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§ O. Introduction

Consider the following stochastic differential equation (SDE) on Rd

d x = o- (X (t)).dW P(t)+bi(X (t))dt
P=1

(0.1) o-;,(X (0)•dW P(0-q— aip)(X (0)+bi(X (0)1dt,( a; 71'
P=1 0 .

X(0) = x eR d 1=1 , 2,..., d

with sufficiently smooth functions cil(x) and b ( x )  on R d .  H e r e ,  ociW P(t) and
•dWP(t) denote the stochastic differentials of the Stratonovich type and of the Itô
type respectively, and  W (0= W (t, w)=(W P(t)), where W (t, w)= w(t), w e W6, is the
canonical realization of the r-dimensional W iener process on the r-dimensional
Wiener space (W6, Ps '): W 6' is the space of all continuous functions w: [0, co)--did
such that w(0)=0 and P w is the r-dimensional Wiener measure on W . In troducing
vector fields A 0 , A 1 ,..., A,. on R d  by

d 6  A p ( x )= E ai(x)
i = 1  fia X 4

d a
A o ( x )  E b (x )

1=1 6 .V  7

the equation (0.1) is also denoted by

13= r

(0.1)'
I d X (t)= ±  A p (X (t))0dW o(t)+ A o (X (t))dt

X(0) = x. 

V I

If  o (x ) and  bi(x ) a re  C x  with bounded derivatives o f  a ll o rders, the solution
X (t, x, w) exists globally and for a.a.w(Pw), x ,  w )  is a diffeomorphism of
R d  for each t 0 (cf. [1], [3]).
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Let W (t)_- ( W (t)»» (5 >0) be an approximation of the Wiener process W(t),
i.e. the  process defined on (140 6, Pw) which consists o f  smooth paths and which
approximates W (t) a s  ( 5  0 .  Then we can consider a  dynamical system, i.e., an
ordinary differential equation (ODE)

f )6(0 =  ±  A 1 (X6 (t)) W (t )+ Ao (X 6 (t))
#=I

and we obtain a  family (X ,(t, x, w)) of diffeomorphisms over R° defined by the
solution of (0.2). It is reasonable to expect for a class of nice approximations that
X 6 (t, x, w) actually approximates X (I, x , w ) . In  fa c t , f o r  the piecewise linear
approximation, this approximation of diffeomorphisms was obtained by Elworthy
[2], Ikeda-W atanabe [3] and Bismut [ I ] ,  and for the mollifier approximation (a
regularization by convolutions) it was discussed by Malliavin [4]. In particular,
Malliavin called this approximation the transfer principle and regarded it a funda-
mental principle in studying the flow of diffeomorphisms X (t, x, w ). It seems difficult,
however, to follow his proof in several points. M ain objective of the present paper
is to give a  rigorous proof of the mollifier approximation by modifying the method
of [3] in the case of piecewise linear approximation.

The author would like to express his hearty graditude to Professor S. Watanabe
who kindly guided his research while he was staying at Kyoto University and gave
him many advices in writing this article.

§ 1 . Mollifier approximation

L et (In , Pw ) be the r-dimensional Wiener space and a r ----A(w6) be the usual
a-field generated by the paths up to time t. Let p be a Cx-function with support

in  [0 , I] such that p O  and p(t)dt =1. Upon choosing such a  function, we set

for each S> 0

Wb(t)== Wi(t+ s, w)p (A.-)1 =1, r
6 '

and call W (t)=(14/(0) a mollifier approximation of W(t, w). In order to emphasize
the dependence of W6  on w, we often denote W6(t)= 14/6(t, w). It is easy to verify the
following properties of the mollifier approximation:

( i ) t-> W6 (t) is Cx as a map : (0, oo)-+Ftd and

sup I 147
6 ( t , w )-  W (t, 101-0 as 5 .1. 0 for every T > 0 and iv e

t <0 , T ]

(ii) for any t 0, W(t) is .4 5-measurab1e,
(iii) if Ot : W - is defined by (0,w)(s)= w(t + s ) -  w(t), then for a ll t ,  s

0,

(0.2)
X6 (0) = x, 1

ddt
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W (t+ s, w )= W (t, 0w )+W (s, w ),

(iv) E[ W l(t)] =0, 0, 1=1, r
(E denotes the expectation with respect to Pw .)

( y )  EEl W,(0)1 2 'n] = m = 1, 2,...
where e2 a positive constant depending only on 2m,

(vi) E l
o  

147 a( s)Ids )  i =  6 . 6m , m =1 , 2,...

where e'2  is a positive constant depending only on 2m,

We consider SD E (0.1) and O D E  (0.2) where o ( x )  a n d  b i( x )  C I; (R d) i.e.,
cop and  h' together with their derivatives of all orders are continuous and bounded.
Now we can state the main result of this paper as follows:

Theorem . For all p  1 , T > 0, N >0  and m ulti-index  a, we have

(1.2) lim E [  s u p  s u p  1M X 6 (t, x , w )-14X (t, x , w )IP]=0.
610 0 5 t

kI
Here D'x'— ax7,042...axp oc= ((x „ ..., ate) and 1011=ozi +•-• +ad.

To prove this theorem we need the following result which has been obtained in
[3 ]  (Chapter VI, Theorem 7.2): if , in  th e  equations (0 .1) an d  (0.2), o-io C i(R d )
and bi e 

C ( R d )
 (in general, feeg(Rd) m eans that f  together w ith its derivatives up

to the m -th order are  continuous and  bounded), then f o r ev ery  T >0 and N >0,

(1.3) lim  s u p  E [  s u p  1X6 (t, x, w)— X (t, x, w)1 2 ] =0.
6 1 0  Ix IS N O t S T

The theorem can be obtained by the following reasoning. First we remark that
(1.2) is deduced from the  following weaker estimate: for every p T > 0 ,  N > 0
and multi-index a,

(1.4) l im  sup E [  su p  1D X 4(t, x , w )— I4X (t, x , w )IP]=0.

This can be seen
need only to
Z=(X ( 1 ) ) 1Œ1 ,„,

610 lx1L.-N O S IS T

by the same arguments as in Chap. V, Section 2  of [3]. So we
prove (1.4). F or this we remark the following: if  X (I ) =D,I,X , then
is the solution of the following SDE in the matrix notation,

dX(t)— o f l (X (t)).d W fi(t)+b (X (t))d t

d Y (t)= (D o - f l )( X (t))Y (t)od W fl(t)+ (D b )(X (t))Y (t)d t
(1.5) X (0 )= x

where

Y(0)=1

X °(t)= X (r), Y (t) = (DX II — 1)— aXl. . . ,  (D a)—  ( a
a : h

i ) ,  (DM=Oxi
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( r »  
t• • • •

If we can apply the above proposition (1.3) to  th is  S D E  and thei 
corresponding ODE (so, of course, d should be changed to bigger one), we can obtain
(1.4). Unfortunately, the coefficients of the equation (1.5) are not bounded even if
we assume 6 , b i Ecg) (R d ) and hence (1.3) can not be applied directly. However,
if we can verify the condition: for every p>0 , T>0  and N > 0,

(1.6) sup sup E  [  sup ID,c2 X,(t, x, w)IP] < oo,
1.1sN d>0 1:1 r57'

then we can apply the same truncation argument as in the proof of Lemma 2.1 of
Chapter V in [3 ] to obtain (1.4). In conclusion, all we need for the proof of the
theorem is the estimate (1.6).

§ 2. The proof of the estimate (1.6)

The proof of (1.6) can be carried over in a similar way as in the proof of Lemma
7.2 , Chapter VI o f [ 3 ] .  Since W (t)  i s  a,„-m easurable for every t, however, it
needs to be modified in several points. The term involving the drift coefficients
b ' do not cause any difficulty and so, just by the reason of simplicity, we assume
bi = 0  in the following discussions. Thus, instead of (0.1) and (0.2) we consider the
equations

(2.1)
{ d X ( t ) =  i  a f i (X(t))0c1W13(t)

X(0) = x 

P=1

and

I b (t) = Ê a 0 (X,(t))14/1(t).
(2.2) l3= I

X 6(0) = X .

First we consider the case « = (0 ,..., 0 ) , i.e., D IX ,= X ,,  and assume th a t  T>0,
N> 0 and 2 are given arbitrarily. Denoting by [x] the largest integer not exceed-
ing x as usual, we have for any

X6(t) — x

(10]-1
=  E (X 6 ((k — 1)6))[W 6 ((k +1)(5) — / j (k6 )]

k=0

tt/6]-1 I )6
+  E [a(X6(s))—a(X6((k— 1)(5))] Wa (s)ds

k=0
(2.3)

+a(X,3((Et1 6 ] - 1 ) (5 )/E wi (t) — w6([t/(5](5)]

+ [0.(x,(s)) ---0.(x,(([0 ] — I)c5n] 141
3 (s)ds

[t
-L!- I, (t) + 12 (0 +13(t) +14(t)



(k — 1)6 i f  ki) < s (k + 1)6{

0 i f  s = 0

dW s + t'-5—ELorPri1o6  P  ( t ' ) 10E " ala ( X 6 ( 4 )  ( S ) ) ) )

< E r  s u p pc,(t')
LO.St S T  t  0

1u 1 aia
o-(X,(0 6 (s)) dW(s +t')

< E  sup E
k=0

110 - (X6(s)) — a (X 6 ((k — 1) 6)) • 141 ,i(s)11
IteS

. ( k+1 ).5
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Defining the function (/) (s) by

4)6(s) =

and se tt in g  X (  6)=0, we have

E[ sup 1/,(t)1 1 ]
0 5 (S T

[ 06]-1 5,5
=E[ sup, 1 7 )101 6 ((k — 1.)(5))[W((k + 1)( + t' )

(11 1.5.T k=0 0

—  w(k(5 +0 ] }
a Iriala

sup P a (r )  i5 a(Ka(4)6(s)))dW(s +0} de
05 , ST 0 o

5
p ,(t')E sup

_05-t :ST

([11.5)4
a ( X 6 ( 0 6 ( 5 ) ) ) d W ( S  t ' )  

_J
dt'

)o 

Applying a standard moment inequality for martingales ([3 ], Chapter III. Section 3),
we obtain

E [  sup 11 5 (t)IP]
05t

(2.4) :6 IC1 
1

0

 p 6 ( t ' ) E

o 11(7(X,, (06 (s))112 dsyl dt'
5 -o[tfais

K2,

(Here and in the following, K ,, K 2 ,..., are constants independent o f (5> 0 ) .  12(t)
can be estimated as follows:

E[ sup 112 (t)11

(1/,55-1 _0 (k +  ) (5
(2.5) K36-5P-' )E l i

 k h

   

(k -1 )4
(X(u)) W 6 (u)du II 1476(s) Il ds) P1

 

M a l - 1 (k+1)6 \ 2p
<  K

[0
46 - " - 1 ) E  E 141 (u )  d s

k=0 (k -1 )J

by the property (vi) in the section I. The proof of the estimates
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E [ sup I13(t)IP] KA,
05r -S,T

and

E [ sup 1/4 (t)1P] K 7
0:5t

can be given similarly as (actually even more easily than) (2.4) and (2.5) and hence

E [ sup 11X(t, x, ' ]  5 K8 (I +1x1P)
051:5T

completing the proof of (1.6) in the case of a —(0, 0,..., 0).
Next, we consider the case of cz =1, i.e., the case of the first order derivatives.

0  Setting Y6 (t, x, w)—(  X  (t, x , w )) and Da = (   ah ) . we have

(2.6) Y 6(t, x, 10= /+ D a(X (s))Y a (s, .v, w) Wa (s)ds

(in the matrix notation: to be precise, (Do-(X 6(s))Y6(s, x, w)Vii,(s))ii = ox-
0a( X ,( s ) )  0 -‘7, 0  14/(s)). Consequently we have for any t 0,

Y a (t) — I

=  E  Do- (X ((k — 1)6))Y 6 ((k -1)6)[W ((k  +1)6)—  W 6 (k6)]
A=0

[r/6]-11(A+1)6
+  E [Da(X6(s))175(s)— Do- CX,5 ((k -1)(5))Y a ((k -1)6)]14/,(s)ds

A=0 kb
(2.7)

+ Do-  ( X 6 (([t16] —1)6))Y  ,(([tI 6] — 1)6)[W ,(t)—  W „([t16]6)]

+ Ç [Dcr(X (s))Y (s)—  Do - (X ( ([0 6 ]-1 )6 )Y 6 (([06]-1)6)]14/„(s)ds
• [rIbic5

J,( t)+ J2 (t)+ J3 (t)+ J4 (t)

where we set Y ( — 6)=1 . By the same estimate as for / ,( t) , we obtain for any
t, e [0, T]

(2.8) E [ sup IJI (t)1P] 5 K 9 1  E [ sup MY( s) P] dt.
O

As for J 2 (t),

E [ su p  1.12091P]
o t t

[th 5 ]-1  5 "(k+ I )

5 EL su p  (  E D a (x ,(s )) Y,(s)
0 5 t5 t1 k=0 k(5

— Da(X,((k —1)6))Y ,,((k — 1)6)M 14/ 6(s)dds) 11  •
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5( k + l ) '(2.9) II Du( X 6 (s))Y 6 (s) — Dc7( X 6 (kS )) h (k(5)11-
L k=0 kb

11 (S  ) d S ) P— I  "k =0 kb
Da(X6(1(6))176(k6)

DC r X6((k 1)6)) Yb((k 1)6)1111 14/ b(S )11dS) .

If k(5 .s:5_.(k +1)6,

M Da( X (s ))Y  h (s) — Dcr(X6 (k(5))Y6(k(5)11

Yb(U)M M D2 0  (X6( U))11 o-(X6(u))11 14/ a(u)Ildu
kb

(2.10) + .Çs IlDa(Xa(u))11 2 11Ya(u)104 /a(u)Mdu
kb

Cs
< K„ 11176(0U( )4/6(011dU

Il Yb(k6 )1111147b(U)CIU +S s

k
 11 )16(0 Y(k6)111114/8(U)Idli

kb b

and if ici5 u (k+ 1)6

11 6 (u ) —  6 (k (5)11

(2.11) ILDa( X6(s'))ti M Y6(s'
kb

((k+1)â
< K 12 111 Y lc 1 1s ( (5) 1, 61 4 /  a (s ) i ld s  +  1 1, 6 11 Yb (s) — Y(lc(5) d 14/6(s)lids} .

1(k+1)6 .
Set bk = K  2 M W8(011dS, From the integral inequality (2.11), we can conclude

kb
as usual the following:

(2.12) 11Y6(u)— Y,(1(5)11I I  I T  a(k(5)ii C

where Ck = b k e b k .  W e m ay assume tha t K 1 1 5 - 1 ( 1 2 ,  then substituting (2.12) into
(2.11) yields the following estimate:

(2.13) II Da (Xa(s)) a(s) — Da ( X 6(k6 ))Y,s(k 6 ) M M  Y a(k(5) M (Ck +Ci).

By substituting (2.13) into (2.9) (we also assume as we may that K 1 0- K 1 2 ) ,  we obtain

E [ sup 1./2(1)1 11
o s t s t ,

tt,/a]-1
K13{E [( 11Y0(k6)II CO P ]k=0

[1,/a]—i
(2.14) + Er( E II Y0 (k6)11.C)P1

k=0
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[1,1al—i
E [ (  E IlYd((k-1)6)11Ck-1COP]

k=0

Lt i lal—i
+ E  II Y6((k — 1 )6 )110-1COP]

k=0

= K i3  {J21  + ./22  +J23  + ./24 } •

Now we need the  following estimates for the moments of random variables
C k .  First the constants e  in  (vi) of the section 1 have the following estimates:

- a
e ' =E [(

o
li gia(s)Ilds) Jo  I• q

<14 E7  ( 6
0 1117 6 (s)Ids) q 11692

=rgEt(S i
o

 .
,3
1 1;r1 (s + )p '( )  c g  d s ) q l

_<..(2rM)qd,

where 1, 7 is a  1-dimensional Brownian motion, M= Ilp'11 and

I   " n 'jr I
—  in . if =2n1' — I

d ,= {V  —11

(27// ' —  1 ) !!i f

=E(Iffi (1)1q)•

Then for every p' 2 and k =0, 1, 2,...

E [C fl ( 1 3 1‘,,1 2 )1  O rM ) P ic i p ,,,(5 4 " + °. )

i=o 1.

p ,,
(2rM)P E  (,1 2rMp' K 12 ) 14 ,4 2;6- 2  11!

1=o
(2.15)

(2rM)P' d 2p• [ E (4rmp7<12 \ 76))15 - 2

1=0

By (2.12),

II Y0 (k(5)110

II Y0((k - 1)6)1iCi+IlY0((k - 1)(5 )11Ck_iCi

Ya((k — 1)5)11Ci +j  Y0 ((k-1)(5)11Ct + 11Y d ((k — 1)(5)1ICt_

and continuing this, we obtain
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,(1c6)11C

(2.16)
m=
E

0
 7 k -  m 1 3 ( ( in  1)6)IIC
-

±   Y  4 ( ( n l
1)6 )11C :it.

m = 0  -

From (2.15) and (2.16) we see that

( t  / 0 ]— !

J 2 1 = E U  E  II Y6(k6)11ci)P1k=0
_

k I
K i 5  E  7 1 ( 1 / 2 " — E II Y, (On — 0 6 ) ( .,!)

k = 0  m = 0  ' - '

1-([t i ts0-1
1- m ((In —1)(5)11 C,,,) -

L k=0 1n=0 —

Et,/al--1
15_ K 6 -

1P- T) E EC( Y ,,((nz — 1)6)11P)E(Cp+ Ct,P)
m=0

[t
K 1 7 6 E ECIYa((tn —  1).5)I1P)

m=o

Kis 10E [  sup Ya (s)11P]dt.
0.,s t

In a similar way, we have

J 2 2  +  J 2 3  +  J 2 4  1 (1 9  
o

E [  sup ll Y6 (s)llP]dt
 o s s s f

and hence we obtain

(2.17)E [  sup IJ2 (t)1P] 5  K 2 0  1  E [  sup
ogt.ti ll Y.3(s) IV] dt-

0 05s SI

Similarly as for J,(t) and J 2 (t) (actually even more easily) we can obtain

f

(2.18) E [  sup if3(t)in
,

5 K21 E [  sup llTa(s)11P]dt
0  5 jr , 0 0 Ssgt

and

(2.19) E [  sup lf4(t)1 11 -5 K22 E [  sup Y,s(s)11P] dto L5t, 0 04s t

By (2.7), (2.8), (2.17), (2.18) and (2.19) we have

(2.20) E [ sup M Y0(t)M] -5 K23(1 + E [  s u p  d Ya(s)IIP]dt)

and we can conclude from this inequality

(2.21) sup E ( sup II Ya(l)IIP) -  K24.
x ,8> 0 0 St ST
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Next we proceed to the case of ID:1=2.
Set

•n 12. '( t  x  11.)
.  

0 2
x, d•X  x 2

Then

(2.22) 'fl( ,r,(s))1 6j 2 (s) W g(s)ds + cx:;'il
k=111=I JO

where

(2.23) = eiras(s));‘,/ Y.5(s) ij, Ya(s)2
141(s)ds

o k,I=I 11=1

with
0 2

= ah
.

( X) a n d  e l;(x)1, 1 —   o, (x ).•x • OXkOXI

If we denote a4.i.-12(1) as

d r [ iq ,5 ] -1
E ( E  o- 73 (X 6 ((n2-1)(5))i,,Y 3 ((n2-1)(5) 1),

k,I=Ifi=1 m=0

(2.24) x Y6 ((m-1)(5) 1
i 2 [ Wfla ((m+1)(5)— W l(m 6)])

+ ( Y ,(s)), Y A S P i 2

k,I=1 11=1 m=0 JmO

O r [ t / d ) - 1  ( ( m + i ) 6

— a'igX 6((M  —  1)(5 ))i , I YA(M — 1)(5) 1), Y 0((M —  1)(5) 1i 2 ] Wil ( S ) d S )

E Y ,(s)i), W g(S )d S
k,1=1 11=1[ ( / 0 1

H 1 (t) + H 2 (1) -F 113 (t),

H 1 (i) can be estimated by the method used in the estimate of /,(t) as follows:

E [ sup  I H  (OP] :5- K25E MY 0(4)0(s))114ds)-2—
0 5 t5 7 '

(2.25)
2 11 d S < K 2 7 < 0 0 .K26 E [  s u p  11Y6( 1 )11

0 05tST

As for H 2 (t), we estimate it by the method used in the estimate of J 2 (t) and obtain

E [ sup  111.2 (01P]
05t5T

(2.26) - K 2 8 E [ (  E sup II Y0(1)11 2 ) (C ,+ C +  m -I C .,+ -1 C m ))P ]
m=0 05t5_T

K29 G CoC)

In a similar way, we can obtain
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(2.27) E [  sup  IH3 (t)r] K 3 <  09 .
O S tS T

Thus we have proved the estimate for ;0, x, x, w)):

(2.28) sup EE sup II ari(t, <
6,x 0.15.7'

Also we remark that for any ()_. ni [ t 6 ]

(2.29) E[ sup liad (s) —ad((m-1)6)111_ K 3 .4 6 2
(m -1 )(5 5 s5 m O

as is easily seen from (2.23) and (2.21). If we set

J  12 = Y 2 (t) — oti» (t),i l  f

then
d r Sf

(2.30) f lii4j2(t)= EE (7;1(X6(s))111::3;2(s) W,(s)ds
k = 1 / / = 1  0

and from this we can deduce that

(2.31) 11k (f, ),
1 2

(14)— P(1, ),1 2  (i/16)11 -11i7(15
1
), J2 (m6 )  e„,+ a„,C,„

f o r  n i 6  u  (ni + 1)6

5(m +I)( 5
where ),1 2  = ; 2 4= 1, 

13„,= K 3 5 W 6(S)Ilds, en ,=6„,eb- and d „ ,=
rrib

sup Maj (t) — a,(m 6)11. Using this, the estimate
m (551:5(m +1)(1

(2.32) sup E [  su p  1117 9 )  .2 (0 II <
5,x 0 < ,< T j "

can be proved in the similar way as for Y5 (t). Since the proof is almost a  repetition
of that for (2.21), we omit the details.

The proof of (1.6) for higher derivatives can be given in  a  similar w ay. This
completes the proof of (1.6) and hence that of the theorem in section I.

As a corollary, we can obtain the following from the theorem by a  usual tru-
cation argument.

Corollary. Suppose only that dp (x)and bi(x)EG'(Rd) but also that the global
solutions X(I, x, w) and  X  x ,  w )  o f (0.1) and (0.2) exist. Then f o r  a n y  e>0,
we have

(2.33) lim Pw (  s u p  s u p  MAT6 (t, x, w)— x, w )  > e ) = 0
.310 O S tS T Ix IS N

fo r  a ll  T>0, N > 0 and multi-index a.

D EPARTM EN T  O F  M A T H E M A T IC S , K Y O T O  U N IV E R S IT Y .

P R E S E N T  A D D R E S S : D E P A R T M E N T  O F  M ATH EM ATICS ,

F U D A N  U N IV E R S IT Y ,

S H A N G H A I ,  C H IN A .



254 Situ fia G uo

References

[1 ] J -M . B is m u t, Principes de mécanique aléatoire, to appear.
[ 2 ] K. D. Elworthy, Stochastic dynamical systems and their flows, Stochastic Analysis (ed.

by A. Friedman and M. Pinsky), 79-95, Academic Press, New York, 1978.
[3 ] N. Ikeda and S. W atanabe, Stochastic differential equations an d  diffusion processes,

Kodansha, 1981.
[ 4 1 P. M alliavin, Stochastic calculus of variation and hypoelliptic operators, Proc. Int. Symp.

SDE. Kyoto 1976 (ed. by K. It6), 195-263, Kinokuniya, 1978.


