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Since the work of W. Feller [4 ], the diffusion approximations of gene frequen-
cy models in population genetics have been treated by many authors as a  typical
example of stochastic processes.

This problem is also of importance in the theory of partial differential equations.
The interest is that the Kolmogorov equations describing the diffusion processes
are of degenerated parabolic ty p e .  Above all, the domain (state space) is a simplex,
hence, it has sides and c o rn e rs . And the elliptic parts (generators of semi-groups)
of the  equations are degenerated on  the  boundary in  a  very natural w ay. The
present author had been attracted by this particularity of equations, and he pub-
lished a treatment in L2 -framework ([10]).

But the L2 -theory is not sufficient to describe the diffusion processes, and the
movements of the processes on the boundary tell us many things which are charac-
teristic to this type of equations.

Therefore, in this memoir, we treat these equations on the space of continuous
functions, and we give the concrete formulas for the semi-groups of diffusion pro-
cesses. Naturally, for the sake that the formulas be completely written down by
means of known functions, we must restrict our considerations to a  special class of
gene frequency models. That is, we neglect the selection force, and we assume that
the mutating pressure is of simple type from the point of view of ca lcu lus. If the
selection force is taken into account or if the mutating pressure is of general type,
the question of giving the formulas is still open (See [1 ], [3 ], [7 ] and [8 ] for more
general models, and see § 3 below for our assumptions on models).

We treat here d types models of the restricted class. The form ulas for 2 types
models have been given by J .  Crow and M. Kimura [I] . A n d  fo r  d types models,
we have a work of E. Fackerel and R. Littler [ W .

To prepare this memoir, we owe the main ideas to the book of S. Karlin [6]
and to the thesis of S. E th ier [3 ]. The present author is very grateful to Dr. K. Sato
and to Dr. T. Maruyama for their suggestions and advices.
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§ 1 .  Multi-type gene frequency model of Wright-Fisher

In this paragraph, we give a brief review of the multi-type gene frequency model
of W right-Fisher. Our reference is the Chapter 13 of [6] (See also [7]).

L et us consider a  population of an organism . The quantity controlling (or
partially controlling) a character of this organism is called a gene. The position at
which a gene occurs on a chromosome is called its locus. The various alternatives
which may occur at a particular locus are called alleles.

We are looking at only one locus. Let A 1 ,..., A d be the alleles occurring there
(2 < d< +c o ) .  An individual is called of type p if it has the allele A p  (1<p<d).

Let us assume at first that
(A) A parent of type p produces only the same type  o f offspring individuals, of
which the number is a stochastic variable distributed according to Poisson distribution
with parameter 4  (4  >  0 ) 1  p <d).

Here, express the fitnesses of type 1,..., of type d respectively. Hence,
the larger is 4 relatively to other the more advantageous is the type p to others.
If  in  particular = • = there is neither selective advantage nor disadvantage
among A1 ,..., Ad.

The second assumption is that
(B) After the stage (A), each offspring individual is effected by m utating pressure.
That is to say, an offspring of type p remains of type p with probability tnp p (1<p<
d), and it mutates and becomes of type q with probability mp q (1 <p, q (d , p#q).
Naturally, we have

d
mp o ..>, 0  for 1 p, q < d  a n d  E mp q = 1 f o r  1<p<d.

q

If 1 in particular, the mutating pressure does not effect to type p.
The third assumption is that

(C) Each individual behaves independently of others.
That is to say, an individual of the k-th generation produces its offsprings of

the (k+1)-th generation according to (A) independently of others, each of offsprings
is effected by mutating pressure according to (B) independently of others and it pro-
duces the offsprings of the (k+2)-th generation according to (A) independently of
others, and so on.

Hence, the probability generating function for progeny distribution, produced
by a parent of type p and afterwards effected by mutating pressure, is given by

d
f p (s i ,..., sd )----exp {4( E mp q s,— 1)} f o r  1 < p<d.

q=1
(1.2)

The fourth assumption is that
(D) During each period o f  generation, there are individuals im m igrating from
outside population into our population. A nd, the number of them is distributed
according to the probability generating function



where N is the set of all the non-negative integers.
We have obtained therefore a Markov chain ti(N)(k)} 0  induced by the direct

product branching process. The state space is Om  and the set of times (generations)
is N .  This Markov chain, constructed under the assumptions (A)—(E), is called
the multi-type gene frequency model o f W right-Fisher, or abbreviatedly in this
memoir, discrete model.

Let P(N) =(pu ) ) be the matrix of the one-step transition probability, that is,

PI.V= Prob. [ i ( N) (k +1)= fl 60)(k)— 5 ]  fo r  di and e Q "). (1.6)

This P 4 ) is independent of k by virtue of the hypothesis (E), and is equal to the
d

coefficient of sli.-sfld d in the power series expansion of h(s i , . . . , sd) 11 f p (s i , . . . ,  Sd)CZP
d P=1

divided by the coefficient of tN in h (t,..., t)  f l  f p ( t , . . . ,  t ) Œ P . Therefore, by means
r=1

of (1.2) and (1.3), we have
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d
h(s i ,..., s d )--= exp { E  cgs ! , — 1)} ,

P=1

where c 1 , . . . , cd  are non-negative constants.
There is no immigrant of type p  if c p = O.
The fifth and final assumption is that

(E )  The size N of our population is conditioned to be fixed over generations.
Let us denote by Œ(k) the number of individuals of type p of the k-th generation

in our population. The ratio a p (k)IN is called the frequency of the type p at the k-th
generation. Let us define the vector 5i( N)(k) by

ei(N)(k)=((x,(k),..., a d (k )). (1.4)

Then, 61( N) (k)/N is called the gene frequency at the k-th generation. The range of
i ( N)(k) is the set

d
52(N)={6i=(a i , . . . , a ) •  e N  f o r  1 < p < d  and E  a p =N},d p

21

(1.3)

(1.5)
p=1

N!p y ) • • • COY a f o r
fii!.•.fia !

ô t  and e  g200 , (1.7)

where the vector NO = (C 1(60 , • • • , O D  is defined by
d d

p (
6

) = ( C p E  ,c ( g in„)/ E (cr + ,c(r) f o r  1 < p < d . (1.8)
q=1 r=1

CO) (of variable CI) contains parameters • •, M U ,  M 1 2 ,• • • , M d d ; C 1 ,... ,  C d  and N
representing the selection force, the mutating pressure, the migration and the size
of population respectively. (1.7) is equivalent to the following identity which will
be repeatedly used in the sequel:

d
E P(ps)sli • • • d  =  E  cOosi,r,

p=1
(1.9)
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where the summation with respect to fl is extended over Off ) .
The Markov chain Poi)(0) 0 is characterized by the matrix p ( N )  T herefore

in the sequel, P(N) itself will be called the multi-type gene frequency model o r dis-
crete model.

In  this memoir, except in  §2, we replace the hypotheses (A) and (B) by more
restrictive ones as follows:
(A') There is no selection force and

1,•=1 f o r  1 <p <d . (1.10)

(B') The probability of mutation from type p  to  type g  (p 0 g )  depends only on g
for 1<p, q -4 d. That is, we assume that

d
l in  p ,  =  M ,  ±  6141— E  m,.) f o r  l < p , g <d ,

r= 1

d
w ith  m g >  0  and  1+  m q E  ni, f o r  1<g <d .

r= 1

Under (A'), (B'), (C), (D) and (E), 460 defined by (1.8) is written as

d d
p(6 ) = { C p Nm p +ozp (1—  E  in,)}/(N+ E  c„) f o r  1<p <d .

r 1 q 1
(1.12)

§ 2 .  Preliminaries for diffusion approximations

Let N  be the set of all non-negative integers. For any y =(y ,,..., ym )e/Vm, we
denote E yp = ly i .  We will work mainly with N d or NB, where the character n  is

p= 1

reserved to denote

n = d - 1 (2.1)

throughout this m em oir. The elements o f N d  are denoted by 6i, while the
elements of Nn by a, X .... The state space Q(N) defined by (1.5) is the set R e  Nd;
151= N } .  This can be identified with any one of the following three sets

{a EN"; lal <N}, { 3 1 N e R d ; ie N d  and  Ii1 =N} ,

a n d  f aIN eR n; oceN n and  lal < N I .

There are exactly (
?2  N )  

points in S2(N).

Therefore, the  Markov chain { i ( N)(k)),ZL0  can also be written as
deleting the d-th component.

On the other hand, let us consider a closed n-simplex

d
0 ={ 2 xd)ERd; xp > 0 fo r  1< p < d  and E  x  =1}

P=1

which can be identified with

(2.2)

Ict( N) (0 1T-0

(2.3)



Diffusion  approximations2 3

0= Ix =(x 1 ,..., xn)eR "; x p ..>)0 fo r  1< p < n  and Ê  x p <1}. (2.3')
p=1

Then, Q(N) is regarded as a subset o f  consisting of all the lattice points with mesh
I / N .  The set of interior points of r2 (the open n-simplex) is denoted by Q.

L et 0  be a ( n  + N )-dimensional column vector with the a-th component 4)(a),
a e Q(N). Then, 0  can be identified with a  function defined only on  the  lattice
points of ri . Reciprocally, given a  function u(x) defined on g- 2, we obtain a vector
[u] by restricting it on lattice points:

[u] (1)= u(a1N) f o r  a  E Q ( N ) . (2.4)

The matrix P ( N) =(P3 ) )  (identifying 13) with (a, [3)) of the one-step transition
probability of the discrete model is then regarded as a  linear transformation acting
on column vectors:

(P ( N)0)(a)= E P 3 )0 ( f l)  f o r  a E ,Q(N), (2.5)

where the summation with respect to # is extended over Q(N). Therefore, we can
define a semi-group T(N)= {T(N)(k)Ir_ o  by non-negative powers of P A T ) :

T ( N ) (k)(1)(Œ)=(P( N )"O(00=Ea[0(a ( N ) (0 )]

=  Prob. CŒ( N ) (0 =  /3 I a( N) (0) = 0 (1 3 ) f o r  k e N. (2.6)

Hence, we can identify the discrete model lacv )(k)} 0  a lso  w ith  the  semi-group
Too of matrices.

O n the other hand, let A  be a  differential operator of the second order in n
variables having an expression

e2ua uAu(x)=- —
2  

E  a (x ) + b 'p (x) (2.7)
p,q=i ex exp q p 1 e x  

with coefficients continuously differentiable on C2- . Suppose that A generates a semi-
group of transformations =  { 3 -(t)}, 0  on the function space 0 (0 ) under a certain
boundary condition. L et us denote .F ( ''') ={,r(tIN )} t o . 9 -  will also be called a
diffusion model, although the  corresponding diffusion process 4t, co) is not yet
defined (See §6).

Definition 2 .1 .  The semi-group , (
N )  is called a diffusion approximation of the

discrete model T ( N) as N is large, if 9 is generated by some A having an expression
(2.7) and if the following condition is satisfied: F o r any f € 0 ( i+2), any  positive
number 8  and for any positive integer K, there exists a  num ber N , such that, if
N >N o and if 0< k<KN, we have

I T ( N)(k) [ f ] (a) — [5 - (k/N)f] W I < 6  o n  Q(N). (2.8)

At first, for the existence of a diffusion approximation, we should notice that
the parameters contained in the discrete model (See (1.8)) may not be arbitrary but
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they must have some properties of uniformity as N  is large. A s a hypothesis of
uniformity, we put the following (See [3] and [8]):

a p = N g p — 1) are real and independent of N, 1 < (2.9)

,up q =N(m p q —Sp q ) are independent of N , 1<p, g<d; (2.10)

d
pp e ..>, 0 if pOg and E /2 = 0 , 1<p <d ; (2.11)

q=1 Pg

C p  are non-negative and independent of N , 1<p<d. (2.12)

That is, the selective advantages (or disadvantages) are at most of 0(1IN), the mutat-
ing pressure is also of 0(1IN) and the effect of migration is independent of N (If, for
example, m1 is  positive and independent of N  and if other ni p 's are all 0 in the no-
tation of (1.11), the mutation from other types to type 1 is too large that the frequency
of the type 1 tends very rapidly to I. I n  such a case, no diffusion approximation is
correct).

Next, we will calculate the coefficients a p q (x ) and b p (x ) to fix the expression
(2.7) of A and give a preliminary estimate related to A .  We put a priori

ap ,(x)=S p q xp —xp xq f o r  1 < p ,  g < d ; and (2.13)

d d d
bp (x)=-cp —xp  E C + E  a „(x) o- +  E pq p x ,  f o r  I.< p< d. (2.14)

q=1 q=1 9=1

A simple computation shows that

( p (a) = k Iap+ b ( ) }  +0 ( N _ 2) f o r  I<  p <d (2.15)

holds uniformly on 52( N) as N  is large, where ((a) is defined by (1.8) (a is identified
with 6). We are going to show that the generator A  is of the form (2.7) with the
coefficients defined by (2.13) and by (2 .14 ). Let us put, for I < p, g, r<d,

1 b
(p"1) (0 ) =E  (/3p—ap)P3 ) ,

a (pNg)  (C) =  N - ' E  (f, — ap ) (fig  — cO P3 )

13
c(p1V.(0 ) = N -  2  E (Pp— cc') (fl,,

 _ Œ q ) (Pr — ccr)P3) ,
P

e(
p " ) (a)= N - 3  E (/4— ap )4P3 ) ,

fi

where the summations with respect to fl are extended over 52(N). Then we have the

Lemma 2 .2 .  A s N  is large, the following estimates hold uniformly on Q(N):

1 b (
p N) (a)= bp  ( ) + 0(1IN),

a (Œ) = ap q ( °i- )+ OW N ),

c (
p N4 ), (a) = OW N ) and e (

p N) (a) = 0(11N).

(2.16)

(2.17)
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P ro o f . We differentiate the  both sides of (1.9) successively in s p 's and put
S1 = •• • = sd  = 1. T h e n  w e  have

E P3 ) = 1 ,  E f P  =  NCR,  E  pfiqP(j ) = N 2  p C y  N  a pq(C)

E 13  pflA P 3 ) = N 3 CpCq C, + N2 {a pq (C)Cr+ a g r(C)C p+ a + 0(N) ,

and E Il̀ plisl, ) =N T ,t+6N 3 ap p ()q,+O (N 2),

where (=C(a). It is quite elementary to derive (2.17) from these equalities with the
aid of (2.15). Q. E. D.

Lemma 2.3. (S . E thier) L et A  be the operator defined by (2.7), (2.13) and by
(2 .14). If  u(x) E  C4 (2), we have

N(P( N)[u]— [u])(a)=[A u](cc)+ 0(1/N) (2.18)

uniformly on S2(N) as N  is large (See (1.13), p . 2 7  of  [3]).

P ro o f . Maclaurin expansion of u(y) at x yields

u(y)— u(x)= ( x ) +  Iz  z a 2 u  ( x )p=i a x p 2  p q ,= 1
 P  a X p a X q

a3uzp„,z, (x) + R(y , x ),6  p ,q ,r= i a X p a X ,a X r

where z =y — x  a n d  R(y, x) -=0(1z1 4 ). W e put x = Y = S IN , multiply N P3 )

to the both sides and sum up with respect to 13 over 52(N). Then, the left hand side
is N(Poo[u]—  [u]) (Œ), w hile  the right hand side is [Au] (a) + 0(11N) by virtue of
Lem m a 2.2. This proves (2.18). Q .  E .  D.

Faithfully to the symmetry with respect to  the indices 1,..., d  in the original
problem, we can consider an operator of d variables g =(x,,..., x d ) as follows:

a2v d av 5fv(A)= ±
p, i  

aPq 
( .

X
p
a X

q

50 + E  bp (5e) , (2.19)
p . 1

Xq =

with coefficients also given by (2.13) and (2.14). Then we have

Lemma 2.4. (K . S a to )  Let v(i) be a function of class C2 in  a neighborhood of
S2 in R d. T hen w e have (Av)I,-= A(v in ) on n  (See [9]).

P ro o f  This will be easily checked, if we use the relations

d dE a ( ) = 0  fo r 1  <  p  d  a n d  E  b ( ) = 0  o n  D.
q=1 P=I

(2.21)

(A more restrictive but precise version of this lemma will be stated i n  § 4 .  See
Lemma 4.3). Q. E. D.
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§3. Eigenvectors of P N ) and eigenpolynomials of A

From now on, we discuss and look for the diffusion approximation .9- ( N) of the
discrete model T ( N) which satisfies (A'), (B') in §1 and (2.9)—(2.12) at the same time.
That is, putting Nm p = pp  in (1.12), we assume that P(N) be defined by (1.7) with

Cp(a)= {b1,+a 1,(1 —N - ' pq )}1(N+ Cr)
q=1 r=1

w h e re  cp , O, up > 0  a n d  bp =c p + pp  f o r  I < p<d,

cp  and pp  (hence bp  also) being independent of N.
In this case, bp (x)'s in (2.14) become

d
bp (x)= bp — xp b ,  for 1,<.. (3.2)

q=1

Therefore, the operator A has the expression

1n a2u d auAu(x)=  E  (6  x  — x x  ) +  ±  (b p ) (3.3)—xp  E  b,
") P "  P P  " ax ax axp—  p ,q =1 P 9 P=1 9=1

or equivalently, the expression in d variables

1 a 82vd eV
21' 11(X' ) =  —  E  ( 6  X  —  X  X  ) ±  E  (Sp g bp — xp bq ) (3.4)

7 P "  P P  "  ax ex OXp
' .. P.9= 1p q 11,q=1

In  this paragraph, we calculate eigenvalues and column eigenvectors of Poo
according to the idea of [6] (See §7 in Chap. 13). And by passage to the limit as
N—>+oo, we derive from them eigenvalues and eigenpolynomials of A.

Take a multi-index y EN " with lyl < N .  Differentiating the both sides of (1.9)
y times in s and putting s, = ••• = sd =1 ,

III p ( N ) _  N !  r ( co y .

(fl — y)! " (N H Y D ! "

Therefore, if we put

r(N xp+1 ) I ip(N )( - I I  liLl
p i  r (N x ,-F  1 — yp )

d
(.0 (

) ,N ) ( X ) =  ri {x p +b,(N—  E i i o - Ip p ,  f o r  yeN",
p=1 9=1

the above identity is rewritten as

p(s)DAN)] = /.01)Edyiv)] ( a )  f o r  y E N "  w ith  lyl <N, (3.6)

where the numbers {u,n1NY1N) . „ 0  are defined by

(3.1)

and
(3.5)

d d

( NN Im mN)1
q

!  { ( N —  E  P ,)/ (Y +  E  Cr ) ) "n
=1 r=1

f o r  0<m< N. (3.7)
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(3.6) suggests that {,u;»},...., are eigenvalues of Poll because i/4" ) and co;,N) are monics
in n variables with the common highest degree term x Y . We summarize the proper-
ties of /4", ) 's :

Lemma 3.1. (i) I n,) i ciri) > i 4N) > . >1_1(NN)>, (3.8)

where 1.4" ) =1 if  and only  if  cp =p p =b p =0 f o r 1<p <d ;

{  141» = 1 — (N  + E cq )
- 1 (A„,— N - 1 1) ) ),

w ith  0 < p},fv ) < m(m —1)(iii + K + 1)2 1 8  f o r  0<m <N ;

q = 1  

d

(3.9)

(iii) 2 „ t 's are independent of N  and defined by

= m011 + K O  f o r  tu  e  N , where (3.10)

{
d

i +1 =2 E  bp . (3.11)
P= 1

K + I  is non-negativ e. It is 0 if  and only  if  cp =p p =b p =0 f o r 1 p(.1.

The proof is elementary (We show (3.9) by induction on m).

Proposition 3.2. (S. Karlin) ( iv )  Fo r each y e N" with y I N ,  w e can f ind
a m o n ic  e ) (x) with the highest degree terni x 7 such that [44" ) ] is a column eigen-
vector of P(N) belonging to the eigenvalue pg',1

) , that is,

p(N )[ ( AN)] = i i it.a0(N)] ; (3.12)

( y )  I f  0..<, in<N , p („fv) i s  an  eigenvalue of  P(N) of  m ultiplicity  ( m + : —  I)  (1 is of

m ultiplicity  d if  K+ 1 = 0 ) .  A nd a basis of column eigenvectors belonging to it is
1E0;1'11; I I  = m l (See § 7 in Chap. 13 of [6]).

P ro o f . Suppose at first that K + 1> 0 . L et us expand 1/4N)(x) by means of
d,N ) (x)'s a n d  eyN)(x) by means of i/4N)(x)'s:

v
-̀'7 P " k. I

,„(Nirx), (3.13)lzy , 

q4N )(x ) = 1,11N)(x ) +  E  ay ,,,AN )(x ), (3.14)
6.< y

where 6<y  for two multi-indices 6 and y  means that 6; <y 1 f o r  I < n and that
16 1< lyl. Substituting (3.13) and (3.14) into (3.12) and using (3.6), we obtain a system
of equations

E  
a , , , (

1 ) ) W a =  14 N ) E (c y,61416 ay,a c,507 W,I) (3.15)
5<y < q<6

where m = IA and 14/6 = [W ]. Equating the coefficients of Wi 's in the both sides,
we obtain a  new system o f equations. The latter can be solved with respect to
am 's in  a  unique way, because /1(: ) 's  are  d istinct. This proves (iv) if K + 1 >0.

Suppose now that k  +1  =0 . The above reasoning remains valid if m 2. A n d
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it is easy to see directly that 1 is an eigenvalue of multiplicity d and th a t a x p]I pd= 1

is a  basis of column eigenvectors belonging to 1. (iv) is proved also for tc+ 1 =0.
(v) is trivial. Q. E. D.

Proposition 3 .3 .  (vi) F o r  a n y  f ix e d  y e N ", ey" )(x) converges a s  N -> +  co
to a monic O y (x) w ith the highest degree term xY;
(vii) cky(x ) is  an e igenpolynom ial of A  (See (3.3)) belonging to the eigenvalue
-A m , that is,

Acky(x)= - ) . 11 (x) f o r  a n y  y  E N"; (3.16)

(viii) For each mEN, -  is an eigenvalue o f A  o f m u ltip lic ity (n +  n -  1 )(0  is  of

m u ltip lic ity  d  i f  K -1 -1 = 0 ). And, {0 7 (x ); iyi = m }  is  a  basis of eigenpolynomials
be long ing  to  it. {C (x); y  E N }  spans all the polynomials of n variables.

P ro o f.  We denote by A r  th e  vector space of all convergent power series in
v=1/N, and by A?, the subspace of A, consisting of all elements vanishing at v=0.
To prove (vi), e ( x )  and ci4N ) (x ) are polynomials with coefficients in A , .  More-
over, t/4 '(x)-xY  and  co r(x )-xY  are  with coefficients in A .  H e n c e  in (3.13),
c m 's belong to A .  In the course of resolution of (3.15) in a a s ,  we must do several
times of division by p 7 ) - p t )  w ith  0 .<  < M .  By virtue of (3.9), Ai 's  are distinct
(we assume here that K+1 >0 or that m  > 2 ) .  Therefore, we see that an element of
A?, divided by ii (i N) -1/;,-;' )  belongs to A , .  Consequently, a y ,,'s  in (3.14) belong to
A , .  This proves (vi).

To prove (vii), we put 1 4 ( x ) - 4 1 ( x ) = v e ( x ) .  T h e n , v (x )  is  a polynomial of
degree<(m  -1) with coefficients in A ,,, hence C,N ) (x) and B y(x) remain in  a  fixed
bounded set in C4(0) as y  is small (N  is large). A nd we can write

[A-Oy + AmOv] = [A(A '̂ )] N(P (N ) [(A N ) ]  -  [ e ])} - v[(A  +  )-,n)E y ]

+ NOC ) - 1 + N - 1 ,)[(k r ]  .

The first term between { } on the right hand side is of 0(1IN ) by virtue of Lemma
2.3, so is the second term and the last term is also of 0 (11N ) by (3.9). Hence AC

is of 0(1IN ) on  O m . Therefore , it must be identically 0, because C2(N) is
sufficiently dense in 5- 2 as N  is large. (vii) is now proved.

(viii) is trivial. Q. E . D . (See also (B.2), p. 306 of [10]. O u r  0 ( x )  coincides
with •2(x) there within a constant factor).

§ 4 .  A characterization of the diffusion approximation

Let T (N) be  the discrete model defined by (1.7), (2.6) and by  (3 .1 ). Let A  and
{Oy (x ); y e  N }  be the  operator and  the  basis o f  its eigenpolynomials studied in
§ 3 .  We are going to show

Proposition 4 . 1 .  Let ...F (N) = { 5 .(tIN)}, 0  b e  a  d iffu s io n  a p p ro x im a tio n  o f
T (N) in  th e  sense o f Definition 2.1. Then, g" is characterized by the follow ing
condition:
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5 - (t)0 7(x)= e- "1 -, 10),(x) f o ra i !  yENn. (4.1)

P ro o f . A semi-group 3 - satisfying (4.1) is unique (if there exists any), because
(4.1) determines the action of on the polynomials which are dense in C°(0).

For any y e N" and any positive integer K, we put

0(t, x)= .9- (t)0,(x)- e - " -0 7 ( x )  with m = I y I a n d

cb(N)(k)= [3- (k/N)0,,] -  T ( N) (k)[k y ] f o r  0< k<KN

(0(t , x) is a function and ek(N) (k) is a  vector). Then we have

[0(k/N, • )] =CPN) (k)+ T ( N) (k) [0 7 - (/)( N ) ] +e - k ''''"/ N [4) (
7

N ) -  Ov]
± {Odin"

Let us assume at first that (4.1) h o ld s . The left hand side of (4.2) is 0, two terms
involving [4), _ ov)]  are of 0(11N), and 0.0 ) ) k  - e - k A mIN  is a lso  of 0(1IN), because
ttLN) _ is of  0(111‘12 ), 0 <k<K N  and tha t 14N )  a n d  e- A-0 ' a re  a t  m o s t  1.
Hence -(k( N)(k) is of 0 (1 IN ). Consider generally the vector

f ( N O  = [ff . (k1 - T ( N ) (k) [ f ]  f o r  o<k<KN.

If f is polynomial, f is represented as a linear combination of (ky 's, hence PN)(k) is of
0 (1 IN ). And for general fe  C(r2), f ( " ) (k) is also small because o f the  uniform
boundedness of norm of .9- (t) in the interval 0•< t< K, of the contraction property
o f  T(N) and of the density o f polynomials in  0(5- 1). This proves that 5- ( N )  ap -
proximates T(N) if (4.1) holds for Y .

Conversely, le t 3- b e  a  semi-group such that 5 - 0 0  approximates T (N). We
have to derive (4.1). In this case, if N is large, f(N)(k) is small for any f e C°( -2), hence
in particular, for f=  Or  T here fo re , (T ( " ) (k) is small in (4.2), where the remaining
terms on the right hand side are of 0(11N). That is, 0(t, x), which is a continuous
function of (t, x) on [0, + co) x (2, is small if t = 0, 1/N,..., kIN,...,K and if x E g2( N ) .
Consequently, 4)(t, x) m ust be identically zero if 0 < t< K  and  x e Q .  Thus, we
have (4.1) because K is arbitrary. Q .  E .  D .

Corollary 4.2. The semi-group .9-  satisfy ing (4.1) is positivity-preserving and
is of contraction.

P ro o f .  T(N) is positivity-preserving and  is  of contrac tion . Therefore, ..9- ( N )

approximating T(N) must have the same properties. Hence, the assertion follows
from Proposition 4.1. Q. E. D.

From what we have seen in § 3 and by Proposition 4.1, the question of finding
the diffusion approximation is reduced to that of determining the  semi-group 3 -

acting on co(r2), generated by A  and satisfying (4.1).
In  the  remaining pa rt o f this paragraph, we will prepare some notions and

notations required in the next paragraph.
Let H be the set of all the  non-empty subsets o f  {1,..., d } .  F or K e I I , the

(4.2)
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number of elements in K  is denoted by IK I. Now, we have to distinguish p's ac-
cording as b > 0 or as bp  = 0 . Therefore we put

J ,= {p ;  l< p < d  and  bp >0} and J o  ={p; 1 < p < d  and b = 0 } . (4.3)

J ,  and J o are complementary to each other. There are three cases:
Case I. J ,  is empty;
Case 2. J o is empty;
Case 3. Both of J ,  and J o  are  non-empty. This case consists of two subcases:

Case 3-1. 1.1 + 1=1  a n d  ifoi=n;

Case 3-2. iJ + I 2 a n d  1.101 1.

The formulas obtained in the next paragraph will depend largely on this classi-
fica tion . The probabilistic meaning will be discussed in §6.

In Case 2 and in Case 3, we denote by I I ' the set of all the elements of H con-
taining J , (In Case 2, H ' contains only one element {1,..., d}).

Next, for each K e I I ,  let us define the open K-face QK  and the closed K-face
OK  of f2-  in the following way:

OK is  the set of points x  K2 satisfying x ; > 0  for any j e K  and xi  =0 for any
jc K .  OK  is  the closure of QK  in  R" (or in R d ) .  QK  (o r r2K ) is  a  (WI — 1)-dimen-
sional sim p lex . I n  particular, if K = {j} (IK I=  1), 5-2,c =r2 K  i s  the j-th  vertex P i

of 0:

=(.3 Sni) f o r  l< j< d . (4.4)

These vertices are naturally of special importance.

Lemma 4.3. L et K  be an  element of  II in  Case 1 and of  /7 ' in Case 2 or in
Case 3. L et v(2) be a function in  d  variables and of  class C2  i n  a  neighborhood
of r-2-  . Then, (Ar) p, is determined only by vl o x . A nd, there exists a differential
operator AK on 5- 2K  such that

(Âv) [o n  = A K (v Ih-ic) . (4.5)

In particular, A {1 , . . . , d) -- - A ,  and fik= 0  if IKI=1 (See Lemma 2.4).

P ro o f .  Let us begin with the assertion for IK I = I .  S u c h  a  K  occurs only in
Case 1 and in Case 3-1. And Ay is zero at this vertex (See (3.4)). Next, let us verify
the assertion for K={1,..., d}. Changing the variables, we rewrite A as

{
d 02v 011 2A v(5c)=  E  (S p g yp —)' p y,)  „  + 2  i  bp (y )

p,q=1 UY  !IV Y  q P=1 Oyp

a
where y i  = x ;  for 1 < j..‹..n and yd --- --1 —  E  yp.

n=1

Therefore, (Âv)1-, = A(v ID )  because yd =0 on f2- .
The proof of (4.5) for general K is reduced to the above argument replacing d

b y  K . F o r  example, we have



Diffusion approximations 31

A K W  = E  (6 x —  x x ) + (bp —x, E I°11'
2  p,,=, P q  P P  q  a X p a X , p=1 q=1 aX

1 k a2w kk + 1
(4.6)

if K  {1,..., k+11 w it h  1 ..‹..k<n.

The lemma is proved. Q. E. D.

Let us define a subset 0, of CI and (0Q), of 00 as follows:

0 e = {x e xp > 0  if p E . 1 , }  a n d  (00),=00 n Qe . (4.7)

S2e contains Q in any case and it can be written as

Qe = "0 in Case 1, and Qe =  J OK in Case 2 or in Case 3. (4.7')
K H

We call (00), the effective part of  a Q .  The reason for this name is that, if t>0,
g*(t)f is determined only by the values of f  on Q, (This notion is slightly different
from that of attainability. For example, 052 n tx .i =01 (or its interior part) is non-
attainable if and only if  b; > 1/2 in the sense of Chap. 11 o f [5]). By the above
definition, we see in particular

(052),=0Q in Case 1, and (00) e = (/) in Case 2. (4.8)

The construction in the next paragraph will give us the following property of
g " .  Let us put u(t, x)=,9 - (t )f (x ), where fE C °(0 ). Then, u is a solution of the
initial boundary value problem

Du = A u  o n  52, if t> 0 ,  and, (4.9)
Ot

u (0 , x )= f(x ) o n  O. (4.10)

(The uniqueness of solution follows under the assumptions of regularity: u(t, x) is
continuous in  (t, x) o n  [0, + cc) x r2 , differentiable in  t  in  C°(0)-topology if  t>0
and continuous in t in C2 (0)-topology if t> 0).

Here, it should be remarked that (4.9) means not only the differential equation
in the interior set Q but also the boundary condition on (as2), in the sense of Lemma
4.3. In particular, we have

(" ( t ) f ) (P  ; )  f  (P  ; )  f o r  t 0
(4.11)

if 1 /<. d in Case 1 and if j e J, in Case 3-1

(See (5.15) and (5.17)).

§ 5 .  Formulas for the diffusion approximation

L et {.1„,},7,,c, be defined by (3.10), tha t is, m(nt +10/2 fo r  m e N , where

IC + 1  =2 E  bp . This sequence is non-negative and strictly increasing except that
17 =

=  =  0 in Case 1.
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For each m e N , we define Ern as the vector subspace o f C°(2- )  spanned by
{07(x); y e Nn and 171= m}, but in Case 1, E , is the span of {xi ,}pd.,., and E 0  is  no t
defined. That is, Ern is the space of eigenpolynomials of A belonging to the eigen-
value -.I. except that E , in Case 1 is the eigenspace belonging to O.

We are going to obtain a kernel representation of the semi-group .F charac-
terized by (4.1). Our first step is to define, for each m, the continuous linear map-
ping En, from C°(i-2- ) into itself having the following two properties:
— E„, is a projection from C°(f2) onto Ern ;
— There exists a Radon measure E„,(x, dy) on I?" with respect to  variable y  with
parameter x e r2 such that E„,(x, dy) is supported by S- 2 and that

E„,f(x).-- f(y)dE„,(x, dy) on f2 for any Je 0 ( 0 ) . (5.1)

Let us assume that the mappings E„ were already constructed. Then, we can
informally define a semi-group .F= {.9- (t)}, 0  by .F(0)f =f  and by

Y (t) f = e- "-E„,f  in Case I ,  and
m=1

(5.2)
9 - (t) f  E e- "mE„,f in Case 2 and in Case 3,

ni O

for t > 0 .  The series on the right hand side is not yet guaranteed to be convergent
for general Je 0 (0 ) .  But for polynomial f ,  it is really a finite sum. In particular,
(4.1) is immediately checked to be valid.

Therefore, we will define at first the measures E„,(x, dy) in d e ta il. Our second
step will be to rearrange the infinite sum in (5.2) and to verify the convergence of the
rearranged sum. The results of these two steps will be summarized as Lemma 5.1
and Lemma 5.2 below.

5- 1. Definition of E m (x, dy)
Let us begin with the definition of dS K (x), volume element of the open K-face

f2K ,  for each K e l l   in Case 1, and for each K e 111  in Case 2  and in Case 3. If
K = {j} (IK I= 1), dS K (x) is the point mass 1 a t Pj . If K ={j1,• •
we put

./k}  (IKI=k 2),

dSK(x)=m(x)Idxii•••dxj,.•.dxikl for 1 -<..p.<.. k,

where m(x)= 1 in Case 1 and

(5.3)

{  m (x )=  F1 xib., - '  in Case 2 and in Case 3.
(5.4)

j e J +  -

Extending by 0 outside of OK , dS K (X ) is regarded as a non-negative Radon measure
on Rn supported by r2K .

Next, we define the functions F , K (x , y) as follows:

x y  y )  =  i l l , x i}  1, ; , ,  ( +& (K ))!! fo r  peN , (5.5)
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{

where iti(K)= (wi (K), • • ., wd (K )) with co (K )= 1 or 2bi  - 1

according as j G K ' or otherwise, and K ' = K  n Jo

(The factor f l  xi  i s  1 by definition i f  K ' is  e m p ty ) . W e  put conventionally
jeK'

Fp ,K (x, y)= 0 if p< 0. Hereafter (x, y) in Fp x (x, y) are restricted to r2x  r 2 K . There-
fore, the summation on the right hand side of (5.5) can be restricted to Vs for which
c ,= 0  ifp K, because y6 is 0 on OK if ap >0 for some pi:v K.

Thirdly, let us define the functions Emdc(x, y) by

m-lic I o n  K ) ( 2 m - q + K - 1 ) 1  E„„K(x, Y)= E (- ogq! y)
q =0

f o r  nt..>-1/C1.

(5.7)

We put conventionally E„„K (x, y)= 0 if m < IK'I.
Now we can define the measure E(x, dy) as follows:

I  E,,,(x, dY)= KE l l E„„K(x, Ads,,(y) for m..> 1 in Case 1, and

Em (x, dy) --  E H ,Em,tax, AcISK(y) for m >0 in Case 2 and in Case 3.K  

Using this, we define the mapping Em  by (5.1).

(5.8)

L emma 5 .1 .  For each m, Em  is  a continuous projection f rom  C°(t2- )  onto E rn ,
that is,
(i) AE„,f - A„,E„,f f or an y  fe  O W );
(ii) Em Af= ---).„,E,„f f or any j e  C2 (12);
(iii) E „ ,f= f f o r an y  fe  E„,.

This lemma will be proved in § A . W e  put now, for t> 0,

1Z(t; x, dy)= E  e- "-E„,(x, dy) in Case 1, and
m=1

Z(t; x, d y )=  i  e - "-E (x , d y ) in Case 2 and in Case 3.
m=o

If the series on the right hand side is convergent, Z(t; x, dy) is a Radon measure
on WI supported by S-2 with respect to y and with parameters t> 0 and x  e  0 .  And
the informal definition (5.2) is rewritten as

.9- (t )f (x )= f(y )Z (t; x , dy ), for t > 0. (5.10)

Therefore, our next work is to justify the sum on the right hand side of (5.9).

5-2. Another expression of Z (t ;  X. d y )
By (5.8), each of E,„(x, dy)'s is a linear combination of dSK (y)'s. Hence, we

can rearrange Z(t; x, dy) and write it down also as a linear combination of dSK(y)'s:

33

(5.6)

0 0

(5.9)
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where the number of K 's is finite in any case. And the functions zK (t; x, y) are
defined by

Z(t; x, dy)= Z ic(t ; x, y)dS K (y) in Case 1, andK ;  

{ Z (t; x , d y )=  E  z ,(t; x, y)dSx (y) in Case 2 and in Case 3,
(5.11)
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CO

zK (t; x ,  y ) =  E  e- tImEm ,K (x, y), where
m=ivi

K '= K  n Jo . (5.12)

For any fixed t> 0, the series on the right hand side converges uniformly on 0 x OK,
because we have an estimate of type 1E,„,,(x, y )  C " '  w ith  som e constant C
independent of (x, y, m) (See (4.13), p. 294 of [1 0 ] ) . Therefore, for any Je  C°(0)
and for any t>0, the integral on the right hand side of (5.10) is convergent. But,
we have a more precise assertion which guarantees, as a corollary, the uniform
convergence with respect to  t. That is,

Lemma 5.2. F or each K , the f unction zK (t; x, y ) def ined by  (5.12) is non-
negative if t>0 and if (x, Y) E X K .

This will be proved in § B .  As a consequence of this lemma, Z (t; x, dy) is revealed
to be a non-negative Radon m easure . And moreover we have

Z (t; x, d y )= 1  on if t > 0, (5.13)

because this integral is equal to the right hand side of (5.2) (with f=  1), therefore, to
E 1 1 (or E o l)=1.

Thus, ..F (t ) f ,  defined by (5.10) for t > 0  and by Y (0 ) f= f ,  has the following
properties:

0 < g - (t)f(x)...<., 1 i f  0 < ,.f ( x ) < I ,  and, 9'(t)1=1;

, F ( t + t ) f = g - ( t ) , T (e ) f  i f  t > 0  an d  t' >0 ;

3 - (t )f  is strongly continuous with respect to  t >0 in C°()-topology.
The definition of the semi-group Y is now complete, and it coincides with that

of (5.2) for polynom ials. In particular, .F  satisfies (4.1). Let us state the result
just proved:

5-3 . Main theorem
Let T(N) be the multi-type gene frequency model o f W right-Fisher defined by

(1.7), (2.6) and by (3.1). Let ..°7- be the semi-group defined by (5.10)for t> 0 and by
.9 - (0 ) f = f .  W e Put " (N ) = { 5 - ( t IN ) } t o .  T hen, Y ( ') approx im ates T(N) a s  N  is
large in the sense of Definition 2.1.

5-4 . Behavior of .9 (t) as t is large
This will be very important in the next paragraph to study the movement of the

diffusion process. As is shown in (5.12) above, we see, for any K,
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zK (t; x, y)= 0{exP ( - 0 , 1K.1); as t - ++ oo, w h e r e  K '= K  n (5.14)

That is, the contribution of f l o K  t o  5- (t )f  is of th is  o rd e r . In particular, that of
f l ,  is of O[exp {- t141(1J0i + 0 2 )].

Let us calculate the limit of ..9- (t)f as t-o, + co. For this, it suffices to pick up
the single term E i f  in Case 1 or Eo f  in Case 2 and in Case 3 from the right hand
side of (5.2). The result is the following:

Case 1 . 9 - (t )f (x )= xp f (P p ) +0(e - i); (5.15)
P= 1

Case 2  .9- (t)f(x )=  .g o f(y)m(y)dy Im (y )d y }+ O (e - r( k+1 ) /2 ),

d
w h e re  m(y)= n y3 b .1-1 a n d  dy--=dy i •••dYn ; (5.16)

i=1

Case 3 -1  .9"(t)f (x)=f(Pk)+0(e-tbk) if J +  -{k} ;( 5 . 1 7 )

Case 3-2 (x )= + f (y)d S + (y)/5 + dS + (y)} + 0(e - t( +1 ) /2 ) . (5.18)
Q J

5 - 5 .  Simplifications of formulas
Let us introduce an auxiliary function K (t, C) with variables t>0, - 1 1

and a parameter y> - 1:

1/,(t, = F ( y )  (2m +v)C1,„(C)e- tmcm+ vuz, (5.19)
m=o

where { C v q ( 0 1 - 0  are Gegenbauer polynomials (See [2]):

(1 -2 a + = qq (C )  fo r  -1 < C <  I and I (5.20)
q=0

(The definition of Vv (t, C) is not rigorous for -I < I, < 0 .  See § B).
In Case 1, for each K e17, zK (t; x , y) in (5.11) is given by

r j 51
z K (t; x, y)=( f l x ••• V2IKI -10, E 4)„,/x„Ydm(d(b),

jeK —1 —1 peK

the integral being extended with respect to  ( b = ( 0 1 , • • • ,  Od )  over the d-dimensional
interval ( -  1, 1)d by means of the measure

M(dob)= _  do i ) . (5.22)

This zK  with K={1,..., d} is the same as the Green function obtained in [10] (See
(7.13), p. 300).

In  Case 2, II' consists only of K={1,..., d } .  Therefore, (5.11) can be written
simply as

{

Z(t; x, dy)= z(t; x, y)m(y)dy

with z(t; x , y )=  i  F p (x, y)V2 p + ,,(t, 0)e - "P,
p=0

(5.21)

(5.23)
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where m(y)dy is as in (5.16) and F p  stands for F p j , with K ={ 1,..., d}.  This result
is the same as the Green function obtained in [10] (See (6.5), P .  297), that is,

{
1

z (t; x, y) = i ••• 51 _ 1 V „(t, A  O p .,/ x p y p )M ' (d ) ,

where M'(d(T))= t jj [(1 —01) 2 b, - ( 3 /2 )d0 ;  I 1., I n F (2b ; — H i.

In Case 3, for each K E 17', z d c in (5.11) is given by
CO

z x (t; x , y )= E Fp x (x, y)V2 p 4 .2 0 0 ,„(t, 0)e- "P,
p=0

(5.23')

(5.24)

where K ' =K  n An expression analogous to (5.21) or to (5.23') is also possible.

5 - 6 .  A remark
The discrete model T(N) is determined by two vectors of parameters c =(c,,..., cd )

and  p = ( j1 , , . . . ,  t i d)  independently running over the closed set = {b=(b„..., bd );
b 0 for 1 <p  <d } . And the semi-group Yis  determined by b • c + p also running
over Q . In Case 2, b lies in the interior of 0 .  In Case 1, b is at the vertex O .  And
in Case 3, b is on  the  remaining part of Q. A lth o u g h  the formulas of 9-  are,
apparently, written variously case by case, 9-  depends continuously on b . To be
more precise, let us denote 9- = {9 - (t ,  b )}, , .  Then, for any bo E f E  0(0),  e> 0
and for any T >0, there exists a (5>0 such that 15-(t, b)f(x) —  9 - (t, b 0 )f (x)l< 8 on r2
if 0 < t < T, b EQ. and if 1lb — bo ll< (5 (For the proof, it suffices to verify this essentially
for polynomials f ) .  Hence, each model 9-  in  C ase 1 or in Case 3 is obtained as
the limit of a sequence of models in Case 2.

§ 6 . Some probabilistic interpretations

Let {a(N)(k)) 0  b e  the discrete model defined by (1.7) and (3.1). Denote by
T(N)=17. 0 0 (k)} 0  b e  th e  semi-group of m atrices identified with it. Then by
(2.6), we can write

T(N)(k)0(a)=E„[4)(1 0 0 (k ) ) ] f o r  a  e 520 0  a n d  k e N. (6.1)

On the other hand, let us define the diffusion process co) as the solution of
the following stochastic differential equation

Id4(t, co )= ±  o p g(t, o)))d13,(t, o))+b p ((t, o)))dt,
q=1

4(t, o))=x p  f o r  1<p < n  w ith  x =(x,,..., xn)e n,
where bp (x)'s are defined by (3.2), (Bp (t, o))1;.__ 1 is a n-dimensional Brownian motion
and o-(x)=(a pq (x)) is n x n-matrix whose elements are Holder continuous functions
of order 1/2 on 0  such that

± p ,.(x)crq r (x)=S p ,x p — xp x ,  o n  D  f o r  1 < p, q<n.
r=1

(6.2)

(6.3)



Diffusion approximations 37

For example, if o(x) is  a  triangular matrix, this Holder continuity is guaranteed.
The solution co) of (6.2) is unique for any x e 0, remains almost surely on 0 and
can be continued up to t— >+ oo. Therefore the equation (6.2) defines a  diffusion
process 4 t, co) (See [8]).

Then, the semi-group Y = {g- (t)}, 0  constructed in  § 5 can be expressed, by
means of W , co), as follows

.5"(t)f(x)=E
x [i(4 t , (0 ) )] f o r  t> 0, x E Q  an d  f  e C°(2), (6.4)

because each of the both sides is a solution of the initial-boundary value problem
(4.9)—(4.10) of which the solution is unique (We do not go into further details of the
proof of (6.4). See [5] for example).

We are now going to discuss the Cases 1, 2, 3-1 and 3-2 separately, and give
some probabilistic interpretations of our results obtained in the present memoir and
in [10 ] .

6 - 1 .  Case 1
We have Cl (ot)=I p IN  for 1<p..<„ d in this c a se . Therefore, the discrete model

represents a population in which effect neither selection force, mutating pressure nor
migration.

The vertices P 1 ,..., P d  are states of fixation (homozygosity), that is, the states
that the population consists of only one type of individuals. And by (5.15), we have

Ex [f(MIN, co))]= x p f (P p )+0 (c f 11") as tIN  is large. (6.5)
p= 1

Hence, the diffusion process 4tIN , co) starting from co)= x e 0  is absorbed al-
most surely in a finite time to one of the vertices, with probability xp  to P, (l< p-< d),
and that the rate of absorption is  1/N. Genetically, any population governed by
this rule becomes ultimately homozygous one of type p with probability x p  (=the
frequency of the type p at the 0-th generation).

Let •r(co) be the first exit time from Q of at, (0 ). Then, its expectation is given
by

Ex[t(w )]=2(d-2)! ••• 1x d ( i  u ) i - ddu i •••du a
o o p = i

=2  E (- owl - Fig( E x ; ), w here g(u)=u log —

1  

.
K e l l j e K

This is calculated as follows. The left hand side v(x) is the solution of the Dirichlet
problem

Av(x)= —1 i n  Q  a n d  v(x)= 0 o n  052. (6.7)

Therefore, v(x) is equal to the right hand side of (6.6) (See (9.9), p. 303 of [10]).
Genetically, NEx [r(co)] approximates the expectation of generations required for
the extinction of at least one type of individuals from the population.

Let us denote by Dp  the event that the type p disappears at first from the popu-

(6.6)
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lation: Dp = {co; j , ( T ( C 0 ) ,  (0 )  =  01. Then, the probability of Dp  is given by

Px (D p ) — vol Dp (x)Ivol Q, 1<p<d, (6.8)

where the volume means the n-dimensional Lebesgue measure, and D p (x)= {y e 0;
yi lx i <y p ix p  f o r  1 .< j<d}. This is proved as follows. u ( x ) = P ( D )  is the solu-
tion of the Dirichlet problem

A u (x )= 0  in 0, up (x )=  1 o n  00 n {xp =0}{

and up (x)=0 on the remaining part of  Q .

Hence we have (6.8) (See (9.21), P .  304 of [1 0 ]). The ratio on the right hand side
of (6.8) is nearly equal to the ratio of the numbers of points of D p (x) n Q (N ) and of
Q(N) .

Reaching aS2 n {x = 0 } ,  the  path starts afresh bu t remains thereafter almost
surely o n  00 n {x= 0} a n d  !(t, co)=(t+T(co), co) is governed by the  stochastic
differential equation (6.2) (in (n — 1)-dimensional space with the initial va lue  (0, co)
=4r(co), co)). Genetically, none of types once disappeared from the population
does never rev ive . We could also calculate the expectation of r(w) under the con-
dition that Dp  o c c u rs . F o r this, we pu t wp (x)= up (x)E x [t(co) I Dr ] ,  and solve the
Dirichlet problem

Awp (x)= —u p ( x )  in 0  and w (x )= = 0  o n  as2 (6.10)

using the Green function obtained in [10] (See (7.10), p. 300).
Let r (w ) the fixation time of 4t, co) a t P p . Then, the expectation o f  p (o.))

under the condition t h a t  (t, co) is ultimately fixed at P p  is given by

Ex [r p (o))1 ( + a), (D)=P p ]=2g(1—x p )/xp  f o r  1  <  p <d, (6.11)

where g(u) is defined in (6.6). In fact, let us put vp (x) the left hand side multiplied
by xp . It is the solution of the Dirichlet problem

Avp (x)= —x p  o n  (2 except at P p  a n d  vp (P p ) =0. (6.12)

We can find a particular solution depending only on xp , which is the unique solution
because of the maximum principle. Therefore we have (6.11).

Let c)- (a)) be the fixation time o f  (t, co) at any one of vertices. Then, its expec-
tation is given by

Ex [cr (co)] = 2 g(1 — (6.13)
P= 1

because the left hand  side  is equal to  th e  sum  o f  vp (x )'s  above. Genetically,
NE x [o- (co)] approximates th e  expectation o f  generations required fo r  th e  given
population to be reduced to homozygous one.

(6.9)

6 -2 . Case 2
This is the case extremely opposite to  the Case I . T h e  discrete model repre-
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sents a population for which there is no selection force but, for each p, either the
mutating pressure or the migration (or both of them) is really effected. That is

(a)>0 even if ocp = 0 (See (3.1)). Hence, even if the number of individuals of a
type decreases temporarily, it is recovered either by mutation or by migration.

In the diffusion model, no part of the boundary is effective (See (4.8)), because
b ( x ) = b > 0  o n  th e  hyperplane {x=0} fo r each p  (See (6.2)). Hence, neither
fixation nor extinction of any type can occur. A nd we have

E.Ef (4tIN , M)]= (y)m(y)dy 1„m(y)dy}

+o  ie x p (_ -N -t  t 1 b p )
)

 a s  tIN  is largep  

(See (5.16)). Therefore, independently of the initial state co)=x e (2, (tIN, co)
is uniformly distributed in Q with respect to the measure m(y)dy as tIN  is large.

6-3. Case 3-1
Assume, for example, that = {d } and  J on } .  T h e n  w e  have, by

(3.1) and (3.2),

(6.14)

aP(IV 4d)  forC
P

(œ)AT(N± Ca) 

with bd =c d +f i d >0;

N(bd+ocd) - - Iidad < p  ‹ n  and Cd(c9- N (N + Cc')
(6.15)

b p (x) = - b „x p  f o r  t p n  a n d  bd (x )=(1 -x d )bd . (6.16)

In  the discrete model, the fixation occurs only for the type d , because only
individuals of type d  are recruited by mutation or by m igration. In  the diffusion
model, the closed J o-face is the non-effective part of the boundary, that is, (00)e

= as2 n {xd  > 0} (See (4.7)). And, by (5.17), we have

Ex [f ( ( tIN ,w ))]=f (P d ) +0(e - tba/N ) a s  ON  is large. (6.17)

This means that the diffusion process 411N, co) starting from 40, vi)=x e r2 is ab-
sorbed almost surely in  a  finite time to the vertex Pd and that the rate of the ab-
sorption is b d /N .  Genetically, any population becomes ultimately homozygous one
of type p with probability 1.

Let o-(w) be the absorption time of 4 t , (D) to Pd . Then, its expectation is given
by

Ex[a(w)] =2 .çi
x d  dz z

o  y
( Y( li z ) 2

y
b;  dy. (6.18)

This is calculated as fo llow s. The left hand side v(x) is the solution of the Dirichlet
problem

A v (x )= -1  o n  f2 , a n d  v(Pd )=0. (6.19)

This admits a particular solution depending only on x d , which is the unique solution
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by virtue of the m axim um  principle. Genetically, N Ex [o-(co)] approximates the
expectation of generations required for the given population to be reduced to homo-
zygosity of type d.

Analogously to the Case 1, we can calculate explicitly the following expectation
and probability (the formulas are omitted here but see §9 of [10] for details of the
method):

Ex [t(co)], where t(co) is the first exit time of 4t, co) from 52;
Px (Dp ) for 1 p n, where Dp  is as in 6-1.

6 - 4 .  Case 3-2
Suppose, for example, that J,={1,..., m} and Jo = {m + d} with 2 m  <d.

In  this case, fixation does occur to none of types, because individuals of plural
number of types 1,..., in are recruited by mutation or migration.

In  the  diffusion model, the effective part of the boundary is (052)e = (x E 00;
x,> 0 for 1.<p< m }. Above all, the open J.4.-face is of special importance, because
we have by (5.18)

Elf (WIN, (0)] = f (Ads.,,(Y ) ds. f.(y)}
(6.2)

+o iexp b p ) }  a s  tIN  is large,

where dS.,+ (y ) is defined by (5.3)—(5.4). This m eans that the diffusion process
starting from (f'.1, co)— x  e  is absorbed almost surely in a finite time to Q., + .

Let T+ (co) be the absorption time of 4t, co) to 52„4 . Then, reaching S2J + , the
path starts afresh but remains thereafter almost surely in S2j , and co)= (t+T + ((0),
CO) is governed by the stochastic differential equation (6.2) in  (m —1)-dimensional
sp a c e . And, independently of the starting point, WIN, co) is uniformly distributed
in 52,14 with respect to the measure dS,.(y) as tIN is la rg e . Genetically, individuals
of types m +1,..., d disappear sooner or later, and the population behaves there-
after likely as one consisting only of types 1,..., m.

The expectation of -c+ (co) is given by

This is

Ex [T,(co)] = 2 dz o
z  ( ;; dy,yY/f) 2

(6.21)
In m

where x+  = xp  and b+ =
p=1 p=1

calculated by solving the Dirichlet problem

„(x)= —1 on S2, and v+ (x)= 0 on S2j 4 . (6.22)

Since the solution is unique, we can look for a particular solution depending only
on x + , and we have (6.21) (Compare this with (6.18)).

6 - 5 .  An open question
Suppose that the number d of alleles is very large. L et us pu t  d= co for example.
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We can ask ourselves what happens then to our form ulas. A s a matter of course,
we should reconstruct all of our framework. We should define anew the state space
t2- , the function space C°( - 2), the notion of the solutions of the differential equation
(4.9), and that of the stochastic differential equation (6.2), and so o n .  We do not
go into the details of this point.

But, some of our formulas obtained in §5 will be available without any modi-
fica tion . At first in Case 1, (5.11) and (5.21) go well whether d is finite or not.
Secondly, if  th e  s e t  + is finite, (5.11) and (5.24) in Case 3 are also available. A
difficulty arises when J , is an infinite set. B u t  in  this case also, the majority of the

formulas in §5 may be valid, if we put the hypothesis that bp be finite.
P=1

§ A .  Proof of Lemma 5.1

This lemma in Case 2 is exactly the same as the contents in §3 of [101 hence
there is nothing to do in this case. A nd, if m =1 in Case 1 or m = 0  in Case 3, the
assertions of lemma are immediately verified, because we have

f

iE ,f (x )= x p f (P p) in Case 1, and,

E o f ( x ) =  L  ., f (y)dS j + (y) IL . dS j  + (y) in Case 3

p=1 -
(A.1)

(See (5.21), (5.23) and (5.24)). Therefore in the sequel, we can assume that m >2
in Case 1 and m ,>, 1 in Case 3. And by the symbol K, we denote always an element
of f! in Case 1 and of 17' in  C a se  3 . We write moreover K' =K n Jo (K ' = K  in
Case 1 and K ' may be void in Case 3).

We prepare at first some identities required for our proof.
We define the transposed operator 'AK  o f  A K  introduced in  Lem m a 4.3: If

I KI =1, we put tA K  =0, because AK = O .  If IKI >2, we put as follows (See (4.6)):

t
A K V (Y ) = ( p q Y p — Y p Y q ) A AV ( e p — y p k il  eq )  ,av

uYpuYq r=1 q=1 (Up
(A.2)

Ar r e  I t', i f  K= {1,..., k + 1} ,

where ep  is b,, or 1 according as p e J , or as p E K'. T h e n ,  we have the identity of
Green:

2 {AKu(Y)• v(Y) — U(Y)t AKV(Y)IdSK(Y)
I2K

(A.3)
= u(y)v(y)dSxk{i}(y),

je K ' L i }

where the right hand side should be read 0 if IKI =1 or if K ' is void.
On the other hand, let Fp ,K (x, y) be the functions defined by (5.5). Then, we

have
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AFp ,K (x , y )+ l cI IF 1y )= F p _,, K (x , y ), (A.4)

, 1  ,A K F „lax , Y )+ p  I K'IF pdc(x, .)))= K X J ) F p -  ,K ( X  y), (A.5)
j e

where A  and 'A K  a re  operated in x and in y  respectively (we put F p ,K =0 if  p <0).
Therefore if we operate A  and rA K  to  E„,,K (x , y), we have by (5.7)

AE,„,K (x, y)= 0, and (A.6)

1
( AKE„„K(x, y)+ ÀmEm,K(x, y)=  -,-,- ( ; .X , i —  I )R  n (X 1  y )  , (A.7)

where R rn,K (x, y) is defined by

R, (x , y )=0  if  m <I  C , K '=  or if IKI = 1, and

{ m-1- i K' IR ,,,,K (x , y)z (2m — q+ K — 1 )
I_  •  r

2m + K q=0 ( — IN  ! '  m -  1 -  q -  I K. I ,K (X >  y),

Now, let us prove (i) and (ii) of lemma. (i) is obvious because of (5.8) and (A.6).
To see (ii), we apply (A.3) to  u (y )=f (y) and v(y)=E„„K(x, y) for each K  and sum
up with respect to K .  Then we have, by (5.8), (A.3) and (A.7),

2(E,n A f  2,„E,,,f )(x )= ( ; x  —  1)R,nKf, ( x )

+ Z ( Z x i )R„, K f (x )
K  j

d

=  (  E  xi -  t) E R,„ K f(x)= 0,
J =1 K

where we used the fact that, if , j «: K, E,„, K u  ,i ,(x , y )=x i R,„,K (x , y) for (x, y) E r2 x r2K .
This proves (ii).

Next, let us prove (iii). B y  ( i)  and (ii) just verified, E„,f belongs to E rn fo r any
f e  C°(2- ) and E„,f=0 if f  is a polynomial of degree < m .  Hence it suffices to show
that E,xi" —x 5" is of degree < ni for any j:; e Nd with ij51 = m. Let us put

gn , K f  (x)= (2m +K)! L f ( y ) F _ IK .1,K (x, y)dS K (y),{

a n d  Egf (x)= E ,?,, K f (x) .

The proof of (iii) is now reduced to verify that  .

E;xi'- - x)" is of degree < m if .53 e Na with M = in. (A.10)

We denote by Supp 3 the set of p for which ap  > O. And put

H  =S uppj5, Ho =H  n Jo a n d  H ,=H c n Jo( A . 1 1 )

If K  does not contain H , E,'.?„,K x 7 is 0 because xi'' =0 on Q K.
Therefore, the summation with respect to  K  in (A.9) can be restricted only to K's

(A.8)
if otherwise.

(A.9)



Diffusion approximations 43

containing H. And, if KDH, we have

Emo , K x ,2,_ E   j n
pe. +

(otp+ y„+2b— 1 ! , , t  f (a,+ )',)! x".1
qoc,, !(Œ +2b ,-1 )! I + 1) !

and the summation on is extended over all ôt's with Stipp K and =in— IK'I.
Let us introduce d indeterminates z,,..., z„, and rewrite the sum on the right hand
side.

At first, if K U J + , we see that E ,„x j-' is equal to the value of the following
polynomial at z,=x,,..., z d =x d :

H  )" - 11 (H   LI H  ri-11ic iI o _Z j t _  Z je .I X  i

<Z>m— 1 K '

(nz— K'D!
(A.12)

d
where <z>= E  z •.

Therefore, E„,°,,,xi"—x'.1 is of degree < in.
N ext, suppose th a t  K = K 1 UH 0 U J ,  w ith  K 1 = K n H 1 4). Then, E,, K x -'

is equal to the value (a t z, zd=xd) of an  analogous polynomial to  (A.12)
but the factor <z>m- IK" I must be integrated with respect to z p  from 0 to once for
each p e  K ,.  Multiplying other factors, differentiating as above and putting zi =x ;

(1,<, j< d), we see that 0,1,, 10(7 is equal to Cx')'' plus terms of degree < m . Here C
is a constant which is a multiple of the sum of (-1)ILI, where the summationi i ht a t

extended over all the subsets L of K l . Hence, C is a multiple of (1-1)ic
C = 0 . After all, in the sum E,c„'x7 =E ,x 9, there is only one term .0 of degree

K
in come from K= H o u J .  T h i s  implies (A.10). And the proof of (iii) is complete.

§ B . Proof of Lemma 5.2

Let Vv (t, z) be the function defined by (5.19). We are going to prove the fol-
lowing Lemma B .  The Lemma 5.2 follows at once from this by virtue of the sim-
plified formulas (5.21), (5.23) and (5.24) (Fp ,,c (x , y)'s are non-negative in any case if
(x, y) e f2-  x (4).

Lemma B .  1/,(t, z) is positive if  t>0, —1-..<z <1 and i f y> —1.

P ro o f .  (The definition by (5.19) of K(t, z) is not rigorous fo r  — 1 <v<O, be-
cause C(z)'s are not well-defined. We will do it over again in what follows).

Suppose at first that v > 0.
As is known (See §10.9 of [2]), Vv (t, z) satisfies the differential equation

a2 va8 
 eV

v — (1— z2)  a — (2v + 1) (3zz  V
yOt z2— 

(B.1)

in the open set D= {(t, z); t > 0 a n d  — 1<z <1}. V„(t, z) is an even function of z.
Vv (t, +1) is positive, because C m(1) is positive. A nd by an asymptotic expansion
as +0 (See (F.7), p.315 o f [10]), Vv( +0, z)=0 if — 1<z <1. That is, Vv(t, z) is
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positive on the lateral part of ap and is 0 on ap n {t=0}. Therefore, by the maxi-
mum principle applied to (B.1), Vv(t, z ) is positive if t> 0 and  —1 <z <1.

Let us derive further properties of Vv(t, z) as v > O . B y  the recurrence formula
d

C .(z )=
2 v q t i ( z )  ( C T  ( z ) =  0 ) ,

a  2
V

v '( t  z )=4 e - t ( v+1)12 17 , + 2 (i, z ).ez 

Put 14(0= V v(t, 0) for simplicity. Then by (B.1) and (B.2),

2v(t)= e - i ( v+ 1 )1 2 v, + 2(t).

Integrating the both sides in the interval (t, + oo) or in (0, t),

+00
2vv (t)=2F(v +1)— St e - 5 ( v + 1 ) 1 2 V v +  2 (S )d S (B.4)

Jo
 
e- s(v+ 1 )/2 vv + 2 (s)ds, (B.4')

because vv(+ oo)= F(v + 1) and  vv ( +  0 )= 0 . More explicitly, we can develop vv(t)
in series:

v v ( t ) . =  i ( 2
m+v)1"(m+y)  e -r.(m+v)12

tra 0 ( -1)m m !=

And by (B.2), we have Taylor expansion of Vv(t, z ) at z =0:

(2z) 2 m z )= ttn(m+ v)/2.V v +2m(t)e —

m=o (2m) !

The right hand side of (B.5) is holomorphic in v in the half-plane Re v> —1, if t >0.
Hence, v ( t )  can be holomorphically extended to this half-plane by means of (B.5).
And by (B.4) with t = +0, v v(+ 0 ) is also extended holomorphically to Re v> —I.
But this is 0 if v is real and positive. Thus v„(+0)=0 if Re v> — I. B y  th is  and by
(B.3), (B.4') is valid also in this half-plane.

Consequently, defined anew by (B .6), Vv( t, z )  is revealed to be holomorphic
function of v in the half-plane Re v> —1, if t>0 and — 1 < z 1 .

Suppose now that v> — 1. By (B.4'), vv(t) is positive if t>0, because the right
hand side is already seen to be positive. Therefore by (B.6), V„(t, z) is also positive
if t > 0 and — l< z <  1 . This completes the proof of Lemma B.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY

(B.2)

(B.3)

(B.5)

(B.6)

References

[ 11 J. Crow and M. Kimura, Some genetic problems in natural populations, Proc. 3'd Berke-
ley Sympos. Math. Statist. and Probab. (1956) Vol. IV, 1-22.



Diffusion approximations 45

[ 2 ] A. Erdelyi et al., Higher Transcendental Functions, Vol. 2 McGraw-Hill.
[ 3 ] S. E th ier, An error estimate for the diffusion approximation in population genetics, Ph.

D. Thesis, Wisconsin Univ. (1975).
[ 4 ] W. Feller, Diffusion processes in genetics, Proc. 2'd Berkeley Sympos. Math. Statist. and

Probab. (1951), 227-246.
[ 5 ] A. Friedman, Stochastic Differential Equations and Applications, Vol. 1 and 2, Academic

Press.
[ 6 1 S. K arlin , A First Course in Stochastic Processes, Academic Press.
[ 7 ] T. M aruyam a, Stochastic Problems in Population Genetics, Lecture Notes in Biomath-

ematics 17 (1977), Springer.
[ 8 1 K . Sato , Diffusion processes and a class of Markov chains related to population genetics,

Osaka J. Math. 13 (1976), 631-659.
[ 9 ] K . Sato , Diffusion operators in population genetics and convergence of Markov chains,

Lecture Notes in Mathematics 695 (1978), 127-137, Springer.
[10] N. Shim akura, Equations différentielles provenant de la génétique des populations, Tohoku

Math. J. 29 (1977), 287-318.
[11] E. Fackerel and R . L ittler, Transition densities for neutral multi-allele diffusion models,

Biometrics. 31 (1975), 117-123.


