1+ Ex [ o
t ;,(xi(s))bi(x(s))dsl.
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Letting n— oo, we get

(3.8) E to)(x i(s))bi(x(s))ds1=0

Consequently,

(3.9) Ex[401-10)(xi(s))bi(x(s))]ds= O.

Thus, noting the integrand of (3.9) is non-negative by (1.5), it follows from the
condition II that

P„[1
0  

/ m (x(t))dt = O  =1 holds for each x EX.

Now, we shall prove Theorem 3.2. First, we note that there exists a stationary
probability measure v of the diffusion process (Q, P„, { F,} , x (t)) since it induces
a Feller semigroup on C(K ) and K  is compact. Also, if P,(x, A (the Lebesgue
measure on K) 8 ) for any t> 0 an d  x  K , then ) _ v and Lemma 3.1 is ap-
p licab le . So, we shall show P r (x , •)= A for any t > 0 and x E K.

Let {/1(x, E)},,,, x e k,,E, ( k ) b e  transition probability of the minimal process,
which are obtained by killing the A-diffusion process on K  a t the boundary OK.
Since the diffusion coefficients of A is not degenerated in J , it follows that P ( x ,  •)

for any x e k, (c f . [3 ]) . Thus, P,(x , •)>>P (,) (x, . ) 2  for any t>0 a n d  x  k.
Also, for any x e OK it is clear that P,(x, . ) » 2  by Lemma 3.2.

Conversely, let .1(E)=--- 0 for some E  o  .1 (K ). For any fixed X E k, we choose
d

(5>0 such that X E K 6 =  E K ; x 1 >6,•••,x 4 >(5, 1— x i > SI. Let cr and r  be  the
1=1

first hitting times for aK and K6 respectively. { o-„} and {t„} are defined inductively
by

C I =a, T1 = tr i  t ( 6 4
0 . i ), • • •, Crn = t,,_  1 + ,),9) and "C„ =  ±  TOO .

Noting .11(x , E 6)=P x [x(t)E t < a] = 0 for E =E  n Ka, we see

P,(x , E j ) =P x [x (t)e 2,, < 1  an for some n]

-- =P?(x , Es)+ E x [P t ° ( x ,  En); T „<t1= O.
n=1

Thus, for any x

P,(x , E)=P,(x , E n k)= E6)= 0  holds by Lemma 3.2.
5-.0

Furthermore, since it is evident that P,(x , E )=0 holds for any x E OK, we see P,(x , •)
« .1  for any t>0 and X E K .  Therefore, using Lemma 3.1 we complete Theorem
3.2.

8) If i is absolutely continuous with respect to 1, we denote p < p , and if p<1 ., and i., < p  we denote
p = 1 ).

9) {0,} stands for the shift of (Q , .97, P., { A }, x(t)).
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In order to prove Theorem 3.1, we shall prepare some lemmas.

Lemma 3.3. L et (0 , , P ,, z (t))  b e  the dif f usion process o n  [0, 1],
which is defined by the following generator,

d2

(3.10) B= x(1— x) + yx(1— x) 
d

y eR l.

Then, Pz [(5'0< + co]=h(y : z ), and P[a i < + co]=1 —11(y: z), where eio and  ô 1 are
the f irst hitting times for {0} and {1}, respectively, and

(exp (— yz)—exp(—y))/(1—exp (—y)) i f  y 0 0
h(y: z )=

1—z if  y = 0.

P ro o f . See Ito-McKean [7].
The following lemma is due to Ikeda-Watanabe [5], which is a modification

of the comparison theorem by Yamada [15].

Lem m a 3.4. Suppose that we are given the following,
(i) a real measurable function a(t, x) defined on [0, cc) x R such that

(3.11) ja(t, x)— a(t, y)j p(1.)c— yl), x, y e R,

where p(u) is an increasing function on [0, cc) such that p(0)= 0 and

(3.12) o+ p(u) - 2 du= + cc,

(ii) real m easurable functions b,(t, x ) and b 2 (t, x) defined on [0, cc) x R such that
f or i= I, or i =2,

(3.13) I bi(t, x)— b i(t, — yl), x , y e R, 0,

where K(u) is an  increasing concave function on [0, co) such that K (0)=0 and

(3.13') o+ K(u) - 1 du= +co.

L et (0, P; { ..F t } ) be  a  com plete probability  space w ith right continuous in-
creasing family { ".F 1- of  sub-fields of  F, each containing P-null sets and suppose
that we are given the following stochastic processes defined on it,
(iii) two real {F,} -adapted continuous processes 'cat, co) and x 2 (t, co),
(iv) a one-dimensional { ..Ft } -Brownian motion B(t, co) with B(0)=0,
(NI) two real { .F t } -adapted well-measurable processes c i (t, a)) and c y (t, o)).

We assume that they satisfy  the following conditions w ith probability  one.
Ct

(3.14) x i(t)— x i(0) = a(s, x i(s))dB(s)+ o
t (b i(s, x i(s))+ c i(s))ds, i =1, 2,

(3.15) x 1(0)5x 2 (0),
(3 .1 6 ) b i (t, x )5b 2 (t, x), x e R,
(3 .17 ) c i (t, (OS c2 (t, co), O.
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Then, w ith probability  one, we have
(3.18) x i (t, co)<x 2 (t, co) f o r  a l l  t> O.

Here, we will present a  sim ple  proof. Let us assume (3.13) holds for bi (t, x).
Let t/i (u) be a  non-negative continuous function such that its support is contained

in (a n , a„_,), a ' - 1
 n (U )d U  =  1  ,  and IP(u)< -1 p(u) - 2 , where the sequence a 0 =1> a 1

u

> • • • >  a„> ->0 is defined by 1 p(u) - 2 d u = n . L e t (/)„(u)= d y ilin (z)dz if
JO JO

u>0, and 0„(u)-+-0 otherw ise. Then, On e C2 (R), O n (u)/u+ as n - co, and 0 < 4 (u )
< I R + (u). Using Ito's formula, we have
(3.19) 0„(x 1 (0 -x 2 (t))

t
=a martingale+ —

2

41(x 1 (s )-x 2 (s))(a(s, x i (s))-a(s, x 2 (s)) 2 ds

+1 ' cf4(x,(s)- x 2 (s))(b i (s, x i (s))- b 2 (s, x 2 (s))+ c i (s)- c 2 (s))ds.

Notice that 44(x 1 -  x2 )(a(s, x 1) -  s  x 2 ))2 < , and

cion(x, - x2 )(b 1 (s, x 1)- b 2 (s, x 2 )). K((x 1 - x 2 )+).

Taking the expectation and letting n-> co in (3.19), we have

(3.20) E  [(x 1 (t) - x2(t)) + ] EEK((xi(s)- x2(s))+ ]cts <  k(E[(x i (s) - x2(s)) + Dds.

Hence, it follows easily that E[(x 1 () - x 2 (t)) + ]  0 for all 0 and this implies (3.18).

Lemma 3.5. Let Cc I be a non-recurrent equivalent class. T h e n ,

P x  < + Co
 a n d  E x0=13 for any  t>  C c ]=1 ,

ic C

where Cc = in f {t>0 ; E x i(t)=0} or +co if  { } =0.
i e C

P ro o f . It is sufficient to show this for any non-recurrent class C such that k->i
does no t ho ld  fo r  a n y  i E C  and  any  k  C .  L et y(t)=  E x i(t). Applying the

i eC
martingale relation to f (  x i) with J e C2(R), we have

i eC

Cr Cr
f (y (0 ) - 

o  

y(s) (1 - y(s))f"(y(s))ds - E  bi (x(s))f '(y(s))ds
J O i e C

is a P i -m artingale. This implies that there exists a one-dimensional {,F1}-Brownian
motion {B(t; co)} such that

(3.21) y(1)- y(0)=: /2y(s)(1- y(s))dB(s)+ 'b i (x(s))ds.
0  ie C

Here we note that
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d
(3.22) E bi(x)= E (E )ki)xk+ E xi(Yi(x)— E k (X )X k )

ieC k eC  ieC ieC k=0

y(1— y )  w h e re  y = E x i a n d  j i =  max max y i(x).
leC f e C  x e K

Let us consider the diffusion process on [0, 1] defined by the following stochastic
differential equation

(3.23) z(t)— y(0)= \ /2z(s)(1— z(s))dB(s)+ 0
t j5z(s)(1— z(s))ds.

Then, applying Lemma 3.4 to (3.21) and (3.23), we get

P x [y(t) z ( t )  for all t > 0 ]= 1  w ith  y (0 )=  E x i .
ieC

Hence, it follows from Lemma 3.3

(3.24) Px[Cc< + c o ]  h ( 5, E x i)> 0  if E xi< I.
teC ieC

Next, we shall show that denoting T = inf { t 0; E xi(o< 0 ,
ieC

(3.25) P x [T = 0 ]= 1  for any x w ith E x i = i.
ieC

It follows from (3.21)

(3.26) E x [t A T  E bi (x(s))ds1= 0  if E xi = 1.
o ieC ieC

Noting (3.22), we see

F  tAT
(3.27)

Ex LI  L ( i c,lk i)x k (s )d s 1 = 0 .

Since C is non-recurrent, there exists a  k o  e C  such  that E Ak 0 i < 0 .  So, (3.27)
ieC

implies

(3.28) xko(s)= 0  for a n y  s_<_ P x -a.s. on [T>0].

Also, noting
tAs

(3.29) Ex[xko(t A T)] — Xko = Ex [S 0  b k o (x(s))dsl,

(3.30) E x [5 i"E ak k o xk o)ds1=0 holds.
0 keC

Thus, if k 1 4 k 0 , xk1 (s)=0 for all s Px -a.s. o n  [T > 0 ] . Since C is an equivalent
class, it holds that for any i eC

(3.31) xi(s) =  0  for all s < Z  P x -a.s. o n  ET > 0] .

Therefore we obtain (3.25).
It follows from (3.24) and (3.25) that
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(3.32) Px[Cc< + Go] > 0 for a n y  X E K*.

Moreover, we can show

(3.33) inf Px [c c  < + co] >0.
xeK*

For, let f (x ) be a non-negative continuous function such that f  (x)> 0 for any x e K*
with Ex t <1.

leC
Then (3.25) implies

(3.34) 'T,f(x)— Ex [f (x (t))]> 0  for an y  x  e  K *  and t > 0.

Noting that K * is compact and {T,} is a  Feller semigroup, it follows that Dini's
theorem that there exist s (0 <E <1) and a continuous function f (x )  defined on K*
such that 1> f„(x)> 0 if E x.<1—c, and f ,(x )= 0 otherwise, and T L ( x ) > 0  for any

i.c
x E K* and t >0, (E> 0). So, we have

inf Px [T, < + co] i n f  Px [ E xi(t)< —8] min 7;f„(x)> 0
xeK* xeK* ieC xeK*

where = inf { t> 0; E x i(o< 1 — e}. (3.33) follows from this and (3.24). Also,
ieC

it is clear from (3.33) that

(3.35) Px gc< + 0 0 7= 1 holds for any x e K*.

Furthermore, it is easy to see from (3.21) that

P [  E x i(t)=0  for all C c] = 1  for a n y  x  e  K*.
ieC

Thus, we complete the proof of L em m a 3.5.

Now, we shall prove T h eo rem  3.1. Let R  be a recurrent class. First, we note
that Px [x(t)e K (R) for all 0] =1 if x e  K (R ). Let y (t)= E xi(o. Noting E

ieR ieR
= 0  for any k E R , we see

1E107— II = E 1)x[ i (S ) (  i (X (S )) —  A Yk(x(s))xk(s)]ds
JO i R 

_...131
o

1Ex [y (s ) -1 ]Id s  where max max ly k(x)1.
05k5d xeK*

Hence, Px [y (0= 1 for all 0] = 1 for any x e K(R).
Also, if  we restrict our consideration o n  K (R ), (i) follows from T h eo rem  3.2,

since { b i ( x ) } i e R , x e I C ( R )  
satisfies the condition II by the recurrence of R.

Let K,.= {x e K*; E  xi = 1} and denote by a, the first hitting time for K,.
r=1 ;ER,

Then, by L em m a 3.5,

Px[crr< + c o  a n d  x(t) E K r  f o r  all t >a r ] = 1  for a n y  x  e K*.

Let x e K r  and set y  ,(t)= E v t ) .  Then, noting E  E  Ak i =0, y i(t) is r e p r e -
j E R jeR i
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sented in the same way as (3.21) by a one-dimensional .F t-Brownian motion {B(t, c))},

(3 .3 6 ) y,(t)— y,(0)

=1 0
t
 \ /2y,(s)(1— y i(s)) dB(s))+ o

r
 . 1 R , xj(s)(Y  ;(x(s)) — Y  k (x (s))xk (s))ds.

d
N otice t h a t  E x i (y.,(x)— E y1 (x)x k) y,(1— y 1) f o r  so m e  9, e RI. A pplying

je R t k= 0
Lemma 3.3 and Lemma 3.4, we obtain

(3.37) Px [R ,< + co] — h( ) i, JO, E  X .
je R i

So, we have

Px H R ,< + co for some 1 i — 49 1 , v •• • v (1 — yr)),

and this implies

(3.38) inf Px H R ,< + c o  for s o m e  1 5 <
x eK .

Accordingly, (ii) follows from (3 .3 8 ) . Also, (iii) is evident by (i) and (ii).

§ 4. Hitting on subsets of the boundary arc*
For each subset H  o f /= {0, d}, le t u s  denote V  H = {x e K *; E x 1 =1}.

ieH
In this section we shall obtain a necessary and sufficient condition for the A-diffusion
process on K* (Q, P x , {F t } , x(t)) to hit on any relatively open subset of V i f  with
positive probability . Let

d d (32 d
i P  (4.1) A = E  E  x ,(6, ; —x i )  + b ( x )

1=1 j=1 O X iO X i i=1 1 0 X i  •

From  now  o n , w e suppose th a t  {bi (x)} i d satisfy (1.5) and Lipschitz con-
tinuous on  K  and that the (K , A , x)-martingale problem is uniquely solvable for
any x e K.

d
Let bo (x )= — E  b,(x). For each measurable subset E cK *, a(E ) denotes the

i=1
first hitting time on E .  Then, we have the following.

Theorem 4 .1 .  Let (I)OH I and let U  be any  open subset of  K * with U n vi ,
(11.

(i) I f  sup {E  b,(x); n V i f }  > — 1, then Px [c(U n vo< + 09] > o f o r  any
j e l l

X E k.
(ii) Conversely, if  sup I:4 x ); x e U n — 1, then Px[a(u n vH)= + 00] =

ieH
f or any x e

For the proof we shall use the following fact.

Lemma 4 .1 .  L et (0, P, Pz , IF,}, z(t)) be the dif fusion process on  R 1 def ined
by the following generator,
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(4.2) B d2=Iz(1—z)!  + (a+fl(1— z))— d'-- cc, fieRl.dz2 d z  

Then, if a> —1, Px [cri n < + oo]> 0 f o r any 0<z <1, an d  lim  P z [a f i l  +  co] = 1.
zi 1

Conversely, if crc. —1, P x [crt i ) = + co]= 1 f o r any 0<z <1, where a t "  stands for
the first hitting time on {1}.

P roo f. It is immediate from the theory of one-dimensional diffusion processes.
(cf. [6]).

Proof of  Theorem 4.1.
First, we assume sup {E bi(x); xeU n  V11 }> —1. T h e n ,  there exist /3> —1,

ieH
y> 0, and .Tce U n VH  such that {x E K*; lx — .X-1<y} OE U and

(4.3) E bi (x)> 13 for a n y  x e  K *  w ith  lx — I <Y.ieH

Let fi >ii and 0 > q> —1, and set

_
(4.4) w(x) = exp

v ( 1  - 2 v )
d v ) d u  + Ix— R-12 .

A x i 2

It is easy to see that w(x) e C2 (K*\V11) and for some 0<5<y,

(4.5) A w ( x )  0  for a n y  x e K*\VH  w i t h  I x  —  < (5, a n d  wM = 0.

Let us denote by T6 the  first leaving time from {x e K*; Ix — .1<(5}, and set T=
T6 A cr(Vy ). Then, it follows from (4.4) and (4.5)

(4.6) Ex[lx(t A  .r) —5Z12 ] 5_ Ex [w(x(t A  r))] w (x ) .

So, using Chebyshev's inequality and (4.6), there exists a constant 6 , such that
0<(5, <6 and

(4 .7 )  Px [lx(t A T)— X-1> 
6 1

< -
1 

for any x e K*\1/, with ix — and any t> 0.2 — 2
Also,

j2- Px [IX O  A X1

15f  ,  t < T 1 + P x [IX e r ) - 1. T t

P x [ t < T ]  - FP„[O (V11)<T6 ].

Letting t-÷oo, we see

(4.8) Px [T 6 = + co] + Px [a(1/11)< for any x e K*\VH  with Ix — )71 < (51.

Let y(t)= E vo. Then, there exists a one-dimensional {.F,}-Brownian motion
LE 11

{B (t; (v)} such that
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(4.9) y(t)—  y(0) =  V 2y(s)(1—  y (s))dB (s)+ L b i ( x ( s ) ) d s

=  ( )
t
 \ 12y(s)(1—  y(s))dB (s)+ (f l+c(s))ds,

where c(s)= E bi(x(s))— fl> 0 P x -a.s. on [t<Z 6 ].
j e l l

On the other hand, let us consider the diffusion process on .12' defined by the
following stochastic differential equation,

(4.10) z(t)— y(0)= \/2z(s) (1 — z(s)) dB(s)+13t.

By Lemma 3.4,

(4.11) Px[y(s) z ( s )  for all se [0, 2)] = .

Also,

(4 .1 2 ) P x [a(VH ) <  =  P.,[y(s)= 1 for s o m e  s e [0, T6)]

Px [z(s)— 1 for s o m e  s e [0, 1.
6)]

Px [z(s)-- 1 for s o m e  s e [0, co)] —P„[T,3 < + co] .

Combining (4.8) and (4.12), we have

(4.13) 213x[cf(VH)<T,5] P„[z(s)= 1 for s o m e  se [0 , co)] — .

By Lemma 4.1 we can find 62  such that 0 <6 2  < 5 , and for any x e K * with y(0)=
E

(4.14)
1

Px[z(s)=  1 fo r som e  0 <  co] > —2— ,

Then, we have

(4 .1 5 ) P x [o-(VH )< -c 0  for any x e K * satisfying Ix —  il<5, and E x.> 1-5 2 .
ieH

Noting that the A-diffusion process on K* starting at any interior point of K * hits
on non-empty open subset of K * with positive probability, (4.15) implies that

(4 .1 6 ) Px [lx ( t ) - 1 <6  and x(t)e  Vi f  for some t > 0] > 0 for any x e k*.

Thus, we complete the proof of (i).
Next, in order to prove (ii) we suppose sup { E b i(x); xe U n  VH } — 1 .  We

ieH
may assume tha t U={x E K * ; E jx, — <6} for some 6 >0  and i „ . . . ,  i d )

i=o
E VH , since for any open subset U with u n vi i o 0, there exists a countably family
of such subsets {U, }, satisfying U n VI /u n n v , .

n>1
First, we note that there exists a constant f ie R1 such that
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(4.17) E bi (x) —1 + 11(1 — E xi) for a n y  x e U.
jeffl e i !

For any x E U define x' e V , by

(4.18) xi' = x i /  E x, ( j  EH) a n d =0  ( j  H ) .
ieH

Then, it is easy to see x' e U, and by the Lipschitz continuity o f  {b i(x )} there are
some constant /3 E R' such that

P d
E E bi (x ')+ E 1x,— x;1 —1+ 9 (1 — E  i ) .

je ll i e f f 2  i=1

Recall that y(t)= E x i (t) can be represented by using a { }-Brownian motion
ieff

{B(t; to)} as follows,

(4.19) y(t)— y(0)=1 0
t ..\/2y(s)(1— y(s))dB(s)+1 0

t
 i l i bi (x(s))ds.

Also, let us consider the solution {z(t)} of the following equation,

(4.20) z(t)— y(0)= 1 o
r V2z(s)(1 — z(s))dB(s)+ 1: (-1 + fl(1— z(s))ds.

Then, by (4.17), (4.19), (4.20) and Lemma 3.4, we have

(4.21) Px[y(s)_<_z(s) for all s e [0, Tu )] =1 for a n y  x E U,

where T „ stands for the first leaving time from U .  Since Lemma 4.1 implies that

(4.22) Px[z(s)< 1 for all s> 0] =1 for a n y  x E K*\VH ,

it follows

P x [Y (s)<  1  for all s e [0, Tu )] = 1 for a n y  x e

namely,

(4.23) Px[x(s)0 V„ for all s e [0, Tu )] =1 for a n y  x e U\VH .

On the other hand applying Ito's formula for 1 — y(t) and {i/i,,} in the proof of
Lemma 3.2, we can easily see

(4.24) Px[1: I v  „(x(s))ds = 01= 1 for a n y  x e K*.

Let W be any open set such that Wc U .  Since (4.23) and (4.24) imply that x(t) goes
out of U before it attains Wn v„, it follows that

(4.25) Px[a(W n vH)— + co] ------ 1 holds for any x e k*,

and after all this implies that P x [a(U n + co] = 1 holds for any x E I .

Corollary 4 . 1 .  Suppose that {b i(x)} satisfies (3.2). Then, P„[o-(1/„)< + co]> 0
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f or any  xe k*, if  and only  if  max E Am > —1. In  particular, denoting by  ei the
k eH  ieH

i-th vertex  of  K*, i.e. (e) ; =6 1 i , Px [o- (te i l )< + co ]> 0  holds f o r any  xe k*, if  and
only if A u > —1.

d
Remark 4 . 1 .  Suppose b1(x)=13,—( E fl. i)x 1 (0-__i d) with O. In this case

Shimakura constructed the Poisson kernel associated with A . (cf. [14], §8). His
results imply that if  E aK* is a null set with respect to  the volume element of OK*,
(4.26) Px [x(a)eE, a< + co]= 0 holds for any  x e k*, where a =a(OK*).
Accordingly, by Theorem 4.1 we can see that if IHI <d-1,

(4.27) Px [x(t)e OK* infinitely often as t Vi i ) I o- ( VH ) < co] = 1 holds for any
x e k*.
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