
J. M ath . Kyoto U niv . (JMKYAZ)
22-1 (1982) 1-40

Continuous time multi-allelic stepping stone
models in population genetics

By

Tokuzo SHIGA

(Communicated by Prof. S . W atanabe, O ct. 24, 1980)

§  1 .  Introduction

T h e  stepping stone model was first proposed by M. Kimura in  1953 for the
purpose of investigation of local differentiation in  geographically structured po-
pulation [ 6 ] .  Since then, many biologists have extensively studied this model.
They have mainly discussed the genetic correlation of gene frequencies between
colonies, the probability o f  identity and the rate of convergence to the stationary
state. We refer to Sawyer [1 4 ]  fo r mathematical treatment. B ut most studies
have been m ade for the discrete time m odel. O n  the  other hand th e  continuous
time model was defined a s  a n  infinite dimensional diffusion process, which is
more tractable for analysis of stationary states and limiting behaviors [15] [16].

From a  viewpoint o f probability theory we a re  interested in  the continuous
time model since it provides a  concrete a n d  analyzable example o f infinite
dimesional diffusion processes. Also we can regard the continuous time stepping
stone model as a  diffusion-type model i n  t h e  theory o f  infinitely interacting
systems.

L et us consider a  multi-allelic locus with A 1 , ••• , A d  w here  d  is  a positive
integer L e t S  be a  countable s e t .  Each element k  o f  S  corresponds to a
subpopulation, which is called a  colony. Denote by (x i, ••• , x)ri, )  t h e  gene fre-
quencies of the A 1 , ••• , A d  at colony k, that is x O,••• , . 4 +  • • •  + 4 = 1 .
Usually we suppose that the  change of gene frequencies is caused by random
sampling drift, mutation, selection and m igration among colonies.

L et X d =  {X =  {X Pk} ; X Pk ( ) ,  x l - F • • • + 4 = 1  fo r  a ll k ,  which is equipped
with th e  product topology. We consider a  time evolution o f  gene frequencies
as a diffusion process on X .

Let
d d d d

(1.1) A d = - E  E  E  x r (5 „— x l)D i , ,D d , g +  E E ( E 2„x7
ieS p=1 1=1 ieS 9=1 1=1

d
- Fxf(s p — sq x7)-F qp1 x7j)D1 ,9

q=1 iEs

a where 131 , 9 =
'

 {2 , p } 1 „ d  i s  a  d x  d -m atrix  satisfying 2 „ 0  ( q # p )  anda x  
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E  2„= 0  fo r all {sp}1, „ d  is  a  rea l d-vector, and tes is  a  matrix
p=1
o n  S x S  satisfying q 0 (j i)  a n d  E  q1 ,= 0  fo r a ll i E S .

JES

Genetically 12„1, {sp } a n d  {q3 ,} stand  fo r the  intensities of mutation, selec-
tion and m igration respectively.

Let C (X )  be th e  se t o f  all continuous functions o n  X d  w hich is a  Banach
space w ith th e  uniform norm , and let CY-(Xd )  be  th e  s e t  o f  a ll  s u c h  fEC(X d)
th a t d ep en d  on ly  o n  finitely many coordinates and  a re  twice continuously dif-
ferentiable.

W e assume

(1.2) sup I qii I < + o e
iEs

T hen it w ill be  show n in  §  2  th a t  th e re  e x is ts  a  unique strongly continuous
contraction semi-group {p }  on C (X )  such that

(1.3) T l f 0  fo r any fEC(X d ) w ith  f and

and

(1.4) Tilf— f qT(111.dfds fo r a n y  f E 0 (X a) .

Furtherm ore {P h  defines a diffusion process (Q, g , P., t}  ; x(0) on X d  which
w e ca ll a continuous tim e stepping stone m odel w ith d  alleles.

L et .g)(X e ) b e  th e  se t o f  all probability m easures o n  X d  equipped w ith the
topology o f  w e a k  co n v erg en ce . S ince  X d  is  compact E'(X d )  also is compact.
D enote by { T N  the  adjoint semi-group on  2 (X d )  induced by {7-11 and denote
b y  S d  th e  se t o f a ll s ta tio n a ry  s ta te s , i. e . S d =  tetE.g)(Xd); T g*,a=te f o r  all
t_>_01. T h e n  s d  i s  a  non-empty compact and convex s e t .  (,s' ). -d ,e x t  denotes the
se t  o f  a ll extremal elements of S .

In  th e  previous paper [15 ] w e stud ied  diallelic m o d e ls . I n  particular w e
obtained a  complete description of extremal sta tionary  sta tes and  some ergodic
th eo rem s. In  th e  present paper we shall be concerned with multi-allelic models.

In  § 2 w e shall construct a  class o f  infinite dimensional diffusion processes
including infinite-allelic stepping stone m odels. It should be noted that Ethier
also constructed such processes by making use  o f the  semi-group method [1].

In  § 3 results o n  diallelic m odels w ill be  sum m arized  f o r  t h e  subsequent
n e e d .  I n  § 4  w e  sh a ll p re se n t a  complete description of extremal stationary
sta tes fo r multi-allelic models with mutation.

In  th e  last tw o  sections w e shall study th e  scaling lim it of the fluctuation
processes of stepping stone m odels. L e t (Q , g, P, { 9 }  ; x(0= { (4(t), ••• , -4(0)} )
be a  m ulti-allelic stepping stone m odel w ithout m utation and se lection . L e t S
= Z r: t h e  r-dimensional in te g e r  la t t ic e  sp a c e . T h e n  x ( t)  is  re g a rd e d  a s  a
vector-valued measure process on  R r such as

(1.5) E  (xl(t)—Erx1(01, ••• , xg(t)— E[4(0])•a i k )

k E Z ,
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where 3( x )  stands for the point-m ass a t  x R .
 I n  § 5 it w ill b e  show n  that

taking a  scaling limit

(1.6) 2 -  (r + 2 )/ 2  E  ( x 1 ( 2 2. , _t) EL4(2 2 01, ••• , 4 (2 2 0—  E [4 (2 2 0 ]). a{ k I Al
k E Z r

d
it  converges as 2 + 0 0  to a  0 S'(Rr)-valued Ornstein-Uhlenbeck process N t=
(NI, ••• , N g) defined by

(1.7) dArl=
0=1 

a c p dW7+ LNrdt p = 1 ,  • • •  ,  d ,

d
with a  suitably chosen initial condition INT0 , where (14/1, • •• , Wg) i s  a  0 St(Rr)-
valued standard  W iener process, { a q p }  p “  is  a  constan t d X d-matrix an d  L
is  an  elliptic differential operator determined by  { q „ } .  In  § 6 we shall present
some variations of scaling limits.

F or such problem o f scaling limits we refer to Holley-Stroock [4], [5], who
discussed on infinitely many branching Brownian particles and  various kinds of
infinitely ineracting system s. W e also  refer to  a  recent work by H . Tanaka
[19], who presented a  rigorous proof o n  a  scaling limit of the  fluctuation  pro-
cess  f o r  Kac's one-dimensional model o f  Maxwellian molecules i n  statistical
mechanics.

§ 2. Construction o f  stepping stone models

In  th is section w e shall construct infin ite-allelic m odels. L e t  X..= Ix=
-

{xP} ; xP, 0  a n d  E xPi _<1 for each S I, and  le t X.0 , --- lx ) (- 0.s;  E x 2i=1
P=1 p=1

fo r each iŒS}, which a re  equipped with t h e  topology o f  t h e  component-wise
convergence. Then X . is  com pact but X . is no t so.

L e t u s consider th e  following differential operator on  X„„

(2.1) E  E p D 1 ,0 +  E  E  bPi (x )D i , p
i e S  p=1 0=1 iES p=1

a where D, p"
-=a n d  C ( X )  denotes the set of all C2 -functions on X. depend-

ing only on finitely many coordinates.
In  order to construct a  A - -diffusion process o n  X . w e shall consider a

martingale problem. Let Q = C ([0 , 00), X—) be the set of all X.-valued continuous
functions defined o n  [0, Do). F o r each we define x ( t ) ;  Q  X . by x ( t  co)
=w (t), and  le t 9' (g t )  be th e  a-field generated by fx(s : w ); s 01 ( { x (s  co);
s t}).

Let x m X .  A  probability measure P  on  (Q, .9-') is called a solution of the
(Xos, Aos, x)-martingale problem, if

(2.2) P [x (0 )=  x ]= 1  ,  and

(2.3) (f (x (t ) ) j o A "f(x (s ))d s , {g ,} ) is  a  P-martingale fo r any f  C;(X,o)
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Condition [Al
0 0

(2.4) sup sup E  I b (x ) 1 < + 00 ,
iE S  xE X , p = 1

(2.5) b ( x ) 0 i f  xE ;Y- .. a n d  xPi -= -0  (iE S ,

(2.6) there exist positive constants satisfying

I E bPi(x) I 11— E  x P il f o r any x E X .  and iE S  .
p=1 p=1

CO

L e t  J= {a= {aPi } ; aPi E Z + ,  la1=-E a P i <  +  0 0 } , a n d  f o r  each  crE J we
iES p=1

denote f a (x)-=-  H  H
tiE S  p=1

Condition [B]

bP,(x)= E bPi(P)fp(x) (bPi(i3)ER1), which satisfy
peJ

(2.7) sup sup E I bil(P) G +00 ,
i e S  p a l  ge.1

and there exists a positive integer K  such that

(2.8) bP,(19)=0 f o r any ISE J  with I /31 . x.

Then, we obtain th e  following.

Theorem 2 .1 .  Let xEXc o . Under the conditions [A l and [B ]  the (X ., A - , x)-
martingale problem has a unique solution.

A s to existence of a solution it suffices to sh o w  th at th ere  ex ists  a  solu-
tion o f th e  following stochastic differential equation,

(2.9) dx1),(t)-= E a dx ,(t))d B5i (t)± bP,(x(t))dt
q=1

x ( 0 ) =  x , ,

with a  subsidiary condition
0 0

(2.10) x (t)_>_0  a n d  E x (t )= 1  (iE S ,
p=1

where { B ( t ) }  i , s  p , 1 i s  a n  independent system o f  one-dimensional standard
Brownian m o tio n s  an d  {a p ,(x j ) }  a re  continuous functions defined o n  {(4,
xPi ) ; ••• , ••• -I-x 1} satisfying

pAq
(2.11) E a , ( x i )a, r (x i ).= xPi (3 pg - (1), q - 1).

r=1

However by th e  same argum ent as Theorem 3.1 o f  [1 6 ]  we can show that
(2.9) has a solution satisfying

(2.12) P [x ( t )G X . .  fo r all t__0]-=1
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So, it is sufficient to see

(2.13) P [x ( t ) E X . fo r all t 0 ]= 1 .
-

For th is, le t z i (t) ,  E  x P,(t). It follow s from  (2.6) and  (2.9) that
9=1

(2.14) E[1—  (0] i Ço E[1— z i (s)]d s (i S )  .

A lso, since it is easy  to  check that z ( t )  is continuous in  t P- a. e., we obtain

(2.15) P[z i(t)=1 fo r  a ll t_01=1

F o r th e  proof o f  uniqueness we modify th e  Feynman-Kac theorem.

Lemma 2 .1 .  Let I be a countable set, Q={ q i i } o , i ,  be a  m atrix  on  I x I
satisfying q ..0 ( i#  j)  and E q i i = 0  f o r  any iE I, h (i)  be a function on I, and

j e '

21(t, i) be a function defined on [0 , co )X /. Suppose that
(i) u(t, i), Qu(t, i)= E  qu u(t, j )  and h(i)u(t, i) are bounded on [0, CO)X I,

j e I

(ii) ) the minimal Markov chain on I generated by Q  is conservative which
is denoted by (Q , a, P i ; e t )0 E 1 ,

(iii) there exists a positive number t o such that

(2.16) E i[exp(rh+ (e .)du)1< +09 fo r  any i c I ,  and

(iv) u(t, i) is C1-function o f t E[0, co) fo r  each iE I  and satisfies the follow-
ing equation,

(2.17)
d  

 u(t, i)-= Qu(t, h(i)u(t, i) , iE  I.dt

Then fo r any 1::r t - t0 and any t1 . 0

(2.18) u(t+ti, i)=Ei[u(ti, ei)ex P(:h(eu)du)1

holds fo r  any i E I .  Thus, {u(t, i)}  is uniquely determined f o r  given Q, h, and
u(0, •).

P ro o f. It su ffices to  sh o w  (2.18) f o r  t i = 0 .  S e ttin g  u i(i)= .ro e - a tu(t, i)dt

fo r each 2>0, it follow s from  (2.17) that

(2.19) 2u2(i)— u(0, i)= E  q01 tt2(j)+h(i)u 2 (i), iE /

L e t {/ n } be  a  sequence o f  finite subsets o f  I  satisfying / „ / 7  and set

h ( i)= h(i)
if jE ,

(2.20) 1 0 otherwise.
T hen  fo r any  2>0

1) h+ (i) = max{h (i) , O}.
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(2.21) (2—Q— h.)112(i)=u(0,

w here wil(i)=-(h—h.)(i)u A(i). Since u(0, i ),  h (i) and w ( i )  a re  bounded on  /, it
holds by th e  Feynman-Kac theorem (cf. Lemma 2.3 in [171) that for any 2> II

(2.22) u ) (i)=--5:e - 2 tE,[(u(0, et)+24(et)) exp (1:h n(en)d u)] dt

e t ) exp 0:hti(en)duAdt

h ro e" 2 t0:E i [w n (t— s, e)ex p  (:12 n (eO du)ids)dt,

w here wn(t, i)=-(h—h.)(i)u(t, i). Accordingly we have by th e  uniqueness of the
Laplace transformation

(2.23) u(t, i)=Ei[u(Ot et) exp (5:hit(eu)du)]

es)exp O s
o hn(en)duAds

o

f o r  a n y  iE /  a n d  t > 0 .  N o tin g  th a t  {w„(t, i)} a r e  uniform ly bounded and
Jim wi t (t, i)= 0 for each (t, i ) [ 0 ,  00)x/, it follows from th e  assumption (iii) and
n—woo

Lebesgue's convergence theorem that

(2.24) Ei[wn(t—s, e s)exp 0 0 11,(e)d7OS=0
0

fo r any  t - to  a n d  iE / .  Hence, we get

(2.25) u(t, i)=E t [u(0, e t )exp (:h (e u )du)] fo r a n y  t to a n d  iE/

Therefore th e  proof o f  Lemma 2.1 is completed.

F or each a e J le t  u s  denote by a a  copy o f  a  w ith  Id  =  la  I , a n d  define
(7 6 = a . L e t  j=  {d  ; a E J }  a n d  J * = jU J . F or dE  j we define f-,-,(x)=— f a (x).
If ((j, q )* (i, p)) and  al,' = 1 w e denote a  b y  ef.

L et c (0<c<1) be fixed and  se t 0a(x)=c i ala (x ) fo r  e ach  aE J * . Then w e
can easily see th e  following.

Lemma 2.2.
( i ) A000,r(x)= gip(x)-1-h(a)0,(x) fo r  each aEj*,

where fo r  aEJ

2 ) II h suP h •



Q a, p-=
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' caPi (a q -1 ) ,  i f  IS= a—sq ,

aPi ci-inbPi ÷(r) , i f  p=a—,Pi +r ,
a pi c i-,,, w ( r ) , i f  p=a—et-Fr ,

— E car(aq-1)— E E ligi(r)1, if /3=a
iES p=1 i=S p=1

0 ,  otherwise,

7

h(a)=— E  E  aPt V  E c 1, 1 aq(aPt —1)iEs p=1 p=1

-

+ E E I bil(r)1,
ieS  p=1  r E J

and for aEj Qw,p=Q a ,-Ti and h(J)=h(a).
( i i )  There exists a positive constant C satisfying h(a)._- __Clal for any aGJ*.

Let (Q, g ,  Pa ; a t , t<C) be the minimal Markov chain on  J*  generated by
Q= {Qa,p}, where i s  the  explosion  tim e. T hen , it is not hard to see that
p c,[c_=4-001=1 holds for any a e j * .  Furthermore we have

Lemma 2 .3 .  There exists a positive number t o such that

(2.26)

Proof.

t
Ec,[exp6

o 
h+(a.)d +  + 0 9 fo r  any aE J*.0

Let us introduce a  conservative Markov chain (S2, g ,  P.; NO on
N= {1,

(2.27)

2, 3, ••.} generated by the

Rnni

following infinitesimal matrix

nL if m=n-Fir ,

—nL if m = n ,

0o t h e r w i s e ,

where L=sup sup E IbPi(7)1. Then, by making u s e  o f  a  coupling process
i e S  p a l  r e f

and Lemma 2.2 we see

(2.28) E a[exp(toh+(au)du)] E a [exp(CY0 I a .1 du ) ]  < E t a ,  [ e C tN t l

On the other hand it is easy to calculate the transition matrix of this Markov
chain.

(2.29) 15.[N0=r]-=  n ( n ± ' ) .
 n2'• (inx +. ( 112- 1 )K ) 

if r=n+m K  ,

=0  otherw ise.

Hence for sufficiently small t0 > 0  we obtain

(2.30) R,[exp (Cto . N tdi < .

3) b+= max {6,0 } , b -  = —min {b, O}.
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Noting that (N e , P O  is  a  continuous time branching process, it holds that

(2.31) En[exp Ct o • N t o )]<+00 holds fo r any n N .

Thus we complete th e  proof o f Lemma 2.3.

Proof o f  Theorem 2.1.
L et P  be a solution of the  (X., x)-martingale problem . F o r  th e  proof

it is  su ffic ien t to  sh o w  th a t  {Eq0a(x(t))]} «EJ is uniquely determ ined. Let

u(t, a) -= Eq95a(x(t))] fo r  each a f * .  Since (0.(x(t)).1 : A - yba(x(s))ds, {g t } ) is

a  P-martingale, it follows from Lemma 2.2 that

d  
(2.32) dt u(t, a)= pu(t, P)+h(a)u(t, a) fo r any  a m J*.

Also, noting that u(t, a ) ,  E  Qa ,pu(t, 13) and  h(a)u(t, a)  a re  bounded o n  [0, 00 )
PEJ•

X  j * ,  t h e  assumptions o f  Lemma 2.1 a r e  verified, a n d  {u(t, a ) }  is uniquely
determined. Therefore we complete th e  proof o f Theorem 2.1.

Example. L e t b7;,(x):= E 2,„.0±xPt (s p — E sq , c1)+ E Q i i x i j ,  w here {2 ,},
5=1 q=1 ies

—

is a  real matrix on  N x N  satisfying 2„__O ( q  p), E 2q p=0 a n d  sup E 14,3 1 <
P=1 2:■ 1  q= i

+ 0 0 ,  { s , }  p a ,  is a  real vector o n  N  satisfying E  s p  <-1-00 , and {q ji} s i s  a
P=1

m atrix  o n  S x S  satisfy ing qi i ( j # i ) ,  E qj i = 0  a n d  su p  gi i  <  -H o . Then,
ies ies

the conditions [A l a n d  [B ] a re  satisfied.
Genetically, this model is a n  infinite allelic stepping stone model with muta-

tion, selection, and migration.

Rem ark. L et d  be a n  integer 2 .  Suppose that 25 p =0 if  q d and  p>d.
d

Then, for any xE X d =  {x ; E xPi = 1  f o r  all iE SI ,  th e  so lu tion  P  of the
p=1

(X ., A - , x)-martingale problem satisfies P [x (t)E X d  f o r  a ll t _01=1. Then the
diffusion process associated with the solution P is a  d-allelic stepping stone model.

Corollary 2 . 1 .  Assume the same condition as Theorem 2.1. Then there exists
a unique strongly continuous contraction semigroup {T7 } on  C 5(X )  such that

(i) r e
0f> 0  f o r any fEC b (X .) with f 0 ,  and 7' 11=1, and

(ii) Trf—f=1:T7A - fds f o r any fCry'(X 00).

P ro o f. For any x X deno te by P .  the unique solution of the (Xos, x)-
martingale problem. T hen, {P x }  is weakly - continuous in xEX ,x. In fact, assume
that lim x n = x  (x„, x .X ,x ). Then we can easily see that {P. 7 } is  t ig h t. F u r-

n - 4 0 0

4 )  C ( X )  denotes th e  Banach space of all bounded continuous functions defined on X x ,
w ith  the unifo rm  norm.
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theremore it follow s from  th e  uniqueness of the (X ., A - , x)-martingale problem
th a t lim =1-3 . H ence setting Trf(x )=EP-v [f(x (t))] f o r  e a c h  fEC b (X .), we

n

have P tyEC b (X . ) .  A lso it is obvious that {TT} satisfies (i) and  (ii).
Finally uniqueness o f  semi-group follows immediately from th e  uniqueness

o f th e  (X ., A ", x)-martingale problem.

§3. Diallelic models

F o r th e  subsequent sections w e  sh a ll sum m arize  t h e  re su lts  o n  diallelic
stepping stone models which was obtained in  [15].

L et S be a  countable se t th a t  is  the  se t o f co lon ies. A ssum ing that there
a re  tw o alleles A 1 a n d  A , at each colony, w e denote by x, an d  1—x, th e  gene
frequencies o f  th e  A i -allele an d  th e  Ay -allele at colony i S  respectively.

L et X=[0, l]s= fx= {x,} „E s  ; O x 1 f o r  a l l  i e S } .  L e t  u s  consider the
following differential operator,

(3.1) A = E x(1 — E ( E
i ESL E S  J e S

a 
w here D = a '  and  it is  a ssu m ed  th a t {q„) satisfies th e  c o n d itio n s  o f  (1.1)x ,  
and (1.2). T h e n  it  is  k n o w n  th a t  th e re  e x is ts  a  u n iq u e  strongly continuous
contraction semi-group {T ,} on  C(X) such that

(3.2) Ttf.>_0 fo r a n y  f C ( X )  with and  T 21=1,

and

(3.3) Ttf—f-=:TsAfds fo r a n y  f C .1-(X ),

w here C(X) is  th e  Banach space o f  all continuous functions on X w ith  th e  uni-
form  norm  and  C I(X ) denotes th e  se t o f  a ll 0 -func tions o n  X  depending only
on finitely many coordinates.

A diffusion process on  X , w hich is associated w ith IT 21, is  c a lle d  a  con-
tinuous tim e diallelic stepping stone m odel w ithout m utation and selection.

L e t  2 (X ) b e  t h e  s e t  o f  all probability measures o n  X  equipped with the
topology o f w eak convergence . L e t {Tt}  b e  th e  a d jo in t  sem i-group o n  2 (X )
in d u c e d  b y  {T 2} . W e  d e n o te  b y  S th e  se t a ll sta tionary  sta tes of { T 2}, i . e.
S= Itte.T (X ); T =1i f o r  a ll t_01. S  i s  a  non-empty, co m p ac t an d  convex
se t and  w e denote by Se s t  th e  s e t  o f  a ll extremal elements.

F o r  Q= .13,-=e"2* is well-defined fo r a ll t_1;) and  i t  is  a  transition  pro-
bability o f  a  continuous time Markov chain o n  S.

Throughout this paper w e shall assum e t h a t  Q= {q„} i s  i r r e d u c ib le .  Let
(X ,=(X l, X i), P1)103,5 be the continuous time irreducible Markov chain on S x S
which is defined by

5) Q * i s  the tran sp o sed  m a trix  of Q.
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(3.4) P tO P t(i, 2.0 for each i= (i 1 , i2)

and /2) GSXS

In order to describe S e x t  let us introduce the space o f  Q*-harmonic func-
tions SC and a sub-class SC* of X .

(3.5) s c =  ;  defined on S, 0 h - 1 and Q*h=0},

(3.6) SC*= {h E sc ; lim h(X1)=lim h(X7)-= 0 or 1 P;-a. s. ont—
D ( 1 )

for any iE S X SI ,  where

D(1), [ 2 4 2 (X t )dt=-1--ool and 42
=

 {
1=

 ( i l ,  i2 )  E S X S ;0 

We regard each h ESC as an element of X .  Then we obtained

Theorem 3.1 ([15])
( i ) For each h ESC there ex ists a  1.) he 2(X ) s at is f y in g  th at  lim h=t - -

exists, wherew here a h  stands for the point mass at h .

(ii) xivh(dx)-=h(i) fo r  a n y  hESC and iE S

(iii) S ex t=  {vh  ; h  SC*1

Theorem 3 .2  ([1 5 ]) Let p E  2 ( X )  and h E S C * . T h en  lim TP itt-=- v h  i f  and

only  i f

(3.7) ( E P t (i, j)x i —h(i)) 2 ,u(dx)=0 fo r  a l l  iE S
tEco X  jE S

Let us consider the following classification by the migration rate

Case I  P;[Q(' ) ]= 1  fo r  all iE SX S.
Case II P I [ Q 1 ]= 0  fo r  all IESXS.
Case III 0< P1[Q ( 1 ) ]< 1  fo r  all 1E SxS .

Since Q  is irreducible these three cases exhaust all posibilities. It follows
from Theorem 3.1 that sext= { 30, ail holds for Case I  and LS'e x t= {vh, ;  hESCI
holds for Case II. For Case III we notice that SCe xt SC* SC holds, where S r ex t

denotes the set of all external elements of SC.
Further we obtained

Theorem 3 .3  ([1 5 ]) Assume Case I. Let f iE 2 (X ) .  T hen, lim T t i t  exists i ft - -
and only  i f  lim E Pt(i, x itt(dx ) exists fo r  each i E S .  M oreover, i f  this con-t - -  j e s
d it io n  is satisf ied um E P t (i, xot(dx )-= 2 is independent o f iE S , and

jE S X

(3.8) lim Tf[t= 251-F(1-2)50.t-



Stepping stone models 11

L et us introduce a  mapping p t from X  onto itself defined by

(3.9) (p tx ),= i;P t (i,  j )x , fo r each  iE S

We denote by p o  the im age measure o f pE 2 (X ), i. e.

(3.10) <pep, f>=<p, f° pt> fo r a n y  f EC (X ).

Then by modifying th e  proof o f th e  above theorems we obtain

Theorem 3 .4 .  A ssum e Case II. L et daERD(X). T i  conv erges as t 0 0  i f
and only i f  p o  converges as t—, 00. Moreover, i f  this condition is satisfied, sett-
ing res.--lim p t te, it holds that

(3.11) t c " [M ]= 1 ,  and

(3.12) lim dtt=  v h ,e(dh) .

§  4 . Multi-allelic models

This sectionsection will be devoted to a description of extremal stationary states
o f multi-allelic stepping stone model with mutation.

Let b e a  p o s it iv e  integer and Xd= {x--= {xP} ; ••• d-x =1
fo r all iE .

A  continuous time multi-allelic stepping stone model with m utation is  a  dif-
fusion process on  X  d  with th e  following infinitesimal generator,

d d
(4.1) A d= E E E

iEs p = 1  q = 1

d d
E E ( E 2„x1+ E qi i xPj )D i , p

i E S  p =i q =1 je S

where {2q p } a n d  {q,,,} satisfy the conditions of (1.1) and  (1.2). Then it follows
from Theorem 2.1 that fo r any xE X d  t h e  (X d , A d, x)-martingale problem has
a unique solution. Accordingly there exists a  un ique  strongly continuous con-
traction semi-group {Tr} on  C(X d )  satisfying that

(4.2) TU __>0 fo r  a n y  fEC (Xd) with and  Tg1=1,

and

(4.3) Tgf—f=)0TYAdfds fo r a n y  fEC:f(Xd).

Denote by (Q, g , P x ; x(t))..ex d  the diffusion process on X  d  associated with {T'll
and we use  the  same notations 2 ()(a ), { T r} , Sa and (Sa)ext a s  § 1.

L et us introduce a classification of I= {1, 2, ••• , d} according to th e  muta-
tion r a te  {2„} . I f  .1„ > 0  we denote p .  I f  there exists a  chain c p 0 = q ,  p i,

•-•  , P r P1 o f  I  satisfying p , , p ,  f o r  any 1 k r , we denote q —> p .  In
particular, if either q = p  o r  both p and p  q hold we denote p q .  Then



12 T. Shiga

"f-" defines an equivalence relation on I. A n  equivalence class R  is said
recurrent if p  does not hold for any qG R  and for any pc R.

Setting A = 12„1 and A t = e " ,  it is well-known from the theory o f finite
M arko v  chains that for any recurrent class R  there exists a strictly positive
vector {7rr } such that for any qGR

71 )i f  pc R
(4.4) lim A t (q, p)=

0o t h e r w i s e ,

and for any non-recurrent class C

(4.5) lim A t(g, p)=o for a n y  q G I and any pcC  .

Denote by RI, ••• , R , all recurrent classes.
Let sC = •-• , h i) ; ha e M *  for h1-l-•••+h,-=11. For he,gll,

p(h)GX d  is defined by

(4.6)
7(;)ha(i) if p e R a  for some ,

p(h)P,,-=
0 otherwise, where 7r(r .= -7 R a ) .

Our main result in this section is

Theorem 4.1.
(i) F o r  each h = (h i , ••• , h r ) 9 L '' th e re  e x is ts  a vhGE'(X d ) such that

lim T ra p  (h ) = . h .
t•-•.■

(ii) xPivh(dx)=p(h)P, fo r  all iG S  and

(iii) (S d)ex t= { v h; h  SC} •

We assume R I U R 2 U•••UR,--= 11, 2, ••• , el C I .  Let J be the set of all non-
negative integer-valued functions a= {aPi } defined on S >< {1, 2, ••• , el satisfying

l a l=  E aPi < + c o .  If a3= 0  for (j, 9 )* (i, p) and aPi = 1 , a  is denoted by
iEs p= 1

Define {7rp } i , „ ,  by

(4.7) z.p=_7cr fo r  pG R a .

For each a E J, set çba(x)=- cial H ft 
x p i/

 ft
 orpy where c  is  a  fixed constant

tE S  p = 1 p= 1

satisfying 0 < c < min Ir  p , and a =  E
1 5 p e iE S

Let X ( R ) =  f x  X d  E  E for all iE SI . Then we see
a = 1  p E R a

Lemma 4 . 1 .  For any  xe.X ( R )  and aGJ,

(4.7) Ad q5 a (x )= R a , pq5 p(x)— <a> b a (x)J  

where



(4.8) R„ i g =

C
a i ( a - 1)
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if P =a — EPi

if /3=crœsP1d- s1  (P *4),

if 48=a—s 1id-s 7j ( i#  j),

a Pi(a Pi - 1)+ aP 1.4 p +  E ailq ii
P=1 iE S

ä p q

7rp

aPi qi i

c—i=s p = i  7rp

i f  j3=a,

0  otherwise,

(4.9) <a>= —1)— E c
tiES tEs p=1 Trp

2,,,•=-7r,2q phr p , a n d  Ia t l= i a P z .
p=1

L et R = IR a , f i l a ,13E j. Then e' R  is well-defined, which is a transition matrix
on J. We denote by (D , 2 , P a ; a (t))ae , the continuous time Markov chain on
J associated with eue. Then by making u se  o f  th e  Feynman-Kac formula we
obtain

Lemma 4 .2 .  For any xEX ( R ) ,

(4.10) Tgg5„(x)=Eakb«(t)(x)exp(-5:<a(up du)] fo r  a n y  a E J .

For each 1 a r  le t us define a  mapping O a  ;  X d X  by

(4.11) (sax )i=  E  xp for e a c h  ie S
pER a

Then we have

Lemma 4 .3 .  For any fEC (X ) and x E X ( R) ,

(4.12) Tg(f°00(x)=Ttf(çbax).

P ro o f. It follows immediately from

(4.13) Ad(foçba)=(Af).0a on X(R ) for a n y  f EC1(X) .

Lemma 4.4.
( i ) For any ,aES d , itt[X ( R ) ]=1 .
(ii) Sba[SdiCS.
(iii) OaaSa)extiESext.

P ro o f .  ( i ) ;  For any fixed xE Xd,
from (4.3) that

s e t  m IX t)=E [xP ,(01 . Then it follows

dd(4.14) mPi(t)= f, 2,i p ml(t)d- E q i i m23(t) .dt q=1 jeS

So we get
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d
(4.15) E  E  At(a , P )P t(i, j)m (0 ).

JEs q =1

Since, noting (4.4), lim mP2,(t) , 0 holds fo r a n y  p E E R iu R 2 u •••v R , a n d  iES, (i)

fo llow s from  th is. (ii) is  trivial by (i) and Lemma 4.3. Let pE (Sa )exti Suppose
th a t fo r some vi  a n d  v2 ES

(4.16) 041= -2 ( 2),.+ 1)2) .

Since vi  a n d  I), a re  absolutely continuus w ith  re sp ec t t o  0 0 ,

e i ( z )  a n d  2 (z ) their densities. D efine p i  and  1i2 E.g)(.7(a ) by

(4.17) iii(dx)-=,.(0ax),ti(dx) (i=1, 2).

Then w e see

1
(4.18) Oapi=vi (i= 1 , 2 )  a n d  p =  ( p i + p 2 ) .

W e claim that

(4.19) lim -1 Y r r p i ds=p f o r  i=1, 2 .
t

w e deno te  by

Suppose th a t  lim n T f p i ds=fi i  (i=- 1, 2) exists fo r some sequence { t„} tending
n—co t n  0 1

to  +00. N oting  that rlieSd, P2ESd, i . 2 ( s d ) e x t  and p , -
2

(Teii -Fre,), w e  g e t p i =i-

Hence (4.19) ho lds. F ina lly  by  (4.18), (4.19) a n d  Lemma 4.3 w e obtain
v1i=v2=0ap. T hus w e see  OapESe.tt.

L et us consider another continuous time Markov chain (D, J, Pa ; a (t)) on J,
generated th e  following infinitesimal matrix pi.' = fr?„,

alf,i„ if 13---=a—sP+z1(p*g)

aPi qi i i f  p i = a — s P 2,+63 ( i # j )
(4.20) Pa, -= d

E  I aP I ,Tn p +  /  I a i  q i i if 13=a
P=1 iES
0 otherwise.

Notice th a t th is  Markov c h a in  is  id e n tif ie d  w ith  th e  d ir e c t  p roduct Markov
process o f  l a l n um ber o f  Pt g j t -Markov chains o n  Sx {1, 2, ••• e}.

Lemma 4 .5 .  F or any i_g (<-3 )ext a n d  a , f ,  s e t  g(a)=-<p, y5„>. Then there
exists a h= (h i , •-• , h r ) E .gC  such that

and

(i) x l;p (d x )= 7 0 h a (i)
X d

i f  P E R a  with some ,

(ii) limE„Ig(a(t))1=q5 a (p(h)) holds f o r  any  a .J .

P ro o f. Since Oa/lei-5,st holds by Lemma 4.4, it follow s from  Theorem  3.2
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that there exists a  h=(h i , • • • , h r ) E,511 such that fo r  any 1 a

(4.21) lim ( E P t(i, j)( E  x ) —ha(i)) 2 11(dx)=0 .
X p  j e S p e R a

Noting

(4.22) lim At(Pt 4)-•=7 c r fo r any p  and gER a  (1_< a - r ) ,

we getget

(4.23) E  E  P t (i , j)A t (p, g) -->  h a (j) a s  t +  cogerea 7 7 q

in  probability with respect to tt fo r any pE I?„ and  iE S .  Hence

(4.24) E a [q5„. ( ,) (x )] -->  „ ( p (h )) in  probability w. r. t.

In  particular th e  integration o f  (4.24) by y  yields (ii). If a ,  sPi  fo r some p w R a ,
E,Pi [g(a(t))1= E,p,[g(a(t))]= g(EP,,) holds. Therefore (i) follows immediately.

Lemma 4 . 6 .  Let g  be a function defined on J. Suppose that g  is bounded
on  IN= IcrE J; I al for each N> 0 , and lim  Earg(a(t))] exists (which wet-400
denote by h (a )) for each  a  J. Then fim Ea[g(a(0) exP (4 0< a(u »d u )] exists

fo r  each aE J, and moreover this limit is determined by {ii(a)}.

Proof. L e t  ZI= { a E J ; ja i I fo r some . Let us define some stopping
times. C=inf ; a (t)I <  a(0) I It Ck=inf ; a(t)I , oy=inf ;  a(t)
GA}, r,= inf o- 1 ;  a(t) J a n d  I a(01 -=  a(0) I y =  inf ;  a(t)
a n d  -r .= inf ; a (t)E 4 , a (t )I=  I a(0) } . W e n o te  that f o r  some constant
K> 0

(4.25) K E lazklail
t e S tE S

Let - ctE 4 .  Since (a(tA o- 1), Pa) and (a(tA u i ), PO have the identical probability law,

(4.26) lim E a[g(a(t)) exP (— Yo <a(n)> d u) ; a =  + ]

zrliiyi E a [g(a(t)) ; i = 00]-=lim .E' a [g (a (t)) ; a 1 = + 0 0 1

= h(a) — E a[h(a(o- 1)) ; a < + 0 0 1 •

Noting [C=H-coln[u n < +co fo r  all 7t1E [ 0- <a(u)>du , --- + I  P a —a. s . we see

(4.27) lim E a [g(a(0) exp <a(u)> d u) ; C-= 0010

= E EZg(a(t)) exP <a(u)> du) ; 7n< + 0 0 , un = + 0 0 ]n=1 t-.= 0

_
E E i (a(7 7,)) exp (-

0

Ç
r n

<a(u)>du) ; <  0 0 1
n=1 
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w here r/i (a)=F2(a)—Ea[ii(a(ci)); o<+001. So we get

(4.28) lirn E a [g(a(t))exp <a(u)>du)]
t— 0

k
li 1 Ea[T= i2(a(Ck))exp (— , : k <a(u)›du); Ck < +00]

w here Ti2(a)= ni , EaCh(a(70) exP ( ---1: n <a(u )> d u) ; „  <  co] .

Theorem 4.2. L e t h -=(12 1 , ••• , h r ) E,411. Suppose that p E ( X d ) satisfies
p[X< R ) ] = 1 .  Then lim T rp = v h  if and only ift-

(4.29) 1im ( E P t(i, j)( E x ) - 12.(0) 2 p(dx)=0t—  X  d  jE S pERd

fo r any 1-_<a_r and ie S .

Proof. Suppose th a t  lim Trp=v h . F or any fe C (X )t-

(4.30) <004, f>=Iim Tg(f.0 .)(p (h )) --iirnT tf(oap(h))
t-00 t-co

=litri Ttgha)=0 ) ha , f >

So by using Lemma 4.3 w e  have

(4.31) lim TI`(00)=Iim 0.(Trp) --- - Oavh=vii t i -t— t-.00

Hence (4.29) follows from Theorem 3.2 and (4.31).
Conversely assume th a t (4.29) is fulfilled fo r any and  iE S .  In the

sam e w ay a s  th e  proof o f  Lemma 4.5, we obtain

(4.32) lim E a [g (a (t))]=95a(p(h)) w h e r e  g(a)=<p, Oa > .

Accordingly byby Lemma 4.2 and  Lemma 4.6,

(4.33) Urn <Trp , çba >-=limEa [g(a(t))exp ( H ' <a(u)>du)]
t— t— 0

= lim E a [q5a ( t ) (p (h ))e x p (d . <a(updu)1=lim Tgq5,,(p(h))
t-•00 0 t-...

=<ph, Oa> .

Also, it follows from Lemma 4.4 (i) that

(4.34) lim 5  x7r,ti(dx)= .0 i f  p E E R , u • • • v R , .  ( i e S )
X d

(4.33) and  (4.34) im ply  that lim <Trtt, f>=0),„ f>  ho lds f o r  a n y  fE C (X d )  and

we concludeconclude lirn Trtt-=v h .

P roof o fo f  Theorem 4.1.
L et h=(h i , ..• , fi r )E .V .  It is easy  to  see  tha t
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(4.35) .E,,D75,,(t)(p(h))1=0.(p(h)).

Hence (i) follows from Lemma 4.2 and Lemma 4 .6 . ( ii) also is tr iv ia l. F o r (iii)
le t ttE (S tz )e x t and set <p, çba > = g (a ).  By Lemma 4.5 and Lemma 4.6 there exists
a  h , (121 , ••• , 12,)E.411 satisfying

(4.36) lim Ealg (a (0 )]=0 .(p (h )) fo r  a n y  a  E J,

and
" t

(4.37) g(a )=Ea[g(a (t))exp(— :<a(u )›du)1

= l iM  E„50(t)(p(h)) exP ( — <a(u)›du)]t-.. .J O

= lim  <Tr6  (h ) , Oa> •

Thus we see fe=v h . Furthermore notice th a t  the converse  i s  a n  immediate
result of Theorem 4.2. Therefore we complete the proof of Theorem 4.1.

Corollary 4 .1 .  Suppose that there is only one recurrent class. Then 17-11
is ergodic in the sense that there exists a unique stationary state v such that

(4.38) lim p=v fo r  any pE2(Xd ).

Proof. L et R  be the unique recurrent class. B y  th e  above theorms we
have a unique stationary measure i) and moreover if  pag)(X d )  satisfies p[X(R)]
=1, then lim T rp = v .t-.00

Next, it holds by the proof of Lemma 4.4 (i) that there are some constants
K>0 and r> 0  su ch  th a t if  pEE R

(4.39) .E.,[x2.1,(t)].. Ke-rt for a n y  x e X d , iE S  and t> 0 .

Then any pER)(X d )  be  fixed . F o r  each  aE J, s e t  u (t, a )=<Trp , Oa>. Then
it follows easily

d  (4.40) , u(t, a )=  E R„ pu(t, p) — <a>u(t, a)d-w(t, a)at A E J

-=  E  E  E aV „  c  . E [x ( t ) ¢ , ,7 (x(t))1p(dx). By (4.39) we have
t E S  p E R  q E R

K,>0 satisfying

lw(t, aE J.
Also, since {u(t, a)}  is a solution of (4.40), it is represented

(4.42) u(t±to, a )= E a [u (t o , a(t))exp (A t <a(upc/u)]

a[w(to+ s, a(t—s)) exp (— <a(u)>du)lds

where w(t, a)

some constant

(4.41)
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For each xE.X a  le t u s  define ..17E X(R) by

V i . = {  x P i +

0
I IC I qER

1
 

E if pER

For p E 2 (X d ), fi denotes th e  im age  m easure  by th e  mapping x Let
Ft(t, a):-=<Trtt, ¢a>. Then using (4.39) it is easy to check that for some K 2 > 0

(4.44) u(t, a)—  ii(t, a) K2 a c r t

So, it follows from (4.42) that for some 1(3 > 0

(4.45) I u (t+ t„ a) — E a [ii(t o , a(t)) exp ( - 1 0 <a(u)›du) e-rt°

Since T rp [X (R )]= 1  we obtain

(4.46) 0 + 4 ,  a)—<)), 95.> I ..5.-K3 a I e- "° for a n y  aEJ
t-.

and any t 0 >0. Consequently this implies lirn T rp = v .t-.

Corollary 4 .2 .  For each there ex ists a v ( a ) E(Sd)ext such that

(4.47) lim T ru = v ( a)f o r  a n y  p E 2 (X d )  satisfy ing
t-00

p [x E X d ; E  x 2 =1  fo r  all i c S ]= 1 .
p E fe a

P ro o f .  It is immediate from Theorem 4.2.

Corollary 4 .3 .  Assume the condition of Case I of § 3. L e t p E 2 (X d ). Then

urn T r p  ex ists if and only  i f  urn E P t (i, j) .Ç E  xPi p(dx) exists fo r  any
jE S PER,,

M oreover i f  this condition is fulf illed, Iim E Pt(i, E xPip(dx)=2a is indepen-
t-•.= jE S J P E R a

dent of iOES, and

(4.48) lim p--= 2a .

Corollary 4 .4 .  Assume the condition of Case II. L et p a ( X )  and 1zE..511.
T hen T r p  converges to  vh  as t +Do if and only  if

d
(4.49) lim f  ( Pc(i, j)( E x 13+  E  xg; 71.)—ha(i)) 2 P (dx )-- =0

t-00 x d  jE S pER a q = e + 1

fo r  any  1 a_-< r  and iES, w here 71a ) .= E lirn A t (q, p) for
p e R a

W e will omit the proof since it can be shown by using the above theorems and
a  similar argument to Corollary 4.1.

§  5 . Scaling limit (I)

Form now on we shall consider the case S=Zr(r-dimensional integer lattice
space). Regarding the d-alleles stepping stone model x(t)=- {xPi(t)} zE Z T .1 5 p 5 d

(4.43)
otherwise.
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a  d-vector-measure-valued process on R r ( E (xl(t), • • • , x((t))•3, 1 ,), we shall discuss
E S

a  scaling lim it of the fluctuation process o f  th is  process,

(x1(22 0—E1x1(2 2 01, , xi1(22 t)E[x(1(2 2 t)]).611i2)
i e S

as +00 . S ince  t h e  lim itin g  p rocess , if  exists, n o  lo n g e r vector-measure-
valued process, w e shall discuss the convergence of S'-processes.

A fte r [4 ] w e prepare som e facts on  S'-processes. Let

e k (x )..= (..v2 71. 2kk !  )-1/2( i)kezv2Dkxe-x2 (k=0, 1, ••• , x E R ') .

Setting  e a (x )=e 1 (x i ) ••• ea r (x r)  fo r each a E Z r, an d  x-=(x i , ••• , X d ) ERr, {e a }  is
a  complete orthonormal system  o f  L 2 (R r ) .  e „ is called the H erm ite function of
index a.

L et S (R r)  be  th e  space o f  all rapidly decreasing C- -functions on
 R ,

 w hich
is equipped w ith th e  usual topology, and  le t S / ( R r)  b e  t h e  space  o f  tempered
d istribu tions. F or OES(Rr), se t 1101120,o= E (21 a I +r)m(0, ea)2 for m> O. D e n o te

by  S ( m ) (R r)  th e  completion o f  S (R r ) w ith  respect to II II (m). Let

11011 E  IlDa0112)1/2 a n d  11011=110hx

is  th e  L 2 (Rr)-norm. It is  kn o w n  th a t fo r some constant 277,>0

(5.1) 119511m 2.11011(m) •

F or each N (R1 111\711c- n o  an d  IIHANII(_.) a re  defined by

(5.2) E(21al-Fr)-71W(e)2
a

(5.3) E (21 a r) -  ' Me a) 2 •
ierl>n

L et S( , ) (Rr)= {NES'(R 7-) ; IINI1c-.)< + c o l .  I t  i s  o b v io u s  th a t  Sc-,70 (Rr) i s  a
separable Hilbert space and  it is imbedded continuously into Sr(Rr).

F or each  in teg e r d we denote (X) S (R r)=S (R r)x  ••• x S (R r ) and S t(R r)
=S i(R O X •-•x ,V (R 7

L et C([0, co), 6/(R ')) (C ([0 , 09), 6 ,9 1 (R r)), C ([0 , oc), R 1 )) b e  t h e  sp aces of
d

S''(Rr)-valued (08/(Rr)-valued, R 1-valued) continuous functions defined on  [0, co),
which is equipped with the compact uniform  topology. F o r  72EC([0, co), Si(RT)),
denote the  t-coordinate b y  72t. W e shall use  the  following criterion of tightness
on  C([0, 00), S i ( Rr)).

Lemma 5 . 1 .  L e t {P 2 } A a i be a fam ily  of probability  m easures on C ([0, co),
S '( R r) ) .  Suppose that

(i) f o r  any  f ix ed  95E ,S ( R r)  the f am ily  o f  probability  distributions on
C([0, 00 ), R ') induced by (771 (q5), PÀ ) is tight, and that

(ii) fo r  some positive integer no
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lim sup P ï  sup 11H4LYMI(-.0)>E1=0 f o r  any  s >0 and T >0 .
771,-,,0 2

T hen {P2 } 2 , ,  is tight.

Pro o f . See [4] § 1 and  appendix.

R e m a r k . Suppose th a t  th e  following condition is satisfied  fo r  som e n>0.
F or any  T > 0 w e have some constant CT >0 satisfying that

(5.4) EParovE, 07t(¢)) 2 ]..C7, 11¢1171 fo r any E  S(R r )  and 2_>.1

Then, the condition (ii) o f Lemma 5.1 is verified by (5.1).

Here we define a S/(R7) v a lu e d standard  W iener p ro c e s s . A  sample con-
tinuous ,V(Rr)-valued process W-- - {Wt} t k 0  is called a standard W iener process
if  th e  following conditions are satisfied.

( i ) W 0 =0,
(ii) W , has independent increments, and

(iii) E[eiw t(o)]= exp(—(9511 2 ) fo r all 0ES(Rr).

L et us consider a  m ulti-allelic stepping stone m odel w ithout mutation and
selection ( Q , P, { gt}  ; x (t)={ x Pi(t)} ,Ez r,,,p,d) w hich  is a diffusion process on
X d  generated by

d cl
(5.5) Ad= E  E  E x Pi (b. „— xU D i ,pD c ,

iE Z r p = 1 q = 1

d

E q jiX 2 3 )D i.,p  •
tiE Z r p = i  j e z r

W e assum e the following.

Condition [Cl
(  )  gji=g;-i,o(=q;_i) f o r  any  i  and . .7EZr,
(ii) ( i# 0 , E  q i= 0 , E  qi • i=0  a n d  E  q i li2<+09,

iEzr iE Z r iE Z r

(iii) an  additive group generated by  f iE Z r; qi #01 coincides with Zr.

L e t Q= {q .,,}  and  se t P t =eta` an d  R t =P t P P .  Then under the condition [C]
R t  i s  a  symmetric and  spatially homogenuous transition probability on  Z r .  We
denote by (I), g3, P i ,  z t ) E z r  the continuous time Markov chain o n  Z r  associated
w ith  R t .

It is w ell-know n that if  r 3  t h is  Markov cha in  is  transien t. M oreover,
assum ing that  { q ,}  is  f in ite ly  su p p o rted , th en  t h e  potential m atrix G (i, j)=

R t ( i, j)d t satisfies that fo r some constant C>0
0

and

(5.6) G(i, j) C (1+Ii—  jir+ 2 j E Z r

(W e find this estim ate in  [18 ] p . 339 fo r  th e  descrete tim e case. B ut the con-
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tinuous tim e case is easily reduced to th e  discrete o n e .)  S o  i t  i s  e a s y  to  s e e
th a t fo r some constant C>0

(5.7) PiCam< +001—C(1+ i i ZT ,

whereu to , stands fo r the  h itting  tim e f o r  {0}.
F or any /1 . 1, 1 p d a n d  95 eS(Rr) define

(5.8) N (95)=-  C T  + 2 )  1 2 E 0(--)(xP,(220—E[xP,(2201, p=1, ••, d .
zez ,

Then {N1.2, ••• , Ng ,2 }  i s  a  &)<S1(Rr)-ya1ued continuous p ro c e ss . T hen  w e
obtain

Theorem 5 .1 .  Let r 3 .  Suppose th at  the initial distribution p o o f  {X(0}
is Zr-shif t invariant and satisfies

(5.9) ./.4(d x)(4 —nip)(x <+00
iEZr

and

(5.10) .1-t0(dx),c,f'xfx!I xl converges to n4

i f  all o f  12.1,a n d tend to  +00 f o r all 1_. p ,q _d
d

where inp-=p o(dx)xPo. Then, N  converges to aS '(R ) -v alu e d  O rn s te in -U h le n -

beck process INT, as 2—> +00, in the sense of  the probability measures on the path
d

space C([0, 00), OS'(12 7) ) ,  where N t is defined by the following stochastic integral
equation,

(5.10) NP,(95)=-- A a p ,Wq,(95)+ .VoNP,(LO)ds ES(Rr), p=1, ••• , d ,

where
(i) W t= W g} is an independent system o f  ,V(RO-valued standard

Wiener processes
(ii) lapgl ip , q,d is a constant dxd-matrix satisfying

(5.12) (aa*),,,=2pmp(3„—m,),

and
{ 1  ( i = 0 )

pr =A\  o[exP (-2D (0 )(z .)du  )1 > 0 , where .[(0)(i)=
0  ( i# 0 ) .

and

(5.13) L = aut,D.Dt, with
u=1 r=1

auy= E
iezr

N ext, w e w ill consider th e  c a se  th a t  the initial distribution is  a  stationary
s ta te  o f  th e  stepping stone m odel associated w ith (5.5). I f  r_ 3 , we know by
Theorem 4.1.
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(5.14) ( S d ) e x t =  { I 'm ;  In
=

( M1, m a ) R I, m1+ "• +m d -=1}

Under a n  additional condition th at {qi }  is finitely supported we obtain

Theorem 5.2 . Let and vmE(Sd)ext. S uppose  that the initial condition
{x (0 )} i s  vm-distributed. Then, any finite dimensional distribution of con-

verges as +00 to  th at o f  a  OS/(Rr)-valued stationary  Ornstein-Uhlenbeck
process N t def ined by  the following stochastic integral equation,

(5.15) Nr(0)=NP0(0)+ :ti a„TV1(0)-F .VP,(L çb)ds 0 E S (R r),

p = 1 , • • • , d  where a, L  and W t a re  th e  sam e as Theorem  5.1, and N o i s  a
d

COS'(Rr)-valued Gaussian random variable independent o f  W 1 satisf y ing that for

any (951, ••• O d ) E 6 S (R r )

E[exp (iN (çb i)+  ••• -EiNg(q5d))]

=exp(— m,(50—m0)(G0p, çb,) L 2),
p= i  q=1.

r ( r /2 -1 )  
<A - lx , x>  w ith A.-= {a u v} u.G ( x )

2r/1-2( 7.0 r / i  A 11/ 2 

A l- -- det A  and G 0 (x )= E r G(y)0(x— y)dy

Corollary 5.1. L et ]•)”, (Sd)ext , and let e -= {(el, ••• V)} i E z r  be a  vm-distri-
buted random field. Define a generalized random field N 2 =-(N 1 ' 2 , •••, Nd. 2 )  by

NP' 2 (0 )=2 - ( r+2 ) 1 2  E
iE Z r A

Then the distribution o f N 2 converges as +00  to that of N o defined by (5.16).

F or simplicity we will prove the  above theorems fo r  a  dialelic m odel. Let
(Q, g , P ; x (t).=  {xi(t)} iezr) be the diffusion process o n  [0, 1]z r  generated by

(5.18) A= E  x i (1—x 1 )D f t  E  (  E  qi i x i )D i
iEzr iE Z r  jE Z r

Here it is assumed that fqi i l satisfies the condition [C].
F o r a n y  e S(R') and ,1 1, set

(5.19) .Aq_2- (r+2)/2 E  0 ( t) E [X , ( 2 2 0]) .
ieZr A

Hereafter we will prove th e  following theorems instead o f th e  above.

(5.16)

where

(5.17)

fo r  OES(Rr), p = 1 , ••• , d .

Theorem 5.1'. Let r 3 .  Suppose that the initial distribution po o f  {X(t)}
is  Zr-shift invariant and satisfies
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(5.9)' po(dx)(xo—m)(x,—m) < + 00 ,
jE Z T

and

(5.10)'
.çpo( dx)x 1O'x Pt x x mm

if  all of i L  l i  L k I, j  L  j— kI and 1k—il tend to +00 f or p, q=1, 2, where

4 -=- 1— x i , m..=p o (dx)x o , m i =m  and m2 =1— m . T hen, {N }  converges to

a S'(Rr)-valued Ornstein-Uhlenbeck process N t  as  2—,  +00, in  th e  sense of  the
probability  distributions on the path space CEO, 00), S'(Rr)), where N t is defined
by  the following stochastic integral equation,

(5.11)' Nt(q5)= -V2pm(1—m) W t(0)±:N3(L0)ds ES(Rr)

where W t i s  a  S'(Rr)-valued standard W iener process, and L  and p  are the same
as Theorem 5.1.

Theorem 5.2'. L et r 3 and  pm , S e x t . Suppose th at  th e  in itial condition
{x(0)} is  vo „-distributed. Then, any finite dimensional distribution of N 't' converges
as A—,  +00 to that o f  a  S'(Rr)-valued stationary  Ornstein-Uhlenbeck process N,
defined by the following stochastic integral equation,

(5.15)' Nt(0)--- No (95)± A/2 pm(1—m)W t (g5)+Yo N s (LO)ds S(Rr) ,

where W t ,  L  and p  are  the  sam e as T heorem  5.1', and  N o i s  a  6/(Rr)-valued
Gaussian random variable independent o f  W t  satisf y ing that f o r any  OES(Rr)

(5.16)' E[eiN0(95)1,exp(—P2-- m(1 — n2)(G45 , 0).1,2) ,

where G  is o f  (5.17).

For the proof of the above theorems we list a  series of lemmas. For A 1
and O es (R r), we denote 02 (i) = 0(i/2) and Q ,0 ( i )= A2 E  q 0 2 (j). C g(Rm )

iEr
denotes the set of all C2 -functions with compact support defined  on Rm.

Let MR0)=.1\q(0) + -  0 - ' 22 02 E  Q U )x i (22 u)du. Then we have0

z

Lemma 5.2. For any  1- C (R 1 )

( i ) f (  E  0(i)(xi(l) — m)) - 5
t

  E  ( E  q i i s b ( i ) )x i (u )R  E  0(i)(x i(u )— m ))du—iez o iEzr XV .i e Z T

O i e z r
XY  E  OW' X

i

 (1 I

( i  

—  i ( U W " (  E  0(i)(x i (u)—m))du is a martingale,
)r

(ii) f ( N ( 95))_ t 2-(T+22
jEZro

E  Q 295(i)x i (22 u)RN'l(g5))du—V 2- r  E  b 2 (i) 2 x(22u)0 iEz
(1—xi(22uDf'(n y h D d u isa martingale,

.,
 and

(iii) f (M (0 )) j i 2- r  E  02(i) 2 x 0(22 74)(1—x i (22 u ))f " (M (0 ))d u  also  is  a  mar-0 .E zr
tingale.
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P ro o f. These are immediate results from th e  fact that the distribution of
(D, g , P ; x (t )) is a solution of the (X , A)-martingale problem with the initial
condition x(0).

Lemma 5 .3 .  For some constant Cr >0, it holds that

(i) 2 - r  E 02(k) 2 5C,(1195112 -H - 2 119511”,
k E z ,

(ii) 2 - r  E (Q20(k)) 2 -5,Cr(11011 +,1'1101142), and
kezr

(iii) lirn 2 - r  E  (Q2 çb(k)—(1,95) 2 (k)) 2 -=0.
2 - - kEZr

P ro o f. (i) is  e a sy . For (ii), we introduce {u k } by u k = 1  f o r  ik 1= 1 , uo=
— 2r, and u k -=0 o therw ise . If igkl (ii)  i s  e a s y .  F or a  general {q i,} ,
denoting gi(77) -= e.1< '>95(k) for a summable function 0 , it is not hard to see

kEZr

that for some C>0

(5.20) 14(72)1-cla(79)1 for a n y  72e R r .

So, using Parseval's equality we get

E (Q20(k)) 2 =2 — ÷4 E  (PO A (k )) 2

kEZT k eZ r

=const • 2-7.+4 4(72W1(72)12d77

const•2 - r÷4
.ç a(72)93;(72) I 2 d 71 .
[-k,r3r

Thus, we can reduce it to the  case  of Iqkl= lukl. For (iii), w e u se  th e  Pois-
son formula,

(5.21) 02(22)-=2' E gg5(272+27r2.k)
kEzr

where 9. 0 ( 0 =  R r ei <x' 12>0 (x )d x . Then it follows that for any c>0 and 0 E S (R r )

(5.22) 2e1 &z(77)-2rg0(277) 1 2 d 72= 0
2, 0 0 n i r

Also, we note that for any e > 0  there exists a positive number 3 satisfying

(5.23) 14(77)— cluo2707,1 _•=6  1721' i f 1271 (3..=, v=i

Hence it follows from (5.22) and (5.23) that

(5.24) lim 2 - r  E  (Q Àçb(k)—(145)2(k)) 2

2 - *.°

Jj 2- r(27r) - r 1220 207)— a uo(D.Dv0)2(77)1 2 37)2--
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= l i m  2-7.(2 7 ) 1 22r+4 407),_ auv72071,12 9- 0(2 )  2 d 7)
[-T r,T rir u •v =i

<,21;," 2r+4 .f 1 ,1 4 1 g 0 ( 2 72)12d 27

rfc: Er

±const. lim r2 +4 g  ,h(.2
)1
. I 2

77 0"7- 6 2 1195 11L
A - . iva3 r

Thus we obtain (iii).

Lemma 5.4.
) E[x i (t)]=m f o r  a l l  t_>:0 and iES .

(ii) E  I Eaxo(0—mXxi(t)—m)11 ,iezr

where v =  E  if.e.(dx)(xo—m)(x i —in)
JEzr •

P ro o f. ( i)  i s  trivial. Setting E[(x i (t)—m)(x i (t)—m)] , h t ( i ,  j ) ,  it follows
from Lemma 5.2 that

(5.25) d h t ( i  j ) =  E  9kiht(i, k)+ E  gkiht(k, j)+ a(t)dt ' k e Z r k e z r

where a(t)=-2E[x0(t)(1 — x0(t))1. Hence, using th e transition matrix  P t = e  ,
h t (i, j) is represented such as

(5.26) ht(i, E  E  Pt(i, k)P1(j, in)ho(k, m)
k E Z r m E Z r

E k)Pt-s(j, k)a(s)ds0 k EZ r

Noting that {Pt (i, j)}  is spatially homogeneous, (ii) follows immediately from this.

Lemma 5.5. For any T >0  there exists a constant CT >0  such that

E[(2 - ( " 2 '  E  95(i)(xi(2 2 t)—m)) 2 1. E  95(i)2 ( -1-t) ,
iEZ T iE Z r A

(ii ) E L  sup (NRO))2 1- CT(2- 1 - E  2 ( 0 2  +  2 - r  E  (Q20(i)) 2 ),
iEZr

E E N (9 5 ) —  N(0)) 2 1 -  CT( II 95 113+ 2 - 2 110 1 4 2 ) t — S1

Proof. (i); E[(2 Cr+2 )/ 2 E  0(i)(x i (22 t)—m)) 2 11-
iczr

E 0(0 2 E 11122t(i, E  0(i)2 (--v— ±t).
iEZr jEZr iEZr 22

(ii); Using Lemma 5.2 and a maximal inequality for martingales we see

(5.27) EE sup (NRO))2 ]_. 2E[ sup (MR95)) 2 1
o tg T 1) T

+ Z E E  s u p  ( A - (r+ 2)/1  E  Q 2 0(i)x
1
(22 s)ds) 2 10stzr 0 i,zr

( i

and
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_ 8E[(Mi,(çb)) 21-F2T 0
T E[(2 - C r + 2 ) / 2  

E  
Q 2 0 ( i ) ( X i ( 2 2 S ) — in))2ids

iEZ r

<16E[(Ni,(0))21+18T E[(2 - ( r" ) ' 2 E  Q 2 0(i)(x i (22 s)— m))2 1ds
Oi a z r

Thus, (ii) follows from (i). (iii); Applying Lemma 5.2 for f (x )=x 2 , w e have

(5.28) E[(NR0)— N(95)) 2 1=- 2 E [ 2 - ( r + 2 ) / 2  E  20(i)(X ,(227,1)— M )(N1(0)
iezr

—N Rg5))du1+2E[ . 2 - r  E  02W ' X  ,(2 2 72)(1 —  X  i(2 2 14))(1141.

Hence (iii) follows easily from (i), (5.28) and Lemma 5.3.

Lem m a 5.6 . F o r  any  t>0,

( i ) lim E r2 - r  E  952(i)2 x i (22 t)(1—x i (22t))1=p1011 2

iEZr

( ii) liln  E r(2 - r  E  952(i) 2 X i(2 2 0(1 —  X i(22 t)) —  p10112 )2 i=- 0
iE Z r

w here p=-Po[exp(-2 .r0 I(0)(z.)du)]>0 .

In  order to show  this lemma we introduce auxiliary Markov chains which
were proved to be useful in  [15].

L et I  be th e  se t o f  all non-negative integer-valued summable functions on
Zr, i. e. I iEzr ; ai la E a i < +cc} . I f  a i = 1 and  a ; =0 (j#i),

iEZr

a w l  denoted by a=s i . Set f a (x)= 111 x 7 i f o r  e a c h  a w l, a n d  f 0 = 1 . Let us
wzr

define two infinitesimal m atrices R={ R p} and  r?,{pa.,} on / x /  by

f a i  pi „; if p = a — ei+ s ic/  ( i# j) ,

a i (a i  —1) if /3=a— si / ,
(5.29) Ra,

E a1(a i-1 ) if 13=a ,
iazr iazr

, 0 otherwise,
and

if 13=a- - e i+E iI  ( i#  j ) ,

a i gi i i f  /3-=a ,
iE Z T

0 otherwise.

Denote by {at, a E /  and lac, Pal a e l  th e  continuous time Markov chains on
I  generated by R  and  P. Then we have by Lemma 3.1 o f  [15]

(5.31) E[ f a (x (t))]=E a [<po , fa ,> ] fo r  a n y  a w l.

L et us introduce some stopping times. L e t  -= {a G/ ; a 2 for some

(5.30)

6) f > = .çf (x) (dx) .
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C=inf{t_>.0 ; lad < lad}, Ck=inf{t 0 ; lad _k} for k 1-,--=inf {t-0 ;
and a t = I ao II ai=inf ; a t ,611 and tr„, an } are defined inductively by
orn=an-i-Hri(Oa n _i ) and an-=7.-Fai(0,-, i ), where {O t } is  the shift operator.

We may assume that there exists another /-valued process {at} defined on
the same probaility space as lat, Pal, such that leit, Pal has the identical pro-
bability law with {a t , P a l  and

(5.32) crt crt, and a t —=ãt for t C Pa -a. e. for any

where a_<er means that a i cyi  f o r  all iE Z r•  For Lemma 5.5, it suffices to
show that

(5.33) lim E [(2 - r  E  02(1)2 xi(22 t))21=1195114 m2

2-zo. iEZr

(5.34) lim EL À -r E  o  2 (02 x  2 2  0 2 ] 1116112(m—m(1—m)p),
ZEzr

and

(5.35) lim E [( 2 - r  E  02(i) 2 x,(2 2 0 2 )2 1=11011 4 (m— m(1— m)p) 2

2-zco zEzr

It follows from the assumption o f Theorem 5.1' that there exists a constant
M> 0 satisfying

(5.36) 1<tto, i f  I a I <4 and d (x)>M ,

0 if aE Z I,
where d(a)= 

1 min { j  ; a, >0, a, > 0, i= j} otherwise.
By (5.31)

(5.37) lE r( 2 - r E g52(i) 2 xi(2 2 0) 2 1—m2 (2 - r  E  sb2(i) 2 )2 1iezr iczr
E  E 2(0 2 95  ,t(i) 2 1 E Ei+ei[<1-1 0, f  22 t> — 7 7 1 2 ] II.

i a Z r  JEZT

Noting (5.36) and

I Esi+ek<po, fa t >] m 2 1

<ii, fa,>—m2 1; d(at)—<M1+6+Psi+ [oi<+ 0 0 ]

Pt(i, k)Pt(j, m) - 1- s+Pi-la[0,<+ 0 0 ] .—  s  as li— j1—,  +00,
k-nti‘M

we obtain

(5.38) lim 2- 2 r E 02(i) 2 952(i) 2 1Ei+,;1<tto, fa A 21>—m2 ] I 6110114 •iEZ r jEZr

Thus we obtain (5.33). Next, we have by Theorem 3.2.

(5.39) lim p o — v .  •

So,

(5.40) lim EIX 0(t) 21=1 . X ôV m(dX )= E20[M ]

:= MP2E0[ C ‹  CX) ]+ n i 2P2e 0[C = ±  °°] •
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Also, we can show

(5.41) P2sorC= 001-- =- Ê'o[exp( — 2 /(0)(z.) d u)] = p

We will omit the proof of this equality since it needs an elementary but tedious
calculation. Thus we have lim E[x o (t) 2 ]-=m—m(1—m)p and (5.34) holds. Finally

we shall show (3.35). Note that

(5.42) E[(2-7- E  0 2 (i) 2 x1(22 0 2 Y1— (E P - r  E çb2(i) 2 x,(22 t)2 1 2 1
e z r t Ezr

<A-2T
jEZT

(02(0202( 1) 1+2EiC<po, f a,01

—E20[<po, f 0]1 E2s; [<tt0• fa  22t>]

(5.43) E2i+2,)[<tee• fa t>] — E 2 0  E2s1<p0, fa t +p,>1 I
_ 4PEi+E./Ccri< +00]=4Pi-lcnol < +co] ,

and by (5.36) and (5.32)

(5.44) 1E200E2,7[<Po• fa 2 +,92>] — E2, , OE2Rtto• fa,><Po• f 2 >]1

._. .3s+P2,i(OP2€3[d(at-H9t) M ]

__3s+Pui+2si[d(at)-V11

_<3s+2 E  R t (0, m )+ 4  E  R t ( i ,  j+ m ).
irrtism imi5m

From these estimates it follows

(5.45) lim 2 - "  E  E  0 2 ( i ) 2 952(i) 2 1E2i+21<P0, fa 2 2,>1
icZr

— E „i[< po, f . 2 01E2cRpo, f. 2 22 >71 36110114 •

Therefore (5.35) holds, and we complete Lemma 5.6.

Lemma 5.7 . L e t 0<a<2/(r+2) be fixed . F o r  any T > 0  there exists a
constant CT >0 satisfying that

(5.46) E[IN2(0)—Ni(0)12+23]-CT11101112.1t—s11+3

holds fo r  any OES(Rr), 2._>:1_ and O s, t T, where

11101112 = (2 -T  E  0 , ( 0 2)1+3+ (2 , -  E  ( Q 2 0(0)2)1+3
iEZr iEZr

+ (2 - T  E  I .95 2(i) I )25(2 - r  E  (Q 2 0 (i)) 2 ) •
i.zr

P ro o f. 1 ° . First we claim that for some constant CT >0

( 5 . 4 7 ) E [ I 2 -
( r + 2 ) / 2  E 0 (o x  i(2 201 2+25]

ie z r

iezr i i ; r(Q  95 (i)) 2)1+6 + ( 2 - r I  g5 Ai) I )25(2 - T ( Q  2 0 ( 0 ) 2 ) •
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Set Ot(i) -=  E  Pt(l, i)95 ( i )  for each t>0 and define  L T =  E  Or-t(i)(xi(t) — m)
Jez,

for 0 t - T .  Using Lemma 5.2, i t  is  e a s y  to  s e e  th a t  f o r  a n y f E M T )  and

0 fu,r)--1 E  02--.(i)xt(n)(1 — x i(n))f"(L mIO d u  i s  a m a r t i n gale. A c c o rd -
O tE z r

ingly, applying for f(x)=-- x2 ,  and f(x )=  I x1 2 +2 3 , w e have

(5.48) E[(LT)2]. E[(1,7)21+t E 0(i)z,5.(v+t)
ie Z r tiEZ r

and

(5.49) E[ ILT12+23]=E[1 l ' 2 3 1-+C5: ,952, -,t(i) 2 E[xi(n)(1— x ten))

L ,D 2 C I U E Isbr(i)D'Er(L 70')21 + C  ( E  957-9,(02 )EULD 2 Ydu
iE Z r iE Z r

Setting T = t, w e get

(5.50) E L I E 95(i)(xi(t) — m I 2 +2 5 7
iEzr

E  195(01)2 3 ( E  g5(i)2 )+ C (v+ t)( E ¢(i) 2 )" -a.
tiEZ r iE Z r iEZ r

H ere w e used the  following inequality;

(5.51) Is5t(i)1P5. E 10(i)I" for a n y  p>_1.
iezr

Hence

(5.52) EC12-(r+2)" E Q20(i)xi(2 2012 +25 7iEzr

=E[12-(r+2)" E Q20(i)(xi(2 20—m)1 2 +25 ]
JEZ r

-5.2- ( r+2 ) ( ' ' ) v ( E  I Qa95(01)25 ( E (Q295(i))2 )iEzr iEzr

+ C (—
v

+ 0
1 + 3

( 2 - r  E  ( Q 2 0 ( 0 ) 2 ) 1 + 3 .
22

tEzr

The first term 2-(r+2)(1+5)24301 q1123(I (i) )25( ( Q J (i))2)i  

=const. 2 - T (2 - r  E A(01)25(2-1- E  ( Q  4 ( 0 ) 2 )
tiEZ r i e Z r

where r=(r+2)(1+5)-43-2r5—r>0 and 11q11=  E  lqi i. Thus, we obtain (5.47).
tE Z r

20 . It follows from  Lem m a 5.2 (iii) th a t  for any fECS(R')

f(Illiz(0)—ItPRO))— 2 - r  E  0,1 (i)2x,(2 2 0(1—x,(2 2 u))f"(M(0)—AP(0))du

is  a martingale for t _ s .  Taking f(x )= x 2  and  f(x )= x 4 , w e  have

E[(M (0) — Agsb)) 2 ]-5_2' E 02(i)21t—s ,
TEZr

and



30 T. Shiga

EUM (0) —  M:(çb))4 ]. 2(2 - r
, ,  2 ( 0 S) 2

2)2(t —  S  •
EZ

Accordingly by Holder's inequality we get

(5.53) E [  M i(95)—  M RO)1 2 + " 1  const. (2 - 1 " E  2 ( i ) 2 )'  I t—s I •
ie zr

Also, it follows from  (5.47)

(5.54) E [ :2 - (r " ) "  E  Q20(i)xi(2 2 u)du 2 + 2 6 ]
ie z r

<  — s 11+23 EE12-0.+2)/2 E  Q ,0 (o x i(2 20 1 ,-Fa id u
S iczr

const. t — s 12 + 2 6 (2 - r  E  (Q 20(0) 2 )1 4

iezr

+const. (2 - 7 " E  I 02(i) I )2 '(2 - r E (Q20(i))z) •
ieZr iEZr

Therefore, combining these estimates we obtain (5.46).

Now, w e are in position to prove Theorem  5.1'. If m=1 or 0  the proof is
trivial. S o  w e  assume 0 < m < 1 . Let P À  b e  the probability distribution on
C([0, 00), S '(Rr)) in d u c e d  b y  N . B y  L e m m a  5.3, Lemma 5 .5  and Lemma 5.7
the condition of Lemma 5.1 a re  fulfilled. A c c o r d in g ly  th e  fa m ily  {/3 2 }2a i  i s
tight.

Let {27,}  b e  a n y  se q u e n c e , te n d in g  to  + c o , so  th a t  {P 2 77,} converges to
some limit P " .  W e claim  that for any fE C (R 1)

(5.55) f(72t(0))1:27,( L j"(778(0))d s — p 011V  "( 7)s(çb))ds

is  a  P - -martingale, and moreover

(5.56) P"D70---01=1.

By Lemma 5.5 (i)

(5.57) E1'7(i) 0(0))21- 11z E[(1\(95)) 2 1= 0 .

T h u s w e  g e t (5 .56). N ext, w e notice by Lemma 5.2 th a t  for any f ECF,(Ri)

r t
(5.58) f (N () )—  2 -  (r+2)/2 E  Q 2 95(i)x i (x"s)f(N(.75))dsy5 0 

tezr

2 - r  E  2(0 2 X ,(2 2 .3)(1 —  X1(22 S ) f " ( N R O ))dS
Oz E Z r

is  a martingale. Hence (5.55) follows easily from (5.58), Lemma 5.3, Lemma 5.5
and Lemma 5.6.

On the other hand  it is  know n tha t the uniqueness holds for the martingale
problem  (5.55) w ith  (5.56), (c f. [ 4 ]  Theorem  1.4). Therefore P "  is uniquely
determined and th is im plies that P 2 converges to  P" as 2 co.
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1 Also, denoting W 2(0)— 2pm(1—m) (72 t (q5) — 0 7),(LO)ds), it is easy to see.V 
that IV, is a  S'(Rr)-valued standard  W iener process. Thus, we complete the
proof o f Theorem 5.1'.

Next, we proceed to th e  proof of Theorem 5.2'. I f  m=0 o r  1, it is trivial.
L et p o =v „, with 0< m < 1. Then {x(t)} is a  [0, 1]z r -valued stationary Markov
p ro cess . Accordingly, {N't1} also is S'(Rr)-valued stationary process for each 2 1.

Ø(x) I I Ø(Y) For a n y  E.S(Rr), s e t  <0> = dxdv • Then we have
R ,  R7. Ix  y  r - 2  

Lemma 5 .8 .  L e t  p >r be fixed. F o r any T > 0  there are  some constants
C1 >0, C 2 >0 and C T >0  such that

(i) EC(N(0)) 2 i-C111011 2(p+r),
(ii) 11m E[(M(0))9 -5C2< >,

and
(iii) iT i E [(100) — N (0)) 2 ].--CT(110112 - 1- <45>)1 t — si

2

f o r a n y  ES(Rr), 0 - t— s_T  and 2_1.

Proof. By (5.31) and  Theorem 3.1

(5.59) E[f  a (x(0))1=<1.),„ f> ,  ltirn T tf EaDniaili

and

(5.60) Er(N(95))2]=2-T-2 E  E  5 2 ( i)0  2 (  PE U  (0)—m)(x,(0)—m)]
iEZr jEZr

=2 - r- 2  E  E  0 2 (0 0 2 ( j)(iim E“-,Eirm'a ' 11 —m2 )iezr j Ezr t-..

r E  E  102 (01  I 02(i)1Psii—a< +001m(1—m)
iez r Jezr

Further we notice by (5.7)

(5.61) Pei+,,[C< +00] P,i + d[a i < + 0 0 1 = P i- ,  aio)<+001

=  ( 1 +  P Y - 2

Also, it is not hard to check that

(5.62) 02(4(1+ IX  12 P).-5=C1 E II x"DP011 2 —__C"110112(p+r)la pIpIgr

Here the second inequality is found in  appendix o f  [ 4 ] .  By making use of the
above estimates we obtain (i). ( i i )  is immediate from (5.60) and (5 .61). (iii); For
any f ecg(R i)
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f(M (0)—  M(0))-- .r:2 - r 2, r çb a (i)2 x i (22 u)(1— x,(22 u))f "(Al )— M (0))d u

is a martingale for So it follows

(5.63) Ei(Mi(0)—M(0))21-2_r i r 02 (0 2 it I •

Noting (5.60), (5.61) and the stationarity, we see

(5.64) E[(Ç 2 T+221 2  L . Q 0(i)X  i(2 2 it)d 10 2 1

s)2 2- r- 2  E([ E Q 2 0(i)(x i (0)—m)) 2 1
tiEZT

(t — S)2  2- r -  2 Z r  . Z r t Q 20(01 I Q20(j)1 ( 1 + I  ) r -2  •

Since {qi }  is finitely supported, we have some constant c > 0  satisfying

(5.65) qi=0 for any iE Z r with III > c .

By making use of the Taylor expansion it holds

(5.66) I (120(i) — ( L 0)2(0 I

IIuIvIE  E E
— J e z r  u=1 v=1

Accordingly, (ii) follows easily from (5.63), (5.64) and (5.66).

Lemma 5.9.

(i) lirn E[(2 -  (r +2 )  '2 E  Q 20(i)x i(0)— .1\1ô(L 0)) 2 1=0 .JEZr

(ii) lira E [(2 - r  E ç2(i) 2 x I(0)(1—x(0))— plIg51 2 )2 ]=0 .tiEZr

P r o o f .  (i); We note by (5.59) and (5.61) that

(5.67) E[(xi(0)—m)(x,(0)--711)] ly-2 •

So, by (5.66)

lirn E[(2 (r+2)/2 E  Q 2 0(i)x(0)— N6z(LO)) 2 ]
2 iEZr

< l iM  2 - T - 2  E  E  I (1295(i)—(45)2(i)1 I Q20(i)—(LO)2(.i)1 ( 1 + )r -2tiEZr jE Zr

=0.

E[(2 - 1  E 02(i) 2 xi(0) 2 )2 1=2 - 2 r  E  E  9 5 2(02 02(/) 2 E2Ei+,D7/ 1"- '] .iezr ie Z r  jEZr
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E2,i+2,i[m t ' - I ] —  E2siEmL"s l iE2si[m 1" - I ] I

_<4Pi_i[a(0)<+-001---> 0 as li — j1 +00,
we get

(5.68) lirn E[(2 - T E 02(i) 2 x1(0) 2 )2 1=(11011 2 E2,0Cm'''1 2 •
zr

In  the  sam e w ay w e have

(5.69) lim E [(2 - r E 02(i) 2 xi(0))2 1-=. 110114 7n2 .
iEzr

Hence (ii) follows from (5.68) and (5.69).

Proof  o f  Theorem 5.2'.
In  order to  show the convergence of finite dimensional distributions we shall

adopt Tanaka's method in  [ 1 9 ] .  Let m 1  and 0 t 1 <t 2 <  <t„,, be fixed. W e
w ill c la im  th a t  the  d istribution of (M 1 , N 2 , ••• , N )  converges as 2—.+00 to
th e  corresponding joint distribution of the O rnstein-Uhlenbeck process defined
b y  t h e  stochastic  in tegral equation (5 .15)'. W e assume th a t t ,  is  o f  th e  form
tk=k2 - L  (k =0, 1, 2, ••• , L=1, 2, —). Once th is  case is  p roved  th e  general case
can be easily driven by noticing Lem m a 5.8 (iii).

Define a  S'(Rr)-valued continuous process N'»L  b y

(5.70) .At'»L=2L(tf+i—t)N4+2L(t—tk)N i for .

Then it follow s from  Lem m a 5.8 (i) that

(5.71) E [  sup (N't'' L (0)) 2 i - C f 4 11011ip+r)
(1 T

and

(5.72) E[(./\a L (95)— L (95))2 I--C f.110 Ilip+r) t — s 12f o r  0 < t — S < T  ,

where Cf4>0 is  a  constant depending o n  L  and T .  So, deno ting  by  P i the  pro-
bability distribution on C([0, 00), ( R r ) )  induced by Aq'L, it follows from Lemma
5.1 th a t th e  family {Pi} i s  t i g h t  for each L.

N ow , le t {27,} be any sequence, tending to -Poo, along which the distribution

of (N 't'lt, •• , Nkt,) converges to som e distribution p  on  a  S '(R r ) .  W e will
prove that p  agrees w ith the  corresponding distribution of N t defined by (5.15)'.
By the diagonal m ethod w e can choose a  subsequence {2} so  th a t fo r each L

converges to some probability distribution P7, on C([0, co), (R ' ) ) .  It follows
from Lemma 5.8 (iii) th a t  if  0<t—  s<T

(5.73) EP7[(77t(0)-7),-(95))2i CT(1195112+<LO>)11̀ —s

Denote by cf4/ th e  space o f  a ll S'(Rr)-valued functions defined o n  [0, co) and
denote by g ((W)  the  usual a-field on (W . L e t u s  define the projection  H L :
C O , 00), Si(l?'")) by

(5.74) (//Le)1=2L(tif+i—t)tk-F2L(t—t L.+1 f o r t f 4 1  •
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Then, making use of (5.73) and the Kolmogorov extension theorem, we can easily
see that th e  family W 1 L=1,2,..., determines a  un ique  probability measure P -  on
(cW, g(cW)) such that

(5.75) HLP-----P7 fo r each L ,

and

(5.76) EP-C(et(95)—er(0))21—CT(1195112+ < Lq»)It —s1 (0<t— s<T).

Furthermore, by Lemma 5.8 (ii) we have

(5.77) EF-[(e0(95))21-C2<g5».

Also, by reducing to a  finite dimensional case, we can show  that the  process
(et, Pc") has a  progressively measurable a n d  separable modification, which we
denote by 1ft } . Here notice that (f t , P - )  is a  6 / (Rr)-valued stationary process.

Next, we claim that fo r any q5 S(Rr) and any feCg(R 1 )

(5.78) f(et(95))–SofVs(0))t-s(Lo)ds — p II 95 f "(e 8(0))d s

is a  P - -martingale. Denote

= f L (0)) — 52
oN 's1 '  L (1, 95)f/ (N't'' L (95))ds—  p II 01125 1" ( N  (0))d s

— f(N (0)) —1:N '(L q5)f(N'(g5))ds — p II 95 1125 f "(N(0))ds

It follows from Lemma 5.8 a n d  Lemma 5.9 that

(5.79) lim Um sup EL 1?•'' 11=0 fo r any T >0 .
05t5T

F o r any 95, 01, ••• , q5k eS(Rr), any gEC o (Rk) and ()_ .si .< ••• <s k __s<t

EF00 [(f(e2(o))—Af8csb»— f(u(0))e.(1,95)du

— PI10112 5:fm (fu(sb))clu)g(eti(01) , ••• et k (q5 0)]

=limo  lirnco E[( f(M  ' L (0)) —  f(N,;171 ' • L (0 ))-1 :f(N , 2,,n' • L(0))N,'111 ' • L(L,g5)du

—p110112 1:f"(Nn'' L (95))du)g(N,' L (95 1), ••• , \ 1;',7, ' L (0 IX]

lim pno , E[(f(N:n'(0))—f(Mn" (0)) — :.t. ' (N,2tn ' (0))Nt'ln ' (L95 )dli

2- r  E  02 (i)2x.(22u)(1—x,(22 uDf"(N;In'(0))du
J s

R n' • L R , L)g (N b 1\ 77) 1;1,7' k ) ) ] = 0  (by (5.79) and Lemma 5.9).
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Thus, we obtain (5.78). It is known that the  m artingale  problem (5.78) is uni-
quely so lvable  if the  d istribu tion  of the  in itia l condition  f o is uniquely deter-
mined, (cf. [4 ] Theorem 1.4).

L  generates a unique strongly continuous contraction semi-group on C(RT),
which we denote by { S t }  A l s o ,  S t i s  self-adjoint and contractive o n  O R '] ,
and satisfies

(5.80) ,0(x)dt=G0(x)=L,G(Y)0(x — y)d y

where G(x) is defined by (5.17). It is not hard to see that S t O ES(Rr) holds for
any S(R'], and  denoting gl•t=-S t O, for any fECg(R 1 )

(5.81) f(et(Or-t)) j:11 0,-.112f-(e.(or-u))du

is  a  P - -martingale for 0 t T .  Taking f(x ) — e, w e  have

E P 7exp (ie i(g5r))i= EP 7exP (iUy6r))i —  !T o 95 r-UPEP - Coxp (iezt(Or-u))] d u

,
and  this implies

(5.82) EP`Texp (iet(07, - t)] =E F 7exp (ieo(gir)] exp ( - 4,1195T- ull 2 du) .

Setting T = t, and  taking account o f th e  stationarity o f e't , we see

(5.83) EP-[exp (z. 0(0))]=E 1—Texp (z.e0(95t))] exP (— p5:110.112 du)

for any
On the other hand since A is positive definite it follows from (5.77) and (5.17)

(5.84) p -a eo cov i 2<o> 5C 3(G  10 1 ,  1 0 1 ),L2(Rr) •

Accordingly, we obthin

lim EP ME0(0 t)) 2 i-C  3 lim (G S  95 I  S tl I) n,L2(R
t-00 t-oo

-.-=ColtinA t S.1951du, 1¢1)-=0 •

Hence, letting t—H-00 in  (5.83), w e have

(5.85) E'Texp (1. 0(0))]= exP II S u 0112 d u), exp  (—  (GO, 0) L 2( R 7 ) )  .

Thus the distribution of eo is uniquely determ ined. Therefore the distribution
o f  (f t , P— ) coincides w ith  that o f  t h e  stationary Ornstein-Uhlenbeck process
defined by (5.15)'. T h is  completes the  proof o f Theorem 5.2'.

8 ) C0 0 ( R )  denotes th e  Banach space  o f  all continuous functions defined on R T  vanishing
a t  n o  w i t h  th e  un ifo rm  norm.
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§ 6. Sealing limit (II)

In  th e  preceding section we studied th e  lim iting process by scaling both in
tim e  a n d  sp a c e . I n  th is  section we shall discuss another type of scaling limit,
th a t is, only in  space.

L et X = [0 ,  1 ] ' .  L et us consider th e  following stochastic differential equa-
tion,

(6.1) d  ,(t)=a(x t (t))dB i (t)± qi i x i (t)dt (i Zr)ie-zr
X(0)-=" {X i(0)} E X ,

w here  {Bi(t)} tiezr is an independent system of one-dimensional standard Brownian
motions defined on a probability space (D , g, P, {g}) and  x(0) is  g o-measutable.

Furtherm ore we assume

(6.2) a(x ) is a  1/2 Holder continuous function defined on [0, 1]
and satisfies a(0)=a(1)=-0,

and

(6.2) (--=-Qi-i) f o r any  j and iEZ r, q j O (i#0) and i Ez r qt =0

T h e n  i t  is  k n o w n  th a t  (6.1) h a s  a  u n iq u e  X-valued strong solution and
(D, F ,  P, f g  x ( t ) )  i s  a  d iffu sio n  process o n  X , (c f . [1 6 ] ) .  D enoting M (0)
=2 - r 1 2  E  2 (i)(x t (t)—  E[x,(0]) for each çb S(Rr), M t is  a S'(Rr)-valued continuous

iE Z r

p rocess . Then we obtain

Theorem  6.1. L et r.- 1• Suppose that {x1(0 )}  iezr are independent and identi-
cally  distributed. Then 11/1 converges as 2 --d -co  to  a S '(R r)-v alued Gaussian
process M t ,  w hich is def ined below , in the sense of  probability  distributions on
C([0, oo), 6''(12 1.)).

(6.4) Mt(95)=Mo(0)±:-V g(s)dW ,(0) f o r any  OG S(R r )

where W t i s  a S '(Rr)-valued standard Wiener process, M o is  a S '(Rr)-valued Gaus-
sian random variable independent of W t satisfy ing

(6.5) E[eim ' 0 ) ]= exP (— ) 11011 2) where nz E [ x 0(0)]

and v_=E[(x 0 (0)—m) 2],  and

(6.6) g(t), E[a(x 0(t)) 2] •

Outline of the proof.
1 ° .  Denoting by /3 2  t h e  probability distribution on C([0, oo), S ( R " ) )  induced

b y  114, w e can show  b y  th e  same argum ent as Theorem 5 .1 ' th a t  t h e  family

{P2 }2 is tight.
2 ° .  It is  easy  to  see  firn E[e MR95)1=exp (-095112/2).
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3 0 . F o r  a n y  t> 0  th e  d is tr ib u tio n  o f  { X  1 ( 0 }  2 E Z r is Z r-shift invariant and
mixing with respect to Zr-shift.
In  fac t, for any finite subset V  o f  Z r ,  denote by {x i

i
i (t)}  the solution of the fol-

lowing stochastic differential equation.

(6.7) x(t)=-0 fo r  i EE V,

x x i (0 )± :a (x  i (s))d B i (s)+ 0
1
 j r q f i x i (s)ds fo r  i E V  .

Then it is known that

(6.8) lim  E [14 :(0— xt(01]= 0 fo r any iE Z r and t> 0 c f. [16]) .v/zr

Notice th at {x i (t) - 4 .(t)} i c y  a n d  {xj(t)—XY+k(t)} j E V +  k  have the same distribution
and th a t {x1( (t)} tEv a n d  {xY+ k (t)} JETT+ k a r e  independent i f  VnV± k =- 0. So, us-
ing (6.8) we can show  the mixing property at any fixed t>0.

4 0 . F or any OES(Rr) and fECr,(R')

f(lVi(0))— Yor(MR95)) i ; , .2 - '"Z r 4ii952(1)xi(s)ds

— f//(M l'(0)) Z / 1- r 2(0 2 a (x i (s)) 2 d s

is  a martingale.
5 ° .  It follows from 3° that

(6.9) lAirro! E [( L .2 - 1 . 0 ,i(i) 2 a(xi(t)) 2 —  g(t)110112 )2 ]=0

fo r any t>0.
6 ° .  By making use of the Poisson form ula on Fourier transform , it is easy

to see

(6.10) lim 2- r  E  (qq5 2 (i))2 =0 .
ieZT

Notice that Lemma 5.4 also is true in  th e  present c a se . S o , we see

(6.11) lirbco Eh ' of' (MR0)) i ; , ( 2 - " 22 0 . ) ) x  i (s)d s) 2 1

lim t2- r Y E [(  E  q*0 2(i)(x i (s)— m)) 2 1d s
o

const. lim A T  E (g*952(i)) 2 --- - 0

7 ° .  F or any lim iting point P°" o f  {/3 2 } a s  A—H-0o,

(6.12) f(77t(95))— - -

7) q*o(i)= ,Lrq
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i s  a  P"-martingale f o r  a n y  OES(RT) and fECg(R 1). Also, it follows from  20
th a t (70 , P") has th e  sam e distribution as M o  o f  (6.5). Therefore w e obtain the
conclusion since the m artingale problem (6.12) has a unique solution.

C oro lla ry  6 .1 . L e t  V n ]x  ••• x [— n , n lE  Z r an d  def ine zn (t) =
(2n+1) - r "  E  (x i(t)— E ix i(01 ). Then under the sanie assumption o f  Theorem 6.1,

i v n

z ( t )  converges as n—H-00 to a  real Gaussian process z(t), which is defined below,
in the sense o f  probability distributions on C([0, 00),

(6.13) z(t), z (0 )+ : g (s)d  B (s) ,

where B (t) is a one-demensional standard Brownian motion, and z(0) is a  Gaussian
random variable independent o f  B (t) w ith the mean 0 and the variance v.

Theorem 6.1 asserts tha t the  scaling limit process o f  th e  above ty p e  does
not involve the m igration rate  {q ) ,} exp lic itly . B ut it should  be noted that g(t)
depends o n  lq,J.

O n  th e  o th e r  h a n d  w h e n  {q „} is  rep laced  b y  {22,7.2, }  th e  limiting process
also  is an  S/(Rr)-valued Ornstein-Uhlenbeck process, of which drift term is deter-
mined by {q,,}

D en o te  b y  (Q, g ,  P ;  x ( t )= { x ( t ) } )  th e  d iffu sion  p rocess defined  by  the
stochastic differential equation,

(6.13) d x(t)--= a(x-(t))d B i (t)d- 22q  x ; ( t ) d t

x (0)= {x i(0)} OE Z DwX

w h ere  {B t e Z r  is an independent system of one-dimensional standard Brownian
motions on (Q, P, {gt} ) an d  x(0) is  g o-measurable.

W e assume the condition [C ] o f § 5 and (6.2). Denoting

K (0 )= 2 - r "  E  .02 (i)(x '(t)— E[x 2,(t)]) fo r e a c h  E S(R r )
iezr

i s  a  S'(Rr)-valued continuous process fo r each 2 >0 . Then w e obtain the
following.

Theorem 6.2. Let r 1 .  Suppose that {xi(0)} i E z ,  is independent and identi-
cally distributed. T h e n  K  converges as  2—.+00 to  a  S'(Rr)-valued Ornstein-
Uhlenbeck process K t , which is defined below, in  the sense o f  probability  distri-
butions on C([0, 09), ( R r)).

(6.14) K1(0)=K0(95)+a(m)W 1(0)± ,Vo K3(LO)ds f o r any  OES(Rr) ,

where W 1 i s  a  S'(Rr)-valued standard W iener process, and  K o  i s  a  ,V(Rr)-valued
Gaussian random variable independent of  W 1 satisfy ing

(6.15) E[eiK0(0)]-=exp (—  —
2
v OP) w i t h  v-=E[(x0(0)—m)2]
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and m =E[x 0 (0)], and L  is o f  (5.13).

Outline o f  th e  proof.
1 ° . Denoting by P 2  t h e  probability distribution on C([0, 00), S '(R r)) induced

by K ,  we can show  by th e  same argum ent as the proof of Theorem 5.1' that
the  family {P 2 } 2 i is tight.

2°. lim EI(v(t)— m) 2 1-=0 fo r any i ZI" and  t > 0 .

In  fa c t , denoting 122 (t ; j, j).= E[(v(t)— m)(x;(t)--m)], it follows by using, Ito's
formula that

j)=2 2;  m ,  j ) - 1 -  2 2 E  q„,j 112 (t • i m)±5 ..E[a(x  0 (0) 2 1h 2 (t • i .dt " Zr7 7 1 E Z r

Noting th e  independence o f  {x 1(0)} j E z r, w e have

(6.16) h (t ; j, i)= 222(i , i)2 EC(x0(0) — m) 2 1jE Z r

E P 22t (i, j) 2 E[a(4(t— s)) 2 1dsofezr

Here notice  th a t lim  E P t (i, 1) 2 = 0  f o r  a l l  i m Z r, because P t PP is  a  spatiallyt - .  jE z r

homogeneuos tran sitio n  probability o n  Zr. H ence we obtain lim h 1 (t ; i,
lim E[(4(t)— m) 2 ]=0  fo r  any t >0.

3 ° .  F or any f EC(12 1 )
Ct

f(KRO))— . : 2- r/ 2
i ;  Q  20(i)(x ;:(s) — m ) f ( 1 - 95))ds

-1
2

- '):2 - T
i r 02(i) 2 a(xRs)) 2f ' (K's'(¢))ds

is a  martihgale.
4 ° .  It follows from 2° that

(6.17) lim E[O t E 2- r0 1 (i)2 a(v (s)) 2f"(KR95))ds
o iEZT

— a(m) 2 11011z 1o
t f"(K 'RON 01=0 .

5
0

. E [0 :2 - r1 2 Z r Q 2.75(i)(x(s)—m)f(KRO))ds--Yo K 'K L OV V 00)) 2 dS]

f t

ig .K 220(i) — (45)2(i))(Q 20(J) — (L 0 )2 (.02  2 (S ; i, j)d s
JOj E

j g.(Q 20(i) — (45).1(i)) 2 t sup E  I h
 2 ( ; i ,  P ld s0 iEZr jE,Zr

--> 0 as co by Lemma 5.3.

d
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6 ° .  For any lim iting point of P o e '  of IP'11 as
1

f(7)t(0))-1 0 72s(LO)f(728(0))ds— —
2  

a(m) 2 110112

 0
f"(728(95))ds

is  a P - -martingale for any g5ES(Rr) and fE c g (R i) .  A lso, it follows that ( 7 2 0 ,  P - )
has the same distribution as Mo of (6.5). Hence we complete the proof of Theo-
rem  6.2 since the martingale problem of 6° has a unique solution.
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