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§0. Introduction

Consider the following stochastic differential equation (SDE) on R4
dxi= 3 ah(X(£))od WH(1) +b(X(t))d
p=1

(0.1)

Jo}
OxJ

r ; -L d r
= 3 ohx)-awre) + 3 £ 3 (G2 of)(XW) +5i0x) |at,

=1 p=1
X(0)=xeR¢ i=1,2,...,d

with sufficiently smooth functions oj(x) and b'(x) on R4. Here, -dW*(f) and
-dW¥A(t) denote the stochastic differentials of the Stratonovich type and of the Ité
type respectively, and W(t)=W(t, w)=(WA(t)), where W(t, w)=w(t), we W}, is the
canonical realization of the r-dimensional Wiener process on the r-dimensional
Wiener space (W§, P%): W is the space of all continuous functions w: [0, co)— R4
such that w(0)=0 and PV is the r-dimensional Wiener measure on W§. Introducing
vector fields A,, A4,,..., 4, on R? by

d .
A,,(x)=i§]a;,(x)—a%i—, B=1,2,0,r

Ao(x)= 3 bi(x) -
O(X) - El (x) W ’
the equation (0.1) is also denoted by

) dX(t) = ,,2’1 Ap(X(2))od WE(t) + Ao( X (£))dt
0.1) =
X(0)=x.
If 6j(x) and b(x) are C® with bounded derivatives of all orders, the solution

X(t, x, w) exists globally and for a.a.w(P%), x—X(t, x, w) is a diffecomorphism of
R for each t 20 (cf. [1], [3]).
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Let Wa(t)=(W§(t));,=,(6>O) be an approximation of the Wiener process W(t),
i.e. the process defined on (Wj, P¥) which consists of smooth paths and which
approximates W(t) as 6 | 0. Then we can consider a dynamical system, i.e., an
ordinary differential equation (ODE)

X(0)= ﬂz;:l Ap(X5() Wh(e) + Ao( Xs(2))

(0.2)

and we obtain a family (X(t, x, w)) of difftomorphisms over R defined by the
solution of (0.2). It is reasonable to expect for a class of nice approximations that
X4(t, x, w) actually approximates X(t, x, w). In fact, for the piecewise linear
approximation, this approximation of diffeomorphisms was obtained by Elworthy
[2], Tkeda—Watanabe [3] and Bismut [1], and for the mollifier approximation (a
regularization by convolutions) it was discussed by Malliavin [4]. In particular,
Malliavin called this approximation the transfer principle and regarded it a funda-
mental principle in studying the flow of diffeomorphisms X(t, x, w). It seems difficult,
however, to follow his proof in several points.  Main objective of the present paper
is to give a rigorous proof of the mollifier approximation by modifying the method
of [3] in the case of piecewise linear approximation.

- The author would like to express his hearty graditude to Professor S. Watanabe
who kindly guided his research while he was staying at Kyoto University and gave
him many advices in writing this article.

§1. Mollifier approximation

Let (W5, P¥) be the r-dimensional Wiener space and %,=%,(W§) be the usual
o-field generated by the paths up to time t. Let p be a C*-function with support
in [0, 1] such that p=0 and gl p()dt=1. Upon choosing such a function, we set
for each >0 °

5 _
(1.1) Wit)= g Wilt+s, w)p <£> ds iy

0 0 0
and call W;(t)=(Wi(1)) a mollifier approximation of W(f, w). In order to emphasize
the dependence of W; on w, we often denote Wy(t)= Wy(t, w). It is easy to verify the
following properties of the mollifier approximation:

(i) t—>Wy(t)is C*asamap: (0, o)->R?and

sup |Ws(t, w)— W(¢, w)|—=0as d |0 for every T>0and we Wy,
te{0,T]
(ii) for any =0, W;(2) is #,,s-measurable,
(iii) if 0,: W§— W is defined by (6,w)(s)=w(t+s)—w(¢), then for all ¢, s
20,
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Wi(t+s, w)= Ws(t, ,w)+ W(s, w),

(iv) E[Wit)]=0,t20,i=1,2,..,r
(E denotes the expectation with respect to P%.)
(v) E[|W;0)|*]=e,,0m m=1,2,...
where e,,, is a positive constant depending only on 2m,

(vi) E[(SZ | W,,(s)lds)zm}: ey 5m  m=1,2,...

where e}, is a positive constant depending only on 2m,

We consider SDE (0.1) and ODE (0.2) where gj(x) and bi(x) e C3(RY) i.e.,
o; and b’ together with their derivatives of all orders are continuous and bounded.
Now we can state the main result of this paper as follows:

Theorem. For all p=1, T>0, N>0 and multi-index a, we have

(1.2) lim E[ sup sup |D2X4(t, x, w)— D2X(z, x, w)|P]=0.
6l0 0stsT |x
lal
Here D2= a=(0y,..., a4) and |a| =0, + - +o,.

axglaxgz...axzd ’

To prove this theorem we need the following result which has been obtained in
[3] (Chapter VI, Theorem 7.2): if, in the equations (0.1) and (0.2), o; € C}(R?)
and b' e C}(R?) (in general, fe CP(R?) means that f together with its derivatives up
to the m-th order are continuous and bounded), then for every T>0 and N >0,
(1.3) lim sup E[ sup | X,(2, x, w)—X(t, x, w)|2]=0.

5410 |x|SN

The theorem can be obtained by the following reasoning. First we remark that
(1.2) is deduced from the following weaker estimate: for every p=1, T>0, N>0
and multi-index o,

(1.4) lim sup E[ sup |D2X,(¢, x, w)— D2X(¢, x, w)|P]=0.

510 [x[EN

This can be seen by the same arguments as in Chap. V, Section 2 of [3]. So we
need only to prove (1.4). For this we remark the following: if X(®=D2X, then
Z=(X®), sm is the solution of the following SDE in the matrix notation,

dX(t) = 0,(X(2))odWH(t) + b(X(1)) dt

dY(1)= (Do ,)(X(2) Y(0)odWP(t) + (Db)(X(t)) Y(t)dt
(1.5 X(0) = x

Y(IO) =]

where  XO(1)= X(1), Y(1) = (DzX: |a| = 1)= (gf}) (Day)= <%) (Db)=
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Ox/
corresponding ODE (so, of course, d should be changed to bigger one), we can obtain
(1.4). Unfortunately, the coefficients of the equation (1.5) are not bounded even if
we assume o}, b’ € CP(R?) and hence (1.3) can not be applied directly. However,
if we can verify the condition: for every p>0, T>0 and N >0,

<6b' >, If we can apply the above proposition (1.3) to this SDE and the

(1.6) sup sup E [ sup |D3X,(t, x, w)|?] < o0,
|x]SN 6>0 0sStsST

then we can apply the same truncation argument as in the proof of Lemma 2.1 of

Chapter V in [3] to obtain (1.4). In conclusion, all we need for the proof of the

theorem is the estimate (1.6).

§2. The proof of the estimate (1.6)

The proof of (1.6) can be carried over in a similar way as in the proof of Lemma
7.2, Chapter VI of [3]. Since Wy(t) is &,,s;-measurable for every t, however, it
needs to be modified in several points. The term involving the drift coefficients
b! do not cause any difficulty and so, just by the reason of simplicity, we assume
b*=0 in the following discussions. Thus, instead of (0.1) and (0.2) we consider the
equations

dx() = ,,i, o (X(8))ed WH(H)

@.1)
X(0) = x
and
X,(0= 3 o,(Xy(0) W),
2.2) A=

X;5(0)=x.

First we consider the case a=(0,...,0), i.e., D*X;=X,, and assume that T>0,
N>0and p=2 are given arbitrarily. Denoting by [x] the largest integer not exceed-
ing x as usual, we have for any t=0

Xa(t)—x
[t/6]1-1
= Y (X ((k— D) [W;s((k+1)d) — W;s(ké)]

k=0

+ 8 Loy (50) = o (k= DONT Wits) ds

(2.3) .
+ 0 (X5(([1/6] = 1)8)) [W(t) — W,([1]616)]
+ S [0 (X,(5)) — 0 (X5(([£/8] — 8)] Wi(s)ds
[t/8]6

21,0 + L0 +1;(0) + 1,(0) .
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Defining the function ¢4(s) by
(k—1)o if ko<sS(k+1)0
¢s(s) = )
if =0
and setting X4 —0)=0, we have

E[ p [1,(2)]7]
0stsT

llI\V’

[t/8]
~ECsup |3 [ o) Ok = D) Wk + Do +1)

T k=0

— W(kS+£)])dr|7]
=E[Osugr‘ {SZ () {S:m" o (Xy(y () dW (s +t')}dz' \"1

éE[ sup {S” ps(t) ‘S[i/é]a o’(X,,(d)(,(s)‘))dW(s+t')‘dt'}pj
st lo 0 i

gE[l: sugr {S ps(t )‘S[ e a(X,s(%(s))a’W(s+t')“’dt'}r—J1

gg m(r)E[ sup SO ”o(X.,(¢a(s))>dW'<s+z'>|"]dr'.

ST

Applying a standard moment inequality for martingales ([3], Chapter I11. Section 3),
we obtain

E[ sup |1,(0)|7]
0stsT

P

4 <&, pa@ B[ (1" 1otstds o 12s)” Jar
<K,.

(Here and in the following, K, Kj,..., are constants independent of 6>0).. I,(1)
can be estimated as follows:

E[ sup |L,(0|"]
0StsT

1/81- k 4
<E[ sup (87" o) — 0 (Ko (k=N Wa(s)lds)' |

0StsT k=0

1/8)— ’ 3 i(s :
2.5) K3 EKX““"’ \ 0 (X)) Wy ) du | Wys)lids)'|
K=0 Jké J(k—1)d -
183-1 _ [/ (K ' ‘
<k g L(S‘“”" I Wy lds) |
k=0 (k—1)é

<K;

by the property (vi) in the section 1. The proof of the estimates
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E[ sup [I;(®)|P]1 = K,
0<!=T
and
E[ sup |L,()["] S K,
0<I<T
can be given similarly as (actually even morc easily than) (2.4) and (2.5) and hence

E[ sup | X(t, x, w)[P] < Ky(1 +]x]7)
O0sSt=T

completing the proof of (1.6) in the case of a=(0, 0,..., 0).
Next, we consider the case of |a|=1. i.e., thc case of the first order derivatives.

. a i 0 i
Setting Yj(t, x, w)=( V7 Xit, x, w)) and Da=<?§—i— a,,). we have

0:
(2.6) Ys(t, x, w)=I+ g Da(X,(5)) Yy(s, x, w) Wy(s)ds
0
(in the matrix notation: to be precise, (Do(X 45))Ys(s, x, w) W‘,(s))j-= i‘, zr: 63“
k=1p=1

oh(X;(s)) ‘B%f_ Xk(s, x, w) Wh(s)). Consequently we have for any >0,

Yst)—1
= "8 Do (X, (k= 18 (k= DTtk + 1)) — Wk

[(t/8]=1 C(k+1)d .
8 D (X9 Vi6) = Do (Xu (k= 1) 8) Yok = 1)6)] Wi(s)ds

(2.7)
+ Do (X;(([2/6] —1)0)) Ys(([t/0] — 1)) [Ws(2) — W5([t/5]6)]

+ g; . [Da(Xs(s5)) Ys(s)— Da(Xs(([t/6] — 1)) Y5(([¢/5] — 1)8)] W;(s)ds

A T, () + Jo(8) + J5(£) + J4(2)

where we sct Yy(—0)=1I. By the same estimate as for [,(f), we obtain for any
t,e€[0, T]

1y
2.8)  ELsup 1101715 K ELsup 1Y)
As for J (1),
E[ sup |/,(6)]7]
0stst,
(t/ﬁ]—l (k+1)6
§E[ sup ('3 SH 1D (X,(5)) Y,(s)

0sStsty k=0

— Do (X5((k—1)8)Y5((k—1)8)|I-| Ws(s)lds)?]
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29 < K,O{E[(“"f" S:“ 1 Do(X,y(5)) Y () — Da(Xy(k)) Yy(kS)-

k=0

) [, /0)- 3 . .
Psoas ) +EL (TS O Do Xtk Yako)

— DXy (k=)o) Y(tk = DI Wo(s)lds )]}
If k6<s<(k+1)d,

I Do (X;5(s5)) Ys(s) — Da(X,(kd))Ys(kd)|

< S 1Y) | D20 (Xy () | o (Xs(u) || Wa(u)lidu
2100+ Su 1 Do (X5()) 121 Ya(0) || Wy(u0) | du

BRI AT

ko
<K, [SM 1Y, (k)] W,,(u>||du+g’“ 1Y) — Yy(k) || Wo(u)] du
and if k6Zu=s(k+1)0
1 Ys() = Yyl

T S 1D (Xy(s NI Yo(s ) I Wals') ds”

< Koo 15001 (7 1)1+ 17000 = Yatko) 1 Wt s}
ko ko

Set b,=K,, S(Hm | Wy(s)llds, From the integral inequality (2.11), we can conclude
ko

as usual the following:

(2.12) [ Ys(u) = Ys(kd) | S | Y5(kO)IIC,

where C,=b,e’*. We may assume that K, <K,,, then substituting (2.12) into
(2.11) yields the following estimate:

(2.13)  [|Da(X,(5)) Ys(s) — Da(X,(kd)) Y5(kO) | S 1Y 5(kS) I(Ci+CF).

By substituting (2.13) into (2.9) (we also assume as we may that K,,<K,,), wc obtain

E[O sup |J,(0)7]

stsn

t/8]-1

< K {ELCS T 1Y, (ko) 1-CDP)

k=0

[ey/a)-1
(2.14) + E[( [Y5(kd)-C)P]

k=0
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[t,/8]1-1
+ E[( :.;o 1Y5((k = 1)) I Ci—1Ci)7]

(1,/81-1 X
+ E[( kgo [Ys((k=1)d)ICR-,C)P1}
=K3{Ja1 +Ja2+ a3+ 704} .

Now we need the following estimates for the moments of random variables
C,. First the constants e, i

. in (vi) of the section | have the following estimates

er=B (§ 1wyonas) o’
érqé[ ( S: | »‘V,(snds)"]/a%
e[ (1. [ s+ 00 @) as)']

<(2rM)id,

wherc W is a 1-dimensional Brownian motion, M =|p’| and

| .
:/——— 't if g=2m' -1

QCm' -1
=E(W(1)]9).
Then for every p'22 and k=0, 1,2

if g=2m

E[Cr]S ¥ - (PR armyeeid,, PR

s@rmy ¥ (y32rMp K,2)'d3,d35% |11
(2.15)

S @Ml T E (M K oy §)107%

b
<Ko 7.
By (2.12),

IYs(k&)ICE

S1Ys((k=N)CE+ [ Y4((k— 1)) [ Ci-y Ck

< IY,((k=DB)ICE+ 1Yok = DOICE+ T 1Y,k -Dd)IC

and continuing this, we obtain
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IYs(k)|CF
k

(2.16) <3 b | Yollm =D

m=0 =

k
+ 2 jk— 1Yy = 1O CH.

From (2.15) and (2.16) we see that

[1y/3]-1 .
Jn=E[( I1Y5(k3)1C3)P]

b<s
(=}

§K15{E[<[“m—l'§0 i Y5 (m=1)8)1G2)’ |

((m—l)5)||C> ]

[y/8)-1

SKd P Y E(Y,((m—=1)8) [P E(Cr + CrF

3
]
o

1y
<Ko EL sup 1¥s()7]t.
0 0Ssst
In a similar way, we have
t
Dt I+ J2S Koo | EL sup 1 Y(o))ds
0 0SssSt -
and hence we obtain

2.17) E[ sup 2011 S Kno || EC sup | Yals)IP)d.

St1St

Similarly as for J (1) and J,(t) (actually even more easily) we can obtain

@.18) E[ sup 13011 K | EL sup [1¥ats) 171
0srsn 0 0SsSr

and

2.19) EL sup |(0P) < Ksx || EL sup I Vo(s)1" ).

By (2.7), (2.8), (2.17), (2.18) and (2.19) we have

ty
(2200 EC sup 1%,0171S Kn(1+ | EL sup 17,()7)ak)
0s1s1, 0 0ssst :
and we can conclude from this inequality

(2.21) sup E( sup, | Y5(2)17) £ Kaa-

x,6>0
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Next we proceed to the case of |o] =2.

Set
s a2 ; S
Yj’],jz(t’ X, )l')= 7‘:7]6,_}2_ X,j(t, X, )l'), 1 él,_]l, j2§d.
Then
A d r t N PPN
(2.22) Vitn= % ¥ SO Op(Xa()EY§i2;,(5) Wi(s)ds + ol 72(1)
where

(2.23) a,is'j"h(’t)=g’

0k

d r
X, 2 03X Ya(9)}, Yals) ), Wh(s)ds

" (x)i C_ sify Ty 02 i
op(x)h= 3;—0,,(.\) and a”('\)*"zri??,‘?;,—a”('\')'

If we denote aj+J173(1) as

k

. . ll
a:‘,./n/z(,): Iz_l

r [e/8]~
2 8 G Xalm= DO, Ya((m =13,

(2.24) x Ys((m—1)0)5,[Wh((m+1)8) — Wh(md)])
d r [1/6]‘—'1 (m+1)6 .
LIPS T e AR AR AT
k,I=18=1 m=0 mod

—o5(X;((m— D), Yo((m— 1)8)S, Yy((m—1)8),.] Wh(s)ds)
+ 3 z’:j' O3 (Xa(5)h1 Ys(9)h Y(s)h Wh(s)ds
k,I=18=1J[1/8]

& H,(t) + Hy(1) + Hy (1),

H (1) can be estimated by the method used in the estimate of I,(1) as follows:
r 5
EL sup 1H/(OP1< KB ({175 (@5 04as)" |
Ost=sT Jo

T
=< Kz(,S E[ sup [|Ys(2)[?P]ds < K5y < 0.
0 0sIsT
As for H,(t), we estimate it by the method used in the estimate of J,(f) and obtain
E[ sup |H,(2)|7]
0StsT

[r/8)-1
(2'26) § K28E[( ZO (os<ug_’_ ” Y,,(t)]|2)(C,,2,+C,f‘,+C,,,_,C,,,+C,2,,_,C,,,))P]
m= <rs

= Kyg<oo.

In a similar way, we can obtain
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(2.27) E[ sup |H,(2)|"] £ K;33< 0.
0StST
Thus we have proved the estimate for x,(1, x, w)=(ajJ1-i2(t, x, w)):
(2.28) sup E[ sup |lay(z, x, w)[P] <oo.
- d,x 0s1sT :
Also we remark that for any 0<m <(1/6]

(2.29) E[ sup  llas(s)—as((m— 1)) < Kyyd?

(m—1)6SsSmé

as is easily seen from (2.23) and (2.21). If we set

Viso, (¢)=Yid, (1) —aipdiin(e),

Jisd2 Jis Jl
then

(2.30) Fio, (1) = zi; ; S T Xy($)FYES, (5) Wyls)ds

and from this we can deduce that

2.31) Y9 ,) -7, (md)| = | v®,.(mé)C,+4d,C

Jidz2 Jisd2 Jred2 m>~m

for mésus(m+1)5

- (m+1ys . . -
where Ygﬁ)]z_(y_'f.&“)r 1 hm: K35 S ” Wa(s)||d5~ C,‘m=bmeb"I and dm=
mé

sup lloes(2) —as(md)]. Using this, the estimate
mésStS(m+1)é
(2.32) sup E[ sup | Y@, .@))P] < oo

can be proved in the similar way as for Y,(f). Since the proof is almost a repetition
of that for (2.21), we omit the details.

The proof of (1.6) for higher derivatives can be given in a similar way. This
completes the proof of (1.6) and hence that of the theorem in section I.

As a corollary, we can obtain the following from the theorem by a usual tru-
cation argument.

Corollary. Suppose only that aj(x) and b'(x)e C*(R?) but also that the global
solutions X(t, x, w) and X1, x, w) of (0.1) and (0.2) exist. Then for any ¢>0,
we have
(2.33) lim PY( sup sup |DZX;(z, x, w)—DiX(t, x, w)|>£)=0

510 0SIST |x|SN

for all T>0, N>0 and multi-index a.
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