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An Abelian integral

0(x, y )=F(x , y)dx

on a closed Riemann surface defined by an irreducible polynomial P(x , y )=0 is
said to be reducible to an elliptic integral

E(t, ri)= G(t,

if we can find two rational functions

= (x, Y ), n =71(x ,  Y)

such that

0(x, y )=E(t(x , y), ri(x, y))

or
a t  a P  at OP

a
F(x, Y )=Gg(x, Y ), 11(x, Y )) 

xa ay D y  x
 O P

ay

(see Appell-Goursat [2], Baker [ 3 ]  and  K razer [6]). The study o f reducible
Abelian integrals has as long history as the theory of hyperelliptic integrals; its
origin goes back to the age of Jacobi and Legendre (cf. [3], [6], [13] etc.). But a
general fundamental result was first announced by Weierstrass (see his letter to
Kiinigsberger [12]; cf. also Kowalevski [5]). He gave a necessary and sufficient
condition for an Abelian integral to be reducible (to an elliptic one) in terms of its
periodicity module.

Besides the above theorem Weierstrass also obtained some interesting results.
In the present paper, however, we shall be concerned simply with the previous
theorem. We first note that it can be easily generalized for open surfaces (see
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Theorem  1). But such an immediate generalization seems to yield no remarkable
consequence. Therefore we shall restrict the case and give theorems which cor-
respond to the classical case (see Theorems 1' and 5) — it is indeed such a restricted
kind of theorems that we shall need in a subsequent paper, where we shall prove
another theorem of Weierstrass (and Poincaré) and give, for open surfaces of genus
one, an extension of Koebe's generalized uniformization theorem for planar sur-
faces. In Theorems 2 and 3 we shall give some criteria for an Abelian integral to
be  reducib le . The precise definition o f "reducible" A belian integrals, together
with some other tools, will be given in the preliminary part of the paper.

Concerning the classical definition of reducibility, a few remarks should be
included here. First we note that the problem of finding a reducible integral on a
given surface is obviously equivalent to the problem of deciding whether there exists
an analytic mapping of the surface onto a torus. Secondly, we note that Severi [9]
adopts another definition; he studied not Abelian integrals themselves but their
periods. Inasmuch we shall consider only the reduction to elliptic integrals, it
does not matter which definition we take.

Descriminative suggestions given  by  O . W atanabe  a t A ich i University of
Education are of use through the preparation of this paper. The author is very
grateful to him.

I. Preliminaries

1. Throughout this paper R denotes an open Riemann surface of genus g ( < oc).
Let OR denote the Kerékjârt&Stoïlow ideal boundary of R. 1 ) Set J={1, g}.
By a canonical homology basis of R mod OR we understand a collection of 1-cycles
A i , B . (j E J) on R which have the following properties:

( i ) Ai  x Bk= 6ik 2 " ) ,  A i X Ak= Bi X Bk=0, j, keJ,
(ii) Ai  n A, = Bi  n Bk = 0 ; A i  n B k = 0 ,  jk ,  while A i  n Bi  consists of a single

point,
(iii) there is a canonical exhaustion { R } ,  of R such that if 0‹ m < n then

{A i , Bi } is a homology basis of R„\R„, modulo the border,4 )  where
J„-- {1, 2,..., g n } and g„ is the genus of R .

W e add an appropriate number of dividing cycles Di (i e I )  to {A i , Bi }i e . ,  to
obtain a canonical homology basis of R .  Then every (finite) 1-cycle y on R  can be
uniquely represented as

y E (m.o . ;  + ni Bi ) +  E piDi (a  f in ite  sum)
jeJ Let

1) Part of the results below can be easily modified to be valid for closed surfaces as well, if we
interpret then 1R =0 .

2) The definition of the intersection number in the present paper follows the classical one and hence
is different from those in Ahlfors-Sario [1] and Shiba [11] etc..

3) a ik
=

1  for j =k and = 0  otherwise.
4) For simplicity, we set R 0 = ø and J 0 =
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with some integers mi , ni  and  pi , where the symbol reads "is homologous to".
We can take Di to  be  a contour of some Rn  and  hence Di n (A ;  u Bi ) =0  for every
(i, D e l x J .  W e may also assume that each of A i  a n d  Bi  i s  a n  analytic Jordan
curve.

2. Let A = A (R ) b e  th e  re al H ilbert space o f  square integrable complex
differentials on R (see [10] and [11]) with the inner product

<A,, /1.2 > =R e A, A .

(W e denote  by the complex conjugate of A and by A* the conjugate differential of
A. See [1],  p . 2 6 6

 and  p .2 7 1 .)  W e  d e n o te  b y  IAJ th e  n o r m  of A EA : 114 =
\ I <A, A>. Let A h = A h (R) be the closed subspace of A  consisting of harmonic differ-
entials on R .  Also we set

3f e C 2 (R ), 3f„ e C •(R ) such
= A2,) (R )=

{

11(,)0 ) A  E A th a t  ;, = d f  and lim ildf — df„11= 0.
n co

} •

Hereafter we shall denote by C  the set of all complex numbers (and its equiva-
lent: Gaussian p lan e ). F o r brevity, we call a  straight line L  passing through the
coordinate origin of C  simply a line. Every line L  is determined by a  CE C" =
C \ {0} so that we shall write as

L= L(C)= {zeC lz= tC , teR } ,

where R  is the real num ber system . W e also use the notation  z 0 mod L  to
represent z e L.

A  closed subspace A n o f  A h  is called a  behavior space on  (R , {Ai , Bi }iE ,)  as-
sociated with a family {Li } 0 j

lines, if

( j ) every 20 e ;1 0 is semiexact, 5 )

(ii) A h =A 0 iA : (direct sum), i2 = —1, and

(iii) for each An e An
5 A

A n - - .= 0  mod L i , j
A j B ,

Note that we consider the family {Li }i e . , to be an ordered set. Thus if it is  a
permutation on J, then {Li }i e . , 0 {Li t ( i ) }i e i  in  general.

Given a  behavior space A n associated with{L} 10 , w e can find a  sequence
gkli< =1, Ck C"  ( 1

 O E ) )  such  tha t (i) arg C i # arg Ck  (mod it), i k  a n d  ( ii)  for
any j e J  there is a (unique) k =k ( j) ,1 5 k _ K  with L i = L(Ck ). The uniquely de-
termined number K  will be called the  index  of A n ; we shall use the notation IC=

ind An .
We recall now that a behavior space ir e is called equivalent to A n if  they define

5) Namely, 54 20 =0 for any dividing cycle d on  R.
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the same boundary behavior (see [1 0 ]) . W e know that j o is equivalent to A 0 if
and only if any one of Ao and A 0  can be obtained from the other through a trans-
form ation (see [1 0 ], Theorem 3). A transformation is, roughly speaking, an
exchange of a finite number of lines for another family. W e set

ess. ind A o =m in {ind jo I iro is equivalent to A 0 },

and call it the essential index of A,.

3. A regular analytic (=holomorphic) differential tit on R  is called an A belian
dif ferential on R .  The integral V/ of t/J is called an A belian integral on R .  Note
that 1// is not supposed to be square integrable on R.

Let A , be  a  behavior space on (R , {A»  13; l i c . 1 )  associated with L= {Li }sio .
Then a A 0 -A belian dif ferential on R  is, by definition, an Abelian differential on
R such that

tp 0  mod L iAi B i

for all sufficiently large j e J (cf. [11]).
We shall say that a A 0 -Abelian differential çfr is  of the f irst k ind if it has A 0-

behavior (see [10], for instance), i.e., if there are 'Le A 0 , .1 e AV2 such that

tfr=i1.. +Ae.

outside some compact set on R .  If a A,,-Abelian differential is semiexact, it is called
of the second k ind; otherwise it is called of the th ird  k in d . Such a classification of
A0 -Abelian differentials obviously generalizes the classical terminology. Note that
a A 0 -Abelian differential of the first kind is necessarily square integrable, while A 0 -
Abelian differentials of the second or third kind are not always square integrable.

Let P be a regular partition of OR (see [1], p. 87 ff.). For every n=1 , 2,...
we set (P)A z  to  b e  the class of all (P) semiexact6 ) holomorphic differential on
R\R„ such that Ça Ç 2 0  m o d  L i , j eJ\ J„ . With natural identification of its

A, JB j

elements (P)A L = (P)A z  has a  real vector space structure. Each equivalence
n=1

class of (P)A L  modulo A 0 -behavior is called a (P)A0-singularity (cf. [10]). In this
paper we shall be mainly concerned with the identity partition I  of aR. For brevity,
we shall omit the prefix (I)A , whenever it is easily seen from the context that we
speak of (I)A0-singularities. F o r  example, if ç1i is known to be a 4 3 -Abelian differ-
ential, then the singularity of tif always means the (I)A 0-singularity.

4. Suppose th a t A , is  a  behavior space on (R, {A i , Bi }1 0 1 )  associated with
e C * .  Then w e can find 2g 4 3 -Abelian differentials 0(A 3 ), 0(Bi )  of

the first kind on R such that

6) This means that 5w =0 for every (P) dividing cycle d on R [which is contained in R \ I L ] .  (As
d

usual, (Q) semiexactness is often refered to simply as semiexactness, Q being the canonical
partition of 8R. Cf. [I]; see also footnote 5).)
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0(4 1)=- 0(Bi ) 0
Ak Bk

C P ( A ) : .
Ak 

(1)(13;) 27ribikICk
Bk 

What is more, 0(4 1) and ck(B; )  are uniquely determined by the sequence g i b o .
For the details, see [1 0 ] .  We refer to these differentials as the elem entary  [A 0 -
Abelian] differentials of the first kind determined by the sequence { i }j e j .

Next let tif be a A 0 -Abelian differential which is not of the first kind. Then 0
is called elementary if

mod L(C; ), j e J.
A, a,

We recall the following facts ([10], [11]):
1 °  For any (I)A 0-singularity a 0 there is a unique elementary A 0 -Abelian differ-

ential 0 , 7 ) which has the singularity a.
2 °  A A 0 -Abelian differential 0  can be uniquely decomposed into the sum of two

A0 -Abelian differentials tko and 0 o.; 0 , is the elementary A 0 -Abelian differential
with the same singularity a as 0 and 0 0 is  a A 0-Abelian differential of the first
kind.
Henceforth we shall call 0 0 (resp. 0„) the regular (resp. s in gu la r) component

of 0.

5. Every behavior space Ao  has a (unique) dual behavior space (with respect
to the real line R ) which we denote by A'0 . For the precise definition, see [10].
In the present paper we only need the following facts: A'0 = {A e A h l  e A,} and it
is a  behavior space on (R , {Ap  .13k 0 )  associated with the family {L' } i e j , where
L'I ={ZECIEL J }. A characteristic property of A'0 is  th a t  </l'o , iA> =0 for all
(A0 , )  e  A o x X0 (cf. [10]).

Let Ao  be a  behavior space and Ao the dual behavior space (with respect to
R ) .  Then for any Xe -Abelian integral 0 '  of the first kind and any A 0 -Abelian
differential 0 the limit

lim Re [ O't//]„_,o02 . 7 r i  aR„

exists and is finite, which we denote by

Res 0'0.

For each (I)A0-singularity a
BR

Res 0 '

BR

is similarly defined by means of a representative o f  a . Indeed, we can easily verify
that the value does not depend on the particular choice of a representative differential

7) The 11P, is of the second kind if and only if a is semiexact.

mod L(Ck ), k  e J.
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of a. T he quantity Res 0'0 (resp. Res 'P'a) is called the residue of 0'0 (resp. O'o-)
BR BR

at the ideal boundary O R . For the details, see [1 1], for example.
The following proposition is a generalization of Riemann's bilinear relation

and is proved by a similar method to the classical case (cf. e.g., Kusunoki [7]).

Proposition 1. Let 0', Ili be as above and a be the singularity  of tp.8) Then

Res 0'0 =Res =
. 

E Im(S Ili — 1 d0' 0).
OR PR /Tc j e J Ai A

We also have (cf. [10], Lemma 1)

Proposition 1'. I f  0  is a A 0 -A belian integral of the first kind, then

Ild0112 — 2  E  im ( 1  d0d T)).
j e J A i B i

The following corollary of Proposition 1 will be often used later.

Corollary. Let A,, be a  behavior space on (R, {A i , 131}i 0 )  associated w ith a
f am ily  {L(Ci )}i o , i E C * ,  and  A'0 b e  the dual behav ior space (w ith respect to R).
Let a  be an (I)A o -singularity and 4i  the elementary A 0 -A belian dif ferential
w ith the s in g u larity  a. Let OA' and P ' the elem entary  A t-A belian integrals
of the f irst k ind determined by the sequence {Ci }i „ .  Then we have

A i OR
0

1
 = — (i  Res 0', j a

J .

tfr c,
B i

 =  —  çi  Res V B  a
aR

For the proof we only need to apply Proposition 1 to OA  (resp. 0 0  and 0„..

6. Let 0 = (w i , w2 )e C* x C *, w here co, w2  a r e  linearly independent over
reals. We can and do always assume that the indices are so arranged that 1m (w2 /w1 )
> 0 .  Denoting by Z  the set of all integers, we obtain a Z-module or a lattice

[col, w z]z= {zeC i 3 m, n eZ, z=mw, +nco 2 }.

In order to save the notations we let the same letter Q denote the module [w 1, 2 _ , Z

as well as the 2-vector (w1 , w2 ). Thus when we refer to a  lattice it is tacitly pre-
supposed that a basis {oh, (1)2 } is fixed so that Im (w2 /co,)>0.

A lineation on R is, by definition, a triple ({A,, s, 0), where {A i , Bi }iE ,
is a canonical homology basis of R mod OR, e is a mapping of J into the set {1, 2}
and Q is a lattice. W e shall say that a behavior space Ao is subordinate to a linea-
tion GA i , e ,  0) if Ao i s  a behavior space on (R, (A i , Bi } i d )  associated with
the family {L(w Ew )l i e ,.9 ) Then clearly ind Ao .. 2.

Given a lattice Q= [a ) , 0)2 ] ,, there exists a torus T=CIS2. In such a situation

8) Here the case a =0 is not excluded.
9) Such a behavior space was called, in [11], an e-allowable behavior space belonging to the lattice Q.
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a canonical homology basis {C,, C 2 } of T  is always taken so that Ck corresponds
to the Wk , k =1 , 2, by means of the natural projection mapping.

A behavior space k  is said to be compatible with a torus T if we can choose
a lattice Q  so that (i) T=C152 (biholomorphically homeomorphic), and (ii) A , is
associated with {L(co, ( ; ) )1iG ,  with some s: J- [l, 21. If  a marking o f T  is pre-
assigned, we furthermore require that the marking coincides with that of C/Q.

L e t  2 = [co ,, co,], be a lattice. T h e n  a singularity a on R  is sa id  to  be  52-
admissible ([11 ] ) if

a a- 0 m o d
Y

for every dividing cycle y which lies outside a sufficiently large compact set on R.
Here, of course, the singularity a is an Mk-singularity with some behavior space
A , which need not to be compatible with the torus CIO, and the period a is com-
puted by means of a representative differential of a — any choice yields 7 the same
period.

7. We shall later make use of the following proposition, which is a version of
a result due to  K. Matsui.

Proposition 2. There always ex ists a behavior space which is subordinate to
a  prescribed lineation. In  o ther w ords: L e t a canonical hom ology  basis tA i ,
111 }1 0,, of R mod OR, a m apping E: J-÷{1,2 }, and a 2-vector S2=(co 1 , co2 )  be given,

( 0 2 EC*, 1m (w2/c0 1)> O. Then we can find a behavior space on (R, tA i ,13; L E.,)
associated with the family IL(cog ( D )} J o .

For the proof let F„=Fh (R ) be  the Hilbert space of square integrable real
harmonic differentials on R and rh s e  its subspace which consists of semiexact differ-
entials. Note that A h=T hOir, (direct sum) and Th={), e Ahl 2 is real}. Set

Jk= f i e  J 1 c(j)=-- k =1, 2;

then J,  n J2 =0  and J, U J  2 =J.  Let f 1 ,  T2 be two subspaces of F  which satisfy
the following conditions:

(1) If TE f ,  and j e  J 1 , th e n  1  t • -• = 1  2 = 0 .
Ai B i

(2) If t e F2 and j e J2, then  1 = T = 0 .
A, Di

(3 )  T h = F ie r t = rt e r2 .

As for the existence of such subspaces, consult "On the R iem ann-Roch theorem on
open R iem ann surfaces" by  the present author (J. Math. Kyoto Univ., Vol. 11
(1971)), pp. 522-524.

10) Cf. K. Matsui's forthcoming paper. The author thanks Prof. Matsui for the generosity of
permitting him to include a modified proof in this paper.



8 Masakazu Shiba

To prove the proposition" ) ) it now suffices to consider the case col = l and
co2 = eit, 0<t<n. We set

A,,=ettri ta3i2

and show that Ac, is a  behavior space subordinate to the given lineation. Because
each element 2„ of Ao is clearly semiexact and satisfies the period condition

0  mod L(o.),( D ), j  e J,
A, a

 only have to demonstrate the orthogonal decomposition Ah= A0 19 iA:.
Let eif0 + 0 2 , eitt i  + 22 be any two elements of Ao , where 0, and T. ,  are elements

of E h, k 1 , 2. Then we have

<e"0 1 + 02 , i(eit-c i + t 2 )*>

= sin t{<01 , TIF> — <02 , tn}=0 ,

so that Ao is orthogonal to  iA : .  Conversely, let 2 e A, satisfy the equation <2, 07,>
=0 for every 20 = eitO + 02 e A0 (Ok E Fk, k =1, 2). On setting

A  2— 1—  .  — Im
2i sin t s i n t

e"X — e-"21  T . . . „. 1 1 1 1  k e
i t

i l )2i sin ts i l t

we have

2=eit0 - F t ;  0, Terh .

W e  se e  th a t 0 = <2, =sin t{<0, 0t> - <T, 0r>} holds f o r  a n y  p a ir  (0,, 02 )e
F 1 x F2 . Since T h = 1 " ,0  = r f e r 2 ,  it follow s that 0 e r i  a n d  t  e F2 . Hence
we have proved the proposition.

II. Results and proofs

8 .  We shall begin with the following

Definition 1. A n Abelian integral W o n  R is called quasi - r e d u c ib le  if  there
are a torus T, a holomorphic integral E on T, and an analytic mapping f of R into T
such that

W =Eof" ) .

Note that we retain the term "reducible" for a m ore restricted situation (see
Definition 2 below), since we can easily prove

11) Namely, 7 is quasi-reducible if and only if a r  can be represented as the pull-back of a holo-
morphic differential dE on a torus T via an analytic mapping f : Air *(dE).
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Theorem 1. Let {A i , Bi ; D i }i e j j o  be  an arbitrarily  f ixed canonical hom ology
basis of  R . T hen an A belian integral W on R is quasi-reducible if  and only  if  we
can f ind a lattice S2= [col , 0)2 ] ,  and integers mi k , ni k , P  ( j ef, i e I ; k=1, 2) such
that

dW +mi2co2
Ai

dW=n i i coi  +n i 2 co2Di

dVI =Pitcot +Pi2 0 2
D i

j e f ,  i e I .

If  this is the case, W is quasi-reducible to a holomorphic integral on the torus

The proof is similar to that of the compact case (see Appell-Goursat [2] and
Krazer [6]):

First of all, let W be a quasi-reducible Abelian integral on R and E be an holo-
morphic integral on a torus T, to which W is quasi-reduced by an analytic mapping
f :  1?-4 T. T a k in g  a canonical homology basis {C 1 , C,} of T, we set

(1)k= dE, k =1, 2.
Ck

Since we h a v e  dT= dE for every cycle y on R, we can find integers
Y 1 0 )

Pik (j E J, i e 1; k =1 , 2) such that

1.A.1 dV" =mi i coi + mi 2 co2

(* ) Sii i

 dW =ni i coi +n i 2 co2 j E J ,  i e I .

LdY I  = Paw l+ Pt2(0 2

Suppose, conversely, we are given a lattice 52= [co„ co2 ] ,  and an Abelian inte-
g ra l W which satisfy equations (*). Denoting by T  the torus C/S2 and by  p  the
natural projection mapping of C onto T(a holomorphic universal covering mapping),
we can easily verify that f= poW is a well-defined analytic mapping of R into T. The
inverse p  p is locally single-valued and dp-

1 is  a holomorphic differential on T,
which we will denote by d E . Then we can write as d71 =f*(dE) so that W is quasi-
reducible.

If  aRoo actually, a  famous theorem due to Behnke and Stein (see Behnke-
Sommer [4 ], Satz 10, S. 451) together with the above Theorem 1 implies that there
are  a  plenty of quasi-reducible Abelian integrals on  R .  W e also notice that the
existence of a quasi-reducible Abelian integral on an open Riemann surface induces,
in contrast to the classical case, no special characteristic property of the surface.

M flo  n•k



10 Masakazu Shiba

It will still make sense to ask whether a  given '1 0 -Abelian integral is quasi-
reducible o r  n o t .  Concerning this problem, we have the  following proposition,
which can be easily deduced from Theorem 1 and Corollary to Proposition I.

Proposition 3 .  L e t A„ be a  behavior space on  (R, BiliEj) associated with
a  fam ily  {L(Ci )}i d , Ci eC*, and A;, be the dual behavior space. L e t VA , and V B .,
be the elementary A-Abelian integrals of the first kind determined by the sequence

F in a lly , let Q  b e  a n y  la ttice . T h e n  a A 0-Abe lian  in tegra l P =  P 0 + W0.
is quasi-reducible to a holomorphic integral on the torus C/S2 if and  only i f

(i) a  is 0-admissible, and

(ii) dP
°

Res O c r
(112

I s (/)'B  o-

Bj BR

mod f2, j e J.

9. O ur problem is now to characterize, in connection with behavior spaces,
an Abelian integral which is the pull-back of a holomorphic integral on a torus via
an analytic mapping of more restricted nature. The restriction which we shall im-
pose on the mapping is described in terms of the homological property of the map-
ping.

T o  be  more precise, le t R  be a s  before with a  fixed canonical basis E(R)=
{A i , mod aR . Let T  be a  torus and ( T ) =  { C 1 , C 2 } a  canonical homology
basis o f  T. A continuous mapping f : is called o f  finite (resp. null) type
relative to (E(R), E(T)) if

E FT {(f(A i ) x C„)2 +(f(B i )x CO 2 1
jeJ v=1,2

is finite (resp. is equal to zero). Cf. [10].
Using these terms, we have now another

Definition 2. I f ,  i n  Definition 1, the mapping f  can be chosen so as to be of
finite (resp. null) type relative to some pair of canonical bases (E(R), E(T)), then P
is called reducible (resp. strong ly  reducib le ). If it is necessary to refer to the basis
E(R) used, we say that P is reducible (resp. strongly reducible) with respect to E(R).

From the definitions we have immediately
(a) A  reducible Abelian integral is quasi-reducible.
( a ')  In case g  <cc , the converse of (a) is also true.
(b) A  strongly reducible Abelian integral is reducible.

On the analogy of Theorem I we can prove the following theorem (cf. [2], [3],
[5], [6] and [12]).

Theorem 1'. L e t  {A i , Bi ; b e  a  canonica l hom ology basis o f  R.
Then a n  A be lian  in tegra l P  on R  is reducible w ith respect to  {A1 , Bi }i e ,  if a n d
on ly  i f  there exist integers mi k , ni k  and

 P i k
 (j eJ, i E 1; k= 1, 2) a n d  two complex
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numbers v i , v , such that

dP = mi , v, + m j 2  v2

j e J,
d P =  vl +n 1 2 v2

=- p„v, +p i 2 v2
D i

(ii) E (m3, +n3 i )(m32 + n32 ) < co,
jeJ

(iii) y1 , v2 0 , Im (v,/v, ) 00.

10. T he following proposition is  a n  easy consequence o f  Theorem I' a n d
Proposition 2 (cf. the proof of Proposition 6).

Proposition 4. If  V I is a [nonconstant] A belian integral on R  which is re-
ducible with respect to a basis {A i , mod aR, then there exists a behavior space
Ao on (R, {A i , Bi }i a ) such that P is /1 0 -A belian.

Thus every reducible Abelian integral on R is A„-Abelian with a  suitably chosen
behavior space A„ and hence we can speak of the singularity of a reducible Abelian
integral. Also, it makes sense to characterize the possible singularities of reducible
Abelian integrals. We shall discuss this problem later; see Theorems 2, 3 and 4
below.

We also have

Proposition 5. L et T  be a  torus and A o a  behavior space on  (R, {A i , B i }i o )
compatible w ith T. Then a A 0 -A belian integral on R  which is quasi-reducible to
a holomorphic integral on T  is reducible.

P ro o f . Suppose that is  a  Ad -Abelian integral and is quasi-reducible to a
holomorphic integral o n  T. Since A o is  compatible with T , we can find a  lattice
52= Ea), co21 , and a mapping e: J—>{1, 2} such that

(i) T=C152, and

(ii) A o is associated with the family IL(coe t n )l i c j .

If we set e*( D= 3 —e( j), j e J, e* is also a mapping of J into the set {1, 2}, and s*(j)
e(j) for all j e J. By Theorem 1 we have

1 d  V' = ini g u p g t o + in i e c n coe t oAi

dW =-- ni c ( i ) coo D + n i e c n coe ( J ) J
 e J, i e

Hi

(111 =Pilwi+ 1)&1)2
D i
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with some integers mi k , p ik  (j e J, i e I ; k=1, 2). Because W is  a A 0 -Abelian
integral and Im (co2 /co1 )> 0, we see that

m J e w = n J e w = 0
except for a finite number of j. It now follows from Theorem l ' that W is reducible.

q. e. d.

1 1 .  In connection with Proposition 4 we shall prove the following

Proposition 6. L et W be a strongly  reducible non-constant A belian integral
on R . T hen there is a behavior space Ao  (on R) such that W is a A 0 -A belian integral
which is not of the first kind.

P ro o f . Since W is strongly reducible, there are a  to rus T, a  holomorphic
integral E on T, and an analytic mapping f :  R-4T which have the following proper-
ties:

(i) dW =f*(dE),
(ii) there are canonical homology bases {A. i , Bi }j e j  (mod OR) and {C,, C,} on
R and T, respectively, such that f is of null type relative to ({,4) , {C,, C 2 }).

Set oh= dE, k= 1, 2, and Q= [co,, ( 0 2 ] .
 W e  have then (cf. the proof of Theo-

ck

Ai

 dIf =m i i col +m i 2 w2

 j e J ,
dT=n i vcoi n i 2 w2

B ;

ni l,  are appropriate integers satisfying

E (m3
1
 + n3 i )(m .12 + n32 )=0.

j e J

If we set

{
if Mj2= nj2= °

6(i) =

2 otherwise,

then s is a well-defined mapping of J into the set { 1 , 2 ) . Proposition 2 ensures that
there is a behavior space Ao  which is subordinate to the lineation ({Ap  B i l i c i , s, C2).
The integral W is obviously A 0 -Abelian. (The discussion so far constitutes, with a
few necessary modifications, a proof of Proposition 4.)

If W were of the first kind, W would be constant; for then by Proposition I '
we would have

Ildr1 2 =  — 2 E 1 m ( d W  c ff i)
j e J A i B i

= — 2 Im (w 1 ã 2 )2 ) E
j e J

rem 1)

w h e re  J

a contradiction ,q .  e .  d.
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We can also prove

Proposition 7 .  L et Ao  be  a behavior space on (R, {A i , Bi }; 0 ). Then there is
no non-constant A 0 -A belian integral of  the first kind which is strongly reducible
with respect to the basis {A i , Bi }i E j .

The proof is omitted (cf. [ 1 1 ] ) .  It should be noted that Ao  may be quite arbi-
trary; in particular, the (essential) index of Ao  is not necessarily less than or equal
to two.

12. In the remaining of the paper we shall give some conditions for an Abelian
integral on R to be reducible. We shall first prove a  refinement of Proposition 4.

Theorem 2. Suppose that W is a reducible A belian integral on R .  Then we
can f ind a  lineation ({A i , Bi l i e j , 6, (col , w 2 ))2 ) )  which has the following properties:
For any behavior space Ao  which is subordinate to the lineation
(A) W is a A 0 -A belian integral.
(B) The singularity  o-  of  dT is [co i , co2 ],-admissible.

dWo --7.-.cot ( i )  Res 0' isrA,
mod [co l , w2] , j e J.

d T  c o g ( i )  Res O'B i o-

Bj O R -

Here, VA ,  and OB' are the elementary A'0 -Abelian integrals of the first kind deter-
mined by the sequence {rog i ) }i E j , A'0 being the dual behavior space of Ao .

Pro o f . Since W is reducible, there are a torus T, a  holomorphic integral E on
T, and an  analytic mapping f: R -4 T  of finite type such that W =E 0f. Let ({A i ,

{C1 , C 2 }) be a pair of canonical homology bases of R (mod OR) and T relative
to which f  is of finite ty p e .  Namely, there is a finite subset J o  of J such that

jeJ\.10,
f (13 i ) n i  C v i

where mi , n;  are integers and y  is 1 or 2 depending on j. Setting

vi f o r  j E J \ J o

1 f o r  j e Jo

and

cok = dE, k=1, 2 ,
Ck

we obtain a mapping s of J into {1, 2} and a lattice f2= [oh, co 1-  2 .,Z •  We claim that
({Ai , 131 }i 0 , f2) is a lineation for which we are looking.

Take an arbitrary behavior space A o  which is subordinate to ({4 1, Bi }j o j , 6, 0).

OR

( C )  The regular component dT„ of dT satisfies

Ai 

E(D={
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Such a  behavior space A , surely exists (Proposition 2). Then W is  a A 0 -Abelian
integral, for A „ is associated with the family {L(coo D )} i e j  a n d  th e  differential dP
satisfies

d P=
f ( A . )

dE=Inicoe(j)-_—..0
mod L(0 ( i ) ) ,  j e J \  J „.

13; f ( B i )  
clE=n/o, ( ; ) =- 0

Since W is reducible and hence quasi-reducible to E which is a  holomorphic integral
on the torus T=CIQ, we have by Proposition 3

d (Doi) Res
Ai OR

d W  coo n  Res 0',3

B i OR

mod Q, j e J .

(Compare the proof o f  Theorem I in  Shiba [Il ]. ) T he  remaining assertion (B)
is obvious by Theorem 1'. q. e. d.

13 . The following theorem gives a sort of converse of Theorem 2.

Theorem 3 .  Let V' be an A belian integral on R .  Suppose there exist a linea-
tion and a behavior space A 0 subordinate to the lineation such that (A), (B) and
(C) are fulf illed. Then W  is reducible.

W e shall only give a sketch of the p roof. In  th e  first place, Proposition 3
implies that W is quasi-reducible to a holomorphic integral on the torus CIS2. Since
A, is clearly compatible with C /0  and V' is A 0 -Abelian (condition (A)), we see by
Proposition 5 that W is reducible.

For convenience' sake we reformulate Theorems 2 and 3 in the following

Corollary. An A belian integral W on R  is reducible if and only  if  there
ex ist a  lineation ({ ,4 1 , B i l i e ,, a, Q ) and a  behav ior space A , subordinate to the
lineation such that (A), (B) and (C) are satisfied.

Note tha t the use of Proposition 5 in  the  proof o f above Theorem 3 is dis-
pensab le . W e then  observe that Theorem 3  together with Proposition 3  gives
another proof of Proposition 5. To see this, let T and A, be the same as in Propo-
sition 5. Let (14  B i l i e i ,  a ,  0) be a lineation, 0.--(co 1 , w2 ), such that

(i) T=CI52, and

(ii) A 0 is subordinate to the lineation.

Let W be a A 0 -Abelian integral which is quasi-reducible to a  holomorphic integral
on T  and a be the singularity of d P .  Decompose dW into its regular and singular
components: dP=dW o d-dW a . Then Proposition 3 implies that a  is 0-admissible
and that
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coc c i )  Res
A, OR

mod Q, j E J,
d T o (D o i )  Res VB.Cr

B, OR

CD'A i  and (1)'H i being the elementary A,-Abelian integrals of the first kind determined
by the sequence {Fi e w }i e j . Thus conditions (B) and (C) are also fulfilled. We can
now use Theorem 3 to conclude that (11 is reducible. S o  w e  have proved Propo-
sition 5.

1 4 .  We will call a n  (0/1 0-singularity a reducible if there is a  reducible A 0-
Abelian integral with the singularity a. Then we can prove

Theorem  4. Let A o  be a behavior space subordinate to the lineation ({,41 , B i l i e t ,
e, Q), 52=(co 1 , w 2 ). T h e n  an (f)A 0 -singularity  a  is reducible if  and only  if

(D) a is 0-admissible;
(E) There exists a A 0-A belian differential of the f irst k ind such that

we ( i )  Res (P'AiS' A, OR
mod Q, je.1.

SB —  0 ) , )  R e S  B  J CI
• OR

P ro o f . Assume, first of all, (D) and (E ) .  (We could make use of the reasoning
used in the proof of Theorem 3, but here we apply Abel's theorem (see [11]) in order
to point out the explicit interrelation of these two topics.) Denote, as usual, by ifro.
the (unique) elementary A0 -Abelian differential with the singularity a (cf. section 4,
1°). Let T be the torus C/S2 and {C 1 , C 2 } be its canonical homology basis which is
induced by the lattice Q (see section 6). Let Eo  b e  th e  normalized holomorphic
integral on  T  with respect to  {C 1 , C 2 },  i.e., suppose 5 d E o = 1 .  Then 1  dE 0  =

C2

co2 /w1 . Setting E= (DX ° , we know by Theorem 1 in  [11] that conditions (D) and
(E) imply the existence of an analytic mapping f : R--+T such that

(i) f  is of finite type relative to GA »  B i l i e t , {C1 , C,} ), and

(ii) f  *(dE)- is of the first kind.

Therefore th e  integral o f  f*(dE)=(f*(dE)-11/ 0 )-Ft1/, i s  a  reducible A 0-Abelian
integral with the singularity a .  Hence a is reducible. The converse follows easily
from the same Theorem 1 in [11], so that we have completed the proof.

Let A o  be  an arbitrary behavior space on R .  Then an (I)A 0 -singularity a  will
be called quasi-reducible if  there  is a  quasi-reducible A 0-Abelian integral o n  R
which has the singularity a .  The following proposition is an immediate consequence
of Proposition 3. Compare the preceding theorem, too.

Proposition 8. Let A o  b e  a  behavior space on (R, {A j , B } 0 ) associated with
the fam ily  { L (( i )L E,. T h e n  an (I) 4 0 -singularity  a  is quasi-reducible if  and only
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if  there are  a lattice 0  and a A 0 -A belian dif ferential (P of  the f irst k ind such that
a  is 0-adm issible and

= • Res (1)' o-— A,5AJ O R

C i s  0 /B J O'
B i OR

mod 0 , j e f .

Here, of course, VA J and O'B i  stand for the elementary A'o -integrals of the f irst k ind
determined by the sequence {Ci } J o .

15. In  this section we shall be concerned with Abelian integrals of the first
k in d .  Notice that the term "of the first kind" is meaningless unless we fix a  be-
havior space on R.

First we shall prove the following generalization o f Weierstrass's theorem (see
[5], [12]; cf. also [2], [3] and [6]).

Theorem 5 . L et Ao  b e  a  behavior space on (R, {A i , Bi )j a ) and  0  be a  non-
constant A 0 -A belian integral of  the f irst k ind. T hen 0  is reducible w ith respect
to {A i , B i }k ,  if  and only  if  there are  vk eC; m i k , ?li k e Z (k= 1, 2; j e J) such that

A i 
d0 M j2V2

j e f ,

B i  
d0=n i i v1 +n i 2 v2

E (m3, +n31)(m32 + n32 )< oo
J e J

Pro o f . The only if  p a r t is proved in  Theorem 1 ', where we have actually
shown that the numbers y l , y 2  are  subject to a more restricted condition (see (iii) in
Theorem 1'). To prove the if part it suffices to verify that y l , y2  satisfy condition
(iii) in  T heo rem  F . But this is a simple consequence of Proposition F .  In fact,
we have

0<lic/0112= —2 E im dP 5d
j e J A i B i

= — 2 Im (v i  02 ) E (n f 1 nj 2 —mi 2 ni 1 ) ,
j e J

so that neither y1 nor y2  vanishes and Im ( 4 2 )0 O. q. e. d.

Now we recall that two behavior spaces on R are said to be equivalent if they
define the same boundary behavior (see [10 ]). We have then

Theorem 6. L et Ao  b e  a  behavior space on (R, { A , Bi }i "). Suppose that,
among the A 0 -A belian integrals of the first kind, there is a reducible 0 with respect
to {A i , Bi } e j  such  that # i j  E J1 d0= d0 =01< oo. Then A °  is  equivalnetA, e,
to a behavior space 2- 0 whose index is at m ost tw o. (Hence 0 is a 2 0-Abelian inte-
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gral of the f irst k ind. A lso, ess. ind A o  2 .)

P ro o f . Evidently, it suffices to consider the case g=oo; so we assume that R
is of infinite genus. Let {L i } i E i  b e  the family of lines with which A o  is associated.
Then we can find a positive integer j i  such that

d O  0 mod L i  , j > j i ,
A, B,

for 0 is a A 0-Abelian integral. On the other hand, since 0 is reducible with respect
to {A i , Bi }i a , we can find mi k , ni k EZ  and v1 , v, EC*, Im (v2 /vi )> 0 (cf. Theorems
1' and 5) such that

A, 
d0=m iiv ,+ m i 2 v2

 j e J
d0= n i i vi + Bi2V2

B i

and

E (n31+ n1 i )(m .12 + n3 2 ) < co.
jeJ

Hence there exists a positive integer j 2 such that if j> j 2  then either mi , =n i l  =0 or
mi2=ni2= 0 .

For j e J  we set s(j)= 1 if mi 2 = pi."  =0 and e(j)= 2 otherw ise. If we set further-
more Lt = L(v k), k = 1, 2, we have

dcP 0 mod L i ) , j> j 2 .A, B,

By assumption, if j  is sufficiently large, say, j > j 3 , then d01+ d010 0;
siand hence we see

LJ=L* •et0

j o  being the maximum of j„ j 2  and j 3 .
Let J* = {1, 2,..., j o } and set

for

{  Li i f  j e J \ J *
L i =

L :( i ) i f  j e  J*.

In [10] we proved that i o ={.1.eA h l). has A0 -behavior and ,I. A  0 mod L i ,_ A, B,
j e J}  is also a behavior space on (R, {A i , Bi } E J ) and that A o  is equivalent to the A o .
The zro thus obtained is subordinate to the lineation ({Ai , B i l E  ( V  y 2 )) and so, .  1 9  2 , ,
ind;fo < 2 .  Finally, by Proposition 8 in [10], the integral 0 may well be regarded
as a A,,-Abelian integral of the first kind, q. e. d.

Corollary. L et R  be an open R iem ann surface of  in f in ite  genus. I f  A o  is  a
behav ior space on (R, {Ai , Bi }i d )  such that ess.ind Ao >2, then any A 0-A belian
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integral of  the f irst k ind w hich is reducible w ith respect to {A »  13; }; E ,  is single-
valued on a subregion of  infinite genus.
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